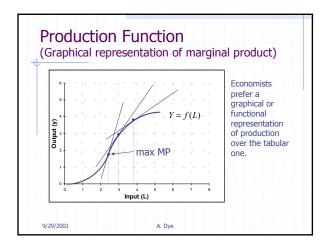
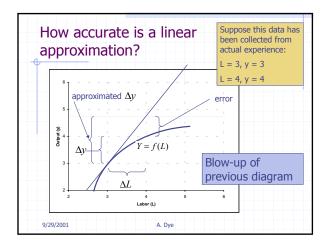
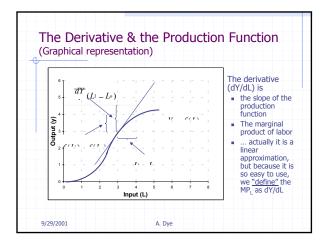
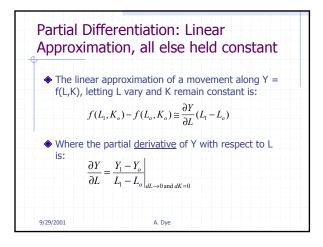


		le: wheat f	unny	
No. laborers	Acres of land	Bushels of wheat (000s)	Marginal product	Average
0	1	0		
1	1	0.2		
2	1	1.0		
3	1	3.0		
4	1	3.9		
5	1	4.2		
6	1	4.2		

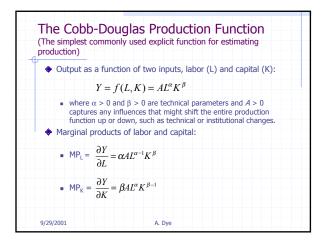




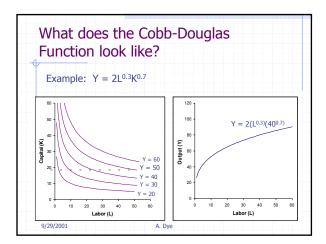


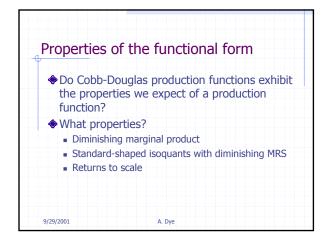


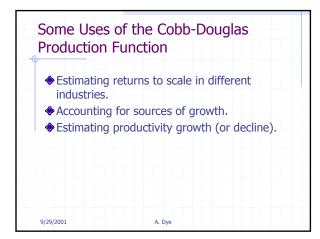
	ion = Linear Approximation
	ar approximation of a movement
along Y =	= f(L) IS:
f(L)	$f_1(L_o) \cong \frac{dY}{dL}(L_1 - L_o)$
Where the is defined	ne <u>derivative</u> of Y with respect to L d as:
dY	$f(L_1) - f(L_o)$
\overline{dL}	$= \frac{f(L_1) - f(L_o)}{L_1 - L_o} \Big _{(L_0 - L_c) \to 0}$

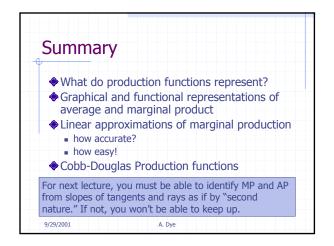


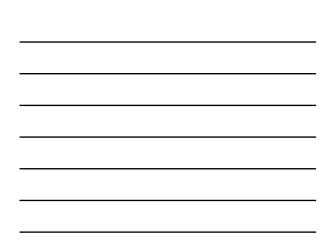
Differential Calculus: Seven Fundamental Rules of D	ifferentiation
For any differentiable function, Y = another function f'(x) = dY/dy derivative (slope) of the funct How can one find the derivative (s are seven fundamental rules:	that gives the ion, f(x).
2. The power rule 3. The negative power rule	
The regulatory power powe	 See Handout: you must memorize these rules!!!
9/29/2001 A. Dye	











aldwin and Gorecki, 1986)			
		-	
Industry	α	β	α+
Thread mill	0.64	0.18	0.82
Knitted fabrics	0.55	0.36	0.90
Lime manufacturers	0.60	0.25	0.84
Shoe factories	0.82	0.18	1.00
Hosiery mills	0.55	0.46	1.01
Jewelry and silverware	0.60	0.41	1.01
Concrete blocks and bricks	0.93	0.40	1.33
Paint	0.71	0.61	1.32
Orthopedic & surgical applicances	0.30	0.99	1.30

Growth	
Definition:	
 process throu where "meth techniques or 	In is a modification in the production gh the adoption of a new method. od" is interpreted broadly to include new r technologies, new organizational s, or new institutions.
How does one	e account for innovations in the
production pro	
	b-Douglas production function? te process model

