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1 Introduction

In 1843, Irish Mathematician William Rowan Hamilton discovered an interesting way to extend
complex number multiplication into four dimensions using what we call quaternions. For back-
ground, a complex number is a sum a+bi of real numbers a, b ∈ R with the condition that i2 = −1.
Addition and multiplication of complex numbers are given by the rules (a + bi) + (c + di) =
(a+ c) + (b+ d)i and (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

We observe that we may represent a complex number a + bi as a vector (a, b) ∈ R2 with ad-
dition and multiplication rules (a, b) + (c, d) = (a + c, b + d) and (a, b)(c, d) = (ac − bd, ad + bc).
Hamilton asked if it was possible to extend complex multiplication to multiplication of triples
(a, b, c). Although he was unable to do this, in 1843, he found a way to multiply quadruples
(a, b, c, d) after abandoning commutativity of these quadruples. This construction is what we call
Hamilton’s quaternions.

Using Keith Conrad’s paper on quaternions algebras [1] as our guide, we seek to extend our
knowledge of quaternions in this paper by extending new concepts and constructions from old
concepts learnt along the way. In Section 2, we first describe the extension of complex numbers
into four dimensional vectors via Hamilton’s quaternions. In Section 3, we then extend Hamilton’s
quaternions to a more general framework of quaternion algebras. And finally in Section 4, we
extend quaternions even further into biquaternions to describe quaternion vectors with complex
entries.

As an aside, if you want to learn more about Hamilton’s contributions to math and physics,
you can watch this great music parody video [2].
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2 Hamilton’s Quaternions

2.1 Properties

Definition. The quarternions are H = {a+ bi+ cj + dk : a, b, c, d ∈ R} We impose the following
conditions on multiplication in H:

• i2 = j2 = k2 = −1

• ij = −ji = k, ki = −ik = j, jk = −kj = i

• a ∈ R, commutes with i, j, k

Although quarternion multiplication is usually non-commutative, multiplication of quarternions
with real numbers is commutative.

Remark. Quarternions with a = 0 are pure quarternions.
(bi+ cj + dk)2 = −b2 − c2 − d2

Definition. The conjugate of a quarternion is q̄ = a− bi− cj−dk. It has the following properties
(similar to the complex numbers):

• q1 + q2 = q1 + q2

• q1q2 = q2 q1

• The norm of q, N(q) = q q = q q = a2 + b2 + c2 + d2

Definition. A ring R is a division ring if every nonzero element in R has a multiplicative inverse.

For all q ∈ H, q ̸= 0, q
N(q) is its inverse. Thus, as every nonzero element in H has an inverse, it is

a division ring. The quarternions are, indeed, a noncommutative division ring, the first of its sort
discovered. Furthermore, note that the center Z(H) = {x ∈ H | xq = qx, ∀ q ∈ H} = R, since a
commutes with q ∀q ∈ H, only if a ∈ R.

Theorem 2.1. (Frobenius) Each division ring D with center R that is finite dimensional as a
vector space over R is isomorphic to R or H.

Proof. Proof involves concepts not covered in the algebra course as of yet. However, it is worth
mentioning that the essential aspects of the proof are the fundamental theorem of algebra, and the
Cayley-Hamilton theorem [3].

2.2 Quaternion Rotations

It must be noted that conjugation of a quaternion can take two different meanings - the first being
the one mentioned above. The second is (for q ̸= 0), the mapping r 7→ qrq−1, which we have
encountered in group theory and ring theory. This conjugation by quaternions has some notable
properties that induce an equivalence to rotations of vectors in R3. We shall establish (and prove)
this rotations of vectors-conjugation by quaternions equivalence.

Definition. For q ∈ H×, Rq : H 7→ H is defined by Rq(r) = qrq−1 ∀ r ∈ H

Proposition. Rq is a ring automorphism of H

Proof. We need to prove that Rq is a invertible ring homomorphism (as this is the definition of
ring automorphism). Rq(a + b) = q(a + b)q−1 = qaq−1 + qbq−1 = Rq(a) + Rq(b) where a, b ∈ H.
Rq(ab) = q(ab)q−1 = qaq−1qbq−1 = Rq(a)Rq(b) where a, b ∈ H. Rq(1) = qq−1 = 1 So Rq is a ring
homomorphism. As Rq−1 is the inverse of Rq, we have that it is a ring automorphism of H.
If c ∈ R, Rq(ca) = qcaq−1 = cqaq−1 = cRq(a) as c commutes with q ∈ H×. Therefore this
transformation is linear under addition and multiplication by elements in R ⇒ Rq is a linear
transformation.
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Proposition. Rq1 ◦Rq2 = Rq1q2

Proof. Rq1 ◦Rq2(x) = q1q2xq
−1
2 q−1

1 = (q1q2)x(q1q2)
−1 = Rq1q2

Proposition. For q, q′ in H×, show that Rq = Rq′ ⇔ q′ = cq for some c ∈ R×

Proof. ⇐: If q′ = cq, then Rq′(x) = cqxc−1q−1 = Rq(x)∀x ∈ R as c commutes with q, x.

⇒: If Rq = Rq′ , then Rq(x) = Rq′(x)∀x ∈ R. Thus, qxq−1 = q′xq′
−1

. This implies that,

x = q−1q′xq′
−1

q = (q−1q′)x(q−1q′)−1. But, as Rq is an isomorphism, and thus is injective,
q−1q′ = c if c ∈ H× ⇒ q′ = cq

Definition. H0 = Ri+Rj+Rk = {q ∈ H | Tr(q) = 0}, where Tr : H 7→ R, and Tr(q) = q+q = 2a,
where q = a+ bi+ cj + dk.

Proposition. Show that Tr(qq′) = Tr(q′q)∀q ∈ H. Then, show that Rq(H0) = H0 ∀q ∈ H×

Proof.

1. q = a+ bi+ cj + dk, q′ = e+ fi+ gj + hk, qq′ = ae− bf − cg − dh+ terms containing i, j, k.
So, Tr(qq′) = qq′ + qq′ = 2(ae− bf − cg − dh). We can easily see that we shall get the very
same result for Tr(q′q).

2. ∀x ∈ H0, Rq(x) = qxq−1 ⇒ Tr(Rq(x)) = Tr(qxq−1) = Tr(qq−1x) = Tr(x) = 0, as x ∈ H0.
So, Rq maps every element in H0 to an element in H0. Since Rq is injective, Rq(H0) =
H0 ∀q ∈ H×.

Note that if Tr(q) = 0, q is a pure Hamilton’s quaternion, and therefore, q2 ∈ R, q2 < 0.
It is very important at this juncture to note that we can identify every element H0 with R3 [4].
This is because there is a direct correspondence between q = bi + cj + dk and (b, c, d) ∈ R3. So,
we have learnt the following:

• Rq is a ring automorphism of H
• Rq1 ◦Rq2 = Rq1q2

• For q, q′ in H×, Rq = Rq′ ⇔ q′ = cq for some c ∈ R×

• Tr(qq′) = Tr(q′q)∀q ∈ H and Rq(H0) = H0 ∀q ∈ H×

• We can identify H0 with R3

Due to all the above properties of the ring isomorphism Rq, it can be considered as a method of
executing rotations of vectors in R3. Thus, quaternions - which have only 4 degrees of freedom,
compared with the 9 required for matrix-based rotation - are a practical tool in computer graphics,
to execute rotations.

2.3 Matrix Representation of Complex Numbers and Quaternions

2.3.1 Matrix Representation of Complex Number

Although we have represented complex numbers above using vectors, we may also represent com-
plex numbers using matrices. Using {1, i} (or {(1, 0), (0, 1)} in vector representation) as a basis
for C, we wish to find matrices mz ∈ M2(R) that represent complex numbers z ∈ C such that
mz(w) = zw for all z, w ∈ C. This defines a linear map mz : C → C. Additionally, we want these
matrices to obey the rules mz+u = mz +mu, mzu = mz ◦mu, and m1 = I, the identity in M2(R),
so that we get a ring homomorphism C → M2(R) defined by z 7→ mz.

To determine this matrix representation of complex numbers, we note what values our basis vectors
{1, i} = {(1, 0), (0, 1)} (in R2 vector notation) will map to when multiplied by an arbitrary complex
number z = (a, b) , where a, b ∈ R. Multiplying 1 by z yields z · 1 = z = (a, b), and multiplying
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i by z yields z · i = (−b, a). Therefore, z = a + bi 7→
(
a −b
b a

)
= mz is the ring homomorphism

C → M2(R) we were looking for. It is not hard, although lengthy, to check that the above rules
for ring homomorphisms hold.

Conjugation and the norm on H may be described as [lq̄] = [lq]
T
and N(q) = det[lq] respectively.

2.3.2 Matrix Representation of Hamilton’s Quaternions

Similarly to the complex numbers case above, let us find a 2× 2 matrix representation for Hamil-
ton’s quaternions. In this case, the entries of our matrices will not be real numbers, but will instead
be complex numbers. Let us examine why this is the case.

Since both H and M2(R) have dimension 4, a ring homomorphism between the two rings would
imply an ring isomorphism between them. However, we know Hamilton’s quaternions are a divi-
sion ring, whereas real matrices are not a division ring. This is equivalent to stating that nonzero
every element q ∈ H has a multiplicative inverse q̄

N(q) , whereas not every 2 × 2 real matrix has

a multiplicative inverse. So, we cannot draw an isomorphism between invertible quaternions and
non-invertible real matrices. Thus, we must find a matrix ring such that a ring homomorphism
between H and that matrix ring is injective and not surjective. Such a matrix ring is the M2(C),
the set of 2× 2 matrices with complex entries, as we will see in more detail below.

First, let us choose a basis for our quaternion-vector space over C. If we choose {1, j} as our
basis, we may represent an arbitrary quaternion q = a + bi + cj + dk = (a + bi) + j(c − di) as a
unique vector (a+ bi, c+ di) ∈ C2. So, we may write any quaternion q ∈ H as q = z+ jw for some
z, w ∈ C. Thus, we may describe H as a complex vector space under a {1, j} basis.

However, when describing H as a complex vector space we must be careful to note that quaternion
multiplication is NOT commutative. Here, we have chosen to represent H as a right complex vector
space, i.e. scalar multiplication of an arbitrary hamiltonian quaternion q by an arbitrary complex
number z yields z · q = qz.

Definition. Define the ”left multiplication” function lq : H → H by lq(p) = qp for all p ∈ H.

Proposition. q 7→ lq is an additive and multiplicative embedding H → EndC(H).

Proof. We first check that lq is a linear function over C. We note that lq(p1 + p2) = q(p1 + p2) =
qp1 + qp2 = lq(p1) + lq(p2) for all p1, p2 ∈ H. Additionally, lq(z · p) = lq(pz) = q(pz) = (qp)z =
z · (qp) = z · lq(p) for all p ∈ H and z ∈ C. Thus, lq is linear.

Now, we show that lq functions obey the same additive and multiplicative properties in q as quater-
nions. (lq + lq′)(p) = lq(p)+ lq′(p) = qp+ q′p = lq+q′(p) and (lq ◦ lq′)(p) = q(q′p) = (qq′)p = lqq′(p).
Thus, lq + lq′ = lq+q′ and lq ◦ l′q = lqq′ , as desired. Additionally, we can recover q from lq since
lq(q) = q.

Thus, q 7→ lq is an additive and multiplicative embedding H → EndC(H).

Since q 7→ lq is an additive and multiplicative embedding H → EndC(H), we can examine how the
basis {1, j} evolves under the left multiplication transformation to derive a 2× 2 complex-matrix
representation for quaternions. For q = z+jw, where z, w ∈ C, lq(1) = z+jw and lq(j) = zj+jwj.
To write this expression as a linear combination of basis vectors, we examine that for an arbitrary
complex number a + bi, (a + bi)j = j(a − bi). So, lq(j) = zj + jwj = jz̄ + jjw̄ = −w̄ + jz̄.
Therefore, q = z + jw 7→

(
z −w̄
w z̄

)
= [lq] is the matrix representation we were looking for.

Example. For example, we can generate the matrices for each of i, j, k quaternions. We note that
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i = i+ j(0), j = 0 + j(1), k = 0 + j(−i). So,

[li] =

(
i 0
0 −i

)
, [lj ] =

(
0 −1
1 0

)
, [lk] =

(
0 −i
−i 0

)
Remark. The matrices corresponding to i, j, k above look very similar to the Pauli matrices
σ1, σ2, σ3 used to describe spin in quantum mechanics [5]. In fact, the algebra generated by
1, iσ1, iσ2, iσ3 is isomorphic to the quaternions (1 7→ 1, i 7→ iσ3, j 7→ iσ2, k 7→ iσ1 describes
the ring isomorphism) [6].

3 Quaternion Algberas

3.1 Algebraic Properties

Let us now generalize Hamilton’s formulation of the quarternions by considering a, b, c, d ∈ F ,
where F is a general field. N.B. Previously, we restricted a, b, c, d to ∈ R. Formally, we define the
following: H(F ) = {a+ bi+ cj + dk | a, b, c, d ∈ F}

The norm, N(q), and conjugation q, are defined in the same way as in Section 2.1, and obeys
the same properties. Recall that the characteristic of a field, char(F ), is defined as the lowest
n ∈ N, n ̸= 0 | n ·a = 0∀ a ∈ F . An interesting sidenote here describes when H(F ) is commutative:
if char(F ) = 2, then −1 = 1 in F ⇒ H(F ) is commutative, otherwise −1 ̸= 1, so H(F ) is not
commutative.

Furthermore, we can identify fields F such that H(F ) is not a division ring. For example, in
F14 = Z/14Z, we have N(4i+6j +2k) = −42 − 62 − 22 = 0. This implies that this element in F14

has no defined inverse, and thus F14 is not a division ring.

Definition. A quarternion algebra over a field F is a ring that is a 4-dimensional vector space
over F, with basis {1, u, v, uv}. It has the following properties:

• u2, v2 ∈ F×, w = uv = −vu

• Every c ∈ F commutes with u, v

• We denote this ring by (a, b)F , where a = u2, b = v2

H(F ) = (−1,−1)F as per this definition as we place u2 = v2 = w2 = −1 requirements in order to
obtain u = i, v = j, w = k.
In general, u, v, w anti-commute

Definition. The conjugate of a quaternion q = a1 + a2u+ a3v+ a4w, is q = a1 − a2u− a3v− a4w
and the corresponding norm is N(q) = qq = a21 − a22a− a23b+ a24ab.

A pure quaternion carries the same meaning here as in Section 2. We can illustrate the behavior
of (a, b)F through the following example in F = R.

Example. (−π,−e)R = R + Ru + Rv + Rw, where u2 = −π, v2 = −e, w2 = −πe. The norm of
q = a1 + a2u+ a3v + a4w, is a21 − a22π − a23e+ a24πe.

Theorem 3.1. q ∈ (a, b)F has two-sided inverse in (a, b)F ⇔ N(q) ̸= 0

Proof. If q has a two-sided inverse, q′, then qq′ = 1 ⇒ N(q)N(q′) = 1 ⇒ N(q) ∈ F×, N(q) ̸= 0. If
N(q) ̸= 0, then N(q) ∈ F× ⇒ q

N(q) is the two-side inverse of q.

Theorem 3.2. a, p ∈ Z, p odd prime such that if a ≡ c(modp), then ∄k | c = k2. Then (a, p)Q is
a division ring.
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Proof. From the previous theorem, note that (a, p)Q is a division ring ⇔ N(q) ̸= 0∀ q ̸= 0. We
shall prove that (a, p)Q is a division ring by establishing that in (a, p)Q, N(q) = 0 ⇒ q = 0.

q = y1 + y2u+ y3v+ y4w, so N(q) = y21 − ay22 − py23 + apy24 = 0 ⇒ y21 − ay22 = p(y23 − ay24) ⇒ ay22 ≡
y21(modp).

If y1 ≡ k(modp) (where k ̸= 0), y21 ≡ k2(modp) ⇒ ay22 ≡ k2(modp). However, along the same
lines, if we consider y2 ≡ l(modp) (where l ̸= 0), then, y22 ≡ l2(modp). But this would then imply
that ∃m | a ≡ m2(modp). This is because both ay22 and y22 modulo p give whole squares. But
∃m | a ≡ m2(modp) violates our assumption in the problem statement. So, y1 ≡ 0(modp) ⇒ p |
y1 and thus, p2 | y21 .

Now, we have that y21 − ay22 = p(y23 − ay24), and that p | y21 and p | p(y23 − ay24). So, this
implies, p | ay22 . But p does not divide a. So, p | y22 . As y21 , y

2
2 are squares of integers,

p2 | y21 , y22 ⇒ p2(y25 − ay26) = p(y23 − ay24) ⇒ p(y25 − ay26) = (y23 − ay24). where py5 = y1, py6 = y2. If
we repeat this process for y3, y4, and then for y5, y6, and so on, we notice that y1, y2, y3, y4 can be
divided by infinitely high powers of p. This is only possible if y1 = y2 = y3 = y4 = 0. Hence we
obtain that q = 0. Hence proved.

As an example, consider (5, 3)Q ⇒ a = 5, p = 3. Here, 5 ≡ 2(mod3) and 2 is not a whole square.
This theorem establishes that (5, 3)Q is a division ring. In (5, 3)Q, q = y1 + y2u+ y3v + y4w, u

2 =
5, v2 = 3, w2 = −15 and N(q) = y21 − 5y22 − 3y23 + 15y24 . From this theorem (and proof), we can
also conclude that if N(q) = 0, q = 0.

3.2 Matrix Representation of Real Quaternion Algebras

Let us now represent quaternion algebras in matrix form. For simplicity, let us examine (a, b)R, the
quaternion algebra over the reals. In (a, b)R, we can write a quaternion q as q = n+ru+sv+ tw =
(n + ru) + v(s − tu), where n, r, s, t ∈ R and u2 = a, v2 = b, uv = −vu = w. Thus, if we de-
fine U = Span{1, u} over R, we may write q as a vector in the right-multiplicative vector space
V = Span{1, v} over U as q = z + vx for some z, x ∈ U. Using the same left-multiplication
transformation as in Section 2.3.2, we may derive a ring homomorphism q → [lq] that allows us to
represent quaternions in (a, b) using matrices in M2(U).

We examine what happens when lq acts on the {1, v} basis of V. lq(1) = q = z + vx and
lq(v) = qv = zv + vxv = vz̄ + vvx̄ = bx̄+ vx̄. Here, we have used the fact that xv = (c+ du)v =

v(c − du) = vx̄ for all x = c + du ∈ U. Thus, q 7→ [lq] =

(
z bx̄
x z̄

)
is the ring homomorphism we

desire.

Example. Let us calculate the matrix representations for quaternions u, v, w.

[lu] = [lu+0] =

(
u 0
0 −u

)
=

(√
a 0
0 −

√
a

)
[lv] = [l0+1v] =

(
0 b
1 0

)
[lw] = [l0+uv] =

(
0 −bu
u 0

)
=

(
0 −b

√
a√

a 0

)
Note that [lu]

2 = a1, [lv]
2 = b1, [lu][lv] = [lw], as desired. Thus, for a quaternion q = n + ru +

sv + tw, we can represent it using the matrix

(
n+ r

√
a b(s− t

√
a)

s+ t
√
a n− r

√
a

)
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3.3 Quaternion-Matrix Isomorphisms

We now move to isomorphisms between Quaternion Algebras. An isomorphism between two
quaternion algebras A and A′ over a field F is a ring isomorphism f : A → A′ that fixes the
elements of F . i.e. f(c) = c for all c ∈ f .

Definition. A basis of (a, b)F having the form 1, e1, e2, e1e2 where e21 ∈ F×, e22 ∈ F×, and e1e2 =
−e2e1 is called a quaternionic basis of (a, b)F .

Example. The basis {1, u, v, w} of (a, b)F is a quaternionic basis.

Definition. We call M2(F ), or a quaternion algebra isomorphic to M2(F ), a trivial or split
quaternion algebra over F . If (a, b)F ̸∼= M2(F ), we say (a, b)F is a non-split quaternion algebra.

For example, we can relate this defintion to quaternion algebras over Q.

Definition. Let a, b ∈ Q×. Then, (a, b)Q splits over R if (a, b)R ∼= M2(R). Otherwise, (a, b)Q is
non-split over R if (a, b)R ̸∼= M2(R).

Theorem 3.3. Let a ∈ F×. Then, (a, 1)F splits over F , i.e. (a, 1)F ∼= M2(F )

Proof. Let the basis of (a, 1)F be {1, u, v, w}. Recall that u2 = a, v2 = 1, u · v = w. Then, we can
send the basis of (a1)F to M2(F ) as follows.

1 7→
(
1 0
0 1

)
, u 7→

(
0 1
a 0

)
, v 7→

(
1 0
0 −1

)
, w 7→ u · v =

(
0 −1
a 0

)
Similarly to the example at the end of 3.2, for a quaternion q = x0 + x1u + x2v + x2w, we can
represent it using the matrix

( x0+x2 x1−x3

a(x1+x3) x0−x2

)
. Therefore, we can have a mapping

x0 + x1u+ x2v + x3w 7→
(

x0 + x2 x1 − x3

a(x1 + x3) x0 − x2

)
Let ϕ : (a, b)F → M2(F ) be defined by this mapping. Let q1 = x0 + x1u + x2v + x3w, q2 =
y0 + y1u+ y2v + y3w be quaternions. Then,

ϕ(q1) = ϕ(q2) =⇒
(

x0 + x2 x1 − x3

a(x1 + x3) x0 − x2

)
=

(
y0 + y2 y1 − y3

a(y1 + y3) y0 − y2

)
=⇒ x0 + x2 = y0 + y2, x0 − x2 = y0 − y2,

a(x1 + x3) = a(y1 + y3), x1 − x3 = y1 − y3

=⇒ x0 = y0, x1 = y1

=⇒ x2 = y2, x3 = y3

=⇒ x0 + x1u+ x2v + x3w = q0 + q1u+ q2v + q3w

=⇒ q1 = q2

Therefore, ϕ is injective. However, since dim(a1)F = dimM2(F ) = 4, ϕ is also surjective so it is
bijective. We can easily see that ϕ(1) = 1 and ϕ(q1 + q2) = ϕ(q1) + ϕ(q2). We can also show that
ϕ(q1q2) = ϕ(q1)ϕ(q2), but due to the length, this part is omitted. Thus, ϕ is a ring isomorphism
so (a1)F ∼= M2(F ).

Theorem 3.4. Let a, b ∈ F×. Then, (a, b)F ∼= (ac2, bd2)F for all c, d ∈ F×.

Proof. The ring (ac2, bd2)F has a quaternionic basis {1, cu, dv, (cu)(dv)} for arbitrary c, d ∈ F×.
This is because (cu)2 = ac2 ∈ F×, (dv)2 = bd2 ∈ F×, (cu)(dv) = −(dv)(cu), and the basis vector
set is linearly independent (since each basis vector is a scaled version of the corresponding vector
in the {1, u, v, uv} basis). We note that since (cu)2 = ac2 and (dv)2 = bd2, {1, cu, dv, (cu)(dv)} is
also a quaternionic basis for (ac2, bd2)F . Thus, (a, b)F ∼= (ac2, bd2)F for all c, d ∈ F×.
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Corollary 3.4.1. (a, 1)F ∼= (a, b2)F for all a, b ∈ F×

Proof. We note that 1, a, b ∈ F×. So, by Theorem 3.4, (a, 1)F ∼= (a · 12, 1 · b2)F ∼= (a, b2)F .

Definition. Let a ∈ F×. Define Na = Na(F ) to be the set of all nonzero x2−ay2 where x, y ∈ F .

Theorem 3.5. If b ∈ Na, then (a, b)F ∼= M2(F ).

Proof. Since b ∈ Na, b = x2 − ay2 for some x, y ∈ F , where a ∈ F×. Consider the set B =
{1, u, xv + yw, u(xv + yw)}. Observe that u(xv + yw) = uxv + uyw = xw + u2yv = xw + ayv.
Then, we want to change the basis from v, w to xw + ayv. We see that(

x y
ay x

)(
v
w

)
=

(
xv + yw
ayv + xw

)
so

( x y
ay x

)
is the change of basis matrix with nonzero determinant det

( x y
ay x

)
= x2 − ay2 = b ̸= 0.

So, the four elements of B are linearly independent ([7], Theorem 3.6) in F so it is a basis of
(a, b)F . Also, (xv + yw)2 = bx2 − aby2 = b(x2 − ay2) = b2. Additionally, u and xv + yw anticom-
mute so the basis is also quaternionic. Since u2 = a and (xv + yw)2 = b2, B is also a basis for
(a, b2). Thus, (a, b)F ∼= (a, b2)F . Also, by Corollary 3.4.1, (a, b2)F ∼= (a, 1)F and by Theorem 3.3,
(a, 1) ∼= M2(F ). Thus, (a, b2)F ∼= (a, b2)F ∼= (a, 1) ∼= M2(F ).

4 Biquaternions

Definition. Biquaternions are the quaternion algebra (−1,−1)C = {q = a+bi+cj+dk | a, b, c, d ∈
C, i2 = j2 = −1, ij = k}. In other words, biquaternions are Hamilton’s quaternions with complex
coefficients.

4.1 Algebraic Properties of Biquaternions

An interesting property of biquaternions is conjugation: Since the coefficients of biquaternions are
complex numbers themselves, they too will have complex conjugates. So, biquaternions have two
different types of conjugation [8].

Definition. For an arbitrary biquaternion q = a+ bi+ cj+dk, we may define complex conjugates
q̄ = a− bi− cj − dk and q∗ = ā+ b̄i+ c̄j + d̄k.

Here, if z = a + bh, z̄ = a − bh, where z ∈ C, a, b ∈ R and h2 = −1. Some notable properties of
biquaternions:

• (pq)∗ = q∗p∗, p̄q = p̄q̄, q̄∗ = q̄∗

• If qq∗ ̸= 0, we can define an inverse for each biquaternion with: q−1 = q∗(qq∗)−1 as qq−1 =
(qq∗)(qq∗)−1 = 1 and q−1q = ((q∗)∗(qq∗)−1∗)∗q∗ = (qq∗)−1qq∗ = 1

4.2 Matrix Representation of Biquaternions

We note that in Section 2.3.2, the ring homomorphism q = a + bi + cj + dk = z + jw 7→ [lq] =(
z −w̄
w z̄

)
=

(
a+bi −(c+di)
c−di a−bi

)
gives us a matrix representation for Hamilton’s quaternions with real

coefficients a, b, c, d ∈ R. However, we would like to extend this representation to complex coeffi-
cients a, b, c, d ∈ C.

We observe that i here does not refer to the imaginary unit
√
−1 ∈ C, but is rather one of

the quaternion basis vectors for (−1,−1)C, the biquaterinons. So, we will instead use h (motivated
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by Hamilton’s own use of h) to represent the imaginary unit
√
−1 ∈ C. Hence, a representation

matrix for an arbitrary biquaternion may be obtained from the ring homomorphism

q = a+ bi+ cj + dk 7→
(
a+ bh −(c+ dh)
c− dh a− bh

)
= [lq].

This representation also makes sense because if we choose matrix representations [l1] =
(
1 0
0 1

)
,

[li] =
(
h 0
0 −h

)
, [lj ] =

(
0 −1
1 0

)
, [lk] =

(
0 −h
−h 0

)
, for the biquaternion basis 1, i, j, k, then [li]

2 = [lj ]
2 =

−1, [li][lj ] = [lk]. And for a quaternion q = a+bi+cj+dk, we get the matrix
(
a+bh −(c+dh)
c−dh a−bh

)
= [lq],

as desired above.

We can use this representation to prove the following proposition:

Proposition. (−1,−1)C ∼= M2(C)

Proof. Using notation from Section 3.3, we note that −1 ∈ N−1 = {Nonzero x2−(−1)y2 | x, y ∈ C}
since −1 = ( i√

2
)2 − (−1)( i√

2
)2. Thus, by Theorem 3.5, (−1,−1)C ∼= M2(C).

In fact, m : (−1,−1)C → M2(C) defined by m(q) = m(a+ bi+ cj + dk) =
(
a+bh −(c+dh)
c−dh a−bh

)
= [lq] is

an isomorphism from (−1,−1)C to M2(C).
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