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Increasing the Time Resolution of Single-Molecule
Experiments with Bayesian Inference
Colin D. Kinz-Thompson1,* and Ruben L. Gonzalez, Jr.1,*
1Department of Chemistry, Columbia University, New York, New York
ABSTRACT Many time-resolved single-molecule biophysics experiments seek to characterize the kinetics of biomolecular
systems exhibiting dynamics that challenge the time resolution of the given technique. Here, we present a general, computa-
tional approach to this problem that employs Bayesian inference to learn the underlying dynamics of such systems, even
when they are much faster than the time resolution of the experimental technique being used. By accurately and precisely infer-
ring rate constants, our Bayesian inference for the analysis of subtemporal resolution dynamics approach effectively enables the
experimenter to super-resolve the poorly resolved dynamics that are present in their data.
INTRODUCTION
Given their inherent ability to eliminate ensemble aver-
aging, time-resolved single-molecule biophysical methods
have revolutionized the study of biological mechanisms
by enabling distributions of molecular properties to be
observed, stochastic fluctuations from equilibrium to be
investigated, and transiently sampled reaction intermediates
to be characterized (1). Generally, the majority of these
methods involve making sequential measurements of an
experimental signal that acts as a proxy for the underlying,
time-dependent state of a biomolecule. As a result, this
process yields a time-ordered series of discrete measure-
ments from which the underlying dynamics of the corre-
sponding biomolecule can be inferred (2). Unfortunately,
the ability to resolve the continuously varying dynamics
of the corresponding biomolecule from a series of discrete
measurements is fundamentally limited. Indeed, whereas a
biomolecule may exchange between multiple conforma-
tional states during a single measurement acquisition period,
these states are collectively represented by a single, time-
averaged measurement of the experimental signal. This
effect is akin to chemical exchange effects in NMR experi-
ments, in which distinct resonance peaks can coalesce into a
single, averaged resonance peak when a nucleus rapidly ex-
changes between distinct magnetic environments (3). As a
result of this effect, many time-resolved single-molecule
biophysical methods often fail to detect or properly charac-
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terize mechanistically critical biomolecular processes that
occur on or faster than the time resolution of the technique,
including early steps in ligand binding, local folding events,
and rapid conformational fluctuations (4,5).

To push beyond the time-resolution limits of these single-
molecule methods, we have developed a Bayesian inference-
based computational approach, which we call Bayesian
inference for the analysis of subtemporal resolution dynamics
(BIASD), to infer the rate constants governing transitions
between discrete states of a single molecule from the analysis
of a time-resolved single-molecule experimental signal, even
if those rate constants are substantially faster than the time
resolution of the recorded experimental signal. Much like
learning the point spread function describing the fluorescence
signal from a single fluorophore in a super-resolution imag-
ing experiment enables the spatial position of the fluorophore
to be inferred beyond the spatial resolution of the experiment,
learning the model describing the kinetic behavior of a single
molecule in a time-resolved single-molecule experiment
using BIASD enables the kinetic behavior of the single mole-
cule to be inferred beyond the temporal resolution of the
experiment. By using Bayesian inference, BIASD can also
integrate information from other experiments to further
enhance its resolving power, and it also employs a natural
framework with which to describe the precision that the
amount of data collected during the single-molecule experi-
ment will lend to the determination of the parameters govern-
ing the single-molecule kinetics (2,6,7). It is worth noting
that, in a close parallel to the approach we describe here,
Bayesian inference has been previously employed to improve
the time resolution of the time-dependent free induction
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decay in NMR spectroscopy experiments, resulting in an or-
ders-of-magnitude improvement in spectral resolution (7,8).

Here, we first describe the Bayesian inference-based
framework underlying BIASD. We then use BIASD to
analyze computer-simulated signal versus time trajectories
(signal trajectories) and investigate the accuracy and preci-
sion with which we can infer the known rate constants for
transitions between states that were used to generate the
signal trajectories. We next use BIASD to analyze experi-
mentally recorded fluorescence resonance energy transfer
efficiency (EFRET) versus time trajectories (EFRET trajec-
tories) to infer the unknown rate constants for transitions
between states in the EFRET trajectories. Notably, the EFRET

trajectories that we have analyzed here had previously
eluded analysis due to the presence of transitions that
are much faster than the time resolution of the electron-
multiplying charge-coupled device camera that was used
to record them (9). Finally, we describe and demonstrate
an extension of the BIASD framework that can be used
to infer rate constants for experimental systems consisting
of static or interconverting subpopulations of molecular
properties within an individual or ensemble of molecules.
Remarkably, we find that BIASD permits accurate infer-
ence of rates constants from time-resolved single-molecule
experiments, even when the rate constants are orders of
magnitude larger than the time resolution of the signal
trajectories.
Bayesian inference-based framework underlying
BIASD

In biomolecular systems, functional motions—such as those
involved in ligand binding and dissociation processes, or
large-scale conformational rearrangements—very often
involve the simultaneous formation and/or disruption of
numerous, noncovalent interactions. The relatively low
probability of simultaneously forming and/or disrupting
these numerous interactions can therefore result in large,
entropically dominated, transition-state energy barriers for
such functional motions (10,11). Consequently, individual
biomolecules are generally expected to exhibit effectively
discrete and instantaneous transitions between relatively
long-lived states (5), an expectation that is consistent with
the step-like transitions that are generally observed in
time-resolved single-molecule experiments (12).

An important consideration when analyzing the signal
trajectories from such single-molecule experiments is that
whenever an individual molecule undergoes a transition
from one state to another, the transition occurs stochastically
during the time period, t, over which the detector collects
and integrates the signal to record a data point in the signal
trajectory. Thus, the probability that a transition will coin-
cide exactly with the beginning or end of the t in which it
takes place is essentially zero. As a result, when a transition
takes place, the signal value that is recorded during that t
290 Biophysical Journal 114, 289–300, January 23, 2018
does not solely represent either of the states involved in
that transition. Instead, it represents the average of the signal
values corresponding to the states that are sampled during t,
weighted by the time spent in each of those states. This time
averaging makes it imprudent to assign the signal value re-
corded during such a t to any one particular state, a process
called idealization, because the molecule will have occupied
multiple states during that t. Notably, when the rate con-
stants for transitions between states become comparable to
or greater than t�1, there is a large probability that the ts
of a signal trajectory will contain one or more transitions,
and that, consequently, many of the signal values of the
signal trajectory will exhibit this time averaging. Given
such a scenario, analysis methods in which individual ts
are assigned to particular states (e.g., the widely used strat-
egy of idealizing signal trajectories using signal thresholds
(13) or hidden Markov models (HMMs) (14,15)) will intro-
duce significant errors into the calculated rate constants for
transitions between states and into the signal values as-
signed to those states (2).

To overcome the potential errors associated with deter-
mining rate constants and signal values from the analysis
of signal trajectories, BIASD instead analyzes a different
parameter that depends upon the dynamics of the biomole-
cular system: the fraction of time that is spent in each state
during the ts in a signal trajectory (16–21). To illustrate this
approach, consider the case of an individual molecule that
undergoes stochastic, uncorrelated (i.e., Markovian), and
reversible transitions between two states, denoted 1 and 2
(i.e., 1 # 2, with forward and reverse rate constants of
k1 and k2, respectively), which have unique signal values
of e1 and e2. If the fraction of time that the molecule spends
in state 1 during a particular t is f , then, because of the
two-state nature of the system, the fraction of time that
the molecule spends in state 2 during that t is 1� f . It is
important to note that, although the molecule is in an
equilibrium between states 1 and 2, the value of f for any
particular t will not necessarily be the equilibrium value
of f ¼ ð1þ k1=k2Þ�1. This is because t might not be
long enough for sufficient time averaging to occur (i.e., to
invoke ergodicity). Instead, each t will exhibit a distinct,
time-averaged value of f .

The exact value of f for a particular t will depend upon
the molecule’s stochastic path through state-space during
t. As such, a probabilistic description of f , which accounts
for all possible paths through state-space, is needed to
describe the likelihood of observing a particular value of f
during a t (22). In particular, for the reversible two-state
system considered here, such a description, which has roots
in the analysis of the NMR chemical exchange effects
described above (23) and in sojourn-time probability distri-
butions (24), was first given by Dobrushin (25). This partic-
ular expression (derived in the Supporting Material) is a
function of k1, k2, and t, and has been used in many sin-
gle-molecule studies, though mostly in the context of
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FIGURE 1 The marginalized, two-state likelihood function as a function

of increasing rate of transitions. Arbitrary signal peaks at e1 and e2 coalesce

into a single peak located at the equilibrium average hei as the rate constants
for transitions between the two states increase relative to a fixed t. a.u., arbi-

trary units.
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photon-counting experiments and without Bayesian infer-
ence-based implementations (16–26). Experimentally, if
the exact values of f , e1, and e2 during each t were known,
one would be able to calculate the expected value of the cor-
responding time-averaged signal, m, for each t, because it
would be the linear combination m ¼ f e1 þ ð1� f Þe2. How-
ever, the analysis of time-resolved single-molecule experi-
ments deals with the opposite problem: observing a signal
value, d, during each t and trying to infer f , e1, and e2.

Generally, the values of d that are recorded during each t
are random variables, which are distributed according to a
probability distribution function (PDF). For any number of
states, this PDF for the observed values of d is the convolution
of the PDFs for the signal values associated with each indi-
vidual state, weighted by the fraction of time spent in that
state (i.e., d � f1pðe1Þ �. � fnpðenÞ, where fi is the fractional
occupancy of the ith state, pðeiÞ is the PDF of the signal values
associated with the ith state, and * denotes a convolution). For
many experimental techniques, the signal values associated
with each state are, or are approximately, distributed accord-
ing to a normal PDF (i.e., a Gaussian) with mean ei and vari-
ance s2

i for the ith state. Because the convolution of two
normal PDFs is another normal PDF, in this case the PDF
for the observed values of d is a normal distribution with
mean m ¼ P

ifiei and variance s2 ¼ P
ifis

2
i . Furthermore,

we can also account for noise from the detection process
(e.g., a normal PDF with mean 0 and variance s2noise), as
well as a time-dependent baseline (e.g., baseline drift at
time t, bt, that is driven by white-noise is a normal PDF
with mean bt�1 and variance s

2
drift) through additional convo-

lutions; in these examples, the resulting PDF of d is again a
normal PDF with mean m ¼ bt�1 þ

P
ifiei and variance

s2 ¼ s2drift þ s2noise þ
P

ifis
2
i . However, sincem and s depend

upon the set of fractional occupancies, ff g, which are not
experimental observables, we have no way of knowing the
exact form of this PDF, information that is required to calcu-
late the probability of observing a particular value of d.

To circumvent this experimental limitation, the depen-
dence of the PDF upon ff g can be removed by marginalizing
ff g out of the expression for the PDF that was described
above. This marginalized probability distribution of d then
describes the likelihood of experimentally observing a
particular value of d during a t as a function of the set of
rate constants for transitions between the states, fkg, the
set of signal values corresponding to those states, feg, and
the set of the amounts of noise in those states, fsg, regardless
of the exact values of ff g (Fig. S1 A). As expected from the
discussion in the previous section, this expression describes
effects similar to those of chemical exchange in NMR
experiments, in which rates with which nuclei exchange
that are larger than the resonance frequency difference be-
tween exchanging nuclei cause distinct resonances to coa-
lesce into a single, averaged resonance. As shown in Fig. 1
for a two-state system (see Eq. S10), the effect of increasing
rate constants k1 and k2 results in distinct signal peaks
centered at e1 and e2 to coalesce into a single, averaged
peak centered at hei.

With such an expression describing themarginalized prob-
ability distribution of d, we can then use Bayesian inference
to estimate the parameters governing the single-molecule
system (i.e., feg, fsg, and fkg) from the series of the d that
comprise each of the signal trajectories. Primarily due to
recent developments in computational tractability, Bayesian
inference has become a powerful method for the analysis of
biophysical data, such as determining the phases of x-ray re-
flections in x-ray crystallographic studies (27), performing
simultaneous phylogenetic analysis of nucleotide and protein
data sets (28), elucidating the number of structural classes
present in cryogenic electron microscopy images (29), and
ascertaining the number of states and the rates of transitions
between those states present in single-molecule signal trajec-
tories (30,31). For an introduction to Bayesian inference, see
(6,7,32) and the Supporting Material.

Unfortunately, performing Bayesian inference on a multi-
parameter system, such as the one described here, results in a
multidimensional, joint-probability distribution of the model
parameters, known as a posterior probability distribution,
which is difficult to evaluate (32). To overcome this difficulty,
we have chosen to evaluate the posterior probability distribu-
tion of the model parameters by numerically sampling it us-
ing a Markov chain Monte Carlo (MCMC) (6,33) method
with affine-invariant ensemble sampling (34,35). Although
alternative methods that approximate the posterior probabil-
ity distribution of the model parameters, such as the Laplace
approximation or variational inference, might be more
computationally tractable,MCMC sampling is advantageous
in that, unlike such approximationmethods, it can provide an
exact result that does not assume a particular structure of the
posterior probability distribution (6). However, regardless of
Biophysical Journal 114, 289–300, January 23, 2018 291
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the choice of method, the most important aspect of the
approach described here is that we can evaluate the posterior
probability distribution of the model parameters from the
series of d that comprise a single-molecule signal trajectory
in a manner that analytically accounts for the time resolution
of the experimental technique.

To quantify the performance of BIASD and maximize its
usefulness to the experimentalist community, we have also
conducted a comprehensive analysis of how the posterior
probability distribution behaves as a function of the param-
eters of the input signal trajectories (c.f., Dependence of
BIASD Performance on Parameter Values in Supporting
Material). This analysis reveals that collecting additional
data points in a signal trajectory increases the performance
of BIASD, as does optimizing the sensitivity of the instru-
mentation so as to increase the signal-to-noise ratio (SNR)
of the signal trajectory. Although the results of these ana-
lyses can be used to determine the signal trajectory lengths,
and/or SNRs that would be needed to accurately and pre-
cisely infer rate constants that are some arbitrary factor
greater than t�1, we find that the lengths and SNRs of the
signal trajectories obtained using typical single-molecule
instrumentation render BIASD useful for characterizing
dynamics governed by rate constants that are up to three
orders of magnitude greater than t�1.
METHODS

Simulating signal trajectories

State trajectories were simulated with the stochastic simulation algorithm

(36); briefly, sequential random lifetimes were drawn from exponential dis-

tributions with the specified rate constants, and subsequent states were cho-

sen randomly according to the splitting probabilities. A random starting point

for the initiation of the trajectory (t ¼ 0 s) was selected with a uniform dis-

tribution from the first lifetime. The fractional occupancies of each state dur-

ing each sequential t were then calculated from the sequence of lifetimes.

The resulting fractional occupation versus time trajectories were turned

into signal trajectories by computing m, and then adding normally distributed

noise with standard deviation (SD), s. Simulations of the titration experiment

were performed such that e1 ¼ 0, e2 ¼ 1, s1 ¼ s2 ¼ 0.04, k�1 ¼ 10 mM�1s�1,

k2 ¼ 10 s�1, and t ¼ 0.1 s, and each signal trajectory was 600 data points in

length. Parameters for the simulations with the transitioning subpopulations

are given in the Supporting Material.
Bayesian thresholding analysis

Signal trajectories were idealized by thresholding any measurement period

with signal less than ðe1 þ e2Þ=2 ¼ 0:5 into state 1, and otherwise into

state 2. Rate constants from the ith state to jth state were then calculated as

kij ¼ �lnð1� pijÞ=t, where pij is the transitionmatrix from the idealized tra-

jectory (2). Credible intervals for the transition probabilities and rate con-

stants were calculated with uniform prior distributions (2). The joint

posterior probability distributions of e1 and 1=s
2
1, and e2 and 1=s

2
2, were in-

ferred using the analytical formulas for Bayesian inference with a joint

normal-gamma prior probability distribution using those data points that

were idealized into the respective states (6). The marginalized posterior dis-

tributions of the ei and 1=s
2
i (T and gamma distributions, respectively) were

used to calculate means and 95% credible intervals for each parameter (6).
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An aggregate s was then calculated by weighting s21 and s22 by the fraction

of data points idealized into each state and taking the square root of their sum.
Maximum-likelihood HMM analysis

Signal trajectories were analyzed using a two-state, discrete maximum like-

lihood HMM (ML HMM) with normal distribution emissions using the

expectation maximization, and forward-backward algorithms (6,37). Each

trajectory was analyzed with 20 randomized restarts, including one initial-

ized at the simulated values, until the likelihood of each restart converged to

a relative value of 10�10. From these, the point estimate with the greatest

likelihood was used in subsequent analyses. Rate constants were calculated

directly from the transition probability matrix point estimate, and an aggre-

gate SD was calculated as described above for Bayesian thresholding.
BIASD analysis

Adaptive Gauss-Kronrod (G10, K21) quadrature was used to numerically

integrate the BIASD likelihood function on an Nvidia GeForce 1080

GTX graphics card; the likelihood of each data point took �1 m s to

compute. The posterior probability distribution was sampled using emcee,

an ensemble, affine-invariant MCMC method (34,35). For each trajectory,

100 MCMC walkers were employed to draw 2000 samples each, and the

first 1000 samples were discarded to burn in the chain. From the remaining

samples, independent samples were chosen spaced apart by the maximum

parameter autocorrelation time, and credible intervals and means were

calculated from these samples. It took approximately 2 min to sample a

single, 600-data point signal trajectory, such as those used in the com-

puter-simulated titration.
EFRET analysis of a ribosomal pretranslocation
complex analog lacking a transfer RNA at the
ribosomal aminoacyl-transfer RNA-binding site

Previously published Cy3 and Cy5 fluorescence intensity, ICy3 and ICy5,

versus time trajectories from a ribosomal pretranslocation (PRE) complex

analog lacking a transfer RNA (tRNA) at the ribosomal aminoacyl-

tRNA-binding (A) site (PRE–A) from the study by Wang and coworkers

(9) were transformed into EFRET trajectories by calculating EFRET ¼ ICy5/

(ICy3 þ ICy5) at each measurement period. Outliers where EFRET < �0.4

or EFRET > 1.4 were clipped. The number of EFRET trajectories in the 22,

25, 28, 31, 34, and 37�C data sets were 490, 456, 435, 452, 270, and

459, respectively. Uniform distributions were used for the prior probability

distributions. The first and second moments, E½k� and E½k2�, of the margin-

alized posterior probability distributions for kGS1 or kGS2 were used to

infer the values of DHz, DSz, and a precision l using Bayesian inference

with the likelihood function pðfE½ki�;E½k2i �g
�
�DHz;DSz; l; fTigÞ ¼

Q

i
N

ðE½ki� jm ¼ kTSTðDHz;DSz;TiÞ;
P¼ l�1 þ ðE½k2i � � E½ki�2ÞÞ, where N

is the normal distribution with mean m and variance
P

, where

kTSTðDHz;DSz;TiÞis the rate constant calculated at temperature Ti with

transition state theory, and where i indexes the set of temperatures. The re-

sulting posterior probability distribution for DHz, DSz, and l was sampled

using MCMC from which credible intervals and means were calculated.
RESULTS AND DISCUSSION

Analysis of computer-simulated single-molecule
signal trajectories reporting on the kinetics of a
ligand binding and dissociation process

To demonstrate the use of the analytical formulas underly-
ing BIASD, we analyzed simulated single-molecule signal
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trajectories that mimic the binding and dissociation of
a ligand to its target biomolecule, a receptor, using the
two-state, reversible kinetic scheme discussed in the previ-
ous section (36). In this example, e1 and e2 represent the
signal values of the receptor in the ligand-free state and
the ligand-bound state, respectively, and s represents the
SD of the signal values for both states. Correspondingly,
k1 and k2 represent the pseudofirst-order rate constant of
ligand binding to the receptor, and the first-order rate con-
stant of ligand dissociation from the receptor, respectively.
As such, k1 is dependent on ½L� with a dependence that is
given by k1 ¼ k�1 � ½L�, where k�1 is the second-order rate
constant for binding of the ligand to the receptor, ½L� is the
ligand concentration, and k2 is not dependent on ½L�. To
emulate a titration experiment, we varied the ½L� to alter
the fraction of ligand-bound receptor from �0.1 to
�99.9%, and simulated a series of individual signal trajec-
tories where the ½L� spanned six decades centered around
the ½L� corresponding to the equilibrium dissociation con-
stant, ½L� ¼ KD. Notably, as is always the case for experi-
mentally recorded signal trajectories, the finite length of
each simulated signal trajectory presents an intrinsic limit
to the amount of kinetic information contained in each
signal trajectory. Finally, estimates of the parameters that
k 1
 (s

-1
)

k 2
 (s

-1
)

A Simulated BIASDBayesian Threshold Maximum Likelihood HMM

FIGURE 2 Analysis of k1 and k2 using BIASD (blue) and idealization-based

receptor. ½L� was varied three decades above and below the concentration wh

(i.e., KD ¼ 1). (A) Analysis of estimated rate constants k1 and k2. The regions

is shown in dark gray; the regions where the rate constants are less than the acqu

as the black dashed lines. The red line denotes the ML HMM estimate of the ra

probability estimates of unity. The green and blue areas denote the 95% cred

half-amplitude thresholding-based Bayesian transition probability analysis (2,13

responding to the indicated concentration. (B) Analysis of estimated signal value

of estimated signal noise s. a.u., arbitrary units. To see this figure in color, go
were used to simulate the signal trajectories were obtained
by analyzing the simulated signal trajectories using two
idealization-based approaches: 1) half-amplitude signal
thresholding (13) followed by Bayesian inference to infer
the transition probability and quantify the kinetics (2)
(Bayesian threshold), and 2) an HMM (6) that used the
maximum-likelihood framework to estimate the transition
probability and quantify the kinetics (ML HMM). In addi-
tion to these two idealization-based approaches, the simu-
lated signal trajectories were also analyzed using the
BIASD approach presented here.

As shown in Fig. 2 A, the values of k1 and k2 obtained
using both idealization approaches are inaccurate (green
and red curves). Interestingly, however, neither approach
absolutely outperforms the other in accuracy, and both
plateau at the acquisition rate (i.e., t�1 ¼ 10 s�1). Notably,
the use of Bayesian inference in the Bayesian threshold
approach tempers the fluctuations that are seen in the rate
constants obtained from the ML HMM at high ½L�. These
fluctuations originate from the maximum-likelihood frame-
work used to estimate the transition probability in the ML
HMM approach. Tempering of these fluctuations in the
Bayesian threshold approach results from the use of a
prior probability distribution, which describes the initial
ε (
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u.
)

ε1

ε2

σ 
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.)

B

C

(green and red) methods for a computer-simulated titration of a ligand to a

ere the equilibrium occupation probability of both states is equal to 0.5

where the rate constants are less than 1/10th of the acquisition rate, t�1,

isition rate are shown in light gray. The simulated rate constants are plotted

te constants; dotted red lines indicate interpolated values due to transition

ible intervals of the posterior probability distributions from analysis with

) and BIASD, respectively. Insets show the simulated signal trajectory cor-

s e1 and e2. Simulated values are plotted as black dashed lines. (C) Analysis

online.
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knowledge of the model parameters, in Bayesian inference
(2,6). Regardless, the rate constants were systematically
underestimated across nearly the entire range of ½L�s that
were simulated, and this underestimation worsens with
increasing ½L�. It is striking that the values of k1 and k2 ob-
tained using the Bayesian threshold idealization are also
relatively precise, a misleading consequence of using ideal-
ization methods in general (2).

With regard to the values of e1 and e2 obtained using both
idealization approaches, Fig. 2 B demonstrates that, whereas
these methods can accurately determine the value of e1 if
the receptor preferentially occupies the ligand-free state
(low ½L�) or e2 if the receptor preferentially occupies the
ligand-bound state (high ½L�), the time averaging caused
by large values of k1 shift the inferred values of e1, some-
times quite significantly, toward the simulated value of e2,
and vice versa. Here, the Bayesian threshold approach pro-
vided more accurate estimates of e1 and e2 than did the ML
HMM. However, this was only because the signal threshold
was set halfway between e1 and e2 using the known simula-
tion parameters, thereby optimally minimizing the misclas-
sification of states 1 and 2, and, consequently, maximizing
the accuracy with which e1 and e2 are estimated; this is
also why the estimates of s from the Bayesian threshold
approach are more accurate than those from the ML
HMM (Fig. 2 C) (13).

In contrast to both idealization approaches, the values
of k1 and k2 obtained using BIASD are highly accurate
(Fig. 2 A). The simulated values of k1 and k2 are well encom-
passed by the 95% credible interval of the posterior proba-
bility distribution across the entire range of ½L�s that were
simulated, which includes rate constants that are up to three
orders of magnitude larger than the simulated time resolu-
tion. In addition, the values of k1 and k2 are highly precise,
as the 95% credible intervals of the posterior probability dis-
tribution are strikingly narrow over a range of ½L�s corre-
sponding to a value of k1 that is over an order of
magnitude smaller than t�1 to one that is over an order of
magnitude larger than t�1. Importantly, as the amount
of data that is analyzed increases, the contribution that the
choice of prior probability distribution (i.e., the initial
knowledge of k1, k2, e1, e2, and s) makes to the posterior
probability distribution diminishes. Consistent with the
amount of data that are typically analyzed in single-mole-
cule biophysical experiments, the results reported here are
relatively insensitive to the prior probability distributions
used for the analysis.

At the lower ½L�s, the broadening of the posterior proba-
bility distribution that limits the precision for the estimates
of k1 and k2 in both BIASD as well as the Bayesian threshold
idealization arises from the finite amount of information
regarding k2 and e2, which is contained in signal trajectories
that exhibit very low occupation of the ligand-bound state of
the receptor. Likewise, at the higher ½L�s, the broadening of
the posterior probability distribution, and the implied limita-
294 Biophysical Journal 114, 289–300, January 23, 2018
tions to the precision for estimating k1 and k2 that is
observed, arises from the finite amount of information
regarding k1 and e1 that is contained in signal trajectories
that exhibit very low occupation of the ligand-free state of
the receptor. However, this broadening is somewhat attenu-
ated, because the posterior probability distribution main-
tains consistency with the amount of previously known
information about the underlying system contained within
the prior probability distribution (c.f., Analysis Using
BIASD in Supporting Material). Regardless, the uncertainty
at the lower and higher ½L�s is a consequence of the finite
amount of information in a finite-length signal trajectory,
as many reciprocal pairs of k1 and e1 values (i.e., a larger
k1 and a smaller e1, or a smaller k1 and a larger e1) are
consistent with the data. In an experimental situation,
this imprecision can be alleviated by employing prior prob-
ability distributions for the feg values using the results of
experiments performed under conditions in which one state
is preferentially occupied, for instance, the values of e

observed in the absence of ligand could be used to construct
a prior probability distribution for the values of e associated
with the ligand-free state of the receptor, whereas the values
of e observed in the presence of saturating ½L� could be used
to construct a prior probability distribution for the values of
e associated with the ligand-free state of the receptor. In the
case of large-scale conformational rearrangements, one
could similarly use a buffer condition, ligand, temperature,
or mutation that preferentially stabilizes one state, or, alter-
natively, one could use molecular structures or models to es-
timate prior probability distributions of feg values. With
regard to the values of e1 and e2 obtained using BIASD,
Fig. 2 B demonstrates that these values were accurately in-
ferred regardless of the value of ½L�, even at ½L�s at which the
idealization approaches drastically misestimate them.
Finally, unlike the idealization approaches, which were
only able to successfully infer s when the signal trajectories
were almost entirely in the ligand-bound or ligand-free
states, BIASD was also able to accurately and precisely
infer s from the simulated signal trajectories with interme-
diate values of ½L� (Fig. 2 C).

In summary, we were able to use BIASD to obtain accu-
rate and precise posterior probability distributions for k1, k2,
e1, e2, and s across the entire range of ½L�s that were simu-
lated. Notably, BIASD was even successful when the rate
constants in the simulated, single-molecule signal trajec-
tories were much smaller then t�1, although we note that,
in this regime, the conventional analysis of idealizing the
signal trajectories is much more computationally efficient.
Most importantly, BIASD was able to accurately and pre-
cisely infer the rate constants and the signal values for simu-
lated, single-molecule signal trajectories in which the rate
constants were up to three orders of magnitude larger than
t�1, and up to about four orders of magnitude larger than
the t�1s where conventional idealization of signal trajec-
tories begins to yield significant errors in the rate constants.
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This finding is consistent with the expected performance of
BIASD (c.f.,Dependence of BIASD Performance on Param-
eter Values in Supporting Material).
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FIGURE 3 (A) Cartoon schematic of the GS1#GS2 equilibrium on the

PRE-A complex previously studied byWang et al. (9). Approximate positions

of the Cy3 FRET donor and Cy5 FRET acceptor fluorophores of the

‘‘L1-tRNA’’ labeling scheme used by Wang et al. are shown as green and

red circles, respectively. The size of the fluorophores denotes the relative

fluorescence intensity of each fluorophore in each state due to FRET. A, P,

and E denote the aminoacyl-tRNA-binding, peptidyl-tRNA-binding, and

exit sites of the ribosome, respectively. (B) Temperature dependence of

kGS1 and kGS2 for the PRE-A complexes using BIASD. The scatter plots

show the expectation value of the posterior probability distributions of

kGS1 and kGS2, and the error bars represent the 95% credible interval. The

solid lines denote expectation values, and the shaded regions denote the

95% credible interval of the predictive posterior probability distribution

from the transition-state theory analysis. To see this figure in color, go online.
Analysis of experimentally observed single-
molecule EFRET trajectories reporting on the
kinetics of a large-scale conformational
rearrangement

To demonstrate the use of BIASD in the analysis of exper-
imental data, we chose to analyze experimentally observed,
single-molecule EFRET trajectories reporting on a large-
scale conformational rearrangement of the ribosome. This
essential, two-subunit, ribonucleoprotein-based biomole-
cular machine is universally responsible for the translation
of messenger RNAs into proteins in living cells. The
ribosome synthesizes proteins by repeatedly incorporating
amino acids, delivered in the form of aminoacyl-tRNA
substrates, into a nascent polypeptide chain in the order
dictated by the messenger RNA being translated. During
the elongation stage of protein synthesis (38), the ribosomal
PRE complex undergoes stochastic, thermally driven
fluctuations between two major, on-pathway conformational
states that we refer to as global state 1 (GS1) and global
state 2 (GS2), defining a dynamic equilibrium, GS1#GS2
(39,40). These transitions between GS1 and GS2 constitute
large-scale rearrangements of the PRE complex that
involve relative rotations of the ribosomal subunits, reconfi-
gurations of the ribosome-bound tRNAs, and repositioning
of a ribosomal structural domain known as the L1 stalk
(Fig. 3 A) (41).

Previously, we have conducted wide-field microscopy
single-molecule fluorescence resonance energy transfer
(smFRET) studies of the temperature dependence of the
rate constants governing GS1/GS2 and GS2/GS1 tran-
sitions by imaging a Cy3 fluorescence resonance energy
transfer (FRET) donor fluorophore- and Cy5 FRETacceptor
fluorophore-labeled PRE–A in a temperature-controlled, mi-
crofluidic observation flowcell (9). In these experiments, the
increase in thermal energy that accompanied the increasing
temperature caused the rate constants for the transitions be-
tween GS1 and GS2 to increase such that, at the highest tem-
peratures, the EFRET trajectories contained a significant
number of time-averaged data points at the t ¼ 50 ms
time resolution of the experiment (Fig. S2). Regrettably,
the time averaging in these EFRET trajectories precluded
accurate determination of the rate constants and, corre-
spondingly, an analysis of the thermodynamic properties
of the transition-state energy barriers that control the
GS1/GS2 and GS2/GS1 conformational rearrange-
ments (9). To overcome these limitations, we have used
BIASD to analyze the sets of EFRET trajectories of PRE–A

complexes that we have previously collected at 22, 25, 28,
31, 34, and 37�C (9). Here, we assume that the GS1#GS2
equilibrium can be represented by a single, reversible
two-state kinetic scheme (Fig. 3 A). In this kinetic scheme,
kGS1 and kGS2 represent the unimolecular rate constants for
the GS1/GS2 and GS2/GS1 conformational rearrange-
ments, respectively. Correspondingly, eGS1 and eGS2 repre-
sent the EFRET values of GS1 and GS2, respectively.

These six sets of EFRET trajectories were analyzed using
BIASD to provide estimates of kGS1, kGS2, eGS1, eGS2, and
s that best describe the entire set of EFRET trajectories
observed at each temperature. The values of kGS1 and kGS2
that were inferred using BIASD increase with temperature
(Fig. 3 B) and, at the highest temperatures, were greater
than 1/10th of t�1 (i.e., 2 s–1), the regime where idealization
approaches begin to systematically underestimate rate
constants. We note that although the values of kGS1 and
kGS2 inferred using BIASD are those that best describe the
entire set of EFRET trajectories observed at a particular
temperature, inspection of individual EFRET trajectories
suggests the presence of kinetic heterogeneity, as some are
consistent with rate constants > 45 s�1, whereas others
are consistent with rate constants < 0.1 s�1. This broad
Biophysical Journal 114, 289–300, January 23, 2018 295
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range of kinetic behaviors suggests the possibility that
the PRE–A complexes are compositionally heterogeneous
(e.g., subpopulations of PRE–A complexes that differ in
the aminoacylation status of the tRNA at the ribosomal pep-
tidyl-tRNA-binding (P) site, the presence or absence of a
tRNA at the ribosomal tRNA exit site, and/or the presence
or absence of a particular ribosomal protein) and/or are con-
formationally heterogeneous due to structural rearrange-
ments that are slow on the timescale of the experiment
and effect kGS1 and kGS2, but not necessarily eGS1 and eGS2.
Additionally, we note that the posterior probability distribu-
tions of eGS1 and eGS2 that were inferred using BIASD have
means of 0.13 and 0.78, respectively, which are values of
eGS1 and eGS2 that very closely match the values of the
mean EFRET of GS1 and GS2 reported in previous, room-
temperature studies of the analogous PRE�A complex
(0.16 and 0.76, respectively) (42). This correspondence
strongly suggests that the values of eGS1 and eGS2 inferred
using BIASD are accurate, regardless of the presence of
time averaging in the EFRET trajectories recorded at the
highest temperatures.

With the inferred values of kGS1 and kGS2 as a function
of temperature, we then used transition-state theory to
quantify the apparent transition-state energy barriers along
the apparent GS1/GS2 and GS2/GS1 reaction coordi-
nates (43–46). Kramers’ barrier-crossing theory, which
was developed to analyze thermally activated, condensed-
phase transitions of a Brownian particle (44–46) and is
increasingly being used to analyze the conformational dy-
namics and folding of small, globular proteins (12,47),
may ultimately provide a more exact analysis of the
apparent transition-state energy barriers along the apparent
GS1/GS2 and GS2/GS1 reaction coordinates. How-
ever, its application requires knowledge regarding the vis-
cosity of the aqueous buffer in which the PRE–A complex
is dissolved and the ‘‘internal friction’’ of the PRE–A com-
plex, which are unavailable in the current study (12,48). As
such, we have opted to use transition-state theory, and re-
gard the results as upper limits on the apparent transi-
tion-state energy barriers along the apparent GS1/GS2
and GS2/GS1 reaction coordinates, which do not account
for internal friction or transition-state recrossings. To apply
transition-state theory, we used the marginalized posterior
probability distributions of the rate constants at each tem-

perature to infer DHz and DSz from the equation

kTST ¼ kkBT=h expð�ðDHz � TDSzÞ=ðkBTÞÞ, where k is
the transmission coefficient and is taken to be unity, kB is

the Boltzman constant, h is Planck’s constant, and DHz

and DSz are the enthalpic and entropic differences
between the transition and ground states (Fig. 3 B). The
marginalized results for the GS1/GS2 transition are

DHz
GS1 ¼ 11.3 (7.9, 15.0) kcal mol–1 and DSzGS1 ¼ –20.1

(�31.3, �8.1) cal mol–1 K–1, and for the GS2/GS1

transition are DHz
GS2 ¼ 10.3 (8.1, 12.7) kcal mol–1 and
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DSzGS2 ¼ –22.7 (�29.9, �15.0) cal mol–1 K–1, where the

numbers in parentheses represent the lower and upper
bounds for the 95% credible interval. Notably, the posterior

probability distributions for DHz and DSz are highly corre-
lated such that across all of the temperatures measured

here, DGz
GS1 and DGz

GS2were sufficiently resolved; for

instance, at 37�C,DGz
GS1 ¼ 17.57 (17.50, 17.65) kcal mol�1,

and DGz
GS2 ¼ 17.34 (17.29, 17.39) kcal mol�1. Structure-

based interpretation of the absolute DHz and DSz values for
the GS1/GS2 and GS2/GS1 transitions of a single
PRE�A complex is significantly complicated by the
complexity of the enthalpic and entropic changes that are
associated with conformational rearrangements of large
macromolecular complexes, and by the inherent limitations
of transition-state theory (5,43,49). Nonetheless, structure-

based interpretations of the relative changes of the DHzs
and DSzs (DDHzs and DDSzs) between different pairs of
PRE�A complexes (e.g., containing different tRNAs at the
P site, containing wild-type or mutant P site tRNAs, or
consisting of wildtype or mutant ribosomes, etc.) are much
more straightforward and can reveal the thermodynamic
contributions that particular structural features of tRNAs or
ribosomes make to the apparent transition-state energy
barriers along the apparent GS1/GS2 and GS2/GS1
reaction coordinates. Combined with the temperature-
controlled, single-molecule microscopy platform that we
have previously described (9), the analytical framework pre-
sented in this section now enables the collection, analysis,
and interpretation of such data.
Inferring rate constants and signal values from
systems with subpopulations of molecular
properties

BIASD can be extended to address the presence of multi-
ple, time-averaged subpopulations of molecular properties.
These subpopulations may be static or interconvert, and
may be present in an individual molecule or found among
an ensemble of molecules. In such a situation, we can clas-
sify each data point as belonging to one of K different
types of time-averaged subpopulations, and then use a
‘‘1-of-K’’ vector,~zij, to denote to which of the K subpopu-
lations the ith data point from the jth molecule belongs.
Given the one particular subpopulation specified by ~zij,
the likelihood of this data point being described by the pa-
rameters of this subpopulation is calculated as described
above for the case of the time-averaged, single-population
system. Unfortunately, in an experimental situation, there is
no way of knowing which subpopulation a particular data
point belongs to, thereby preventing the likelihood of this
data point from being evaluated; this situation is similar
to that of the unknown fractional occupancy, f , described
above.
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To address this shortcoming, we could try to infer the
values of all the~zij along with all of the other BIASD model
parameters, but this is an unreasonable number of variables
for an inference procedure. Additionally, we are often not
concerned with the exact values of ~zij, so much as with
the occupancies of the K states (e.g., the steady-state occu-
pation probabilities) or with the rate constants that describe
transitions between the K states. Fortunately, instead of per-
forming inference to learn the model parameters and the set
of~zijs, f~zijg, we can marginalize out all of the f~zijg with the
expressions for the probability of each~zij. For instance, in
the case of a mixture of static subpopulations of molecular
properties among an ensemble of molecules (e.g., a mixture
of posttranscriptionally or posttranslationally modified and
unmodified molecules within an ensemble), these probabil-
ities would be time-independent variables that specify the
fraction of each subpopulation of the ensemble; this
approach is called a mixture model. Marginalization would
then involve summing the likelihoods for the different sub-
populations, weighted by the probabilities of those subpop-
ulations. Consequently, during the inference procedure, the
probabilities of the subpopulation occupancies would then
become model parameters that are also inferred using
Bayes’ rule.

Additionally, it is possible to have a time-dependent sys-
tem with hierarchical transitions between the different sub-
populations. In this case, the probabilities of each~zij in the
f~zijg would not be constant for each subpopulation, as
they would be for a mixture model, but would instead
depend upon the subpopulation of the previous data point
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~zi�1;j and a K � K transition matrix, Aij ¼ eQtij , where
Q is the rate matrix that depends upon the set of rate con-
stants for transitioning between the K different states, and
tij is the time that has elapsed since the previous data point,
which may not necessarily be equal to t (Fig. S1 B). Here,
marginalization is efficiently performed with the forward-
backward algorithm (37) and the steady-state probabilities,
as calculated from the rate constants for the kinetic scheme
under consideration, for instance by using the diagram
method (50), are used to set the initial probability of each
~z0j. In total, this approach amounts to a hierarchical, contin-
uous-time ensemble HMM for subtemporal resolution
systems, where inference is performed directly upon the
rate constants, instead of the transition probabilities. Conse-
quently, this approach can handle shuttering of the laser
light source in fluorescence microscopy experiments or
other types of irregular spacing of data points, subtemporal
resolution data, and population-level analyses with nonpara-
metric posterior distributions, which can be used to
ascertain the underlying thermodynamic landscape of the
mesoscopic ensemble.

To highlight this hierarchical approach, consider a single-
molecule fluorescence microscopy experiment in which a flu-
orophore-labeled biomolecule transitions between two states,
1 and 2, with forward and reverse rate constants k12 and k21,
respectively (Fig. 4 A). Such fluorescence microscopy exper-
iments often suffer from photophysical phenomena such as
fluorophore photoblinking, in which a fluorophore tempo-
rarily transitions into a long-lived, ‘‘dark,’’ excited molecular
electronic state and thus transiently stops fluorescing, or
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fluorophore photobleaching, in which a fluorophore that has
transitioned into an excited molecular electronic state
undergoes a photochemical reaction and permanently stops
fluorescing (51). Often, the transition rates into and out of
the dark states responsible for photoblinking are faster than
the time resolution of techniques such as wide-field, fluores-
cence microscopy. As a result, instead of detecting a steady
level of fluorescence intensity from the fluorophore, subtem-
poral resolution transitions between fluorescent and dark
states of the fluorophore manifest as an extra, and often
dominant, source of ‘‘noise’’ in the single-molecule fluores-
cence intensity signal trajectory (Fig. 4 B, inset). Intense
experimental effort has gone into minimizing these photo-
physical effects, including the use of fluorophores, such as
Cy3B, that have been chemically altered so as to minimize
transitions to dark states (52); elaborate excitation laser mod-
ulation schemes, such as triplet-state relaxation and dark-
state relaxation schemes, which minimize transitions to
higher-order dark states (53,54); photostabilizing additives,
such as Trolox, that accelerate transitions out of dark states
(55,56); and fluorophore-photostabilizer conjugates, such as
Cy3- and Cy5-triplet-state quencher conjugates, that accel-
erate transitions out of dark states (57,58). Here, we show
how extending BIASD with the hierarchical HMM described
above allows us to computationally overcome these photo-
physical effects.

To demonstrate this ability, we simulated the kinetic
scheme shown in Fig. 4 A, where a fluorophore-labeled
biomolecule transitions between conformational states 1
and 2 with signal values of e1 and e2, respectively. However,
in this simulation, both of these states can rapidly transition
into and out of a photoblinked state, denoted 0 with signal
value e0 ¼ 0, at rates much faster than the time resolution
of the simulated data. These dynamics continue until the
system eventually transitions into a photobleached state, de-
noted Ø with signal value e[ ¼ 0. A similar situation has
been recently investigated by Chung et al. (20) to analyze
FRET photon trajectories reporting on the subtemporal res-
olution folding and unfolding dynamics, and photoblinking
dynamics, of the villin subdomain protein. As expected, by
analyzing this simulation using this hierarchical approach,
the posterior probability distribution of the parameters
describing the fluorescence emission from each subpopula-
tion (e1, e2, s, k10, k01, k20, and k02; see Fig. S1 B), as well as
the rate constants describing the transitions between
states 1 and 2 (k12, and k21; see Fig. 4 A), were all found
both accurately and precisely, as the parameter values
used for the simulation fall within the inferred 95% credible
intervals (Fig. S3). To provide visual intuition into this
result, we also have shown the Viterbi-idealized path from
the maximum a posteriori estimate of the model parameters
to show the most likely fluorescence intensity signal trajec-
tory in the absence of photoblinking (Fig. 4 B). Detection
noise from the marginalized posterior distribution of s

was added to this path to show what the data might have
298 Biophysical Journal 114, 289–300, January 23, 2018
looked like in the absence of photoblinking. Regardless,
we note that this particular path is essentially a point esti-
mate of the f~zijg, whereas, by marginalizing out all of
the f~zijg during the inference procedure, we have actually
considered all the other possible paths, regardless of
whether or not a transition is missed in the Viterbi path.
As such, the posterior probability distribution of the model
parameters is a more encompassing result (Fig. S3). Finally,
we note that the hierarchical HMM treatment that we pre-
sent here is general and applicable to not just two, but to
any number of K subpopulations.
CONCLUSIONS

By analyzing the fraction of time that a single molecule
spends in each state of a defined kinetic scheme during
each t in a signal trajectory, BIASD adopts a fundamentally
different approach to the analysis of time-resolved single-
molecule experiments than that which has been traditionally
employed by methods that idealize the trajectories
(e.g., signal thresholding, HMMs, etc.). Using computer-
simulated and experimentally observed data, we have
demonstrated that this powerful approach enables BIASD
to accurately and precisely infer the rate constants of a
two-state kinetic scheme as well as the signal values corre-
sponding to these two states, even when the rates of transi-
tions between the states are orders of magnitude larger than
the time resolution of the signal trajectories. When used to
analyze experimental EFRET trajectories reporting on the
dynamics of single PRE–A complexes recorded as a function
of temperature (9), BIASD allowed us to infer the thermo-
dynamic activation parameters characterizing the transi-
tion-state energy barriers along the GS1/GS2 and
GS2/GS1 reaction coordinates, which had thus far re-
mained inaccessible to traditional smFRET data analysis
approaches. Moreover, we have demonstrated that a
straightforward extension of the BIASD framework enables
the kinetics of experimental systems exhibiting multiple
subpopulations of molecular properties to be accurately
and precisely inferred.

It is important to note that the BIASD framework is gen-
eral and can be applied to any experimentally observed
signal trajectory that exhibits stochastic transitions between
distinct states, regardless of the nature or the origin of the
signal. Thus, BIASD can be used to temporally resolve
data collected using virtually any time-resolved single-
molecule experimental method, including single-molecule
fluorescence microscopy, force spectroscopy, conductance,
and tethered particle motion methods. Moreover, although
here we have developed BIASD to analyze single-molecule
signal trajectories, we have not considered the temporal
ordering of the data. Consequently, in addition to analyzing
individual single-molecule signal trajectories, BIASD can
also be used to analyze the distribution of fractional occu-
pancies observed across an entire ensemble of individual
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molecules during a given t. This could allow nonequilib-
rium phenomena to be monitored across an ensemble of
single molecules, time period by time period (e.g.,
stopped-flow delivery of a ligand, substrate, cofactor, or in-
hibitor to an enzyme or other biomolecule). In addition,
BIASD can be expanded to include the time evolution of
the state occupation probabilities (c.f., Eq. S2), or to incor-
porate time dependence into the model parameters fkg, feg,
and fsg (e.g., the varying of feg in single-molecule particle
tracking experiments).

Regarding the performance of BIASD on experimental
data, we note that the rate constants and signal values of a
system can be more precisely inferred from experiments
that collect higher SNR data, because then there is less un-
certainty in the time-averaged fractional occupancies of the
signal trajectories. Therefore, somewhat counterintuitively,
subtemporal resolution dynamics can to some degree be
more precisely inferred from signal trajectories recorded
with lower time resolutions but higher SNRs (e.g., due
to better photon conversion efficiencies on an electron-
multiplying charge-coupled device), than those recorded
with higher time resolutions but lower SNRs. Additionally,
although we have focused the current work on the most
widely applicable case of a Markovian, two-state system
in which the noise of the signal can be modeled using a
normal distribution, the Bayesian inference-based frame-
work underlying BIASD can be readily extended to non-
Markovian dynamics (21,59), N-state kinetic schemes
(60,61), or systems in which the noise of the signal can be
modeled using distributions other than a Normal distribution
(18,62). However, it should be noted that such developments
will come with added computational expenses. To facilitate
the analysis of single-molecule data using BIASD, as well
as to enable the future extension of BIASD along the lines
described here, we have made the BIASD source code avail-
able at http://github.com/ckinzthompson/biasd. The source
code is written in Python and integrated with computation-
ally intensive functions provided in C as well as in CUDA
(for GPU-based computation), to balance accessibility
with high performance.
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