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Abstract

Broadly, the subjects of this thesis are differential geometry and mathematical gauge the-
ory as they relate to physics. Motivated by the formulation of Maxwell’s equations using
differential forms, we build and use tools like connections, curvature, and characteristic
classes in differential geometry to study spaces of self dual solutions to the nonabelian ana-
logue of Maxwell’s equations, namely the Yang–Mills equations. We also examine spaces
of these self dual solutions, called instantons, modulo gauge transformations. These spaces
are called moduli spaces. Finally, we introduce concepts like Clifford bundles, Dirac oper-
ators, and the Atiyah–Singer index theorem to prove the Atiyah–Hitchin–Singer theorem
regarding the dimensionality of moduli spaces of SU(2)-instantons on the 4-sphere.
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Introduction

Differential geometry in physics

Differential geometry is the the framework we use to describe and study geometry of spaces
with smooth structure, like differentiable manifolds. In physics, differential geometry is a
powerful tool to describe the geometry of spacetime, the structures of gauge theories, and
the mathematical underpinnings of symmetries and conservation laws. The most popular
application of differential geometry to physics in in general relativity, where colloquially,
people say ”spacetime curvature is equivalent to gravity”. This equivalence is made precise
in the Einstein field equations,

Gµν + Λgµν = κTµν ,

where Gµν is the Einstein tensor, Λ is the cosmological constant, gµν is the metric tensor,
κ is the Einstein gravitational constant, and Tµν is the stress-energy tensor. Although it
is not important for the purpose of this thesis to know exactly what these terms mean,
it is important to note the following interpretation of the Einstein equations. The left
hand side of the above equation is geometric — it uses ideas from differential geometry
including the spacetime metric and its curvature. The right hand side of the equation is
physical — it describes the physics of the gravitational field using the stress-energy ten-
sor. Thus, Einstein’s equations explicate an equivalence between differential geometric
ideas like spacetime curvature and physical ideas like the strength of the gravitational field.

This equivalence between curvature and field strength is not unique to gravity. In fact, this
equivalence is present in the equations of motion that describe the other three fundamental
forces, namely the weak, strong, and electromagnetic forces. The Yang–Mills equations
describe the free-field weak and strong interactions. The electromagnetic interaction is
described by Maxwell’s equations, which are an Abelian instance of the Yang–Mills equa-
tions in the free-field case. Let us briefly examine the use of differential geometry in the
construction of Maxwell’s equations,

∇⃗ · B⃗ = 0, ∂tB⃗ + ∇⃗ × E⃗ = 0,

∇⃗ · E⃗ = ρ, ∇⃗ × B⃗ − ∂tE⃗ = J⃗ ,

where E⃗ is the electric field, B⃗ is the magnetic field, ρ is the electric charge density, and
J⃗ is the electric current density.
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A geometric construction of Maxwell’s equations

We usually think of the electric and magnetic fields as vectors in R3. However, to tease
out the geometric aspects of Maxwell’s equations, we will express the electric and mag-
netic fields in terms of differential forms.

In the static case, the top two Maxwell’s equations above take the form ∇⃗ · B⃗ = 0
and ∇⃗ × E⃗ = 0. In the language of differential forms, the divergence becomes an exterior
derivative on 2-forms on R3 and the curl becomes an exterior derivative on 1-forms on R3.
So, we will treat the magnetic field as a 2-form on R3 and the electric field as a 1-form on
R3. We write

B = Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy,
E = Exdx+ Eydy + Ezdz.

Then, the top two Maxwell’s equations become

dB = 0 and dE = 0,

where d is the exterior derivative on p-forms in R3.

Generalizing to the time-dependent case, our electric and magnetic fields lie on 4-dimensional
Minkowski spacetime R3+1 with metric signature (+,−,−,−) and usual coordinates
(x0, x1, x2, x3) = (t, x, y, z). Then, we similarly define the electric field 1-form E and
the magnetic field 2-form B on R4 as

B = Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy,
E = Exdx+ Eydy + Ezdz.

We then construct a 2-form F = E ∧ dt + B, called the electromagnetic field strength.
Motivated by the Bianchi identity, let us set dF = 0. Then,

0 = dF = dB + d(E ∧ dt) = dB + dE ∧ dt,

where in the last equality we have used the fact that d2t = 0. For a differential form
ω = aIdx

I on R3, we may split dω into the spatial and temporal derivatives by

dω = ∂µωIdx
µ ∧ dxI = dsω + ∂taIdt ∧ dxI ,

where dsω = ∂iaidx
I ∧ dxi. Thus, dF = dB + dE ∧ dt = 0 yields

dsB + dt ∧ ∂tB + (dsE + dt ∧ ∂tE) ∧ dt = dsB + (∂tB + dsE) ∧ dt = 0.

Thus,
dF = 0 =⇒ dsB = 0 and ∂tB + dsE = 0,
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which correspond to ∇ · B⃗ = 0 and ∂tB⃗ +∇ × E⃗ = 0, respectively. These are precisely
the top two Maxwell’s equations. The other two Maxwell’s equations, namely ∇ · E⃗ = ρ
and ∇× B⃗ − ∂tE⃗ = J⃗ , are given by

∗d ∗ F = J,

where ∗ is the Hodge star operator and the current density J is a 1-form on R4, given
byJ = ρdt− (Jxdx+ Jydy + Jzdz). Thus, Maxwell’s equations take the form

dF = 0 and ∗ d ∗ F = J.

Thus, the use of differential forms yields a compact expression of the fundamental equa-
tions of electromagnetism. To see the connection to geometry, observe that since dF = 0,
we may write F = dA for a complex-valued 1-form A. This is possible because R3+1 is
contractible and, by the Poincaré lemma (see Ch. 4.3 in [1]), all closed forms are exact on
contractible spaces. A is called an electromagnetic gauge potential, gauge field, or vector
potential. In language that will be introduced later, the vector potential A is a connection
1-form on a U(1)-principal bundle over R3+1 and F = dA is the curvature 2-form of this
connection.

We can motivate this terminology of connection 1-forms and curvature 2-forms using a
heuristic picture of derivatives in calculus. Suppose we have a function f : R → R. Then,
it’s derivative f ′(x) is the slope of f at the point x ∈ R. So, f ′(x) defines a direction, a
vector in the plane on which the graph of f , 1-dimensional manifold, lies. The span of this
tangent vector defines the tangent space to the graph at (x, f(x)). This tangent space is
isomorphic to the cotangent space of differential 1-forms at (x, f(x)). This is analogous
to viewing the vector potential 1-form A as a connection, or covariant derivative, at a
point in the manifold R4. Differentiating f ′(x), we get f ′′(x) — the curvature of f . We
call it the curvature because the sign of f ′′(x) tells us whether a function is concave up,
concave down, or an inflection point. Similarly, the exterior derivative of the connection
is its curvature.

Thus, using differential equations to write Maxwell’s equations as dF = 0 and ∗d ∗F = J
explicates an equivalence between the geometry of electromagnetic fields and the under-
lying physics of electric currents.

A primer on gauge theory

To understand the role of geometry in particle physics beyond electromagnetism, we in-
troduce another mathematical tool that describes the symmetries enjoyed by physical
systems of particle fields: gauge theory.

Note that the electromagnetic field strength F is invariant under the transformation
A 7→ A + dϕ, where ϕ is a smooth, purely imaginary function on R4. So, any physical
information about the field strength we derive from A can also be derived from A + dϕ.
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We call this property of F gauge invariance and the transformation A 7→ A+ dϕ a gauge
transformation. The study of quantities and properties left invariant under gauge trans-
formations is the primary goal of gauge theory.

There is another way to write this gauge transformation that makes its useful group-
theoretic structure more apparent. With some foresight that A is a U(1)-gauge field,
suppose we transform A under the Abelian unitary group U(1) as follows: For each
λ ∈ U(1), λ acts on A as

λ−1A = λ−1Aλ+ λ−1dλ.

Since λ ∈ U(1), we can write λ = eϕ, where ϕ : R4 → iR is a purely imaginary smooth
function. Then,

λ−1A = e−ϕAeϕ + e−ϕdϕeϕ = A+ dϕ,

where the last equality follows from U(1) being Abelian. This is precisely the gauge trans-
formation we started with. Hence, we say electromagnetism is a U(1)-gauge theory.

The implications of gauge theory are widespread not only in electromagnetism, but in par-
ticle physics as a whole. In particular, Yang–Mills gauge theories generalize the Abelian
U(1)-gauge group in electromagnetism to nonabelian gauge groups. The electroweak
interaction is described by an SU(2)× U(1) Yang–Mills gauge theory, and the strong in-
teraction is described by an SU(3) Yang–Mills gauge theory. Hence, the standard model
of particle physics is described by an SU(3)× SU(2)× U(1) Yang–Mills gauge theory.

Outline and expectations of this thesis

Although much of the motivation in this introduction is based in physics, this thesis is
an exposition on the mathematical foundation for gauge-theoretic physics. In particular,
this thesis is divided into two chapters dedicated to differential geometry and Yang–Mills
gauge theory.

The first chapter covers topics in differential geometry like connections, curvature, and
characteristic classes. In particular, we examine connections and curvature on two kinds
of fiber bundles — vector bundles and principal bundles — both of which will be impor-
tant when describing solutions to the Yang–Mills equations, i.e. the nonabelian analogue
of Maxwell’s equations. In chapter 1, we also introduce gauge transformations and return
to electromagnetism as an example of a U(1)-gauge theory.

In the second chapter, we apply the geometric tools developed in Chapter 1 to study
Yang–Mills gauge theory. We examine spaces of self dual connections, called instantons,
that minimize the Euclidean Yang–Mills action functional. Instantons are widely studied
in quantum field theory, condensed matter physics, geometry, and gauge theory. In this
thesis, we focus on a geometric and gauge-theoretic examination of instantons by study-
ing spaces of instantons modulo gauge transformations. These spaces are called moduli
spaces. The final theorem we prove in this thesis is the Atiyah–Hitchin–Singer theorem.
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Theorem (Atiyah–Hitchin–Singer Theorem). The dimension of the moduli space of in-
stantons on a principal SU(2)-bundle over S4, with Pontryagin index k > 0 is 8k − 3.

Prior to the statement and proof of this theorem, the known self dual solutions (in-
stantons) of the SU(2) Yang–Mills equations on S4, called the t’Hooft solutions, were
constructed using 5k + 4 parameters. However, the Atiyah–Hitchin–Singer theorem im-
plies the existence of new instanton solutions, which turn out to be deformations of the
t’Hooft solutions themselves. To prove this theorem, we develop additional mathematical
framework on index theory, Clifford bundles, and Dirac operators in Chapter 2.

Since this thesis extensively employs ideas from differential geometry, it requires knowl-
edge of differential geometry as taught at the undergraduate level. Familiarity with elec-
tromagnetism and quantum field theory would be helpful, but is not strictly necessary.
One goal of this thesis is to elucidate the potency of differential geometry in our un-
derstanding of Yang–Mills theories in particle physics. Conversely, another goal is to
demonstrate how Yang–Mills gauge theories inspire the study of geometry, especially as
it relates to moduli spaces of instantons.
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Chapter 1

Connections, Curvature, and Gauge
Transformations

1.1 Connections and Curvature on Vector Bundles

We embark on our quest to study Yang–Mills gauge theory with an introduction to some
fundamental concepts in differential geometry: (vector and principal) bundles, connec-
tions, and curvature. We will observe that the electromagnetic gauge field may be thought
of as a principal connection on the principal U(1)-bundle with field strength as its curva-
ture.

1.1.1 Fiber and Vector Bundles

Definition 1.1.1. A smooth fiber bundle is a structure (E,X, F, π), where the total
space E is a smooth manifold equipped with a smooth projection map π ∈ C∞(E,X) to
a base manifold X, with a fiber manifold F , that satisfies the following conditions:

• Surjectivity: π is surjective

• Local triviality: For any x ∈ X, there is an open neighbourhood U of x for which
there is a diffeomorphism TU : π−1(U) → U × F , and proj1 ◦ TU = π on π−1(U).
Here, proj1 : U × F → U is projection onto the first coordinate.

We call U a trivializing open subset of the fiber bundle. We will sometimes abuse
notation and refer to the total space E or the map π : E → X as a fiber bundle, with an
implicit understanding of the other components of the fiber bundle structure (E,X, F, π).

Since we will only work with smooth bundles, maps, and forms in this document, we we
will suppress the word smooth.

Example 1.1.1 (Trivial Bundle). The total space E = X×F equipped with π1 = proj1 :
E → X is trivially a fiber bundle over X. So, we call it a trivial bundle.
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Definition 1.1.2. A local section of a fiber bundle E on an open subset U ⊆ X is a
map s : U → E such that

π(s(x)) = x

If U = X, then s is a global section (or simply a section). We denote the space of
smooth sections of a fiber bundle E as C∞(E).

Definition 1.1.3. If the fibers of a fiber bundle E are vector spaces, then we call E a
vector bundle.

Example 1.1.2. The tangent bundle TX (and cotangent bundle T ∗X) of a manifold X
are vector bundles over X with tangent (and cotangent) spaces as fibers.

1.1.2 Connections and Curvature

Let X be a smooth manifold, F be the space of all smooth functions on X, and E be a
vector bundle on X. Denote the space of smooth sections of E by C∞(E). For tangent
bundle TX on X, C∞(TX) are the vector fields on X.

Definition 1.1.4. A covariant derivative operator ∇ on E is a linear map

∇ : C∞(TX)× C∞(E) → C∞(E)

assigning to each vector field X and section s of E a new section ∇Xs such that for all
f ∈ F :

• ∇fXs = f∇Xs (F -linearity on X)

• ∇X(fs) = f∇Xs+ (df)(X)s

Remark 1.1.1. We call the second condition above the Leibniz rule. Suppressing X, we
may rewrite it as ∇(fs) = f∇s+ df · s. This allows us to think of a covariant derivative
operator ∇ as a map C∞(E) → C∞(T ∗X ⊗ E) such that

∇(fs) = f∇s+ df ⊗ s

for all f ∈ C∞(X) and s ∈ C∞(E). Thus, a covariant derivative operator may be defined
by a a connection dA (or more simply A), a first-order differential operator

dA : C∞(E ⊗ Λ0) → C∞(E ⊗ Λ1),

where Λp denotes the bundle of exterior p-forms on X.

Remark 1.1.2. We will often refer to the connection dA and the covariant derivative
operator interchangeably as A.

Definition 1.1.5. Let ∇ be a covariant derivative on a vector bundle E. The curvature
of ∇ is a multilinear map R : C∞(TX)× C∞(TX)× C∞(E) → C∞(E) such that

R(X, Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s
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Since R is F -linear in all three arguments, it is defined pointwise, i.e. at a point x ∈ X,
R(X, Y )s depends only on the values of X, Y and s at m, and not on their values at
nearby points. Thus, R is induced by a vector bundle map TX ⊗ TX → End(E), where
End(E) is the set of endomorphisms of E. We call this map the curvature tensor of ∇.

Furthermore, since R(X, Y ) is antisymmetric and bilinear in X and Y , we may regard it
as an End(E)-valued 2-form on X. This 2-form may be computed locally, as we will see
in the next section.

Before we do that, it is worth noting an equivalent definition of curvature using the
connection in remark 1.1.1.

Definition 1.1.6. There is a natural way to extend the connection dA : C∞(E ⊗ Λ0) →
C∞(E ⊗ Λ1) to a map

dA : C∞(E ⊗ Λp) → C∞(E ⊗ Λp+1)

dA(s⊗ α) = (dAs) ∧ α + s⊗ dα.

Then, there is an End(E)-valued 2-form FA, also called the curvature of the connection
A, such that for any

FA = d2A.

One should read this as follows: For any ω ∈ C∞(E⊗Λp), d2A(ω) = FA∧ω, where the right
hand side is a combination of the wedge product and the contraction End(E)⊗ E → E.

1.1.3 Connections and Curvature as Differential Forms

Understanding the local behavior of connections and curvature necessitates a local con-
ceptualization of sections of vector bundles. We do this using frames.

Definition 1.1.7. A frame for a vector bundle E with fiber dimension r over an open
set U is a collection of sections e1, ..., er of E over U such that at each point p ∈ U , the
elements e1(p), ..., er(p) form a basis for the fiber F at p.

Suppose U ⊆ X is a trivializing open set for vector bundle E over a manifold X. Let
e1, ..., er be a frame for E over U . Let X ∈ C∞(TU) be a C∞ vector field on U . As a
section of E over U , ∇Xej is a linear combination of the ei’s with coefficients ωi

j depending
on X:

∇Xej = ωi
j(X)ei

where we implicitly sum over repeated indices. On U , any section s ∈ C∞(U,E) is a
linear combination s = ajej. If desired, the section ∇Xs can be computed from ∇Xej by
linearity and the Leibniz rule.

Definition 1.1.8. The F -linearity of ∇Xej in X implies that ωi
j is F -linear in X. So, ωi

j

is a 1-form on U (see Corollary 7.27 in [2]). The 1-forms ωi
j are called the connection

forms of the connection ∇ relative to the frame e1, ..., er on U .
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A similar computation establishes that curvature may be represented as a 2-form.

Definition 1.1.9. For vector fields X, Y ∈ C∞(TU), the section R(X, Y )ej is a linear
combination

R(X, Y )ej = Ωi
j(X, Y )ei

with alternating and F -bilinear coefficients Ωi
j. The Ωi

j’s are 2-forms, called the curva-
ture forms of the connection ∇ relative to the frame e1, ..., er on U .

Theorem 1.1.1 (Second Structural Equation). Let ∇ be a connection on a vector bundle
E over a manifoldX with fiber dimension r. Relative to a frame e1, ..., er over a trivializing
open subset U ⊆ X, the connection forms and curvature forms are related by

Ωk
j = dωk

j + ωk
i ∧ ωi

j.

Proof. Let X, Y ∈ C∞(TU) be arbitrary vector fields. Then,

∇X∇Y ej = ∇X(ω
k
j (Y )ek)

= Xωk
j (Y )ek + ωk

j (Y )∇Xek (Leibniz rule)

= Xωk
j (Y )ek + ωk

j (Y )ωi
k(X)ei

= Xωk
j (Y )ek + ωk

i (X)ωi
j(Y )ek (relabeling indices)

∇Y∇Xej = Y ωk
j (X)ek + ωk

i (Y )ωi
j(X)ek

∇[X,Y ]ej = ωk
j ([X, Y ])ek

Thus,

R(X, Y )ej = ∇X∇Y ej −∇Y∇Xej −∇[X,Y ]ej

= (Xωk
j (Y )− Y ωk

j (X)− ωk
j ([X, Y ]))ek + (ωk

i (X)ωi
j(Y )− ωk

i (Y )ωi
j(X))ek

= (dωk
j + ωk

i ∧ ωi
j)(X, Y )ek

Since R(X, Y )ej = Ωk
j ek,

Ωk
j = dωk

j + ωk
i ∧ ωi

j.

Suppressing the indices, we write the curvature 2-form of the connection ω as

Ω = dω + ω ∧ ω.

Thinking of ω as an End(E)-valued 1-form, it will instead be useful to write Ω as

Ω = dω +
1

2
[ω, ω],

where [·, ·] is the Lie bracket.
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We note that the form of Ω above looks similar to the form of the electromagnetic field
strength F . In particular, F = dA, where A is the electromagnetic gauge potential 1-form,
and Ω = dω + 1

2
[ω, ω], where ω is a matrix of connection 1-forms. In fact, in the next

section, we will think of the gauge potential as a connection on a principal G-bundle, a
fiber bundle with additional group structure. Doing so will allow us to identify the field
strength as the curvature of the gauge potential.

1.1.4 Complex vector bundles

At this point, it is important for us to distinguish between real and complex vector bun-
dles. This is because, in the subsection that follows, we will define some useful topological
notions on vector bundles called characteristic classes. The definitions and properties of
these characteristic classes differ between real and complex vector bundles.

Definition 1.1.10. Suppose E is a vector bundle over a manifold X, with fiber dimension
k. We call E a real vector bundle if its fibers are real vector spaces. So, the projection
map π : E → X is locally of the form U × Rk → U . On the other hand, we call E a
complex vector bundle if its fibers are complex vector spaces. So, the projection map
π : E → X is locally of the form U × Ck → U .

Complex vector bundles admit a complex structure that allows us to promote real vector
bundles to complex ones.

Definition 1.1.11. Suppose E is a real vector bundle on a manifold X. We call an
automorphism J : E → E a complex structure on E if at each fiber Ex at x ∈ X,
Jx : Ex → Ex has the property that

J2
x = −id.

If E is a real vector bundle with complex structure J , then we can promote E to a complex
vector bundle by defining complex multiplication on vectors in each fiber Ex by

(a+ ib)v = av + J(bv),

for all a, b ∈ R and all v ∈ Ex. On the other hand, if E → X is a complex vector bundle,
then we can define a complex structure J : E → E by identifying Jx : Ex → Ex, at each
fiber Ex, with scalar multiplication by i.

To investigate this idea of complex structure on complex vector bundles further, we restrict
to examining complexifications of real vector bundles. Recall that the complexification of
a real vector space V is the tensor product VC = V ⊗R C between V and C, where we
view C as a two-dimensional real vector space. We make VC a complex vector space by
defining complex multiplication on VC by

z(v ⊗ w) = v ⊗ zw,

for all v ∈ V , z, w ∈ C.
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Definition 1.1.12. The complexification of a real vector bundle E over X is the
complex vector bundle

EC = E ⊗ C

over X, whose fibers over each x ∈ X is Ex ⊗R C.

EC has a complex structure J : EC → EC, which sends the real subbundle E ⊂ EC to
JE. Since J2 = −id, E ∩ JE is the submanifold of EC consisting of all the zero vectors
and E + JE = EC. So, E ⊕ JE is canonically isomorphic to EC.

Furthermore, since J is a bundle automorphism, the restriction J |E : E → JE is a
bundle isomorphism. Thus, E ⊕ E is isomorphic to EC by the isomorphism

ϕ : E ⊕ E → EC, ϕ(α, β) = α + Jβ.

Since E ⊕E is isomorphic to EC, a complex vector bundle, one might ask what complex
structure on E ⊕ E would make it a complex vector bundle — we give it the complex
structure J̃ : E ⊕ E → E ⊕ E on E ⊕ E such that on each fiber (E ⊕ E)x,

Jx : (E ⊕ E)x → (E ⊕ E)x, J̃x(v, w) = (−w, v).

It is easy to see that J̃2
x = −id.

Definition 1.1.13. For a complex vector bundle E with complex structure J : E → E,
define the conjugate bundle E to be the bundle E with complex structure −J . In other
words, E has the same base and fibers as E, but we define complex multiplication on each
fiber Ex by setting

(a+ ib)v = av − J(bv),

for all a, b ∈ R and v ∈ Ex. Hence, scalar multiplication by C on each fiber of E acts
through complex conjugation.

Proposition 1.1.1. If E is a real vector bundle, then EC is isomorphic to EC.

Proof. EC has complex structure J : EC → EC. Define a map ϕ : E ⊕ E → EC by

ϕ(α, β) = α− Jβ.

ϕ is an isomorphism in the same way as ϕ : E ⊕E → EC is an isomorphism above. Since
compositions preserve isomorphisms, ϕ ◦ ϕ−1 : EC → EC is an isomorphism. Thus, EC
and EC are isomorphic.

Definition 1.1.14. Suppose E is a complex vector bundle. Define the underlying real
vector bundle ER to be the vector bundle E with fibers treated as vector spaces over
R, as opposed to over C.

Proposition 1.1.2. Suppose E is a complex vector bundle over X. Then, the com-
plexification (ER)C = ER ⊗ C of its underlying real vector bundle ER is isomorphic to
E ⊕ E.
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Proof. Suppose J : ER ⊗ C → ER ⊗ C is the complex structure on ER ⊗ C, that acts as
multiplication by i on vectors within each fiber. Let x ∈ X be arbitrary, and consider the
fiberwise map

ϕ : (ER ⊗ C)x → Ex ⊕ Ex, ϕ(v ⊗ 1 + w ⊗ i) = (v + iw, v − iw),

where v, w ∈ Ex. We note that

ϕ(i(v ⊗ 1 + w ⊗ i)) = ϕ(−w + v ⊗ i)

= (−w + iv,−w − iv)

= i(v + iw, v − iw)

= iϕ(v ⊗ 1 + w ⊗ i),

where in the penultimate line, we use the fact that C acts on Ex through complex conju-
gation. Thus, ϕ is C-linear and induces an isomorphism between ER ⊗C and E ⊕E.

The purpose of these definitions and propositions will become clear in the following sub-
section about characteristic classes of real and complex vector bundles.

1.1.5 Characteristic Classes

Recall that a primary goal of gauge theory is to study quantities that are invariant under
“gauge transformations”. In the spirit of understanding such invariants in future sections,
we introduce the notion of characteristic classes. These are topological invariants that
will prove useful when we examine the relationship between topological and analytic data
of operators on manifolds in the next chapter.

Definition 1.1.15. Let X be an k× k matrix with entries X i
j. A polynomial P (X) on

glk(R) = Rk×k is a polynomial in the entries of X. A polynomial P (X) on glk(R) is said
to be ad GLk(R)-invariant or simply invariant if for all A ∈ GLk(R),

P (A−1XA) = P (X).

Example 1.1.3. det(X) and tr(X) are invariant polynomials on glk(R).

Example 1.1.4. Let X be a k × k matrix of indeterminates and let λ be another inde-
terminate. The coefficients fl(X) of λk−l in

det(λI +X) = λk + f1(X)λk−1 + ...+ fk(X)

are polynomials on glk(R). Each fl(X) is an invariant polynomial because for all A ∈
GLk(R) and any k × k matrix X of real numbers,

det(λI + A−1XA) = det(λI +X) =⇒ fk(A
−1XA) = fk(X),

for all A ∈ GLk(R), X ∈ glk(R).
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Proposition 1.1.3. Suppose E is a real vector bundle over a manifold X, with fibers
whose dimension is k. Let A be a connection on E with associated covariant derivative ∇
and curvature matrix Ω relative to any frame on E. If P (X) is a homogeneous invariant
polynomial of degree p on glk(R), then P (Ω) defines a closed global 2p-form on X, whose
cohomology class [P (Ω)] ∈ H2p(X) is independent of the connection.

Proof. This is proved as Theorem 23.3 in [2].

Definition 1.1.16. The cohomology class [P (Ω)] is called the characteristic class as-
sociated to P of the real vector bundle E.

Definition 1.1.17. With the polynomials f2l(X) defined as in Example 1.1.4, we define
the l-th Pontryagin class pl(E) of a real vector bundle E over X with fiber dimension
k to be

pl(E) =
[
f2l

( i

2π
Ω
)]

∈ H4l(X).

For odd l, pl(E) are all 0 (see theorem 24.3 in [2]). So, we can expand det
(
λI + i

2π
Ω
)
as

det

(
λI +

i

2π
Ω

)
=

k∑
l=0

fl

(
i

2π
Ω

)
λk−l =

k̃∑
i=0

pi(E)λ
k−2i,

where k̃ = ⌊k
2
⌋.

Definition 1.1.18. Define the total Pontryagin class p(E) of E to be the expression
we get when we set λ = 1 in the equation above, i.e.

p(E) := det

(
I +

i

2π
Ω

)
= 1 + p1 + ...+ pk̃.

Many times, it is useful to work with complex vector bundles. The analogue of Pontryagin
classes on complex vector bundles are Chern classes. If P (X) is a complex polynomial on
glk(C) that is invariant under conjugation by elements of GLk(C), then P (Ω) defines a
closed global form on X, whose cohomology class [P (Ω)] is independent of the connection.

Definition 1.1.19. Setting P (Ω) = det
(
I + i

2π
Ω
)
, we obtain the Chern classes ci(E)

of a complex vector bundle E from the total Chern class

c(E) := det

(
I +

i

2π
Ω

)
= 1 + c1(E) + ...+ ck(E)

in the same way as we obtained the Pontryagin classes of real vector bundles above.

Both the Pontryagin and Chern classes satisfy the Witney product formula: Given
complex vector bundles E and F ,

c(E ⊕ F ) = c(E)c(F ),
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and if E and F are real vector bundles, then p(E⊕F ) = p(E)p(F ). See Theorem 24.6 in
[2] for a proof. Furthermore, if E is a complex vector bundle, then

ci(E) = (−1)ici(E).

See Lemma 1.4 in [3] for a proof. We will use this statement and the Whitney product
formula to deduce the relationship between Chern classes of complex vector bundles and
Pontryagin classes of their underlying real vector bundles.

Lemma 1.1.2. If E is a real vector bundle, then ci(EC) = ci(E ⊗ C) = 0 for all odd i.

Proof. Since EC is isomorphic as a complex vector bundle to EC,

ci(EC) = ci(EC) = (−1)ici(EC) = −ci(EC),

for odd i. Thus, 2ci(EC) = 0.

From this Lemma, we deduce that Pontryagin classes of a real vector bundle E over X
arise as the even-indexed Chern classes of the complexification EC = E ⊗C. That is, for
a real vector bundle E,

pi(E) = (−1)ic2i(EC).

We won’t prove this fact here, but will use it to prove the following theorem.

Theorem 1.1.3. Let E be a complex vector bundle with underlying real vector bundle
ER. Then,

1− p1(ER) + ...+ (−1)npn(ER) = (1 + c1(E) + ...+ cn(E))(1− c1(E) + ...+ (−1)ncn(E)).

Proof. Since pi(ER) = (−1)ic2i((ER)C) = (−1)ic2i(ER ⊗ C),

1− p1(ER) + ...+ (−1)npn(ER) = 1 + c2(ER ⊗ C) + ...+ c2n(ER ⊗ C)

= c(ER ⊗ C),

where in the last equality we have used the fact that ci(ER ⊗ C) = 0 for odd i (Lemma
1.1.2). By proposition 1.1.2 ER ⊗ C is isomorphic to E ⊕ E. So,

c(ER ⊗ C) = c(E ⊕ E)

= c(E)c(E) (Whitney product formula)

= (1 + c1(E) + ...+ cn(E))(1 + c1(E) + ...+ cn(E))

= (1 + c1(E) + ...+ cn(E))(1− c1(E) + ...+ (−1)ncn(E)),

where in the last equality we have used the fact that ci(E) = (−1)ici(E). Thus,

1− p1(ER) + ...+ (−1)npn(ER) = (1 + c1(E) + ...+ cn(E))(1− c1(E) + ...+ (−1)ncn(E)).
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Example 1.1.5. Suppose E is a complex vector bundle of complex rank 2 with underlying
real vector bundle ER. Then, (1+c1(E)+c2(E))(1−c1(E)+c2(E)) = 1−c1(E)2+2c2(E).
Thus, p1(ER) = c1(E)

2 − 2c2(E).

Remark 1.1.3. There is a rational polynomial in the Chern classes of vector bundles E
with fiber dimension k called the Chern character, beginning with

ch(E) = k + c1(E) +
1

2
(c1(E)

2 − 2c2(E)) +
1

6
(c1(E)

3 − 3c1(E)c2(E) + 3c3(E)) + ...,

with the following properties

ch(E ⊕ F ) = ch(E) + ch(F )

ch(E ⊗ F ) = ch(E)ch(F )

for vector bundles E and F over X.
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1.2 Connections, and Curvature on Principal G-Bundles

In this section, we will add some additional structure to fiber bundles. Connections on
these fiber bundles that are, in some way, compatible with this structure become especially
important. For example, general relativity concerns the study of tangent bundles over
a spacetime endowed with a metric. The connections of import — called Riemannian
connections — are those that are compatible with the metric (see Ch. 6.3 in [2]). In
Yang–Mills theory, we examine fiber bundles with additional group structure — we call
these principal G-bundles, where G is the structure group of the theory.

1.2.1 Principal G-Bundles

Definition 1.2.1. Let P equipped with a map π : P → X be a fiber bundle over a
manifold X. Let F = π−1(x) be an arbitrary fiber of x ∈ X. Additionally, let G be a Lie
group that acts on P by a smooth right action R : P × G → P . We call P a principal
G-bundle (G-bundle for short) with structure group G if R is:

• Fiber-preserving: RgF ⊆ F

• Free: If g1, g2 ∈ G and p · g1 = p · g2 for some p ∈ F , then g1 = g2

• Transitive: For all p, q ∈ F , there exists a g ∈ G such that q = p · g.

With the definition above, we recognize a principal bundle P with structural group G over
a smooth manifold X as a locally trivial fiber bundle whose fiber is G itself considered as
a right G-space. Thus, G acts smoothly on P by right multiplication on each fiber and
X = P/G.

Example 1.2.1 (Hopf bundle). The group S1 of unit complex numbers acts on the
complex vector space Cn+1 by left multiplication. This induces an action of S1 on the
unit sphere S2n+1 in Cn+1. We may define the complex projective space CPn as the orbit
space of S2n+1 by S1. The natural projection S2n+1 → CPn with fiber S1 is a principal S1-
bundle. When n = 1, S3 → CP1 with fiber S1 is called the Hopf bundle. Interestingly,
the Hopf bundle appears in the mathematical study of quantum computing — the Hopf
bundle explains how one can represent 2-level quantum states (qubit states) on a 2-sphere,
called the Bloch sphere (see Ch. 8.2 in [4]).

Example 1.2.2 (Frame Bundle). Let E be a vector bundle with fiber dimension k.
Consider the space Fr(E) whose fiber over a point x ∈ E is the collection of all frames in
the fiber Ex of E over x. Intuitively, one may act on an element in Fr(E), a frame, by an
invertible linear transformation (in GL(k)) to yield another frame in Ex. So, Fr(E) is a
principal GL(k)-bundle.

1.2.2 G-Equivariance

We aim to define a connection on principal G-bundles that are, in some way, compatible
with the group structure. The compatiblity we are interested in is called G-equivariance.
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Let us make this more precise.

Definition 1.2.2 (G-equivariance). A manifold M equipped with a Lie group G that
acts on M on the right (left) is called a right (left) G-manifold. We say that a map
f :M → N between two right G-manifolds is right G-equivariant if for all x ∈M and
g ∈ G,

f(x · g) = f(x) · g
We say that a map f : M → N between two left G-manifolds is left G-equivariant if
for all x ∈M and g ∈ G,

f(g · x) = g · f(x)
If M is a right G-manifold and N is a left G-manifold, then a map f : M → N is
G-equivariant if for all x ∈M and g ∈ G,

f(x · g) = g−1 · f(x)

Definition 1.2.3. Let conj(g) : G→ G be a right group action on G given by conjugation

f · g := conj(g)(f) = gfg−1.

The differential of conj(g) evaluated at the identity e ∈ G gives the adjoint action

ad(g) = conj∗(g)(e) : TeG→ TeG.

We may identify g with TeG and invoke the chain rule to show that ad(g1) ◦ ad(g2) =
ad(g1g2). This gives us a homomorphism

ad(g) : G→ GL(g)

called the adjoint representation.

Example 1.2.3. If G is a subgroup of GL(k,R), then ad(g)(ξ) = gξg−1.

Suppose G is a Lie group with associated Lie algebra g. Also suppose G acts smoothly
on a manifold P on the right. To every element A ∈ g we can associate a vector field A
on P called the fundamental vector field on P associated to A as follows: For x ∈ P ,
define

Ax =
d

dt

∣∣∣
t=0
x · etA ∈ TxP

Ax may be understood as the initial direction of the curve cx : t 7→ x · etA at a point
x ∈ P :

Ax = c′x(0)

Proposition 1.2.1 (G-equivariance of Fundamental Vector Fields). Suppose G is a Lie
group with associated Lie algebra g. Suppose G acts smoothly on a manifold P by right-
action Rg : x 7→ x · g. Then, for A ∈ g, the associated fundamental vector field A satisfies
the following G-equivariance property:

(Rg)∗A = ad(g−1)A
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Proof. We need to show that for all x ∈ P , Rg∗(Ax) = ad(g−1)A
xg
.

For x ∈ P , define a map jx : G → P by jx(g) = x · g. The differential of jx using the
curve c(t) = etA is

jx∗(A) =
d

dt

∣∣∣
t=0
jx(e

tA) =
d

dt

∣∣∣
t=0

(x · etA) = Ax

For q ∈ G,

(Rg ◦ jx)(q) = xqg = xgg−1qg = jxg(g
−1qg) = (jxg ◦ cg−1)(q)

Thus,

Rg∗(Ax) = Rg∗jx∗(A) = jxg∗cg−1∗(A) = jxg∗(ad(g
−1)A) = ad(g−1)A

xg

1.2.3 Horizontal and Vertical Tangent Bundles

Let P be a principal G-bundle. Let g denote the Lie algebra associated with the Lie group
G.

Definition 1.2.4. If we differentiate the G-action, we can associate each element u of
g with a G-invariant vector field Xu on P , called the Killing field corresponding to u.
The Killing fields span a subbundle V P of TP , which is equal to the kernel of the map
π∗ : TP → TX. Thus, each fiber of V P is canonically identified with g. We call V P the
subbundle of vertical tangent vectors to P.

By the local triviality of a principal bundle, at every point x ∈ P , the differential π∗,x :
TxP → Tπ(x)X of the projection is surjective. The vertical tangent subspace VxP ⊆ TxP
is ker(π∗,x). This is precisely a short exact sequence of vector spaces

0 → VxP → TxP
π∗,x−−→ Tπ(x)X → 0

The differential π∗ : TP → TX of π : P → X induces a bundle map π̃∗ : TP → π∗TX
over P , given by π̃∗,x(Xx) = (x, π∗,xXx). This is represented in the diagram

TP π∗TX

TX

π̃∗

π̃∗ is surjective because it maps the fiber TxP onto the fiber (π∗TX)x ∼= Tπ(x)X. Its kernel
is V P by the short exact sequence above. Thus, there is a short exact sequence of vector
bundles over P

0 → V P → TP
π̃∗−→ π∗TX → 0

If v ∈ V P , we say that v is vertical.
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Proposition 1.2.2. For all A ∈ g, the fundamental vector field A is vertical at all points
x ∈ P .

Proof. For x ∈ P , define jx : G→ P by jx(g) = x · g. Then,

(π ◦ jx)(g)) = π(x · g) = π(x)

Since Ax = jx∗(A) (by proof of Proposition 1.2.1), and π ◦ jx is a constant map,

π∗,x(Ax) = (π∗,x ◦ jx∗)(A) = (πx ◦ jx)∗(A) = 0

Thus, Ax ∈ ker(π∗,x) and A is vertical at all x ∈ P .

Remark 1.2.1. Conversely, we can also identify every vertical tangent vector with a
fundamental vector field of some element in g. More precisely, for x ∈ P , the differential
at e ∈ G of the map jx : G → P is an isomorphism of g onto the vertical tangent space:
(jx)∗,e : g

∼−→ VxP .

Definition 1.2.5. Let P be a principal G-bundle with projection map π : P → X
and vertical subbundle V P of the tangent bundle TP . We call a subbundle HP of TP
a bundle of horizontal tangent vectors (or horizontal tangent subbundle) on P if
TP = V P ⊕ FP as vector bundles, i.e. for all x ∈ P ,

TxP = VxP +HxP and VxP ∩HxP = 0

1.2.4 Connections and Curvature on Principal G-Bundles

Suppose HP is a horizontal tangent subbundle of a principal G-bundle P equipped with
projection π : P → X. For x ∈ P , define a map jx : G→ P by jx(g) = x · g. This induces
an isomorphism jx∗ : g → VxP (see Prop. 27.18 in [2]), allowing us to canonically iden-
tify the vertical tangent space VxP with the Lie algebra g associated with the Lie group G.

Let νx : TxP = VxP ⊕ HxP → VxP be the projection onto the vertical tangent space
at the point x ∈ P . Note that this projection depends on the choice of horizontal tangent
subbundle HP . Finally, define the map

ωx = j−1
x∗ ◦ νx : TxP

ν−→ VxP
j−1
x∗−−→ g

With this definition, ω is a smooth g-valued 1-form on P .

Theorem 1.2.1. Let HP be a right-invariant horizontal tangent subbundle associated
with a principal G-bundle P . Then, the associated g-valued 1-form as defined above
satisfies the following conditions:

1. For all A ∈ g and x ∈ P , we have ωx(Ax) = A;

2. (G-equivariance) For all g ∈ G, R∗
gω = ad(g−1)ω
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Proof. For 1, Since Ax is already vertical by Proposition 1.2.2, νx(Ax) = Ax. So,

ωx(Ax) = j−1
x∗ (νx(Ax)) = j−1

x∗ (Ax) = A

For 2, let x ∈ P and Xx ∈ TxP be arbitrary. Then, we need to show that

ad(g−1)ωx(Xx) = R∗
gωx(Xx) = ωxg(Rg∗(Xx))

It suffices to show this for both the vertical and horizontal components of Xx since both
sides of the above equation are R-linear in Xx and Xx is the sum of its horizontal and
vertical components. Let VX be the vertical component of Xx and HX be the horizontal
component of Xx.

By remark 1.2.1, VX = Ax for some A ∈ g. Then,

ωxg(Rg∗(VX)) = ωxg(Rg∗(Ax)) = ωxg(ad(g
−1)A

xg
) (Proposition 1.2.1)

= ad(g−1)A (by condition 1 )

= ad(g−1)ωx(Ax) (by condition 1 )

= ad(g−1)ωx(VX)

Since the horizontal tangent subbundle HP is right-invariant, Rg∗HX is horizontal. Thus,
by definition of ωx,

ωxg(Rg∗(HX)) = 0 = ad(g−1)ωx(HX)

Definition 1.2.6. A connection on a principal G-bundle is a g-valued smooth 1-form
on P satisfying the conditions in Theorem 1.2.1.

A g-valued 1-form is a map α : TP → g. The Lie group G acts on TP on the
right by the differentials of right translations and G acts on g on the left by the adjoint
representation. By Definition 1.2.2, α is G-equivariant if and only if

α(Xx · g) = g−1 · α(Xx)

for all x ∈ P , Xx ∈ TxP and g ∈ G. Equivalently,

α(Rg∗Xx) = (ad(g−1)) · α(Xx)

So, α : TP → g is G-equivariant if and only if R∗
gα = ad(g−1)α. Thus, condition 2 of a

connection ω on a principal G-bundle says that w : TP → g is a G-equivariant map.

Definition 1.2.7. Let ω be a connection on a principal G-bundle P over X with values
in g. Then, the curvature of ω is the g-valued 2-form

Fω = dω +
1

2
[ω, ω].

It turns out that the space of connections on a principal G-bundle is an affine space. To
understand what this affine space is modeled on, we first introduce the concept of the
adjoint bundle.
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1.2.5 The Adjoint Bundle

Definition 1.2.8. Let P be a principal G-bundle over X. We can construct a vector
bundle over X as follows: Let ρ : G→ GL(F ) be a representation of G on a vector space
F . Then G operates on P × F by

(p, f) · g = (pg−1, ρ(g)f).

The quotient space P ×ρ F of P × F by the group action of G is a vector bundle over
X with fibers isomorphic to F . P ×ρ F is the vector bundle associated to P by the
representation ρ.

Example 1.2.4. ad(P ) := P ×ad g is the vector bundle associated to P by the adjoint
representation, simply called the adjoint bundle of P .

Theorem 1.2.2. For any principal G-bundle P over X, the space of all connections A(P )
is an affine space modeled on Ω1(X; ad(P )).

Although we will not prove this theorem here, its consequences are three-fold:

1. A(P ) is nonempty

2. if ∇,∇′ ∈ A(P ) are connections, then ∇−∇′ is a 1-form on X with values in ad(P )

3. If ∇ ∈ A(P ) is a connection and a ∈ Ω1(ad(P )), then ∇+ a defined by

(∇+ a)s = ∇s+ as

is a connection.

Example 1.2.5. Let P = Fr(E) be the principal GL(k)-bundle of frames on a vector
bundle E (see Example 1.2.2 for definition). Then ad(P ) = End(E) and the connections
on P are glk(R)-valued 1-forms on E.

The adjoint bundle is also useful in understanding the curvature of principal connections.
The curvature F∇ of a connection ∇ on a principal G-bundle over X descends to X as a
smooth section of ad(P )⊗ Λ2.
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1.3 Gauge Transformations

1.3.1 Gauge Transformations

Definition 1.3.1. Let P be a principal G-bundle with projection π : P → X. Denote
the set of automorphisms of P by G(P ):

G(P ) = {λ : P → P | π ◦ λ = π and λ(gp) = gλ(p) for all p ∈ P, g ∈ G}

G(P ) is called the gauge group of P and its elements are called gauge transformations.
When necessary, we will specify the association of the gauge group G to the structure group
G by referring to gauge transformations in G as G-gauge transformations.

Proposition 1.3.1. Let G act on G by conjugation. Then, G(P ) is in bijection with the
set of G-equivariant maps P → G.

Proof. Let u : P → G be a G-equivariant map, i.e. u(pg−1) = gu(p)g−1. This defines an
automorphism λu : P → P by λu(p) = pu(p). Note that

λu(pg
−1) = pg−1u(pg−1) = pg−1gu(p)g−1 = pu(p)g−1 = λu(p)g

−1.

Now, let λ : P → P be an automorphism. Since λ preserves the base point of p, we may
write λ(p) = pu(p) for some u : P → G. Since λ is an automorphism, λ(pg−1) = λ(p)g−1.
So,

pg−1u(pg−1) = λ(pg−1) = λ(p)g−1 = pu(p)g−1.

Thus, g−1u(pg−1) = u(p)g−1 =⇒ u(pg−1) = gu(p)g−1 — so u is G-equivariant.

Let P ×conj G be the fiber bundle associated to P where G acts on G by conjugation.
Then for all p ∈ P and h ∈ G, g ∈ G acts on (p, h) ∈ P ×G by

(p, h) · g = (pg−1, ghg−1).

Sections of P ×conj G are precisely the G-equivariant maps P → G. In other words, we
can identify each section of P ×conj G with a map u : P → G such that

u(pg−1) = gu(p)g−1

(see Ch. 13.4 in [5]). Thus, Proposition 1.3.1 yields bijective descriptions of the gauge
group:

G(P ) ∼= C∞(P ×conj G).

Example 1.3.1. The principal G = GLk(R)-frame bundle Fr(E) of a vector bundle E
over X has gauge group

G(Fr(E)) = {λ ∈ C∞(End(E)) | λ(x) ∈ GL(Ex) for all x ∈ X}

So, we can identify G(Fr(E)) with GL(E).
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Locally, a gauge transformation λ ∈ G(P ) may be represented by a G-valued function on
X and a connection A may be represented as a g-valued 1-form. Then, the action of λ
on A is locally given by

λ−1A = λ−1dλ+ ad(λ−1)(A) = λ−1dλ+ λ−1Aλ.

Under a gauge transformation, the curvature FA transforms to

Fλ−1A = λ−1FAλ.

Definition 1.3.2. Two connections are called gauge equivalent if there is a gauge
transformation that transforms one of the connections into the other one.

In addition to gauge equivalence, some quantities demonstrate gauge invariance, i.e. they
are unchanged under gauge transformations. This idea is quite important in physics —
physical observables are gauge invariant. For example, the electromagnetic field strength
composed of the electric and magnetic fields is gauge invariant under U(1)-gauge trans-
formations. We will see this in the following section.

1.3.2 Electromagnetism From Principal U(1)-Bundles

So far, we have constructed a general framework of connections and curvature as they
relate to principal G-bundles. This framework can be applied to quickly demonstrate
what we initially observed in the introduction of this thesis.

Let E = X × C be a trivial complex line bundle over X. In other words, we assume
E = X × C, so that the fiber Ex, over any point x ∈ X equals C. A connection ∇ on
E can be identified with its connection matrix A, which is an End(E)-valued 1-form. We
call A a vector potential.

Since End(C) is canonically isomorphic to C, A is a complex-valued 1-form. E becomes
a U(1)-bundle if we think of its standard fiber, C, as the fundamental representation of
the group U(1). In this case, the entries of A must live in u(1) = {ix | x ∈ R}.

Now suppose we apply a gauge transformation λ to the vector potential A. Then, A
will transform as

A′ := λ−1A = λ−1Aλ+ λ−1dλ = A+ λ−1dλ,

where the last equality follows from U(1) being abelian. If we can write λ = eϕ for some
imaginary function ϕ, then

λ−1dλ = dϕ.

In this case, a gauge transformation amounts to adding an exact form dϕ to A:

A′ = A+ dϕ.

28



This is precisely the gauge transform we observed in the introduction. Furthermore, the
curvature FA associated with this vector potential is invariant under U(1)-gauge trans-
formations:

FA′ = λ−1FAλ = FA.

This is also precisely what we observed in the introduction. This compact demonstration
is our bridge into the geometric study of particle physics using gauge theory. Electromag-
netism is the simplest gauge theory, a U(1) abelian gauge theory. In the next chapter, we
will examine nonabelian gauge theories that describe physics beyond electromagnetism.
They will exhibit much richer properties of geometry and physics for us to study.
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Chapter 2

Yang–Mills Gauge Theory

In this chapter, we will examine a spaces of solutions to the Yang–Mills equations, called
instantons. We will concern ourselves with the spaces of such solutions modulo gauge
equivalence, called moduli spaces. Finally, we will use the Atiyah–Singer theorem to prove
the Atiyah–Hitchin–Singer theorem, a theorem about the dimension of moduli spaces of
instantons in SU(2)-Yang–Mills theories.

2.1 Yang–Mills Instantons

2.1.1 Self-Dual Connections

Recall that on a principal G-bundle P over X, a connection A is defined by a g-valued
1-form, where g is the Lie algebra associated with G. The curvature FA of the connection
is the g-valued 2-form

FA = dA+
1

2
[A,A].

This descends to X as a smooth section of ad(P ) ⊗ Λ2, where ad(P ) := P ×Ad g is the
vector bundle associated to P by the adjoint representation.

Recall from Remark 1.1.1 that on a vector bundle E over X, a connection dA (or just A)
is a linear map

dA : C∞(E ⊗ Λ0) → C∞(E ⊗ Λ1).

This extends to a map

dA : C∞(E ⊗ Λ1) → C∞(E ⊗ Λ2)

dA(e⊗ α) = ∇e ∧ α + e⊗ dα,

where e ∈ C∞(E ⊗ Λ0) and α ∈ Λ1. The curvature of the connection is

FA = d2A.

30



Definition 2.1.1. LetX be an (even) 2n-dimensional oriented manifold and let Λp denote
the bundle of p-forms on X with inner product ⟨·, ·⟩. The Hodge star operator ∗ : Λp →
Λ2n−p maps p-forms β to ∗β defined by

α ∧ ∗β = ⟨α, β⟩vol

where α ∈ Λp and vol ∈ Λ2n is the volume form on X.

It is worth noting that when p = n, ∗2 = (−1)n. So, for n = 2, i.e. X is a 4-dimensional
manifold, ∗2 = 1. In this case, the bundle Λ2 is graded by ∗ into a direct sum

Λ2 = Λ2
+ ⊕ Λ2

−

where Λ± are the ±1-eigenspaces of ∗.

Definition 2.1.2. On a 4-manifold X, a connection A is said to be self dual if its
curvature FA is in C∞(ad(P ) ⊗ Λ2

+) (i.e. ∗FA = FA) and anti self dual if FA is in
C∞(ad(P )⊗ Λ2

−) (i.e. ∗FA = −FA).

Using the Hodge star operator we can decompose FA into self dual and anti self dual
components as

FA = F+
A + F−

A

where ∗F+
A = F+

A and ∗F−
A = −F−

A . So,

∗FA = F+
A − F−

A .

Proposition 2.1.1. FA ∧ ∗FA = F+
A ∧ ∗F+

A + F−
A ∧ ∗F−

A .

Proof.

FA ∧ ∗FA = (F+
A + F−

A ) ∧ (F+
A − F−

A )

= F+
A ∧ F+

A − F+
A ∧ F−

A − F−
A ∧ F+

A − F−
A ∧ F−

A

= F+
A ∧ F+

A − F−
A ∧ F−

A

= F+
A ∧ ∗F+

A + F−
A ∧ ∗F−

A .

2.1.2 The Yang–Mills Equations

Let E be a Hermitian vector bundle over X with connection A whose curvature is FA.
We define the Yang–Mills functional on E by the integral

YM(A) :=
1

8π2

∫
X

FA ∧ ∗FA =
1

8π2

∫
X

⟨FA, FA⟩vol.

We are interested in studying Yang–Mills functionals because they are the action of
massless bosons in physics. Yang–Mills functionals are crucial to our description of the
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standard model of particle physics — in particular the electromagnetic, electroweak, and
strong interactions.

Motivated by the principle of least action in physics, we devote our attention to con-
nections that extremize the Yang–Mills functional. The critical points of YM on the
space of connections A(E) are called Yang–Mills connections.

Definition 2.1.3. Let A be a connection on a vector bundle E with associated exterior
derivative dA : C∞(E ⊗ Λp) → C∞(E ⊗ Λp+1). We define the formal adjoint d∗A :
C∞(E ⊗ Λp) → C∞(E ⊗ Λp−1) as the operator that satisfies

⟨d∗Aα, β⟩ = ⟨α, dAβ⟩.

One can write d∗A explicitly as d∗A = ± ∗ dA∗.

Proposition 2.1.2. Every Yang–Mills connection A satisfies theYang–Mills equations

dA ∗ FA = 0

Proof. Recall from Theorem 1.2.2 A(E) is an affine space modeled on the vector space
Ω1(End(E)) of g-valued 1-forms on End(E). Given a small perturbation A+ ta about A,
where t ∈ R+ and a ∈ Ω1(End(E)), the curvature is modified as

FA+ta = dA(A+ ta) +
1

2
[(A+ ta), (A+ ta)]

= dAA+
1

2
[A,A] + tdAa+

1

2
t2[a, a]

= FA + tdAa+
1

2
t2[a, a].

We extremize YM by setting d
dt

∣∣∣
t=0

YM(A+ ta) = 0.

d

dt

∣∣∣
t=0

YM(A+ ta) =
d

dt

∣∣∣
t=0

∫
X

⟨FA + tdAa+
1

2
t2[a, a], FA + tdAa+

1

2
t2[a, a]⟩vol

=
d

dt

∣∣∣
t=0

∫
X

(|FA|2 + t⟨FA, dAa⟩)vol

(higher order terms vanish at t = 0)

=

∫
X

⟨FA, dAa⟩vol

=

∫
X

⟨d∗AFA, a⟩vol

= 0

Since a ̸= 0, d∗AFA = ± ∗ dA ∗ FA = 0. Thus, dA ∗ FA = 0.
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2.1.3 Instantons

We note that if A is a self dual connection, then ∗FA = FA and dA ∗FA = dAFA = 0. The
last equality is the Bianchi identity. Hence, the Yang–Mills equations are automatically
satisfied for self dual connections. This warrants naming the self dual connections — we
call them Yang–Mills instantons (or more simply just instantons).

Since an instanton A is self dual, F−
A = 0. So,

FA ∧ ∗FA = F+
A ∧ ∗F+

A + F−
A ∧ ∗F−

A = F+
A ∧ ∗F+

A .

This results in the following proposition.

Proposition 2.1.3. Instantons give absolute minima for the Yang–Mills functional on a
vector bundle E over X.

Proof. To prove this proposition, we compare the Yang–Mills functional to the first Pon-
tryagin class of E, a topological invariant. Given a connection A on E, the first Pontryagin
class of E is

p1(E) = − 1

4π2

∫
X

tr(F 2
A) =

1

4π2

∫
X

(F+
A ∧ ∗F+

A + F−
A ∧ ∗F−

A ).

Comparing the Yang–Mills functional to p1(E), we get

YM(A) =
1

8π2

∫
X

|FA|2 =
1

8π2

∫
X

(F+
A ∧ ∗F+

A + F−
A ∧ ∗F−

A )

≥ 1

8π2

∫
X

(F+
A ∧ ∗F+

A − F−
A ∧ ∗F−

A ) =
1

2
p1(E).

Since p1(E) is a topological invariant, YM(A) is minimized if and only if |F−
A |2 = 0, i.e.

when A is an instanton. When A is an instanton, YM(A) = 1
2
p1(E).

2.1.4 Moduli Spaces of Instantons

The Yang–Mills functional exhibits a particularly interesting property — it is invariant
under gauge transformations, i.e.

YM(λ · A) = 1

8π2

∫
X

(λ−1FAλ) ∧ ∗(λ−1FAλ) =
1

8π2

∫
X

FA ∧ ∗FA = YM(A),

where λ is a gauge transformation acting on connections. Gauge invariance of YM is
incredibly important in physics because it implies that physical observables are the same
under different gauges — physicists call this gauge symmetry. Gauge invariance of the
Yang–Mills functional is interesting to mathematicians because it allows them to study
spaces of instantons modulo gauge transformations, called moduli spaces.

Definition 2.1.4. Let P be a principal G-bundle over X. The moduli space of instan-
tons on P is the space of instantons on P modulo gauge transformations.
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If H ⊂ G is a subgroup, then any self dual H-connection defines a self dual G-connection
so that the moduli space of G-instantons contains H-instantons for all H ⊂ G. So, it
makes more sense to consider the moduli space of G-instantons for which the instantons
do not reduce to any proper closed subgroup H ⊂ G. We say that such instantons are
irreducible. Denoting the space of irreducible instantons on P as A+(P ), the moduli
space of irreducible instantons on P is

M(P ) := A+(P )/G(P ).

Remark 2.1.1. A rather surprising fact about moduli spaces of irreducible instantons is
that, under fairly certain conditions, they are finite-dimensional (Hausdorff) manifolds.
Without restricting to irreducible instantons, moduli spaces are not smooth manifolds.

A more surprising claim about moduli spaces of irreducible instantons is that when they
are finite dimensional manifolds, we can calculate their dimensionality. The following the-
orem (called the Atiyah–Hitchin–Singer theorem) on moduli spaces of irreducible SU(2)-
instantons on S4 is an example. It will be the final focus of this document.

Theorem 2.1.1 (Atiyah–Hitchin–Singer Theorem). The dimension of the moduli space
of instantons on a principal SU(2)-bundle over S4, with Pontryagin index k > 0 is 8k−3.

Before we prove this theorem, we first need to introduce a powerful tool called the Atiyah–
Singer index theorem, which will help us prove the Atiyah–Hitchin–Singer theorem.
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2.2 An Introduction to Index Theory

The Atiyah–Singer theorem is one of the most powerful theorems in mathematical physics.
It has applications in the study of moduli spaces in mathematics and quantum field
theories in physics. It equates (local) topological data about the characteristic classes of
elliptic operators to their (global) analytic data about the number of linearly independent
solutions to the operator’s homogeneous differential equation. The data being equated
here is something we call the index of the operator.

2.2.1 Fredholm Operators and The Index

Let H be a (separable) complex Hilbert space, and let B denote the Banach algebra of
bounded linear operators T : H → H with finite operator norm. The norm of the operator
T is defined by

||T || = sup{||Tu|| | ||u|| ≤ 1} <∞

Definition 2.2.1. An operator T ∈ B is called a Fredholm operator if it has finite
dimensional kernel and cokernel. Recall that

ker(T ) = {u ∈ H | Tu = 0} and coker(T ) = H/im(T )

So, for a Fredholm operator T , Tu = 0 has finitely many linearly independent solutions.
Additionally, to solve Tu = v, it is sufficient that v satisfy a finite number of linear
conditions.

Definition 2.2.2. We define the index of a Fredholm operator T by

index(T ) = dim(ker(T ))− dim(coker(T ))

Example 2.2.1. Let L2(Z+) be the (Hilbert) space of sequences c = (c0, c1, ...) of complex
numbers with square-summable absolute values, i.e.

∞∑
n=0

|cn|2 <∞

Define the shift± : L2(Z+) → L2(Z+) operators by

shift+(c0, c1, c2, ...) = (0, c0, c1, c2, ...) and shift−(c0, c1, c2, ...) = (c1, c2, ...)

It is easy to see that ker(shift+) = 0 and the cokernel is 1-dimensional. So, dim(ker(shift+)) =
0 and dim(coker(shift+)) = 1 Thus, shift+ is Fredholm with

index(shift+) = 0− 1 = −1

Similarly, one can show that shift− is Fredholm with

index(shift−) = 1− 0 = 1
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Proposition 2.2.1. For finite dimensional vector spaces H,H ′, a linear transformation
T : H → H ′ is Fredholm with index(T ) = dim(H)− dim(H ′).

Proof. Let H,H ′ be finite dimensional and T : H → H ′ be linear. Then, we have vector
space isomorphisms

H/ ker(T ) → im(T ) → H ′/coker(T )

So, dim(H)− dim(ker(T )) = dim(H ′)− dim(coker(T )). Thus,

index(T ) = dim(ker(T ))− dim(coker(T )) = dim(H)− dim(H ′)

Remark 2.2.1. The index of a Fredholm operator generalizes to the Euler characteristic
χ(C) of a complex C:

...
Tk+1−−−→ Vk

Tk−→ Vk−1
Tk−1−−−→ Vk−2

Tk−2−−−→ ...

of vector spaces and linear maps such that Tk ◦ Tk+1 = 0 with finite Betti numbers

bk := dim(ker(Tk)/im(Tk+1)).

We call ker(Tk)/im(Tk+1) the k-th cohomology space Hk(C). If all the Betti numbers
of a complex are finite and the number of nonzero betti numbers are finite, then we define
the Euler characteristic of the complex as

χ(C) :=
∑
i

(−1)kbk.

The index of a Fredholm operator T : H → H is then given by the Euler characteristic
of the complex

0 → H
T−→ H → 0.

We will be concerned with studying the indices of Dirac operators, which act on sections
of Clifford bundles. In the next section, we make these terms clearer.

2.2.2 Clifford Bundles and Dirac Operators

We being our discussion of Dirac operators with a look at Laplacians in some of the
most important equations in physics, like the Schrödinger equation and Klein-Gordon
equation. The Schrödinger equation is derived by “quantizing” the energy equation E =
T + V = p2

2m
+ V . Heuristically, this amounts to transforming functions (observables)

into operators: E 7→ i∂t, p 7→ −i∇ (the spatial Laplacian), V 7→ V (whose operation is
multiplication by V ). Each of these operators act on a quantum state ψ. Then, we get
the Schrödinger equation

E =
p2

2m
+ V 7→ i∂tψ = (− 1

2m
∇2 + V )ψ
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This equation, however, is inconsistent with special relativity. The energy equation from
special relativity is (−E2+p2)+m2 = 0. Quantizing in the same way, where operators act
on “spinor fields” ψ, we get the Klein-Gordon equation that is satisfied by all components
of free quantum fields.

(−E2 + p2) +m2 = 0 7→ (∂2 +m2)ψ = 0, where ∂2 = ∂µ∂
µ = ∂2t −∇

We note that the Klein-Gordon equation is second-order in time, whereas the Schrödinger
equation is of first-order in time. This gives the Schrödinger equation a particular ad-
vantage: time evolution. Knowledge of ψ at one given time allows you to determine ψ
to any other point in time. This is not true of the Klein-Gordon equation, precisely due
to the absence of first order derivatives in time. One might ask if there is a first-order
linear differential equation describing quantum fields. There is one: it is called the Dirac
equation.

(i/∂ −m)ψ = 0

where /∂ = γµ∂µ is a Dirac operator for matrices γµ defined so that (i/∂ +m)(i/∂ −m) =
−(∂2+m2), i.e. multiplying the Dirac equation by the operator (i/∂+m) yields the Klein-
Gordon equation. Loosely, the Dirac equation is a factorization of the Klein-Gordon
equation whose Dirac operator squares to the Laplacian. The matrices γµ are elements
of a Clifford algebra, a concept made more precise below.

Definition 2.2.3. Let V be a vector space equipped with a symmetric bilinear form ⟨·, ·⟩.
A Clifford algebra for V is defined to be a unital algebra A which is equipped with a map
ϕ : V → A such that

1. ϕ(v)2 = −⟨v, v⟩1

2. If ϕ′ : V → A′ is another map such that ϕ′(v)2 = −⟨v, v⟩1, then the following
diagram commutes:

V A

A′

ϕ

ϕ′

Exercise 2.2.1. The second condition implies that the Clifford algebra for V (denoted
Cℓ(V )) is unique up to isomorphism.

Example 2.2.2. If V is equipped with a bilinear form that is identically 0, then the
associated Clifford algebra is the exterior algebra Λ•V .

Definition 2.2.4. Let V be a real inner product space with orthonormal basis e1, ..., en.
Let S be a vector space which is also a left module over Cℓ(V ) and let C∞(V ;S) denote
the smooth S-valued functions on V . Each basis element ei corresponds to a differential
operator ∂i on C

∞(V ;S). Define an operator D on C∞(V ;S) by

Ds =
∑
i

ei(∂is)
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Then,

D2s =
∑
i,j

ei∂i(ej∂js) =
∑
i,j

eiej∂i∂js = −
∑
i

∂2i s

This is the Euclidean Laplacian. We call D the Dirac operator on C∞(V ;S).

We may extend this flat-space construction of the Dirac operator to a Riemannian mani-
fold using Clifford bundles. If M is a Riemannian manifold, then TM is a bundle whose
fibers are inner product spaces, so we may form the bundle of Clifford algebras Cℓ(TM).
Let S be a bundle of Clifford modules, i.e. the fiber Sm at m ∈ M is a left module
over Cℓ(TmM) ⊗ C. The sections of S play the role of S-valued functions in the above
flat-spaced construction. To differentiate these sections, we need to define a connection
on S that is compatible with the metric on M . Here’s how we define compatibility:

Definition 2.2.5. Let S be a bundle of Clifford modules over a Riemannian manifold
M . S is a Clifford bundle if it is equipped with a Hermitian metric and compatible
connection ∇ such that

1. The Clifford action of each v ∈ TmM on Sm is skew-adjoint, i.e. ⟨v · s1, s2⟩+ ⟨s1, v ·
s2⟩ = 0.

2. The connection on S is compatible with the Levi-Civita connection on M , i.e.
∇X(Y s) = (∇XY )s+ Y∇Xs for all vector fields X, Y and sections s ∈ C∞(S).

Definition 2.2.6. The Dirac operator D of a Clifford bundle S is the first order dif-
ferential operator on C∞(S) defined by the following composition:

C∞(M ;S)
∇−→ C∞(T ∗M ⊗ S)

g♯−→ C∞(TM ⊗ S)
·−→ C∞(M ;S).

The first arrow is given by the connection. The second arrow is given by the metric,
identifying TM with T ∗M (in language more familiar to physicists, the metric maps
covariant vectors to contravariant vectors). The third arrow is given by the Clifford
action.

Thus, we may write D in terms of a local orthonormal basis ei of sections of TM as

Ds = eig
ij∇js = ei∇is,

where gij is the metric identifying TM and T ∗M , ej = eig
ij, and we implicitly sum over

repeated indices. We may now calculate D2. Choose an orthonormal frame ei which is
synchronous at some point x ∈M , meaning at x, ∇iej = 0 and the Lie bracket of ei and
ej vanishes at x. Thus at x,

D2s = ei∇ie
j∇js

= eiej∇i∇js (Leibniz rule)

= ∇i∇is+
∑
j<i

eiej(∇i∇j −∇j∇i)s

= ∇i∇is+
∑
j<i

eiejK(ei, ej)s,
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where K(ei, ej) = ∇i∇j − ∇j∇i is the curvature of the connection on S, and is an
endomorphism of S. We call the term

∑
j<i e

iejK(ei, ej)s the Clifford contraction K
of the curvature applied to s. Additionally, we may write ∇i∇i as ∇∗∇, where ∇∗ is
the formal adjoint of ∇ when we think of ∇ as a map C∞(S) → C∞(T ∗M ⊗ S). Here,
the space of sections are equipped with the natural inner products associated with the
metrics on their respective bundles. Thus,

D2s = ∇∗∇s+Ks

This is called the Weitzenbock formula.

For the following discussion, it is worth describing additional structure called grading
on Clifford bundles.

Definition 2.2.7. A module W over a Clifford algebra Cℓ(V ) is graded if it is provided
with a decomposition W = W+ ⊕ W− such that Clifford multiplication by any v ∈ V
interchanges the summands W+ and W−. A Clifford bundle S on Riemannian manifolds
M is graded if it is provided with a decomposition S = S+⊕S− that respects the metric
and connection and makes each fiber Sm a graded Clifford module over Cℓ(TmM).

The Dirac operator of a graded Clifford bundle anticommutes with the grading operator.
So, it maps sections of S± to sections of S∓. We thus have maps

C∞(S+) C∞(S−) C∞(S+)
D+ D−

where D+ is the restriction of D to sections of S+ and its adjoint D∗
+ = D− is the

restriction of D to sections of S−.

Definition 2.2.8. The index of a graded Dirac operator D is

index(D+) = dim(ker(D+))− dim(ker(D−))

Example 2.2.3. Consider the de Rham operator D = d + d∗ with the grading operator
defined by ϵ = (−1)q on Ωq(M). Then, Hodge theory tells us that index(D) is the Euler
characteristic χ(M) of M in the topological sense.

2.2.3 Elliptic Operators

An important property of Dirac operators is that they are elliptic. In this section, we
explain what that means and why it’s important.

Definition 2.2.9. A linear differential operator D : C∞(E) → C∞(E) of order n on
sections of vector bundles E over X is a map that can be written in local coordinates on
X as

Ds(x) =
∑
|α|≤n

cα(x)D
αs
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where α = (α1, ..., αn) ∈ (Z≥0)
n is a multiindex with |α| =

∑n
i=1 αi, for each α, cα(x) :

E → E is a bundle homomorphism, and

Dα =
∂|α|

∂xα1
1 ...∂x

αn
n

.

Example 2.2.4. The Laplacian ∂2 = −
∑n

i=1 ∂
2
i is a differential operator.

Definition 2.2.10. We may construct a polynomial pD by replacing each Dα with ξα :=
ξα1
1 ...ξαn

n , where ξ = ξidx
i ∈ T ∗X is a covector field, as follows:

pD(ξ) :=
∑
|α|≤n

cα(x)ξ
α.

The highest homogeneous component of pD,

σD(ξ) :=
∑
|α|=n

cα(x)ξ
α,

is called the principal symbol of D.

Example 2.2.5. The principal symbol of the Laplacian is p∂2(ξ) = −(ξ21 + ...+ ξ2n).

Definition 2.2.11. We say that an operator D is elliptic if for each nonzero ξ ∈ T ∗X,
the principal symbol σD(ξ) is invertible. Equivalently, D is elliptic if the symbol is nonzero
whenever ξ is nonzero.

Example 2.2.6. The Laplacian is elliptic. Dirac operators are also elliptic because they
square to Laplacians.

We may extend the idea of ellipticity from differential operators to differential com-
plexes using the concept of exact sequences.

Definition 2.2.12. A sequence

V0
T0−→ V1

T1−→ ...
Tm−→ Vm

of vector spaces and linear maps is exact if ker(Ti+1) = im(Ti).

Definition 2.2.13. Suppose we have a complex

C∞(E0)
D1−→ C∞(E1)

D2−→ ...
Dm−−→ C∞(Em)

of differential operators on sections of vector bundles Ei such that Di+1 ◦ Di = 0. A
differential complex with first order operators is elliptic if the sequences of symbols

0 → π∗E0

σD1−−→ π∗E1

σD2−−→ ...
σDm−−→ π∗Em

is exact outside the zero section. Here, π : T ∗X → X is the projection map and π∗ is the
pullback of a vector bundle.

Remark 2.2.2. Although we will not prove it here, it is worth noting that elliptic com-
plexes have finite dimensional cohomology spaces. This is proved in Theorem 5.2 in [6].
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2.3 The Atiyah–Hitchin–Singer Theorem

We are now ready to prove the Atiyah–Hitchin–Singer theorem.

Theorem 2.3.1 (Atiyah–Hitchin–Singer Theorem). The dimension of the moduli space
of instantons on a principal SU(2)-bundle over S4, with Pontryagin index k > 0 is 8k−3.

Unexpectedly, we will find it easier to prove this theorem in greater generality first, in
what I am calling the generalized Atiyah–Hitchin–Singer theorem.

Theorem 2.3.2 (Generalized Atiyah–Hitchin–Singer Theorem). The dimension of the
moduli space of instantons on a principal SU(2)-bundle P over S4, with Pontryagin
class p1(ad(P )R) > 0 of the underlying real vector bundle of the adjoint bundle of P , is
p1(ad(P )R)− 3.

Following the proof of this theorem in [7] and theorem 6.1 in [8], one can prove this
theorem in three steps:

1. Infinitesimal: Calculate the dimension of the space of infinitesimal deformations of
an instanton.

2. Local: Integrate the local deformations to obtain a local moduli space.

3. Global: Show that the local moduli spaces give local coordinates on the global
moduli space.

In our proof of the Atiyah–Hitchin–Singer theorem, we will need to use some results from
applying the Atiyah–Singer index theorem to principal SU(2)-bundles on the 4-sphere.

Theorem 2.3.3 (Atiyah–Singer index theorem). Let E be a vector bundle over X, a
compact oriented even-dimensional manifold and let S be a canonically graded Clifford
bundle over X with associated Dirac operator D : C∞(S+ ⊗ E) → C∞(S− ⊗ E). Then,

index(D) = ch(E)Â(X)[X],

where ch(E) is the Chern character of E and Â(X) is what we call the Â-genus of X.

Proof. For brevity, we omit the proof of this theorem. However, there are multiple ways
to prove it and multiple textbooks dedicated to doing so. For example, Roe’s Elliptic
Operators, Topology, and Asymptotic Methods [9] proves the Atiyah–Singer theorem using
the heat equation and an asymptotic expansion of the heat kernel. Bleecker and Booß-
Bavnek’s Index Theory with Applications to Mathematics and Physics [10] proves it using
tools from topological K-theory.

Example 2.3.1. Since we only need the Atiyah–Singer theorem to prove the Atiyah–
Hitchin–Singer theorem, we will only be concerned with X = S4 and G = SU(2). On a
4-manifold, Â(X) = 1− 1

24
p1(X). On S4, p1(S

4) = 0. So,

Â(S4) = 1

.
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We will use the Atiyah–Singer index theorem to achieve the first step in 2 sub-steps
detailed below. Since our focus is on the application of the Atiyah–Singer index theorem
to prove this theorem, we will forgo a rigorous proof of the second and third steps (which
do not require the use of the Atiyah–Singer index theorem). I will instead give a brief
explanation for how one might achieve them.

2.3.1 Step 1.1: Tangent Moduli Spaces

Let g = su(2). To simplify notation, we denote the space of sections of ad(P ) ⊗ Λp as
Ωp(ad(P )), where ad(P ) = P ×Ad g is the adjoint bundle of P . Assume there is at least
one instanton A ∈ A+(P ), where A+(P ) is the set of self dual connections on P . Suppose
A′ is another connection. Since A,A′ : Ω0(ad(P )) → Ω1(ad(P )), by Theorem 1.2.2,

τ := A′ − A ∈ Ω1(ad(P )).

The difference in curvature is FA′−FA = dAτ+
1
2
[τ, τ ], where dA : Ω1(ad(P )) → Ω2(ad(P ))

is the exterior derivative associated with A.

Now, let At be a family of instantons on P parametrized by t, with A0 = A and
τt := At − A0. Then,

FAt − FA = dAτt +
1

2
[τt, τt].

Since A and A′ are self dual connections, ∗FA = FA and ∗FAt = FAt . So,

∗
(
dAτt +

1

2
[τt, τt]

)
= ∗(FAt − FA) = FAt − FA = dAτt +

1

2
[τt, τt].

So, given the projection map

p− : Λ2 → Λ2
−

p−(α) =
1

2
(α− ∗α)

onto anti self dual 2-forms,

p−

(
dAτt +

1

2
[τt, τt]

)
= 0.

Differentiating this in t and setting t = 0 yields

p−(dAτ̇) = 0 ∈ Ω2
+,

where τ̇ = ∂τt
∂t

∣∣
t=0

. The derivative of 1
2
[τt, τt] vanishes when t = 0 because [τt, τt] is

quadratic in t. We see this by noticing that

τ0 = 0 =⇒ τt = tg(t) =⇒ [τt, τt] = t2[g(t), g(t)]

for some g(t) ∈ Ω1(ad(P )). If the family of instantons is generated by gauge transforma-
tions, i.e. At = f−1

t · A, then
τ̇ = dAf,
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where f ∈ Ω0(ad(P )). Thus, τ̇ defines an element

[τ̇ ] ∈ ker(p−dA)/im(dA).

The space ker(p−dA)/im(dA) is well-defined because im(dA) ∈ ker(p−dA). This results
from p−dA(dA) = p−(d

2
A) = p−(FA) = 0 (since A is self dual). Thus, [τ̇ ] is an element of

the first cohomology group H1
A(ad(P )) of the complex

0 → Ω0(ad(P ))
∇−→ Ω1(ad(P ))

p−dA−−−→ Ω2
−(ad(P )).

This complex is elliptic and so its cohomology groups are finite dimensional by Remark
2.2.2. We also note that since τ̇ is an infinitesimal deformation of A, it represents a vector
in the space tangent to M(P ). So,

T[A]M(P ) ∼= H1
A(ad(P ))

for [A] ∈ M(P ) = A+(P)/G(P ). Thus, our goal is to calculate the dimension of
H1

A(ad(P )). We appeal to the index theorem to do this.

2.3.2 Step 1.2: A Dirac Operator and the Index Theorem

Before we apply the index theorem, we need to replace this complex by a Dirac operator,
namely the elliptic operator

p−dA + d∗A : Ω1(ad(P )) → Ω2
−(ad(P ))⊕ Ω0(ad(P )),

where d∗A is the formal adjoint of dA. We can do this because ker(p−dA + d∗A) =
ker(p−dA)/ im(dA). We see this by noting that ker(d∗A) = im(dA)

⊥. Additionally,
coker(p−dA + d∗A) = 0. This is not so obvious, even though coker(p−dA) = 0 (due to
positive scalar curvature of S4) and coker(d∗A) = 0 (due to irreducibility of A) individu-
ally. Thus,

dim(ker(p−dA)/ im(dA)) = dim(ker(p−dA + d∗A)) = index(p−dA + d∗A).

So,
index(p−dA + d∗A) = h1.

In fact, p−dA + d∗A is a Dirac operator and can be written in terms of the Dirac operator
associated to the Riemannian metric on X:

D : C∞(S+ ⊗ S− ⊗ ad(P )) → C∞(S− ⊗ S− ⊗ ad(P )),

for associated graded Clifford bundles S. Here, S+ ⊗ S− = Λ1 and S− ⊗ S− = Λ2
− ⊕ Λ0.

Remark 2.3.1. It is worth noting that S− is an SU(2)-bundle with fiber dimension 2.
It has first Chern number c1(S−) = 0. In fact, if E is an SU(n)-bundle, c1(E) = 0. This
has to do with the fact that the determinant bundle det(E) is canonically trivialized for
an SU(n)-bundle E and Chern classes obey c1(E) = c1(det(E)).
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Taking E = S− ⊗ ad(P ), we have

D : C∞(S+ ⊗ E) → C∞(S− ⊗ E).

Before we compute the index for D, we will first compute the index for

DS+ : C∞(S+) → C∞(S−),

the Dirac operator associated with p−dA + d∗A : Ω1(ad(P )) → Ω2
−(ad(P )) ⊕ Ω0(ad(P ))

without twisting by E. This computation will be useful when we compute the index of
D with twisting by E. Using Betti numbers, Hodge theory gives us

index(DS+) = b1 − b− − 1,

where b1 is the kernel dimension (harmonic 1-forms) and b−+1 is the cokernel dimension
(anti self dual 2-forms and functions). From Remark 2.2.1, we know that the Euler
characteristic is

χ(S4) = b0 − b1 + b2 − b3 + b4 = 1− b1 + b2 − b1 + 1 = 2− 2b1 + b2,

where we have used bi = b4−i resulting from Poincaré duality (see Theorem 2.5 and
Corollary 2.6 in [6]). Using b2 = b+ + b−, we can write the signature τ of S4 as

τ(S4) = b+ − b− = b2 − 2b−.

Thus,

index(DS+) = b1 − b− − 1 = −1

2
(χ(S4)− τ(S4)) = −1

2
(2− 0) = −1.

Now, we compute index(D). Using the Atiyah–Singer index theorem 2.3.3,

index(D) = ch(E)Â(S4)[S4] (Atiyah–Singer index theorem)

= ch(ad(P ))ch(S−)[S
4] ( Remark 1.1.3 and Example 2.3.1)

=
(
dim(SU(2)) +

1

2
p1(ad(P )R)x

)(
2 + index(DS+)x

)
[S4],

where in the last equality we used the Chern character formula from Remark 1.1.3

ch(E) = rank(E) + c1(E) +
1

2
(c1(E)

2 − 2c2(E)),

and the facts that c1(ad(P )) = 0 (Remark 2.3.1) and p1(ER) = c1(E)
2 − 2c2(E) (Exam-

ple 1.1.5). Recall that for a complex vector bundle E, ER denotes the underlying real
vector bundle of E. Additionally, x here is a generator of H4(S4), for which x[S4] = 1.
Continuing our computation, we get

index(D) =
(
2 dim(SU(2)) + (p1(ad(P )R) + dim(SU(2))index(DS+))x

)
[S4]

= p1(ad(P )R) + dim(SU(2))index(DS+) (since x[S4] = 1)

= p1(ad(P )R) + (3)(−1)

Therefore,

h1 = index(D) = p1(ad(P )R)− 3 .

This concludes step 1.
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2.3.3 Steps 2 and 3: Local and Global Moduli Spaces

One can achieve step 2 using Banach space inverse and implicit function theorems to
integrate the infinitesimal deformations of instantons and show that every element in
H1

A(ad(P )) is defined by a 1-parameter family of instantons. So, we obtain local moduli
spaces. In step 3, one must show that the local moduli spaces give local coordinates on the
global moduli space. More detailed proofs for steps 2 and 3 can be found in section 6 of [8].

Thus, the dimension of the moduli space of instantons on a principal SU(2)-bundle P
over S4 is p1(ad(P )R)− 3.

Remark 2.3.2. The Atiyah–Hitchin–Singer theorem generalizes further to general com-
pact semi-simple Lie groups G (see Theorem 6.1 in [8]). More precisely, the dimension
of the moduli space of instantons on a principal G-bundle P over a compact self dual
Riemannian 4-manifold X with positive scalar curvature is

p1(ad(P )R)−
1

2
dim(G)(χ− τ),

where p1(ad(P )) is the first Pontryagin class of the adjoint bundle of P , χ is the Euler
characteristic of X, and τ is the signature of X.

2.3.4 Restricting to the Atiyah–Hitchin–Singer theorem

In the special case where G = SU(2) and X = S4, the general Atiyah–Hitchin–Singer
theorem restricts to the Atiyah–Hitchin–Singer theorem. In particular, the moduli space
of instantons on a principal SU(2)-bundle P over S4 has dimension 8k − 3, where k is
the Pontryagin index of P . Let’s unpack what the Pontryagin index is and how this
statement arises. Observe that

ch(ad(P )) = dim(SU(2)) +
1

2
p1(ad(P )R) =⇒ p1(ad(P )R) = 2(ch(ad(P ))− 3).

In [8], Atiyah, Hitchin, and Singer identify ad(P ) with the second symmetric power bundle
S2E of some rank-2 complex vector bundle E. The Pontryagin index of P is k :=
−c2(E) and c1(E) = 0. They then state that ch(ad(P )) = ch(S2E) = ch(E)2− ch(1). We
know

ch(E) = rank(E) + c1(E) +
1

2
(c1(E)

2 − 2c2(E))

= rank(E)− c2(E)

= 2 + k

Keeping terms to first order in k (really in the generator x of H4(S4)), ch(ad(P )) =
4k + 4− 1 = 4k + 3. Thus,

p1(ad(P )R) = 2(4k + 3− 3) = 8k.
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Therefore, by Theorem 2.3.2, the moduli space of instantons on a principal SU(2)-bundle
P over S4 has dimension

p1(ad(P )R)− 3 = 8k − 3.

Note that we didn’t show that such instantons and moduli spaces exist. Section 7 of [8]
demonstrates their existence, called the t’Hooft solutions. However, the construction of
the t’Hooft solutions depends on 5k+4 parameters, which for k > 2 is less than the 8k−3
parameters mentioned in the Atiyah–Hitchin–Singer theorem. Thus, the Atiyah–Hitchin–
Singer theorem suggests the existence of new SU(2)-instantons via deformations of the
t’Hooft solutions.
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