
Games, Markets, and Online Learning

Christian Kroer

Columbia University

July 1, 2025

Preface

Why this book?

There are several great books for game theory and market design from a com-
putational perspective. Notably, I “grew up” with the books Nisan et al. (2007),
Shoham and Leyton-Brown (2008) and Easley et al. (2010), which are classic
texts in this area. The idea for the present book is that it will be complemen-
tary to these books: by heavily leveraging online learning, a topic that has
developed tremendously since the publication of these books, we can provide
an alternative perspective on computational game theory and market design.
Moreover, many of the major application results that we will cover occurred
after the publication of these books, e.g. the development of the techniques
used for superhuman poker AIs occurred in 2007-2018, the development of a
theory of equilibrium for internet ad auctions with budgets in 2010-2020, and
the application of competitive equilibrium from equal incomes for course seat
allocation around 2008-2016. More generally, there has been a proliferation of
ways in which online learning can be used to solve and analyze game-theoretic
and market problems.

On the (Lack of) Mechanism Design in This Book

This book has an extensive amount of material on game theory and market
design. Even so, one of the most fundamental concepts in market design,
mechanism design, is only covered somewhat superficially. Mechanism design
is a mathematically beautiful subject, especially the derivation of Myerson’s
optimal mechanism. I was tempted to add this to the present book, but I decided
to keep formal mechanism design somewhat limited since it is a big topic, and
not really necessary for most of the results that we cover. Moreover, there are

iii

iv Preface

several great books covering this topic already. Aspiring researchers would be
well served by picking up one of the below books as a complement to this one.

• An Introduction to the Theory of Mechanism Design by Tilman Börgers.
This book is a really nice read; it has an aesthetically pleasing and concise
derivation of the main results.

• Auction Theory by Vijay Krishna. As the name suggests, this book is fo-
cused on auctions rather than general mechanism design. It also has a nice
derivation of Myerson’s result.

Target Audience
This book is targeted primarily at graduate students and researchers in oper-
ations research, computer science, and adjacent engineering fields. They may
also provide an interesting alternative perspective for economics researchers
that wish to see a computational perspective on game theory and market de-
sign. Senior undergraduate students with a background in optimization and
probability should also be able to follow large parts of the book. My senior
undergraduate and master’s course at Columbia University uses this book, but
omits topics like Blackwell approachability, fixed-point theorems, and the more
advanced parts of the regret minimization chapter.

Finally, the book is also intended for practitioners. The book heavily empha-
sizes models and algorithms that have been deployed in practice, and thus I am
hoping that it will be a useful resource. Of particular note, the book has an ex-
tensive treatment of internet advertising auctions, including the topic of budget
management (usually called pacing or autobidding in the industry), which is
not covered in other textbooks on algorithmic game theory.

The background requirements are as follows.

• Knowledge of linear algebra, probability, and calculus.
• A basic background in optimization:

(i) Linear optimization: LP modeling and LP duality
(ii) Convex optimization: convex sets and functions, convex duality, and KKT

conditions
(iii) Integer optimization: basic concepts, including the ability to model a

problem as an integer program.
• We will sometimes refer to basic concepts from computational complexity

theory, but a background in this is not required.

The notes do not assume any background in game theory or mechanism design.
For the optimization background it is not needed for every chapter, and it

Preface v

should be possible to learn some of these topics as you go along in the book.
The first few chapters of Boyd and Vandenberghe (2004) are a good reference
for convex optimization. For linear optimization, I recommend Bertsimas and
Tsitsiklis (1997).

Organization of the Book

Chapter 1 gives some motivating examples of applications that can be ap-
proached with techniques from this book. Chapters 2 and 3 give a fast intro-
duction to the most basic concepts from game theory, auctions, and mechanism
design. A reader that is already familiar with these topics can skip or skim these
chapters. Chapter 4 gives an introduction to online learning and regret mini-
mization, which is a key tool in the book. That chapter also gives a constructive
proof of von Neumann’s minimax theorem via online learning. Chapter 5 in-
troduces Blackwell approachability, and derives the regret matching algorithm.
This algorithm is crucial for large-scale EFG solving. Chapter 5 can be skipped
if the reader is not interested in large-scale game solving. Chapters 6 and 7 show
how to solve two-player zero-sum games using regret minimization. Chapter 8
introduces extensive-form games, and show algorithmic approaches for solv-
ing large-scale EFGs. Chapter 9 introduces the Stackelberg equilibrium for
modelling leader-follower games. Then, we introduce a special class of such
games called security games, which model asset protection problems such as
infrastructure protection and anti-poaching. Chapter 10 introduces some basic
fixed-point theorems and shows how to use them to prove existence of game-
theoretic equilibria and market equilibria. Chapter 11 introduces the problem of
fair and efficient allocation of goods in the divisible setting. It then introduces
the Fisher market equilibrium, and discusses its relationship to fair allocation.
Chapter 12 introduces methods for solving large Fisher market equilibrium
problems. Chapter 13 studies fair allocation when goods are indivisible. It
moves on to study combinatorial utilities in such settings, and the problem of
fairly allocating course seats to students. Chapter 14 introduces energy mar-
kets, the operational optimization problem that must be solved to operate the
power grid, and a number of pricing approaches for achieving market equi-
librium outcomes in an energy market. Chapters 15 to 18 introduce various
real-world complications arising from the application of auction theory to the
problem of internet advertising, including position auctions, how to handle
budget constrained advertisers, and demographic fairness.

The book is meant to be readable in a largely modular fashion. For example,
if a reader (with a graduate-level background in optimization or theoretical

vi Preface

computer science) wants an introduction to fair division and competitive equi-
librium in Fisher markets, they should be able to read Chapters 11 and 12
without needing to read the rest of the book. Part I, the introductory material, is
used in the rest of the book to varying degrees. If the reader has no background
in game theory or auctions then it is best to read this material first. A reader
that is already somewhat familiar with game theory and auctions can skip these
chapters and refer back to them as needed. If the reader has no background in
regret minimization, then it is recommended that they read Chapter 4, as it will
be used in several later chapters.

Chapters marked with a star are advanced material that can be skipped unless
the reader is interested in the topic.

Acknowledgments

This book owes a large debt to several other professors that have taught courses
on Economics and Computation. In particular, John Dickerson’s course at
UMD1 , Ariel Procaccia’s course at CMU2 , and Tim Roughgarden’s lecture
notes (Roughgarden, 2016) and video lectures, provided inspiration for course
topics as well as presentation ideas. In addition, Gabriele Farina has been
instrumental in developing much of my thinking around regret minimization
and learning in games through our many collaborations.

I am grateful to several former and current PhD students that have helped
me teach the course at Columbia that this book is based upon. In particular, I
would like to thank Rachitesh Kumar, Luofeng Liao, Aditya Shankhar Garg,
and Steven Sofos DiSilvio for their help with teaching the course, which has
indirectly helped shape this book as well.

In a similar vein, I would like to thank the students that have taken my course
at Columbia, and provided feedback on first the lecture notes and later the book.
This has tremendously improved the book.

I am grateful to the National Science Foundation and the Office for Naval
Research, which have provided funding that supported my work over the years
that I wrote this book.

Finally, I would also like to thank the following people for feedback on the
book, and the earlier lecture notes that I based the book on: Mustafa Mert
Çelikok, Jakub Černý, Darshan Chakrabarti, Ryan D’Orazio, Shuvomoy Das
Gupta, Ajay Sakarwal, Felipe Verastegui-Grunewald, Eugene Vinitsky, and

1 https://www.cs.umd.edu/class/spring2018/cmsc828m/
2 http://www.cs.cmu.edu/ arielpro/15896s16/index.html

Preface vii

David Yang. A special thanks to Julien Grand-Clément, who read several parts
of the book in meticulous detail and gave extensive feedback.

Any remaining errors are entirely due to the inadequacy of the author.

Contents

Notation page x

PART ONE INTRODUCTORY MATERIAL 1
1 Introduction and Examples 3
2 Nash Equilibrium Introduction 13
3 Auctions and Mechanism Design Introduction 23

PART TWO GAME SOLVING AND REGRET MINIMIZA-
TION 33
4 Regret Minimization and the Minimax Theorem 35
5 Blackwell Approachability and Regret Matching 49
6 Self-Play via Regret Minimization 59
7 Optimism and Fast Convergence of Self Play 66
8 Extensive-Form Games 76
9 Stackelberg equilibrium and Security Games 101
10 Fixed-Point Theorems and Equilibrium Existence 109

PART THREE FAIR ALLOCATION AND MARKET EQUI-
LIBRIUM 117
11 Fair Division and Market Equilibrium 119
12 Computing Fisher Market Equilibrium 129
13 Fair Allocation with Indivisible Goods 141

viii

Contents ix

14 Power Flows and Equilibrium Pricing 154

PART FOUR AUCTIONS AND INTERNET ADVERTIS-
ING MARKETS 169
15 Internet Advertising Auctions: Position Auctions 171
16 Auctions with Budgets and Pacing Equilibria 178
17 Pacing Algorithms for Budget Management 191
18 Demographic Fairness 208
Appendix A Optimization Background 215
Appendix B Probability Background 221

Bibliography 223
Index 235

Notation

Basic math notation
[𝑛] The set of integers 1, . . . , 𝑛.
[𝑥]+ Thresholding at zero, i.e. 𝑦 = [𝑥]+ is such that 𝑦𝑖 = max(0, 𝑥𝑖).
⟨𝑔, 𝑥⟩ The inner product

∑𝑑
𝑖=1 𝑔𝑖 , 𝑥𝑖 , where 𝑑 is the dimension of the vectors.

𝑒𝑖 The 𝑖’th unit vector whose entries are all zero, except for the 𝑖’th entry, which is 1.
𝑔⊤𝑥 The same inner product as ⟨𝑔, 𝑥⟩.
∥𝑥∥1 The ℓ1 norm: ∥𝑥∥1 =

∑
𝑖∈[𝑛] |𝑥𝑖 |

∥𝑥∥2 The ℓ2 (or Euclidean) norm: ∥𝑥∥2 =

√︃∑
𝑖∈[𝑛] 𝑥

2
𝑖

∥𝑥∥∞ The ℓ∞ norm: ∥𝑥∥∞ = max𝑖∈[𝑛] |𝑥𝑖 |
P(𝑋) The power set of a set 𝑋 , i.e. the set of all subsets of 𝑋 .
R𝑛≥0 The set of nonnegative vectors in R𝑛.
R𝑛≤0 The set of nonpositive vectors in R𝑛.

Game notation
𝐴𝑖 Action set for player 𝑖 in a general-sum game.
Δ𝑛 The set of nonnegative vectors that sum to one, i.e. {𝑥 ∈ R𝑛≥0 :

∑𝑛
𝑗=1 𝑥 𝑗 = 1}.

Δ𝑖 The set of probability distributions over the actions 𝐴𝑖 of player 𝑖.
𝑋,𝑌 Decision sets for player 1 and player 2 in a two-player game.

Optimization notation
𝐷 (𝑥′∥𝑥) The Bregman divergence between 𝑥′ and 𝑥 (see Chapter 4).
int 𝑋 The interior of a set 𝑋 .
relint 𝑋 The relative interior of a set 𝑋 .

x

PART ONE

INTRODUCTORY MATERIAL

1
Introduction and Examples

This book provides an introduction to the topics of game theory and market
design, with a focus on how AI and optimization methods can be used to
understand these problems, as well as enable them in practical settings. The
book covers several application areas for these ideas, where each area will have
real-life applications that have been deployed. A common theme underlying
the areas covered by the book is that for each area, one or more of the real
applications are enabled by AI and optimization. Firstly, we will repeatedly see
that economic solution concepts often have some underlying convex or mixed-
integer formulation of the problem, that allows us to analyze the problem via
optimization theory, as well as enabling algorithms via optimization techniques.
Secondly, the book uses the concept of online learning (also known as no-
regret learning; we will use these terms interchangeably) as a unifying theme
for enabling algorithms and analysis across many of the economic topics that
we cover. Thirdly, applications such as poker require scaling at a level where
standard optimization and online learning methods are not enough. In those
settings, AI methods such as abstraction or machine learning are often used.
For example, in sequential games such as poker, we may have a game that
is way too large to even fit in memory. In that case, machine learning may
be used to generate some coarse-grained representation of the problem. This
coarse-grained representation is then typically what we solve with optimization
methods. The following subsections give examples of the types of ideas and
applications the book will cover.

1.1 Game Theory

The first pillar of the course will be game theory. In classical optimization, we
have some form of objective function that we try to minimize or maximize,

3

4 Introduction and Examples

say max𝑥∈𝑋 𝑓 (𝑥), where 𝑋 is a convex set of possible choices, and 𝑓 is some
concave function. For example, perhaps we are thinking of 𝑋 as a set of prices
that a retailer can set for a given item, and 𝑓 (𝑥) tells us the revenue that the
retailer gets when setting the price 𝑥.

In game theory, on the other hand, we study settings where multiple individu-
als make choices, and the outcome depends on the choices of all the individuals.
Suppose that we have two retailers, each choosing prices 𝑥1 and 𝑥2 respectively.
Now, suppose that 𝑓1 is a function that tells us the revenue received by retailer 1
in this setup. Since consumers will potentially compare the prices 𝑥1 and 𝑥2, we
should expect 𝑓1 to depend on both 𝑥1 and 𝑥2, so we let 𝑓1 (𝑥1, 𝑥2) be the revenue
for retailer 1 generated under prices 𝑥1 and 𝑥2. Now we can again try to think
of the optimization problem that retailer 1 wishes to solve; first let us assume
that 𝑥2 was already chosen and retailer 1 knows its value, in that case they want
to solve max𝑥1∈𝑋 𝑓1 (𝑥1, 𝑥2). However, we could similarly argue that retailer 2
should choose their price 𝑥2 based on the price 𝑥1 chosen by retailer 1. Now
we have a problem, because we cannot talk about optimally choosing either of
the two prices in isolation, and instead we need a way to reason about how they
might be chosen in a way that depends on each other. Game theory provides a
formal way to reason about this type of situation. For example, the famous Nash
equilibrium, which we will introduce below, specifies that we should find a pair
𝑥1, 𝑥2 such that they are mutually optimal with respect to each other. Another
solution concept we will see is the Stackelberg equilibrium, where one retailer
is assumed to go first, while anticipating the optimization problem being solved
by the second retailer. From now on we will refer to each individual optimizer
in a problem either as a player or an agent.

1.1.1 Nash Equilibrium
One of the most important ideas in game theory is the famous Nash equilib-
rium. A Nash equilibrium is a specification of an action for each player (or a
probability distribution over actions) such that it is a steady state of the game,
in the sense that no player wishes to change their probability distribution over
actions, given the strategy of every other player. This is best illustrated with
an example. Below are the payoffs of the game of rock-paper-scissors (RPS),
specified as a bimatrix of payoffs. When specified as a bimatrix, the interpre-
tation of the game is as follows. The set of actions for Player 1 is the rows of the
matrix, and the set of actions for Player 2 is the columns of the matrix. Each
entry in the bimatrix is a pair of payoffs, where the first value is the payoff to
Player 1 and the second value is the payoff to Player 2. For example, if Player 1
chooses Paper (the second row) and Player 2 chooses Rock (the first column),

1.1 Game Theory 5

Rock Paper Scissors

Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

Table 1.1 The payoff matrix for Rock, Paper, Scissors.

we get the outcome (1,−1). In this outcome, Player 1 receives a payoff of 1 and
Player 2 receives a payoff of −1. The goal for each player is to maximize their
own payoff. A pure Nash equilibrium is then a pair of actions (i.e. a row and
a column) such that each player is choosing a payoff-maximizing action given
the choice of the other player. A mixed-strategy Nash equilibrium (also referred
to simply as a Nash equilibrium) is a probability distribution for each player
such that they maximize their own payoff given the probability distribution of
the other player.

Here is an example of something that is not a Nash equilibrium: Player 1
always plays rock, and Player 2 always plays scissors. In this case, Player 2 is
not playing optimally given the strategy of Player 1, since they could improve
their payoff from −1 to 1 by switching to deterministically playing paper. In
fact, this argument works for any pair of deterministic strategies, and so we see
that there is no pure Nash equilibrium. Instead, RPS is an example of a game
where we need randomization in order to arrive at a Nash equilibrium. Now
each player gets to choose a probability distribution over their actions instead
(e.g. a distribution over rows for Player 1). The value that a given player receives
under a pair of mixed strategies is their expected payoff given the randomized
strategies. In RPS, it’s easy to see that the unique Nash equilibrium is for each
player to play each action with probability 1

3 . Given this distribution, there is
no other action that either player can switch to and improve their utility. This is
what we call a (mixed-strategy) Nash equilibrium.

The famous result of John Nash from 1951 is that every game has a Nash
equilibrium, once we allow for mixed strategies. Stated specifically for bimatrix
games, the result is:

Theorem 1.1 Every bimatrix game has a (potentially mixed-strategy) Nash
equilibrium.

In the next chapter we will see that Nash’s result is broader than this. It
guarantees existence for 𝑛-player games with a finite set of actions for each
player, as long as we allow for mixed strategies. In Chapter 10 we will see a
proof of this result, and an extension to a broader class of games.

The attentive reader may have noticed a certain redundancy in our bimatrix

6 Introduction and Examples

representation of the RPS game: the payoffs are all in the form (1,−1), (0, 0),
and (−1, 1). In all three cases, the payoff of Player 1 is exactly−1 times the payoff
of Player 2. From here, we can deduce that the players have completely opposite
preferences: when one player wins, the other loses. More generally, games
where the sum of the two players’ payoffs equal zero are called zero-sum games.
In a two-player zero-sum game, each player can equivalently reason about
minimizing the utility of the other player, rather than maximizing their own
utility. Because of this special structure, zero-sum games can be represented
by a single payoff matrix 𝐴 ∈ R𝑛×𝑚, where entry 𝐴𝑖 𝑗 is the payoff to Player 2
when Player 1 takes the action with index 𝑖 and Player 2 takes the action with
index 𝑗 . In this formulation, Player 1 then wishes to minimize their expected
payoff over 𝐴. We will see later that this allows us to write the problem in the
following form:

min
𝑥∈Δ𝑛

max
𝑦∈Δ𝑚

𝑥⊤𝐴𝑦,

where Δ𝑛 = {𝑥 ∈ R𝑛 :
∑𝑛

𝑖=1 𝑥𝑖 = 1, 𝑥 ≥ 0} is the probability simplex
over 𝑛 actions, and Δ𝑚 is the probability simplex of 𝑚 actions. Problems of
this form are variously known as matrix games, two-player zero-sum games,
or more broadly as bilinear saddle-point problems. The key here is that we
can now represent the outcome that the players respectively want to minimize
and maximize as a single objective, thereby allowing us to write the problem
as a nested minimization and maximization problem (we will see later that
this ordering is not important, and it can equivalently be written as a nested
maximization and minimization problem). Zero-sum matrix games are very
special: they can be solved in polynomial time with a linear program (LP)
whose size is linear in the matrix size.

Rock-paper-scissors is of course a rather trivial example of a game. A more
exciting application of zero-sum games is to use it to compute an optimal
strategy for two-player poker (AKA heads-up poker). In fact, this was the
foundation for many recent “superhuman AI for poker” results, as we shall
discuss later. In order to model poker games we will need a more expressive
game class called extensive-form games (EFGs). These games are played on
trees, where players may sometimes have groups of nodes, called information
sets, that they cannot distinguish among. An example is shown in Figure 1.1.

EFGs can also be represented as a bilinear saddle-point problem:

min
𝑥∈𝑋

max
𝑦∈𝑌

𝑥⊤𝐴𝑦,

where 𝑋,𝑌 are no longer probability simplexes, but more general convex poly-
topes that encode the sequential decision spaces of each player. This is called

1.1 Game Theory 7

C

P1 P1

P2 P2

P1 P1

−1

1 1

−1

3 −2 −2−3

A K

𝑟 𝑟𝑓

𝑓 𝑟 𝑓 𝑟

𝑓

𝑐 𝑓 𝑐 𝑓

Figure 1.1 A poker game where P1 is dealt Ace or King. “r,” “f,” and “c” stands
for raise, fold, and check respectively. Leaf values denote P1 payoffs. The shaded
area denotes an information set: P2 does not know which of these nodes they are
at, and must thus use the same strategy in both.

the sequence-form representation, covered in Chapter 8. Like matrix games,
zero-sum EFGs can be solved in polynomial time with linear programming,
with an LP whose size is linear in the game tree.

It turns out that in many practical scenarios, the LP for solving a zero-sum
game ends up being far too large to solve. This is especially true for EFGs, where
the game tree can quickly become extremely large because the LP size grows
exponentially in the depth of the game. Instead, iterative methods are used in
practice. What is meant by iterative methods here is the class of algorithms that
build a sequence of strategies 𝑥0, 𝑥1, . . . , 𝑥𝑇 , 𝑦0, 𝑦1, . . . , 𝑦𝑇 using only some
form of oracle access to 𝐴𝑦 and 𝐴⊤𝑥 (this is different from writing down 𝐴

explicitly!). Typically, in such iterative methods the average of the sequence of
strategies 𝑥𝑇 = 1

𝑇

∑
𝑡∈[𝑇] 𝑥𝑡 , �̄�𝑇 = 1

𝑇

∑
𝑡∈[𝑇] 𝑦𝑡 converges to a Nash equilibrium.

The reason these methods are preferred is two-fold. First, by never writing down
𝐴 explicitly we save a lot of memory (now we just need enough memory to
store the much smaller 𝑥, 𝑦 strategy vectors). Secondly, they avoid the expensive
matrix inversions involved in the typical algorithms for solving LPs such as the
simplex algorithm and interior-point methods.

8 Introduction and Examples

The algorithmic techniques we will learn for Nash equilibrium computa-
tion are largely centered around iterative methods. First, we will do a quick
introduction to online learning and online convex optimization. We will learn
about two classes of algorithms: 1) Methods that converge to an equilibrium
at a rate of 𝑂 (1/

√
𝑇). These roughly correspond to saddle-point variants of

gradient-descent-like methods. 2) Methods that converge to the solution at a
rate of 𝑂 (1/𝑇). These roughly correspond to saddle-point variants of acceler-
ated gradient methods. Then we will also look at the practical performance of
these algorithms. Here we will see that the following quote is very much true:

In theory, theory and practice are the same. In practice, they are not.

In particular, the preferred method in practice is the CFR+ algorithm and later
variations, all of which have a theoretical convergence rate of 𝑂 (1/

√
𝑇). The

methods that converge at a rate of 𝑂 (1/𝑇) in theory are actually slower than
CFR+ for most real games!

Being able to compute an approximate Nash equilibrium with iterative meth-
ods is only one part of how superhuman AIs were created for poker. In addition,
abstraction and deep learning methods were used to create a small enough game
that can be solved with iterative methods. We will also cover how these methods
are used.

Killer applications of zero-sum games include poker (as we saw), other recre-
ational two-player games, and generative-adversarial networks (GANs). Other
applications that are, as yet, less proven to be effective in practice are robust
sequential decision-making (the adversary represents uncertainty), security sce-
narios where we assume the world is adversarial, and defense applications.

1.1.2 Stackelberg Equilibrium
A second game-theoretic solution concept that has had extensive application
in practice is what’s called a Stackelberg equilibrium. We will primarily study
Stackelberg equilibrium in the context of what is called security games.

Imagine the following scenario: we are designing the patrol schedule for
national park rangers that try to prevent poaching of endangered wildlife in the
park (such as rhinos, which are poached for their horns). There are 20 different
watering holes that the rhinos frequent. We have 5 teams of guards that can
patrol watering holes. How can we effectively combat poaching? If we come
up with a fixed patrol schedule then the poachers can observe us for a few days
and learn our schedule exactly. Afterwards they can strike at a waterhole that
is guaranteed to be empty at some particular time. Thus, we need to design a
schedule that is unpredictable, but which also accounts for the fact that some

1.2 Market Design 9

watering holes are more frequented by rhinos (and are thus higher value), travel
constraints, etc.

In the security games literature, the most popular solution concept for this
kind of setting is the Stackelberg equilibrium. In a Stackelberg equilibrium,
we assume that we, as the leader (e.g. the park rangers), get to commit to our
(possibly randomized) strategy first. Then, the follower observes our strategy
and best responds. This turns out to yield the same solution concept as Nash
equilibrium in zero-sum games, but in general games it leads to a different
solution concept.

However, if we want to help the park rangers design their schedules then
we will need to be able to compute Stackelberg equilibria of the resulting
game model. Again, we will see that optimization is one of the fundamental
pillars of the field of security games research. A unique feature of security
games is that the strategy space of the leader is typically some combinatorial
polytope (e.g. a restriction on the transportation polytope), and the problem
of computing a Stackelberg equilibrium is intimately related to optimization
over the underlying polytope of the defender. Because of this combinatorial
nature, security games often end up being much harder to solve than zero-sum
Nash equilibrium. Therefore, our focus in the security games section will be on
combinatorial approaches to this problem, such as mixed-integer programming
and decomposition.

Killer applications of Stackelberg games are mainly in the realm of security.
They have been applied in infrastructure security (airports, coast guard, air
marshals), to protect wildlife, and to combat fare evasion. A nascent literature
is also emerging in cybersecurity. Outside the world of security, Stackelberg
games are also used to model things like first-mover advantage in the business
world.

1.2 Market Design

The second pillar of the book will be market design. In market design we are
typically concerned with how to design the rules of the game, and how to do
that in order to achieve “good” outcomes. Thus, game theory is a key tool in
market design, since it will be our way of understanding what outcomes we
may expect to arise, given a set of market rules.

Market design is a huge area, and so it has many killer applications. The ones
we will see in this course include Internet ad auctions and how to fairly assign
course seats to students. There are many others, such as how to price and assign
drivers to passengers at Lyft/Uber, how to assign NYC kids to schools, how to

10 Introduction and Examples

Course A Course B

Student 1 5 5
Student 2 2 8

Table 1.2 Example course matching valuations.

enable nationwide kidney exchanges, and how to allocate the radio spectrum
efficiently.

Imagine that we are designing a mechanism for managing course enrollment.
How should we decide which students get to take which courses? Certain
courses are likely to have significantly more demand for seats than there are
sets (e.g. machine learning courses were heavily overdemanded in the 2010s).
Overall, we would like the system to somehow be efficient, but what does that
mean? We would also like the system to be fair, but it’s not entirely clear what
that means either.

At a loss for ideas, we come up with the following solution: we will just
have a sign-up system where students can sign up until a course fills up. Once
a course fills up, we put other students on a waitlist that we clear on a first-
in first-out basis as seats become available. The reader may find this system
familiar, as it is used at many universities to manage course enrollment. Is this
a good system? Well, let’s look at a simple example: we will have 2 students
and 2 courses, each course having 1 seat. Students are allowed to take at most
one course. Let’s say that each student values the courses as follows:

Student 1 arrives first, is indifferent between the courses, and arbitrarily signs
up for course B. Then Student 2 arrives and signs up for A. The total welfare
of this assignment is 5 + 2 = 7. This does not seem to be an efficient use of
resources: we can improve our solution by swapping the courses, since Student
1 gets the same utility as before, and Student 2 improves their utility. This is
what’s called a Pareto-improving allocation because each student is at least as
well off as before, and at least one student is strictly better off. One desideratum
for efficiency is that no such improvement should be possible; an allocation
with this property is called Pareto efficient.

Let’s look at another example. Now we have 2 students and 4 courses, where
each student takes 2 courses. Again courses have only 1 seat. Now say that
Student 1 shows up first, and signs up for A and B. Then Student 2 shows up
and signs up for C and D. Call this assignment 𝐴1. Here we get that 𝐴1 is Pareto
efficient, as there is no way to improve the utility of Student 2 without hurting
the utility of Student 1. But it does not seem like a fair assignment. A fairer
solution would be that each student gets a course with value 10 and a course

1.2 Market Design 11

Course A Course B Course C Course D

Student 1 10 10 1 1
Student 2 10 10 1 1

Table 1.3 Example course matching valuations.

with value 1, for a total utility of 11 each. Let 𝐴2 be such an assignment. One
way to look at this improvement is through the notion of envy: each student
should like their own course schedule at least as well as that of any other student.
Under 𝐴1 Student 2 envies Student 1 by a value of 18, whereas under 𝐴2 no
student envies the other. An allocation where no student envies another student
is called envy-free. Fairness turns out to be a complicated idea, and we will see
later that there are several appealing notions that we may wish to strive for.

Instead of first-come-first-serve, we can use ideas from market design to get
a better mechanism. The solution that we will learn about is based on a fake-
money market: we give every student some fixed budget of fake currency (aka
funny money). Then, we treat the assignment problem as a market problem
under the assigned budgets, and ask for what is called a market equilibrium.
Briefly, a market equilibrium is a set of prices, one for each item, and an
allocation of items to buyers. The allocation must be such that every item is
fully allocated (or has a price of zero), and every buyer is getting an assignment
that maximizes their utility over all the possible assignments they could afford
given the prices and their budget. Given such a market equilibrium, we then
take the allocation from the equilibrium, throw away the prices (the money was
fake anyway!), and use that to perform our course allocation. This turns out to
have a number of attractive fairness and efficiency properties. Course-selection
mechanisms based on this idea are deployed at several business schools such as
Columbia Business School, the Wharton School at University of Pennsylvania,
Rotman School of Management at University of Toronto, and Tuck School of
Business at Dartmouth.

Of course, if we want to implement this protocol we need to be able to
compute a market equilibrium. This turns out to be a rich research area: in the
case of what is called a Fisher market, where each agent 𝑖 has a linear utility
function 𝑣𝑖 ∈ R𝑚≥0 over the 𝑚 items in the market, and the items are divisible,

12 Introduction and Examples

there is a beautiful convex program that results in a market equilibrium:1

max
𝑥≥0

∑︁
𝑖

𝐵𝑖 log(𝑣⊤𝑖 𝑥𝑖)

s.t.
∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗 ≤ 1,∀ 𝑗 ∈ [𝑚] .

Here 𝑥𝑖 𝑗 is how much buyer 𝑖 is allocated of item 𝑗 . Notice that we are simply
maximizing the budget-weighted logarithmic utilities, with no prices! It turns
out that the prices are the dual variables on the supply constraints. We will see
some nice applications of convex duality and Fenchel conjugates in deriving
this relationship. We will also see that this class of markets have a relationship
to the types of auction systems that are used at large internet companies such
as Google and Meta for allocating ad slots.

In the case of markets such as those for course seats, the problem is com-
putationally harder and requires combinatorial optimization. Current methods
use a mixture of MIP and local search.

1 Note the implicit domain constraint that 𝑣⊤
𝑖
𝑥𝑖 > 0 for each 𝑖. It is usually assumed without

loss of generality that each agent 𝑖 has strictly positive value for at least one item.

2
Nash Equilibrium Introduction

In this section we begin our study of Nash equilibrium by giving the basic
definitions, Nash’s existence result, and briefly touch on computability issues.
Then we will make a few observations specifically about zero-sum games,
which have much more structure to exploit.

2.1 General-Sum Games

A normal-form game consists of:

• A set of players 𝑁 = {1, . . . , 𝑛}.
• A set of actions 𝐴 = 𝐴1 × 𝐴2 × · · · × 𝐴𝑛.
• A utility function 𝑢𝑖 : 𝐴 → R.

A vector 𝑎 ∈ 𝐴 is called a strategy profile, and it denotes an action choice for
every player. We will use the shorthand 𝑎−𝑖 to denote the subset of a strategy
vector 𝑎 that does not include player 𝑖’s action. As an aside, game theory often
uses both the term “strategy” and “action” to refer to the course of action
taken by a player. We will use “strategy” to mean a specification of what the
player does at every decision point, whereas an action is what the player does
at a particular decision point. Because normal-form games have only a single
decision point, a strategy and an action are the same thing.

As a first solution concept we will consider dominant-strategy equilibrium
(DSE). In DSE, we seek a strategy profile 𝑎 ∈ 𝐴 such that each action 𝑎𝑖 is
a best response no matter what 𝑎−𝑖 is. Formally, 𝑎 is a DSE if for all players
𝑖 ∈ [𝑛], alternative actions 𝑎′

𝑖
∈ 𝐴𝑖 for player 𝑖, and all possible strategy profiles

𝑎′−𝑖 ∈ 𝐴−𝑖 over the remaining players, it holds that 𝑢𝑖 (𝑎𝑖 , 𝑎′−𝑖) ≥ 𝑢𝑖 (𝑎′𝑖 , 𝑎′−𝑖).
This is a very strong property, and DSE may not exist in many games. A classic
example of DSE is the prisoner’s dilemma: two individuals are on trial for

13

14 Nash Equilibrium Introduction

Silent Confess

Silent -1,-1 -9,0
Confess 0,-9 -6,-6

Table 2.1 The payoff matrix for Prisoner’s Dilemma.

Students
Listen Sleep

Prepare 106, 106 -10,0

Pr
of

.

Slack off 0,-10 0,0

Table 2.2 The payoff matrix for The Professor’s Dilemma.

a crime, and they both have two actions: “stay silent” and “confess.” If both
individuals stay silent then they will each get 1 year in prison. If one individual
confesses and the other does not, then the confessor gets no time, but their
co-conspirator gets 9 years. Finally, if both individuals confess then they both
get 6 years. In this game, confessing is a DSE: it yields greater utility than
staying silent no matter what the other player does. A DSE rarely exists in
practice when given a game, but it can be useful in the context of mechanism
design, where we get to design the rules of the game, potentially in order to
induce a DSE. It is the idea underlying e.g. the second-price auction, which we
will cover later.

Consider some strategy profile 𝑎 ∈ 𝐴. We say that 𝑎 is a pure-strategy Nash
equilibrium if for each player 𝑖 and each alternative action 𝑎′

𝑖
∈ 𝐴𝑖:

𝑢𝑖 (𝑎) ≥ 𝑢𝑖 (𝑎′𝑖 , 𝑎−𝑖),

where, again, 𝑎−𝑖 denotes all the actions in 𝑎 except that of 𝑖. A DSE is always
a pure-strategy Nash equilibrium, but not vice versa. Consider the Professor’s
dilemma,1 where the professor chooses a row strategy and the students choose
a column strategy: In this game there is no DSE, but there’s clearly two pure-
strategy Nash equilibria: the professor prepares and students listen, or the
professor slacks off and students sleep. But these have quite different properties.
Thus, if we hope to use PNE as a prescriptive tool for what will happen, then
we need to decide on which PNE will be played. This is called the equilibrium
selection problem, and it is a major issue in general-sum games. There are at
least two reasons for this: first, if we want to predict the behavior of players
then how do we choose which equilibrium to predict? Second, if we want to
1 Example borrowed from Ariel Procaccia’s slides

2.1 General-Sum Games 15

prescribe behavior for an individual player, then we cannot necessarily suggest
that they play some particular strategy from a Nash equilibrium, because if the
other players do not play the same Nash equilibrium then it may be a terrible
suggestion (for example, suggesting that the professor plays “Prepare” from the
Prepare/Listen equilibrium, when the students are playing the Slack off/Sleep
equilibrium would be bad for the professor).

Moreover, pure-strategy equilibria are not even guaranteed to exist, as we
saw in the previous section with the rock-paper-scissors example.

To fix the existence issue we may consider allowing players to randomize
over their choice of strategy. Let Δ𝑖 =

{
𝜎 ∈ R |𝐴𝑖 |

≥0 :
∑ |𝐴𝑖 |

𝑗=1 𝜎𝑗 = 1
}

be the
set of possible probability distributions over the actions 𝐴𝑖 of player 𝑖. Let
𝜎𝑖 ∈ Δ𝑖 denote player 𝑖’s strategy; we call 𝜎𝑖 a mixed strategy. Now we say that
a strategy profile is a collection of mixed strategies, one for each player, and
denote it by 𝜎 = (𝜎1, . . . , 𝜎𝑛). By a slight abuse of notation we may rewrite a
player’s utility function as

𝑢𝑖 (𝜎) =
∑︁
𝑎∈𝐴

𝑢𝑖 (𝑎)
∏
𝑖

𝜎𝑖 (𝑎𝑖).

Definition 2.1 A (mixed-strategy) Nash equilibrium is a strategy profile 𝜎

such that for all alternative strategies 𝜎′
𝑖
∈ Δ𝑖:

𝑢𝑖 (𝜎) ≥ 𝑢𝑖 (𝜎−𝑖 , 𝜎
′
𝑖).

An 𝜖-Nash equilibrium is as above, but where the condition is relaxed to

𝑢𝑖 (𝜎) ≥ 𝑢𝑖 (𝜎−𝑖 , 𝜎
′
𝑖) − 𝜖 .

In Definition 2.1 we required a comparison to any 𝜎′
𝑖
∈ Δ𝑖 for simplicity of

notation. It is easy to show that it is enough to satisfy the inequality for every
pure strategy (i.e. every strategy that puts probability one on a single action).

Nash’s theorem asserts that a Nash equilibrium is guaranteed to exist (see
Chapter 10 for a proof).

Theorem 2.2 Any game with a finite set of strategies and a finite set of players
has a mixed-strategy Nash equilibrium.

Since our goal is to prescribe or predict behavior, we would also like to
be able to compute a Nash equilibrium. Unfortunately this turns out to be
computationally difficult even with only two players: The problem of computing
a Nash equilibrium in a two-player general-sum finite game is PPAD-complete.
We won’t go into detail on what the complexity class PPAD is for now, but

16 Nash Equilibrium Introduction

suffice it to say that it is weaker than the class of NP-complete problems, but
still believed to take exponential time in the worst case. Section 2.2 gives a
quick overview of the class of hardness problems that encapsulate the difficulty
of computing Nash equilibrium.

As an aside, one may make the following observation about why Nash
equilibrium does not “fit” in the class of NP-complete problems: typically
in NP-completeness we ask questions such as “does there exist a satisfying
assignment to this Boolean formula?” or “does there exist a solution to this
MIP that achieves objective value at least 𝑐?” But given a particular game,
we already know that a Nash equilibrium exists. Thus, we cannot ask the type
of existence questions typically used in NP-complete problems; we already
know the answer. Instead, it is only the task of finding one of the solutions that
is difficult. This can be a useful notion to keep in mind when encountering
other problems that have guaranteed existence. That said, once one asks for
additional properties such as “does there exist a Nash equilibrium where the
sum of utilities is at least v?” one gets an NP-complete problem.

Given a strategy profile 𝜎, we will often be interested in measuring how
“happy” the players are with the outcome of the game under𝜎. Most commonly,
we are interested in the social welfare of a strategy profile (and especially for
equilibria). The social welfare is the expected value of the sum of the player’s
utilities:

𝑛∑︁
𝑖=1

𝑢𝑖 (𝜎) =
𝑛∑︁
𝑖=1

∑︁
𝑎∈𝐴

𝑢𝑖 (𝑎)
𝑛∏

𝑖′=1
𝜎𝑖′ (𝑎𝑖′).

We already saw in the Professor’s Dilemma that there can be multiple equilibria
with wildly different social welfare: when the professor slacks off and the
students sleep, the social welfare is zero; when the professor prepares and the
students listen, the social welfare is 2 · 106.

2.1.1 Zero-Sum Games
In the special case of a two-player zero-sum game, we have 𝑢1 (𝑎) = −𝑢2 (𝑎)∀𝑎 ∈
𝐴. In that case, we can represent our problem as the bilinear saddlepoint problem
(BSPP) we saw in Chapter 1. The reduction to a BSPP is as follows. Suppose
we have a strategy profile 𝜎 = (𝜎1, 𝜎2). Then we can write the expected utility
of player 2 as

𝑢2 (𝜎) =
∑︁
𝑎∈𝐴

𝑢2 (𝑎)𝜎1 (𝑎1)𝜎2 (𝑎2).

This expression is a bilinear form in 𝜎1 and 𝜎2 (meaning that it is linear in 𝜎𝑖

for a fixed 𝜎−𝑖). A standard fact from linear algebra is that for a fixed coordinate

2.1 General-Sum Games 17

representation (say the standard basis), a bilinear form has an associated matrix
𝐴 representing the expression. Suppose we let 𝑥 ∈ Δ𝑛 denote the vector corre-
sponding to 𝜎1 in the standard basis, and 𝑦 ∈ Δ𝑚 denote the vector representing
𝜎2. Then the payoff to player 2 is ⟨𝑥, 𝐴𝑦⟩, where 𝐴 is the matrix with entries
𝐴𝑖 𝑗 = 𝑢2 (𝑎𝑖 , 𝑎 𝑗) for the pair of actions 𝑎𝑖 ∈ 𝐴1, 𝑎 𝑗 ∈ 𝐴2. Due to the zero-sum
property, player 1 maximizes their utility by minimizing ⟨𝑥, 𝐴𝑦⟩. Now suppose
that player 1 plays chooses a mixed strategy 𝑥 ∈ Δ𝑛 under the assumption that
player 2 will observe their strategy 𝑥, and best respond to 𝑥. Then player 1
should solve the following bilinear saddlepoint problem:

min
𝑥∈Δ𝑛

max
𝑦∈Δ𝑚

⟨𝑥, 𝐴𝑦⟩.

A first observation one may make is that the minimization problem faced by
the 𝑥-player is a convex minimization problem, since the max operation is
convexity preserving. This suggests that we should have a lot of algorithmic
options to use. For example, we immediately see that if we run subgradient
descent on the minimization problem, then we can use the optimal response
of player 2 to 𝑥 as a subgradient for the minimization problem. This is a very
natural algorithm to use, but we will see much more numerically performant
methods in Part TWO.

In fact, we have the following stronger statement, which is essentially equiv-
alent to LP duality:

Theorem 2.3 (von Neumann’s minimax theorem) Every two-player zero-sum
game has a unique value 𝑣 ∈ R, called the value of the game, such that

min
𝑥∈Δ𝑛

max
𝑦∈Δ𝑚

⟨𝑥, 𝐴𝑦⟩ = max
𝑦∈Δ𝑚

min
𝑥∈Δ𝑛

⟨𝑥, 𝐴𝑦⟩ = 𝑣.

We will prove a more general version of this theorem when we discuss regret
minimization in Chapter 4.

Theorem 2.3 tells us that Nash equilibria must be solutions to the min-max
and max-min problems for each player. This is a very powerful property, because
it allows us to compute a Nash equilibrium by solving a convex optimization
problem. In fact, we can compute a Nash equilibrium in polynomial time using
linear programming (LP). This reduction is obtained by dualizing the inner
problem (say the maximization problem in the min-max formulation). This
yields the following LP (which yields a Nash equilibrium strategy 𝑥∗ for player
one; to get a Nash equilibrium strategy 𝑦∗ we must solve the symmetric LP

18 Nash Equilibrium Introduction

where we move the min on the inside and dualize it):

min
𝑥,𝑣

𝑣

s.t. 𝑣 · ®1 ≥ 𝐴⊤𝑥

𝑥 ∈ Δ𝑛.

Because zero-sum Nash equilibria are min-max solutions, they are the best
that a player can do, given a worst-case opponent. Moreover, if the opponent
is not a worst-case opponent (i.e. not best responding to our min-max strategy
𝑥∗), then a min-max solution 𝑥∗ gets at least a value 𝑣, and may do even better.
Conversely, any strategy 𝑥 that is not a min-max solution is guaranteed to do
worse than 𝑣 against an opponent that best responds to 𝑥. These considerations
are the rationale for saying that a given two-player zero-sum game has been
solved if a Nash equilibrium has been computed for the game. Some games
are trivially solvable, e.g. in rock-paper-scissors we know that the uniform
distribution is the only equilibrium. However, this notion has also been applied
to large games such as heads-up limit Texas hold’em, one of the smallest poker
variants played by humans (which is still a huge game). In 2015, that game
was essentially solved. The idea of essentially solving a game is as follows:
we want to compute a strategy that is statistically indistinguishable from a
Nash equilibrium in a lifetime of human-speed play. The statistical notion was
necessary because the solution was computed using iterative methods that only
converge to an equilibrium in the limit (but in practice get quite close very
rapidly). The same argument is also used in constructing AIs for even larger
two-player zero-sum poker games where we can only try to approximate an
equilibrium.

Note that this min-max guarantee of Nash equilibria does not hold in general-
sum games. In general-sum games, we have no payoff guarantees if our opponent
does not play their part of the same Nash equilibrium that we play. Interestingly,
the AI and optimization methods developed for two-player zero-sum poker
turned out to still outperform top-tier human players in 6-player no-limit Texas
hold’em poker, in spite of these equilibrium selection issues. An AI based on
these methods ended up beating professional human players, in spite of the
methods having no guarantees on performance, nor even of converging to a
general-sum Nash equilibrium.

Another interesting property of zero-sum Nash equilibrium is that they are
exchangeable: if you take an equilibrium (𝑥, 𝑦) and another equilibrium (𝑥′, 𝑦′)
then (𝑥, 𝑦′) and (𝑥′, 𝑦) are also equilibria. This is easy to show from the minimax
formulation.

2.2 Complexity of Computing Nash Equilibrium in General-Sum Games19

2.2 Complexity of Computing Nash Equilibrium in
General-Sum Games

As stated earlier, computing a Nash equilibrium in a general-sum game is
conjectured to be a hard problem, in the sense that there is no polynomial-
time algorithm for computing an equilibrium. This subsection gives a very
brief overview of what hardness means in the context of Nash equilibrium
computation.

The hardness of computing a Nash equilibrium is studied with the class of
problems called PPAD (Polynomial Parity Argument, Directed version) from
computational complexity theory. PPAD is a collection of computational prob-
lems. A problem is PPAD-hard if it is at least as difficult as any other problem
in PPAD, meaning that every problem in PPAD can be reduced to the PPAD-
hard problem in polynomial time. This is analogous to what makes a problem
NP-hard for the class of problems NP. This means that a polynomial-time algo-
rithm for any PPAD-hard problem would immediately yield a polynomial-time
algorithm for every problem in PPAD. The class of PPAD-complete problems
is analogous to the class of NP-complete problems: the class of PPAD-complete
problems is the set of problems that are PPAD hard, while also being contained
in PPAD.

To show PPAD hardness of a computational problem class 𝑃, one starts from
an existing problem class 𝑄 known to be PPAD hard (typically 𝑄 would be a
PPAD-complete problem class, such as computing a Nash equilibrium of an
arbitrary two-player zero-sum game). Then one must give two polynomial-time
algorithms: First, a polynomial-time algorithm that takes an arbitrary instance
from 𝑄 and produces an instance of 𝑃. Secondly, a polynomial-time algorithm
that takes a solution to the constructed instance of 𝑃, and constructs a valid
solution to the problem from 𝑄 based on the solution to 𝑃. Such a pair of
algorithms immediately implies that any polynomial-time algorithm for the
class of problems 𝑃 would yield a polynomial-time algorithm for the class
of problems 𝑄, and thus for the entire class of problems in PPAD due to the
PPAD-hardness of 𝑄.

To show PPAD containment of a problem class 𝑃, one must go the other
way: a polynomial-time algorithm is constructed for reducing an instance of
𝑃 to an instance of some computational problem 𝑄 contained in PPAD, again
such that there is a polynomial-time algorithm for constructing a solution to 𝑃

given a solution to the constructed problem of 𝑄.
The sense in which the Nash equilibrium problem is “hard” is that sev-

eral computational variants of finding a Nash equilibrium are known to be
PPAD-complete problems, and thus a polynomial-time algorithm for finding

20 Nash Equilibrium Introduction

(approximate) Nash equilibria cannot exist unless the entire class PPAD has
polynomial-time algorithms. Let us say that 𝑛-NASH is defined as the following
problem: we are given an 𝑛-player general-sum game and an 𝜖 ≥ 0, and we
must find an 𝜖-Nash equilibrium of the given game. This problem is known to
be hard in the sense that there exists 𝜖 such that finding an 𝜖-Nash equilibrium
is a PPAD-complete problem.

Theorem 2.4 The following problems are PPAD complete:

• 2-NASH for 𝜖 ≤ 𝑘−𝑐 where 𝑘 is the number of actions per player and 𝑐 > 0.
• 𝑛-NASH for constant 𝜖 > 0

In games with more than two players we must allow 𝜖 > 0 in order to have
PPAD completeness. When 𝜖 = 0, finding an exact Nash equilibrium in 𝑛 > 2
player games is no longer a problem contained in the PPAD class of problems,
and thus it is not PPAD complete (though it is still PPAD hard!). Instead,
exact 𝑛-NASH is contained in the larger class of problems called FIXP, and
already for 𝑛 = 3 the problem is complete for the FIXP class. The fundamental
reason why exact Nash equilibrium computation cannot be contained in PPAD
is that when 𝑛 > 2 there may not even exist a Nash equilibrium described by
rational numbers, even if the input to the problem is rational. This precludes
containment in PPAD.

A useful way to think of the class PPAD for a non-complexity-theorist is
simply as a collection of hard “natural” problems from economics and game
theory. A few other notable examples of PPAD-complete problems that are
adjacent to problems we will encounter in this book are:

(i) Finding a Fisher market equilibrium (Chapter 11) when each agent has a
separable piecewise-linear concave utility function.

(ii) In an Arrow-Debreu exchange economy (Chapter 10), it is PPAD-complete
to find an approximate market equilibrium when buyers have Leontief (see
Chapter 11) utility functions.

(iii) Computing an approximate competitive equilibrium from equal incomes (A-
CEEI), a solution concept for fairly allocating indivisible goods such as
course seats (Chapter 13).

2.3 Historical Notes

Early pioneers of game theory include Emile Borel and John von Neumann.
Perhaps the single most foundational result in the establishment of the field was

2.3 Historical Notes 21

the proof of von Neumann’s minimax theorem in 1928 in his seminal paper
(von Neumann, 1928).

The result where Heads-up limit Texas hold’em was essentially solved was
by Bowling et al. (2015). That paper also introduced the notion of “essentially
solved.” The strong performance against top-tier humans in 6-player poker was
shown by Brown and Sandholm (2019b).

Daskalakis et al. (2009) were the first to show that games beyond two-player
zero-sum are PPAD-hard problems. Their initial result was for four-player
games. Chen et al. (2009) showed that the result holds even for two-player
general-sum games. NP-completeness of finding Nash equilibria with various
properties was shown by Gilboa and Zemel (1989) and Conitzer and Sandholm
(2008). Codenotti et al. (2006) show that exchange economies with Leontief
utilities encode two-player general-sum games, and thus the hardness result of
Chen et al. (2009) implies hardness of computing a market equilibrium. Chen
and Teng (2009) showed hardness of computing Fisher market equilibrium with
separable piecewise-linear concave utilities. Othman et al. (2016) showed the
PPAD completeness of finding A-CEEI.

Further reading.
For a classical introduction to game theory, I recommend Osborne and Rubin-
stein (1994) or Fudenberg and Tirole (1991). These are the standard books used
for graduate-level game theory in economics.

For a more technical coverage of the computational complexity of computing
equilibria and PPAD problems, I like Roughgarden (2016) as a starting point.
There are currently no textbooks covering important recent developments. In
the three years prior to the writing of this book, there has been tremendous
progress on making it easier to prove both PPAD hardness and PPAD contain-
ment. For proving PPAD containment, Filos-Ratsikas et al. (2024) develop a
framework based on “convex optimization gates,” and show that any problem
whose solutions can be expresses in that framework are contained in PPAD.
Very loosely speaking, the convex optimization gates allow you to write down
a set of convex optimization problems, each of whose input may depend on
the output of the other problems. This makes it much simpler to prove PPAD
containment for new market equilibrium or game-theoretic equilibrium prob-
lems, because such problems can often be phrased as having every player solve
a convex optimization problem whose input depends on the output of the other
players’ optimization problems. It is instructive to think through how one could
do this e.g. for the basic Nash equilibrium problem. For proving PPAD hard-
ness, Deligkas et al. (2024) showed that a problem called Pure-Circuit is
PPAD-complete. Pure-Circuit is a very attractive starting point for a PPAD

22 Nash Equilibrium Introduction

hardness reduction: one only needs to show how to encode three or four logical
gates in order to show hardness. Moreover, Pure-Circuit is hard to approx-
imate as well, and thus a reduction from Pure-Circuit leads to hardness of
approximation as well.

3
Auctions and Mechanism Design Introduction

In this section note we will study the problem of how to aggregate a set of agent
preferences into an outcome, ideally in a way that achieves some desirable
outcome. Desiderata we might care about include social welfare, which is just
the sum of the agent’s utilities derived from the outcome, or revenue in the
context of auctions.

Suppose that we have a car, and we wish to give it to one of 𝑛 people, with
the goal of giving it to the person that would get the most utility out of the car.
One thing we could do is ask each person to tell us how much utility they would
get out of receiving the car, expressed as some positive number, and then give
it to the person that claims to value the car the most. It should be immediately
clear that we cannot hope to elicit the true values of the agents this way, since
each agent will simply try to name the largest number possible.

This trivial example shows that in general we need to be careful about how we
design the rules that map the stated preferences by the agents of a mechanism
into an outcome. The general field concerned with the design of such rules
is called mechanism design. If we are able to charge payments based on the
outcome and the reported values then it is possible to achieve a number of
attractive properties.

3.1 Auctions

We will mostly focus on the most classical mechanism-design setting: auctions.
We will start by considering single-item auctions: there is a single good for
sale, and there is a set of 𝑛 buyers, with each buyer having some value 𝑣𝑖 for the
good. The goal will be to sell the item via a sealed-bid auction, which works
as follows:

23

24 Auctions and Mechanism Design Introduction

(i) Each bidder 𝑖 submits a bid 𝑏𝑖 ≥ 0, without seeing the bids of anyone else.
(ii) The seller decides who gets the good based on the submitted bids.

(iii) Each buyer 𝑖 is charged a price 𝑝𝑖 which is a function of the bid vector 𝑏.

A few things in our setup may seem strange. First, most people would not
think of sealed bids when envisioning an auction. Instead, they typically envi-
sion what’s called the English auction. In the English auction, bidders repeatedly
call out increasing bids, until the bidding stops, at which point the highest bid-
der wins and pays their last bid. This auction can be conceptualized as having a
price that starts at zero, and then rises continuously, with bidders dropping out
as they become priced out. Once only one bidder is left, the increasing price
stops and the item is sold to the last bidder at that price. This auction format
turns out to be equivalent to the second-price sealed-bid auction which we will
cover below. Another auction format is the Dutch auction, which is less preva-
lent in practice. It starts the price very high such that nobody is interested, and
then continuously drops the price until some bidder says they are interested,
at which point they win the item at that price. The Dutch auction is likewise
equivalent to the first-price sealed-bid auction, which we cover below.

Secondly, it would seem natural to always give the item to the highest bid in
step 2, but this is not always done (though we will focus on that rule). Thirdly,
the pricing step allows us to potentially charge more bidders than only the
winner. This is again done in some reasonable auction designs, though we will
mostly focus on auction formats where 𝑝𝑖 = 0 if 𝑖 does not win.

When thinking about how buyers are going to behave in an auction, we need
to first clarify what each buyer knows about the other bidders. Perhaps the most
standard setting is one where each buyer 𝑖 has some distribution 𝐹𝑖 from which
their value is drawn, independently of the distribution for every other buyer.
This is known as the independent private values (IPV) model. In this model,
every buyer knows the distribution of every other buyer, but they only get to
observe their own value 𝑣𝑖 ∼ 𝐹𝑖 before choosing their bid 𝑏𝑖 . For this model, we
need a new game-theoretic equilibrium notion called a Bayes Nash equilibrium
(BNE). First, a pure strategy 𝜎𝑖 for a buyer specifies which action they take
for every value they may have, so 𝜎𝑖 (𝑣𝑖) is the action taken by buyer 𝑖 when
their own value is 𝑣𝑖 . A BNE is then a set of strategies {𝜎𝑖}𝑛𝑖=1, such that for all
values 𝑣𝑖 and alternative bids 𝑏𝑖 , 𝜎𝑖 (𝑣𝑖) achieves at least as much utility as 𝑏𝑖
in a Bayesian sense:

E𝑣−𝑖∼𝐹−𝑖 [𝑢𝑖 (𝜎𝑖 (𝑣𝑖), 𝜎−𝑖 (𝑣−𝑖)) |𝑣𝑖] ≥ E𝑣−𝑖∼𝐹−𝑖 [𝑢𝑖 (𝑏𝑖 , 𝜎−𝑖 (𝑣−𝑖)) |𝑣𝑖] .

In the auction context, 𝑢𝑖 (𝑏𝑖 , 𝜎−𝑖 (𝑣−𝑖)) is the utility that buyer 𝑖 derives given

3.1 Auctions 25

the allocation and payment rule. The idea of a BNE works more generally for
a game setup where 𝑢𝑖 is some arbitrary utility function.

We will now introduce some useful mechanism-design terminology. We will
introduce it in this single-item auction context, but it applies more broadly.

Efficiency. An outcome of a single-item auction is efficient if the item ends
up allocated to the buyer that values it the most. In general mechanism design
problems, an efficient outcome is typically taken to be one that maximizes
the sum of the agent utilities, which is also known as maximizing the social
welfare. Alternatively, efficiency is sometimes taken to mean that we get a
Pareto-optimal outcome, which is a weaker notion of efficiency than social
welfare maximization (convince yourself of this with a small example.)

Revenue. The revenue of a single-item auction is simply the sum of payments
made by the bidders.

Truthfulness, strategyproofness, and incentive compatibility. Informally, we
say that an auction is truthful, strategyproof or incentive compatible (IC) if
buyers maximize their utility by bidding their true value (i.e. 𝑏𝑖 = 𝑣𝑖).1 More
formally, an auction is dominant strategy incentive compatible (DSIC) if a buyer
maximizes their utility by bidding their value, no matter what everyone else
does. Saying that an auction (or more generally a mechanism) is “truthful” or
“strategyproof” typically means that it is DSIC. We shall adopt that terminology
in the book. DSIC auctions are very attractive because buyers do not need to
strategize about what the other buyers will do: no matter what happens, they
should just bid their value. This also means that, as auction designers, we can
reasonably expect that buyers will bid their true value (or at least try to, if they
are not perfectly capable of estimating it themselves). This makes it much easier
to reason about aspects such as efficiency or revenue.

A slightly weaker degree of incentive compatibility is that of Bayes-Nash
incentive compatibility: an auction is Bayes-Nash IC if there exists a BNE where
every buyer bids their value. It is clear why this notion is less appealing: Now
buyers need to worry about whether other buyers are going to bid truthfully.
If they think that they will, then we might expect them to bid their value as
well. However, if the system starts out in some other state, we might worry that
buyers will adapt their bidding over time in a way that pushes them into some
other non-truthful equilibrium.

1 You can tell that game theorists care a lot about truthfulness from the fact that we have at least
three names for it!

26 Auctions and Mechanism Design Introduction

3.1.1 Second-price auctions
We first look at the second-price auction. In a second-price auction, we allocate
the item to the highest bid (breaking ties arbitrarily), but the winning bidder
𝑖∗ is charged the second-highest bid. To see why charging the second-highest
bid is a good idea, it is helpful to contrast with the first-price auction (see
the next section). Under the first-price rule, the winner pays their bid. Under
this rule, the winning bidder has an incentive to shade their bid such that it is
barely above the second-highest bid, because their utility strictly increases as
they shade their bid, as long as they still win the item. With the second-price
rule, we remove this problem: for the winning bidder, any bid higher than the
second-highest bid leads to exactly the same outcome for them, and so they do
not need to worry about “targeting” the second-highest bid via shading. In fact,
it turns out that the second-price auction is truthful because of the above logic.

Theorem 3.1 The second-price auction is DSIC.

Proof Consider an arbitrary buyer 𝑖 with value 𝑣𝑖 . Let 𝑏2 = max𝑘≠𝑖 𝑏𝑘 be the
highest bid by any other buyer than 𝑖. There are four cases to consider for a
non-truthful bid 𝑏𝑖 ≠ 𝑣𝑖:

(i) 𝑏𝑖 > 𝑣𝑖 ≥ 𝑏2 where 𝑏2 is the second-highest bid. In that case buyer 𝑖 would
have gotten the same utility from bidding their valuation 𝑣𝑖 .

(ii) 𝑏𝑖 > 𝑏2 > 𝑣𝑖 where 𝑏2 is the second-highest bid. In that case buyer 𝑖 wins,
but gets utility 𝑣𝑖 − 𝑏2 < 0, and they would have been better off bidding their
valuation.

(iii) 𝑏𝑖 < 𝑏2 < 𝑣𝑖 where 𝑏2 is the second-highest bid. In that case buyer 𝑖 does
not win, but they could have won and gotten strictly positive utility if they
had bid their valuation.

(iv) 𝑏2 < 𝑏𝑖 < 𝑣𝑖 where 𝑏2 is the second-highest bid. In that case buyer 𝑖 wins,
but they would have won, and paid the same, if they had bid their true value.

It follows that the second-price auction is DSIC, because an agent should report
their true valuation no matter what everybody else does. □

The second-price auction is also efficient, in the sense that it maximizes
social welfare (since the item goes to the buyer with the highest value). Finally,
it is computable, in the sense that it is easy to find the allocation and payments.

3.1.2 First-price auctions
First-price auctions are perhaps what most people imagine when we say that we
are selling a good via a sealed-bid auction. In first-price auctions, each buyer

3.1 Auctions 27

submits some bid 𝑏𝑖 ≥ 0, and then we allocate the item to the buyer 𝑖∗ with
the highest bid, and charge that buyer 𝑏𝑖∗ . This pricing rule is also sometimes
referred to as pay-your-bid.

Let’s briefly try to reason about what might happen in a first-price auction.
Clearly, no buyer should bid their true value for the good under this mechanism;
in that case they receive no utility even when they win. Instead, buyers should
shade their bids, so that they sometimes win while also receiving strictly positive
utility. The problem is that buyers must strategize about how other buyers will
bid, in order to figure out how much to shade by.

This issue of shading and guessing what other buyers will bid happened
in early Internet ad auctions, where first-price auctions were initially adopted.
Overture was an early pioneer in selling Internet sponsored search ads via
auction. They initially ran first-price auctions, and provided services to MSN
and Yahoo (which were popular search engines at the time). Bidding and pricing
turned out to be very inefficient, because buyers were constantly changing their
bids in order to best respond to each other. Plots of the price history show a
clear “sawtooth pattern,” where a pair of bidders will take turns increasing their
bid by 1 cent each, in order to beat the other bidder. Finally, one of the bidders
reaches their valuation, at which point they drop their bid much lower in order
to win something else instead. Then, the winner realizes that they should bid
much lower, in order to decrease the price they pay. At that point, the bidder
that dropped out starts bidding 1 cent more again, and the pattern repeats. This
leads to huge price fluctuations, and inefficient allocations, since about half the
time the item goes to the bidder with the lower valuation.

All that said, it turns out that there does exist at least one interesting char-
acterization of how bidding should work in a single-item first-price auction
(the Overture example technically consists of many “independent” first-price
auctions; though that independence does not truly hold as we shall see later).

For this characterization, we assume the following symmetric model: we have
𝑛 buyers as before, and buyer 𝑖 assigns value 𝑣𝑖 ∈ [0, 𝑣] for the good. Each 𝑣𝑖 is
sampled i.i.d. from an increasing distribution function 𝐹. 𝐹 is assumed to have
a continuous density 𝑓 and full support. Each bidder knows their own value 𝑣𝑖 ,
but only knows that the value of each other buyer is sampled according to 𝐹.
Given a bid 𝑏𝑖 , buyer 𝑖 earns utility 𝑣𝑖−𝑏𝑖 if they win, and utility 0 otherwise. If
there are multiple bids tied for highest then we assume that a winner is picked
uniformly at random among the winning bids, and only the winning bidder
pays.

It turns out that there exists a symmetric equilibrium in this setting, where

28 Auctions and Mechanism Design Introduction

each bidder bids according to the function

𝛽(𝑣𝑖) = E[𝑌1 |𝑌1 < 𝑣𝑖],

where𝑌1 is the random variable denoting the maximum over 𝑛−1 independently-
drawn values from 𝐹.

Theorem 3.2 If every bidder in a first-price auction bids according to 𝛽 then
the resulting strategy profile is a Bayes-Nash equilibrium.

Proof Let 𝐺 (𝑦) = 𝐹 (𝑦)𝑛−1 denote the distribution function for 𝑌1.
Suppose all bidders except 𝑖 bid according to 𝛽. The function 𝛽 is continuous

and monotonically strictly increasing: a higher value for 𝑣𝑖 simply adds addi-
tional values to the highest end of the conditional distribution of𝑌 . The highest
bid other than that of bidder 𝑖 is 𝛽(𝑌1). It follows that bidder 𝑖 should never
bid more than 𝛽(𝑣), since that is the highest possible other bid. Now consider
bidding 𝑏𝑖 ≤ 𝛽(𝑣). By continuity and monotonicity there exists 𝑧 such that
𝛽(𝑧) = 𝑏𝑖 . Notice that 𝐺 (𝑧) is then the probability of buyer 𝑖 winning when
they bid 𝑏𝑖 . The expected value that bidder 𝑖 obtains from bidding 𝑏𝑖 is:

𝑢𝑖 (𝑏𝑖 , 𝑣𝑖) =𝐺 (𝑧) [𝑣𝑖 − 𝛽(𝑧)]
=𝐺 (𝑧)𝑣𝑖 − 𝐺 (𝑧)E[𝑌1 |𝑌1 < 𝑧] by definition of 𝛽(𝑧)

=𝐺 (𝑧)𝑣𝑖 −
∫ 𝑧

0
𝑦𝑔(𝑦)𝑑𝑦 by definition of expectation

=𝐺 (𝑧)𝑣𝑖 − 𝐺 (𝑧)𝑧 +
∫ 𝑧

0
𝐺 (𝑦)𝑑𝑦 integration by parts

=𝐺 (𝑧) (𝑣𝑖 − 𝑧) +
∫ 𝑧

0
𝐺 (𝑦)𝑑𝑦.

Now we can compare the values from bidding 𝛽(𝑣𝑖) and 𝑏𝑖:

𝑢𝑖 (𝛽(𝑣𝑖), 𝑣𝑖) − 𝑢𝑖 (𝑏𝑖 , 𝑣𝑖) =𝐺 (𝑣𝑖) (𝑣𝑖 − 𝑣𝑖) +
∫ 𝑣𝑖

0
𝐺 (𝑦)𝑑𝑦 − 𝐺 (𝑧) (𝑣𝑖 − 𝑧)

−
∫ 𝑧

0
𝐺 (𝑦)𝑑𝑦

=𝐺 (𝑧) (𝑧 − 𝑣𝑖) −
∫ 𝑧

𝑣𝑖

𝐺 (𝑦)𝑑𝑦.

If 𝑧 ≥ 𝑣𝑖 then this is clearly positive since 𝐺 (𝑧) ≥ 𝐺 (𝑦) for all 𝑦 ∈ [𝑣𝑖 , 𝑧]. If
𝑧 ≤ 𝑣𝑖 , then 𝐺 (𝑧) ≤ 𝐺 (𝑦), and so we have a negative number and subtract a
more negative number. □

A nice property that follows from the monotonicity of 𝛽 is that the item is

3.2 Mechanism Design 29

always allocated to the bidder with the highest valuation, and thus the symmetric
equilibrium is efficient.

Even though the first-price auction is not truthful, the structure of the equi-
librium bidding is quite beautiful. Intuitively, a buyer in the equilibrium could
be described as acting according to the following thought process: First, the
buyer assumes that they have the highest valuation (if not then they do not want
to win because they should be priced out by the higher bidders). Conditional
on this information, they calculate the expected value of the second-highest
valuation, and submit this as their bid. This price is exactly the price that they
would pay in expectation under the second-price auction, conditional on being
the highest bid! This is an instantiation of a broader phenomenon known as
revenue equivalence, which asserts that under symmetric valuations such as
the above, all auction formats which always give the item to the buyer with
the highest (true) valuation must have equivalent revenue (see the references
in the historical notes for books that cover this topic in detail). One immediate
consequence is that, if the auctioneer wishes to extract more revenue, then they
must give up on maximizing social welfare, and occasionally avoid giving the
item to the buyer with the highest valuation (either by withholding the item, or
giving it to a lower-ranked buyer).

Like the second-price auction, the first-price auction is computable, and
under the symmetric equilibrium given in Theorem 3.2 it is also efficient. But
it is not truthful, and it is not hard to come up with a simple discrete setting
where there is not even an equilibrium.

3.2 Mechanism Design

More generally, in mechanism design:

• There’s a set of outcomes 𝑂, and the job of the mechanism is to choose some
outcome 𝑜 ∈ 𝑂.

• Each agent 𝑖 has a private type 𝜃𝑖 ∈ Θ𝑖 , that they draw from some publicly-
known distribution 𝐹𝑖 .

• Each agent 𝑖 has some publicly-known valuation function 𝑣𝑖 (𝑜 |𝜃𝑖) that spec-
ifies a utility for each outcome 𝑜 ∈ 𝑂, given their type 𝜃𝑖 ∈ Θ𝑖 .

• The goal of the center is to design a mechanism that maximizes some objec-
tive, e.g. social welfare

∑
𝑖 𝑣𝑖 (𝑜 |𝜃𝑖).

A mechanism takes as input a vector of reported types 𝜃 from the players, and
outputs an outcome, formally it is a function 𝑓 : ×𝑖Θ𝑖 → 𝑂 that specifies the
outcome that results from every possible set of reported types. In mechanism

30 Auctions and Mechanism Design Introduction

design with money, we also have a payment function 𝑔 : ×𝑖Θ𝑖 → R𝑛 that
specifies how much each agent pays given a reported type vector 𝜃.

Let us describe how the general mechanism design setting maps onto the
first-price auction setting: the set of outcomes is the 𝑛 different ways we can
allocate the item, and the set of possible reports for buyer 𝑖 is Θ𝑖 = [0, �̄�], where
�̄� is some bound on the largest possible bid. A report for a buyer is the bid on
the item, which we can think of as their (non-truthful) report of their true value
for the item. The valuation function 𝑣𝑖 (𝑜 |𝜃𝑖) = 𝜃𝑖 for the outcome 𝑜 such that
buyer 𝑖 gets the item, and 𝑣𝑖 (𝑜 |𝜃𝑖) = 0 for any outcome 𝑜 where buyer 𝑖 does
not get the item.

In an ideal mechanism, we have that the mechanism is DSIC, which allows
us to analyze outcomes of the mechanism (such as the welfare properties of the
mechanism) under the assumption that we have the true type vector. Formally,
a mechanism being DSIC would mean that for every agent 𝑖, type 𝜃𝑖 ∈ Θ𝑖 , any
type vector 𝜃−𝑖 of the remaining agents, and misreported type 𝜃′

𝑖
∈ Θ𝑖:

E [𝑣𝑖 (𝑓 (𝜃𝑖 , 𝜃−𝑖))] ≥ E
[
𝑣𝑖 (𝑓 (𝜃′𝑖 , 𝜃−𝑖))

]
,

where the expectation is over the potential randomness of the mechanism. If
there is also a payment function 𝑔 and agents have quasilinear utilities then the
inequality is

E [𝑣𝑖 (𝑓 (𝜃𝑖 , 𝜃−𝑖)) − 𝑔(𝜃𝑖 , 𝜃−𝑖)] ≥ E
[
𝑣𝑖 (𝑓 (𝜃′𝑖 , 𝜃−𝑖)) − 𝑔(𝜃′𝑖 , 𝜃−𝑖)

]
,

Sometimes DSIC is too much to ask for in a given setting. In that case, a
weaker form of truthfulness is that there exists a Bayes-Nash equilibrium of the
game induced by the mechanism, in which every agent reports their true type.
Mechanisms where such an equilibrium exists are called Bayesian incentive
compatible (usually abbreviated as BIC). Formally, that would mean that for
every agent 𝑖, type 𝜃𝑖 ∈ Θ𝑖 , and misreported type 𝜃′

𝑖
∈ Θ𝑖:

E𝜃−𝑖 [𝑣𝑖 (𝑓 (𝜃𝑖 , 𝜃−𝑖))] ≥ E𝜃−𝑖
[
𝑣𝑖 (𝑓 (𝜃′𝑖 , 𝜃−𝑖))

]
,

where the expectation is over the types 𝜃−𝑖 of the other agents, and the potential
randomness of the mechanism (note the difference to DSIC, where we did
not take expectation over the types of other agents). In words, this constraint
just says that reporting an agent’s true type should maximize their expected
utility, given that everybody else is truthfully reporting. This can likewise be
generalized to settings with a payment function 𝑔.

In the setting where we can charge money, the Vickrey-Clarke-Groves (VCG)
mechanism is DSIC and maximizes social welfare. In VCG, after receiving
the type vector 𝜃, we pick the outcome 𝑜 that maximizes the reported welfare.

3.2 Mechanism Design 31

Formally, VCG selects an outcome 𝑜∗ in the set arg max𝑜∈𝑂
∑

𝑖 𝑣𝑖 (𝑜 |𝜃𝑖). Of
course, an agent 𝑖 can effectively “choose” the allocation by strategically re-
porting a type with a high value for a given outcome. The key to making VCG
incentive compatible is that we charge each agent their externality, which is
the amount that their presence in the markets harms the sum of utilities over
the remaining agents. Suppose that every agent 𝑖′ reports a type 𝜃′

𝑖′ ; none of
these are assumed to be truthful, since we are trying to show DSIC. In order to
define the externality, we discuss the “social welfare” of a given outcome 𝑜 ∈ 𝑂

under the assumption that 𝜃′
𝑖′ is the true type of agent 𝑖′ ≠ 𝑖, since we must use

the reported types to measure social welfare in the externality definition. The
externality of agent 𝑖 is then defined as

max
𝑜′∈𝑂

∑︁
𝑖′≠𝑖

𝑣𝑖′ (𝑜′ |𝜃′𝑖′)︸ ︷︷ ︸
optimal welfare without 𝑖

−
∑︁
𝑖′≠𝑖

𝑣𝑖′ (𝑜∗ |𝜃′𝑖′)︸ ︷︷ ︸
welfare with 𝑖 present

.

The first term is the maximum social welfare achievable when ignoring the
utility of agent 𝑖 (i.e. how well the remaining agents would have done if 𝑖 left
the market), and the second term is the actual sum of utilities achieved by the
remaining agents with agent 𝑖 present. The utility for agent 𝑖 under a given
outcome 𝑜 ∈ 𝑂 is their value for the outcome given their true type 𝜃𝑖 , minus
their externality payment:

𝑣𝑖 (𝑜 |𝜃𝑖) − max
𝑜′∈𝑂

∑︁
𝑖′≠𝑖

𝑣𝑖′ (𝑜′ |𝜃′𝑖′) +
∑︁
𝑖′≠𝑖

𝑣𝑖′ (𝑜 |𝜃′𝑖′)︸ ︷︷ ︸
externality of 𝑖

= 𝑣𝑖 (𝑜 |𝜃𝑖) +
∑︁
𝑖′≠𝑖

𝑣𝑖′ (𝑜 |𝜃′𝑖′)︸ ︷︷ ︸
social welfare under 𝑜

− max
𝑜′∈𝑂

∑︁
𝑖′≠𝑖

𝑣𝑖′ (𝑜′ |𝜃′𝑖′).

In the second equation we collect all agent values for the outcome, and we see
that this is exactly the social welfare under the outcome 𝑜. The second term
cannot be affected by agent 𝑖 since their reported type does not factor into the
maximization. Thus, the only thing that agent 𝑖 can do is try to maximize the
first term, which is the social welfare measured on 𝜃′−𝑖 , but with the true type
𝜃𝑖 for agent 𝑖. The first term is maximized by choosing the outcome 𝑜 ∈ 𝑂

that maximizes social welfare, which is achieved by agent 𝑖 reporting truthfully,
since VCG chooses the welfare-maximizing allocation given the reported types.

32 Auctions and Mechanism Design Introduction

3.3 Historical Notes

The issues with first-price auctions in the context of Overture’s sponsored
search auctions are described in Edelman and Ostrovsky (2007), which also
shows plots from real data exhibiting the sawtooth pattern. The derivation
of the symmetric equilibrium of the first-price auction follows the proof from
Krishna (2009). Interestingly, first-price auctions have experienced a resurgence
in the internet advertising industry. In the context of display advertising many
independent ad exchanges moved to first price in 2018, and Google followed
suit and moved their Ad Manager to first price in 20192 .

The second-price auction is sometimes referred to as the Vickrey auction
after its inventor (Vickrey, 1961). The generalized second-price auction was
described by Edelman et al. (2007), though it had been in use in the Internet
ad industry for a while at that point. The VCG mechanism was described
in a series of papers by Vickrey (1961), Clarke (1971), and Groves (1973).
A full description of a slightly more general VCG mechanism, and proof of
correctness, can be found in Nisan et al. (2007, Chapter 9)

Further reading.
As mentioned in the preface, mechanism design is a very deep topic of its own.
The reader is encouraged to study the books by Börgers (2015) and Krishna
(2009) for a thorough treatment of the topic.

2 See https://www.blog.google/products/admanager/
update-first-price-auctions-google-ad-manager/

https://www.blog.google/products/admanager/update-first-price-auctions-google-ad-manager/
https://www.blog.google/products/admanager/update-first-price-auctions-google-ad-manager/

PART TWO

GAME SOLVING AND REGRET
MINIMIZATION

4
Regret Minimization and the Minimax Theorem

So far we have mostly discussed the existence of game-theoretic equilibria
such as Nash equilibrium. Now we will get started on how to compute Nash
equilibria, specifically in two-player zero-sum games. The fastest methods for
computing large-scale zero-sum Nash equilibrium are based on what’s called
regret minimization.1 Regret minimization is a form of single-agent decision-
making, where the decision maker repeatedly chooses decision from a set of
possible choices, and each time they make a decision, they are then given some
loss vector specifying how much loss they incurred through their decision. It
may seem counterintuitive that we move on to a single-agent problem after
discussing game-theoretic problems with two or more players, but we shall see
that regret minimization can be used to learn how to play a game. We will also
use it to prove a fairly general version of von Neumann’s minimax theorem.

4.1 Regret Minimization

In the simplest regret-minimization setting we imagine that we are faced with
the task of repeatedly choosing among a finite set of 𝑛 actions. At each time
step, we choose an action, and then a loss 𝑔𝑡𝑖 ∈ [0, 1] is revealed for each
action 𝑖 ∈ [𝑛]. The loss is how unhappy we are with having chosen action 𝑖,
and the goal is to minimize losses over time.2 This scenario is then repeated
iteratively. The losses may be chosen adversarially after we make our choice,

1 Other popular names that are largely equivalent are online learning, no-regret learning and
online convex optimization.

2 One could equivalently write everything in terms of maximizing rewards instead. This is more
natural from a game-theoretic perspective. However, the analysis of these algorithms is heavily
rooted in convex minimization theory, and thus it is easier to work with minimization of
losses, so that we will not need to translate all the convex minimization machinery into
concave maximization machinery.

35

36 Regret Minimization and the Minimax Theorem

and we would like to come up with a decision-making procedure that does at
least as well as the single best action in hindsight. We will be allowed to choose
a distribution over actions, rather than a single action, at each decision point.
Classical example applications would be picking stocks repeatedly over time,
route selection for driving to work every day, or weather forecasting. To be
concrete, imagine that we have 𝑛 weather-forecasting models that we will use
to forecast the weather each day. We would like to decide which model is best
to use, but we’re not sure how to pick the best one. In that case, we may run
a regret-minimization algorithm, where our “action” is to pick a model, or a
probability distribution over models, to forecast the weather with. If we spend
enough days forecasting, then we will show that it is possible for our average
prediction to be as good as the best single model in hindsight. As can be seen
from the above examples, regret minimization methods are widely applicable
beyond equilibrium computation and a useful tool to know about.

4.1.1 Setting
Formally, we are faced with the following problem. At each time step 𝑡 =

1, . . . , 𝑇 :

(i) We must choose a decision 𝑥𝑡 ∈ Δ𝑛

(ii) Afterwards, a loss vector 𝑔𝑡 ∈ [0, 1]𝑛 is revealed to us, and we pay the loss
⟨𝑔𝑡 , 𝑥𝑡 ⟩

Our goal is to develop an algorithm that recommends good decisions. A natural
goal would be to do as well as the best sequence of actions in hindsight. But
this turns out to be too ambitious, as the following example shows

Example 4.1 We have 2 actions 𝑎1, 𝑎2. At time step 𝑡, if our algorithm puts
probability greater than 1

2 on action 𝑎1, then we set the loss to (1, 0), and vice
versa we set it to (0, 1) if we put less than 1

2 on 𝑎1. Now we face a loss of at
least 𝑇

2 , whereas the best sequence in hindsight has a loss of 0.

Instead, our goal will be to minimize what is known as external regret. The
external regret at time 𝑡 is how much worse our sequence of actions is, compared
to the best single action in hindsight:

𝑅𝑡 =

𝑡∑︁
𝜏=1

⟨𝑔𝜏 , 𝑥𝜏⟩ − min
𝑥∈Δ𝑛

𝑡∑︁
𝜏=1

⟨𝑔𝜏 , 𝑥⟩.

Because we only work with external regret in this book, we shall simply refer
to it as regret going forward.

We say that an algorithm is a no-regret algorithm if for every 𝜖 > 0, there

4.1 Regret Minimization 37

exists a sufficiently-large time horizon 𝑇 such that the algorithm guarantees
𝑅𝑇

𝑇
≤ 𝜖 for any input sequence.

Let’s see an example showing that randomization over actions is necessary.
Consider the following natural algorithm: at time 𝑡, choose the action that
minimizes the losses seen so far, where 𝑒𝑖 is the vector of all zeroes except
index 𝑖 is 1:

𝑥𝑡+1 = arg min
𝑥∈{𝑒1 ,...,𝑒𝑛 }

𝑡∑︁
𝜏=1

⟨𝑔𝜏 , 𝑥⟩. (FTL)

This algorithm is called follow the leader (FTL). Note that it always chooses
a deterministic action. The following example shows that FTL, as well as any
other deterministic algorithm, cannot be a no-regret algorithm.

Example 4.2 At time 𝑡, say the algorithm takes action 𝑖. Now the adversary
can choose the loss vector 𝑔𝑡 such that 𝑔𝑡 ,𝑖 = 1, and 𝑔𝑡 , 𝑗 = 0, ∀ 𝑗 ≠ 𝑖. Then
our deterministic algorithm has loss 𝑇 at time 𝑇 , whereas the cost of the best
action in hindsight is at most 𝑇

𝑛
(this follows from the pigeonhole principle).

Therefore, the algorithm has linear regret.

It is also possible to derive a lower bound showing that any algorithm must
have regret at least 𝑂 (

√
𝑇) in the worst case under adversarial input, see e.g.

Roughgarden (2016) Example 17.5. Thus, for adversarial inputs the best we can
hope for is a regret guarantee on the order of 𝑂 (

√
𝑇). If the input sequence is

not adversarial then it is possible to do better than𝑂 (
√
𝑇). For example, we will

see in Chapter 7 that when certain regret minimization algorithms play against
each other in a two-player zero-sum game, then they are each guaranteed at
most constant regret.

4.1.2 The Multiplicative Weights Algorithm
We now show that, while it is not possible to achieve no-regret with determin-
istic algorithms, it is possible with ones that play a mixed strategy at every
iteration.3 We will consider the multiplicative weights update algorithm.4 It
works as follows:

• At 𝑡 = 1, initialize a weight vector 𝑤1 with 𝑤1
𝑖
= 1 for all actions 𝑖

3 In the online learning setting, we assume that a player can choose mixed strategies at every
iteration, and that they receive the expected value associated to their chosen mixed strategy.
The setting where a player must sample from their distribution, and observes only the loss
associated to the played action, is called the bandit feedback setting. We do not cover bandit
feedback settings in this book.

4 This algorithm has many names. It is often referred to as hedge in the online learning literature.

38 Regret Minimization and the Minimax Theorem

• At time 𝑡, choose actions according to the probability distribution 𝑥𝑡 ,𝑖 =
𝑤𝑡
𝑖∑

𝑗∈ [𝑛] 𝑤
𝑡
𝑗

• After observing 𝑔𝑡 , set 𝑤𝑡+1
𝑖

= 𝑤𝑡
𝑖
· 𝑒−𝜂𝑔𝑡,𝑖 , where 𝜂 is a stepsize parameter

The stepsize 𝜂 controls how aggressively we respond to new information. If
𝑔𝑡 ,𝑖 is large then we decrease the weight 𝑤𝑖 more aggressively, and thus play
action 𝑖 less frequently.

Theorem 4.3 Consider running multiplicative weights for 𝑇 time steps. Then
the regret satisfies

𝑅𝑇 ≤ 𝜂𝑇

2
+ log 𝑛

𝜂
.

Proof Let 𝑔2
𝑡 denote the vector of squared losses (this square arises from the

application of a Taylor expansion below). Let 𝑍𝑡 =
∑

𝑗∈[𝑛] 𝑤
𝑡
𝑗

be the sum of
weights at time 𝑡. We have

𝑍𝑡+1 =

𝑛∑︁
𝑖=1

𝑤𝑡
𝑖𝑒

−𝜂𝑔𝑡,𝑖

= 𝑍𝑡

𝑛∑︁
𝑖=1

𝑥𝑡 ,𝑖𝑒
−𝜂𝑔𝑡,𝑖

≤ 𝑍𝑡

𝑛∑︁
𝑖=1

𝑥𝑡 ,𝑖 (1 − 𝜂𝑔𝑡 ,𝑖 +
𝜂2

2
𝑔2
𝑡 ,𝑖)

= 𝑍𝑡

(
1 − 𝜂⟨𝑥𝑡 , 𝑔𝑡 ⟩ +

𝜂2

2
⟨𝑥𝑡 , 𝑔2

𝑡 ⟩
)

≤ 𝑍𝑡𝑒
−𝜂⟨𝑥𝑡 ,𝑔𝑡 ⟩+ 𝜂2

2 ⟨𝑥𝑡 ,𝑔2
𝑡 ⟩ ,

where the first inequality uses the second-order Taylor expansion 𝑒−𝑥 ≤
1 − 𝑥 + 𝑥2

2 , which is true for 𝑥 ≥ 0, and the second inequality uses 1 + 𝑥 ≤ 𝑒𝑥 .
Telescoping and using 𝑍1 = 𝑛, we get

𝑍𝑇+1 ≤ 𝑛

𝑇∏
𝑡=1

𝑒−𝜂⟨𝑥𝑡 ,𝑔𝑡 ⟩+ 𝜂2
2 ⟨𝑥𝑡 ,𝑔2

𝑡 ⟩ = 𝑛𝑒−𝜂
∑

𝑡∈ [𝑇] ⟨𝑥𝑡 ,𝑔𝑡 ⟩+
𝜂2
2

∑
𝑡∈ [𝑇] ⟨𝑥𝑡 ,𝑔2

𝑡 ⟩ .

Now consider the best action in hindsight 𝑖∗. We have

𝑒−𝜂
∑

𝑡∈ [𝑇] 𝑔𝑡,𝑖∗ = 𝑤𝑇+1
𝑖∗ ≤ 𝑍𝑇+1 ≤ 𝑛𝑒−𝜂

∑
𝑡∈ [𝑇] ⟨𝑥𝑡 ,𝑔𝑡 ⟩+

𝜂2
2

∑
𝑡∈ [𝑇] ⟨𝑥𝑡 ,𝑔2

𝑡 ⟩ .

4.2 Online Convex Optimization 39

Taking logs gives

−𝜂
∑︁
𝑡∈[𝑇]

𝑔𝑡 ,𝑖∗ ≤ log 𝑛 − 𝜂
∑︁
𝑡∈[𝑇]

⟨𝑥𝑡 , 𝑔𝑡 ⟩ +
𝜂2

2

∑︁
𝑡∈[𝑇]

⟨𝑥𝑡 , 𝑔2
𝑡 ⟩.

Now we rearrange to get

𝑅𝑇 ≤ log 𝑛
𝜂

+ 𝜂

2

∑︁
𝑡∈[𝑇]

⟨𝑥𝑡 , 𝑔2
𝑡 ⟩ ≤

log 𝑛
𝜂

+ 𝜂𝑇

2
,

where the last inequality follows from 𝑥𝑡 ∈ Δ𝑛 and 𝑔𝑡 ∈ [0, 1]𝑛. □

If we know 𝑇 in advance then we can now obtain 𝑂 (
√
𝑇) regret by choosing

𝜂 to minimize the right-hand side of Theorem 4.3. In particular, if we set 𝜂 to
be on the order of 1√

𝑇
then we get that both terms in the bound are 𝑂 (

√
𝑇).

4.2 Online Convex Optimization

We now generalize the online learning setting from the preceding section.
Before, we had 𝑛 actions and were choosing a probability distribution over them,
and receiving a loss associated to each action. In online convex optimization
(OCO), we are faced with a similar, but more general, setting. In the OCO
setting, we are making decisions from some compact convex set 𝑋 ∈ R𝑛
(analogous to the fact that we were previously choosing probability distributions
from Δ𝑛). After choosing a decision 𝑥𝑡 , we suffer a convex loss 𝑓𝑡 (𝑥𝑡). We will
assume that 𝑓𝑡 is differentiable for convenience, but this assumption is not
necessary. As before, we would like to minimize the regret:

𝑅𝑇 =
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡) − min
𝑥∈𝑋

∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥).

We saw in the previous chapter that the follow-the-leader (FTL) algorithm,
which always picks the action that minimizes the sum of losses seen so far,
does not work. That same argument carries over to the OCO setting. The basic
problem with FTL is that it is too unstable: Consider a setting with 𝑋 = [−1, 1]
and 𝑓1 (𝑥) = 1

2𝑥. Now suppose that for 𝑓2 and onwards, 𝑓𝑡 alternates between
−𝑥 and 𝑥. Then we get that FTL flip-flops between recommending the actions
−1 and 1, since they become alternately optimal, and every time the current
recommendation ends up being the wrong choice for the next loss.

This motivates the need for a more stable algorithm. What we will do is to
smooth out the decision made at each point in time. In order to describe how
this smoothing out works we need to take a detour into distance-generating
functions.

40 Regret Minimization and the Minimax Theorem

x

y
d(z)

d(x) + ⟨∇d(x), z − x⟩
x

≥ 1

2
∥z − x∥2

Figure 4.1 Strong convexity illustrated. The gap between the function and its first-
order approximation at the point 𝑥0 should grow at least as ∥𝑧 − 𝑥 ∥2.

4.3 Distance-Generating Functions

A distance-generating function (DGF) is a function 𝑑 : 𝑋 → R which is
differentiable on the relative interior of 𝑋 , and 1-strongly convex5 with respect
to a given norm ∥ · ∥, meaning

𝑑 (𝑧) ≥ 𝑑 (𝑥) + ⟨∇𝑑 (𝑥), 𝑧 − 𝑥⟩ + 1
2
∥𝑧 − 𝑥∥2, ∀𝑥, 𝑧 ∈ 𝑋.

If 𝑑 is twice differentiable on int 𝑋 then the following condition is a sufficient,
but not necessary, condition for strong convexity with modulus 1 on 𝑋:

⟨ℎ,∇2𝑑 (𝑥)ℎ⟩ ≥ ∥ℎ∥2, ∀𝑥 ∈ 𝑋, ℎ ∈ R𝑛. (4.1)

Intuitively, strong convexity says that the gap between 𝑑 and its first-order
approximation should grow at a rate of at least ∥𝑥 − 𝑧∥2. This property is
visualized in Fig. 4.1.

We will use this gap to construct a distance function. In particular, we say
that the Bregman divergence associated with a DGF 𝑑 is the function:

𝐷 (𝑧∥𝑥) = 𝑑 (𝑧) − 𝑑 (𝑥) − ⟨∇𝑑 (𝑥), 𝑧 − 𝑥⟩.

Intuitively, we are measuring the distance going from 𝑥 to 𝑧. Note that this is
not symmetric, the distance from 𝑧 to 𝑥 may be different, and so it is not a true
distance metric.
5 If you have a function 𝑓 that is 𝛼-strongly convex for 𝛼 ≠ 1, then 𝑓 /𝛼 is 1-strongly convex.

4.3 Distance-Generating Functions 41

Given 𝑑 and our choice of norm ∥ · ∥, the performance of our algorithms will
depend on the set width of 𝑋 with respect to 𝑑:

Ω𝑑 = max
𝑥,𝑧∈𝑋

𝑑 (𝑥) − 𝑑 (𝑧),

and the dual norm of ∥ · ∥:

∥𝑔∥∗ = max
∥𝑥 ∥≤1

⟨𝑔, 𝑥⟩.

In particular, our regret bound will require an upper bound on the dual norm
of the loss vectors, i.e. max𝑡∈[𝑇] ∥𝑔𝑡 ∥∗.

Norms and their dual norm satisfy a useful inequality that is often called the
generalized Cauchy-Schwarz inequality:

⟨𝑔, 𝑥⟩ = ∥𝑥∥
〈
𝑔,

𝑥

∥𝑥∥

〉
≤ ∥𝑥∥ max

∥𝑧 ∥≤1
⟨𝑔, 𝑧⟩ ≤ ∥𝑥∥∥𝑔∥∗.

What’s the point of these DGFs, norms, and dual norms? The point is that
we get to choose all of these in a way that fits the “geometry” of our set 𝑋 . This
will become important once we derive convergence rates that depend on Ω and
the dual norm ∥𝑔∥∗ of the loss vectors.

Consider the following two DGFs for the probability simplex Δ𝑛 = {𝑥 :∑
𝑖∈[𝑛] 𝑥𝑖 = 1, 𝑥 ≥ 0}:

𝑑1 (𝑥) =
∑︁
𝑖∈[𝑛]

𝑥𝑖 log(𝑥𝑖), 𝑑2 (𝑥) =
1
2

∑︁
𝑖∈[𝑛]

𝑥2
𝑖 .

The first is the entropy DGF,6 the second is the Euclidean DGF. First let us
check that they are both strongly convex on Δ𝑛. The Euclidean DGF is clearly
strongly convex with respect to the ℓ2 norm. The entropy DGF turns out to
be strongly-convex with respect to the ℓ1 norm. The Hessian of the entropy
DGF is the diagonal matrix ∇2

𝑖𝑖
𝑑1 (𝑥) = 1/𝑥𝑖 . Using the second-order sufficient

6 The Bregman divergence associated to the entropy DGF is the well-known Kullback-Leibler
(KL) divergence.

42 Regret Minimization and the Minimax Theorem

condition for strong convexity (Eq. (4.1)) and any ℎ ∈ R𝑛:

∥ℎ∥2
1 =

©­«
∑︁
𝑖∈[𝑛]

|ℎ𝑖 |ª®¬
2

=
©­«
∑︁
𝑖∈[𝑛]

√
𝑥𝑖
|ℎ𝑖 |√
𝑥𝑖

ª®¬
2

≤ ©­«
∑︁
𝑖∈[𝑛]

𝑥𝑖
ª®¬ ©­«

∑︁
𝑖∈[𝑛]

ℎ2
𝑖

𝑥𝑖

ª®¬ by the Cauchy-Schwarz inequality

=
©­«
∑︁
𝑖∈[𝑛]

ℎ2
𝑖

𝑥𝑖

ª®¬ because 𝑥 ∈ Δ𝑛

= ⟨ℎ,∇2𝑑1 (𝑥)ℎ⟩.

Thus, both DGFs have the same strong convexity modulus of one. But now
imagine that our losses are in [0, 1]𝑛. We denote the maximum dual norm by
𝐿. For the Euclidean DGF 𝐿 is then

max
∥𝑥 ∥2≤1

⟨®1, 𝑥⟩ =
〈
®1,

®1
√
𝑛

〉
=
√
𝑛.

The set width under the Euclidean DGF is Ω𝑑2 = 1.
In contrast, the maximum dual norm 𝐿 for the ℓ1 norm is

max
∥𝑥 ∥1≤1

⟨®1, 𝑥⟩ = ∥®1∥∞ = 1,

and the set width of the entropy DGF is Ω𝑑1 = log 𝑛.
Now suppose we have a regret bound of the form 𝑂

(
Ω𝐿√
𝑇

)
(we will show such

a bound in Theorem 4.6). Then, the entropy DGF gives us a log 𝑛 dependence on
the number of actions 𝑛, whereas the Euclidean DGF leads to a

√
𝑛 dependence.

Since 𝑛 may be very large in some applications, this is a major difference. From
the perspective of worst-case regret bounds, the entropy DGF is thus the “right”
DGF for the simplex.

In the subsequent analysis, we will need the following inequality on a given
norm and its dual norm:

⟨𝑔, 𝑥⟩ ≤ 1
2
∥𝑔∥2

∗ +
1
2
∥𝑥∥2. (4.2)

which follows from

⟨𝑔, 𝑥⟩ − 1
2
∥𝑥∥2 ≤ ∥𝑔∥∗∥𝑥∥ −

1
2
∥𝑥∥2 ≤ 1

2
∥𝑔∥2

∗,

4.4 Online Mirror Descent 43

where the first step is by the generalized Cauchy-Schwarz inequality and the
second step is by maximizing over 𝑥.

We will also need the following result concerning Bregman divergences.

Lemma 4.4 (Three-point lemma) For any three points 𝑥, 𝑢, 𝑧, we have

𝐷 (𝑢∥𝑥) − 𝐷 (𝑢∥𝑧) − 𝐷 (𝑧∥𝑥) = ⟨∇𝑑 (𝑧) − ∇𝑑 (𝑥), 𝑢 − 𝑧⟩.

The proof is direct from expanding definitions and canceling terms. The
left-hand side is analogous to the triangle inequality. The right-hand side char-
acterizes the difference between the two sides of the “triangle inequality.”
Unlike the real triangle inequality, here the right-hand side is not guaranteed to
be negative. The right-hand side can be seen as an adjustment to the first-order
approximation of 𝑑 at 𝑧 to 𝑢: we subtract out the first-order approximation at 𝑥
and add in the first-order approximation at 𝑧.

4.4 Online Mirror Descent

We now cover one of the canonical OCO algorithms: Online Mirror Descent
(OMD). In this algorithm, we smooth out the choice of 𝑥𝑡+1 by penalizing how
aggressively we “respond” to ∇ 𝑓𝑡 (𝑥) by the Bregman divergence 𝐷 (𝑥∥𝑥𝑡) from
𝑥𝑡 . This has the effect of stabilizing the algorithm, where the stability is due to
the strong convexity of 𝑑. We pick our iterates as follows:

𝑥𝑡+1 = arg min
𝑥∈𝑋

⟨𝜂∇ 𝑓𝑡 (𝑥), 𝑥⟩ + 𝐷 (𝑥∥𝑥𝑡),

where 𝜂 > 0 is the stepsize.
There is a subtle issue in the above setup. When we measure the Bregman

divergence 𝐷 (𝑥∥𝑥𝑡), we need to ensure that 𝑑 is differentiable at 𝑥𝑡 . If 𝑥𝑡 ∈
relint 𝑋 then this holds by definition, since we defined a DGF as a function that
is differentiable on the relative interior. However, it may occur that 𝑥𝑡 ends up
on the relative boundary of 𝑋 , in which case the algorithm may be ill-defined
unless 𝑑 is differentiable on the relative boundary. To address this issue, we need
to assume that if 𝑥𝑡 ends up on the relative boundary, then 𝑑 is differentiable at
that point. One sufficient condition is the following, which ensures that we do
not end up on the relative boundary:

lim
𝑥→𝜕𝑋

∥∇𝑑 (𝑥)∥ = +∞. (4.3)

This condition is satisfied by the entropy DGF. Alternatively, we may simply
assume that 𝑑 is differentiable on all of 𝑋 (as is the case for the Euclidean
DGF).

44 Regret Minimization and the Minimax Theorem

To ease notation a bit, we let 𝑔𝑡 = ∇ 𝑓𝑡 (𝑥𝑡) throughout the section.
We first prove what is sometimes called a descent lemma or fundamental

inequality for OMD.

Theorem 4.5 For all 𝑥 ∈ 𝑋 , we have

𝜂(𝑓𝑡 (𝑥𝑡) − 𝑓𝑡 (𝑥)) ≤ 𝜂⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ ≤ 𝐷 (𝑥∥𝑥𝑡) − 𝐷 (𝑥∥𝑥𝑡+1) +
𝜂2

2
∥𝑔𝑡 ∥2

∗ .

Proof The first inequality in the theorem is direct from convexity of 𝑓𝑡 . Thus,
we only need to prove the second inequality.

By first-order optimality of 𝑥𝑡+1 we have

⟨𝜂𝑔𝑡 + ∇𝑑 (𝑥𝑡+1) − ∇𝑑 (𝑥𝑡), 𝑥 − 𝑥𝑡+1⟩ ≥ 0,∀𝑥 ∈ 𝑋 (4.4)

Now pick some arbitrary 𝑥 ∈ 𝑋 . By rearranging terms and adding and
subtracting ⟨∇𝑑 (𝑥𝑡+1) − ∇𝑑 (𝑥𝑡), 𝑥 − 𝑥𝑡+1⟩ we have

⟨𝜂𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ =⟨∇𝑑 (𝑥𝑡) − ∇𝑑 (𝑥𝑡+1) − 𝜂𝑔𝑡 , 𝑥 − 𝑥𝑡+1⟩ + ⟨∇𝑑 (𝑥𝑡+1) − ∇𝑑 (𝑥𝑡), 𝑥 − 𝑥𝑡+1⟩
+ ⟨𝜂𝑔𝑡 , 𝑥𝑡 − 𝑥𝑡+1⟩

≤⟨∇𝑑 (𝑥𝑡+1) − ∇𝑑 (𝑥𝑡), 𝑥 − 𝑥𝑡+1⟩ + ⟨𝜂𝑔𝑡 , 𝑥𝑡 − 𝑥𝑡+1⟩.
=𝐷 (𝑥∥𝑥𝑡) − 𝐷 (𝑥∥𝑥𝑡+1) − 𝐷 (𝑥𝑡+1∥𝑥𝑡) + ⟨𝜂𝑔𝑡 , 𝑥𝑡 − 𝑥𝑡+1⟩

≤𝐷 (𝑥∥𝑥𝑡) − 𝐷 (𝑥∥𝑥𝑡+1) − 𝐷 (𝑥𝑡+1∥𝑥𝑡) +
𝜂2

2
∥𝑔𝑡 ∥2

∗ +
1
2
∥𝑥𝑡 − 𝑥𝑡+1∥2

≤𝐷 (𝑥∥𝑥𝑡) − 𝐷 (𝑥∥𝑥𝑡+1) +
𝜂2

2
∥𝑔𝑡 ∥2

∗ .

The first inequality is by Eq. (4.4). The second equality is by the three-points
lemma. The second inequality is by Eq. (4.2). The last inequality is by strong
convexity of 𝑑. This proves the theorem. □

The descent lemma gives us a one-step upper bound on how much better
𝑥 is than 𝑥𝑡 . Based on the descent lemma, a bound on the regret of OMD
can be derived. The idea is to apply the descent lemma at each time step, and
then showing that when we sum across the resulting inequalities, a sequence of
useful cancellations occur.

Theorem 4.6 The OMD algorithm with DGF 𝑑 achieves the following bound
on regret:

𝑅𝑇 ≤ 𝐷 (𝑥∥𝑥1)
𝜂

+ 𝜂

2

∑︁
𝑡∈[𝑇]

∥𝑔𝑡 ∥2
∗ .

4.4 Online Mirror Descent 45

Proof Consider any 𝑥 ∈ 𝑋 . Now we apply the inequality from Theorem 4.5
separately to each time step 𝑡 = 1, . . . , 𝑇 , divide through by 𝜂, and then summing
from 𝑡 = 1, . . . , 𝑇 we get

∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥 − 𝑥𝑡 ⟩ ≤
∑︁
𝑡∈[𝑇]

1
𝜂

(
𝐷 (𝑥∥𝑥𝑡) − 𝐷 (𝑥∥𝑥𝑡+1) +

𝜂2

2
∥𝑔𝑡 ∥2

∗

)
≤𝐷 (𝑥∥𝑥1) − 𝐷 (𝑥∥𝑥𝑇+1)

𝜂
+

∑︁
𝑡∈[𝑇]

𝜂

2
∥𝑔𝑡 ∥2

∗

≤𝐷 (𝑥∥𝑥1)
𝜂

+
∑︁
𝑡∈[𝑇]

𝜂

2
∥𝑔𝑡 ∥2

∗,

where the second inequality is by noting that the term 𝐷 (𝑥∥𝑥𝑡) appears with a
positive sign at the 𝑡’th part of the sum, and negative sign at the 𝑡 − 1’th part of
the sum. □

Notice that in Theorem 4.6, we did not use the boundedness of 𝑋 . Bound-
edness of 𝑋 is only used to ensure that 𝐷 (𝑥∥𝑥1) ≤ Ω is finite. However,
Theorem 4.6 applies more broadly, and we shall use it in an unbounded setting
later in Chapter 17.

Suppose that each 𝑓𝑡 is Lipschitz in the sense that ∥𝑔𝑡 ∥∗ ≤ 𝐿. Using our
bound Ω on DGF differences, and supposing we initialize 𝑥1 at the minimizer
of 𝑑, then we can set 𝜂 =

√
2Ω

𝐿
√
𝑇

to get

𝑅𝑇 ≤ Ω

𝜂
+ 𝜂𝑇𝐿2

2
≤
√

2Ω𝑇𝐿.

A related algorithm is the follow-the-regularized-leader algorithm. It works
as follows:

𝑥𝑡+1 = arg min
𝑥∈𝑋

𝜂
∑︁
𝜏∈[𝑡]

⟨𝑔𝑡 , 𝑥⟩ + 𝑑 (𝑥).

Note that it is more directly related to FTL: it uses the FTL update, but with a
single smoothing term 𝑑 (𝑥), whereas OMD re-centers a Bregman divergence at
𝐷 (·∥𝑥𝑡) at every iteration. FTRL can be analyzed similarly to OMD. It gives the
same theoretical properties for our purposes, but we will see some experimental
performance from both algorithms later where the performance differs quite a
bit. For a convergence proof see Orabona (2019, chapter 7).

46 Regret Minimization and the Minimax Theorem

4.5 Minimax theorems via OCO

In the first and second chapters we saw von Neumann’s minimax theorem,
which was:

Theorem 4.7 (von Neumann’s minimax theorem) Every two-player zero-sum
game has a unique value 𝑣, called the value of the game, such that

min
𝑥∈Δ𝑛

max
𝑦∈Δ𝑚

⟨𝑥, 𝐴𝑦⟩ = max
𝑦∈Δ𝑚

min
𝑥∈Δ𝑛

⟨𝑥, 𝐴𝑦⟩ = 𝑣.

We will now prove a generalization of this theorem.

Theorem 4.8 (Generalized minimax theorem) Let 𝑋 ∈ R𝑛, 𝑌 ∈ R𝑚 be com-
pact convex sets. Let 𝑓 (𝑥, 𝑦) be continuous, convex in 𝑥 for a fixed 𝑦, and
concave in 𝑦 for a fixed 𝑥. Assume that 𝑓 has bounded partial subgradients, i.e.
𝜕𝑥 ∥ 𝑓 (𝑥, 𝑦)∥2 ≤ 𝐿, 𝜕𝑦 ∥ 𝑓 (𝑥, 𝑦)∥2 ≤ 𝐿 for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 . Then there exists a
value 𝑣 such that

min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) = max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓 (𝑥, 𝑦) = 𝑣.

Proof We will view this as a game between a player choosing the minimizer 𝑥
and a player choosing the maximizer 𝑦. Suppose first that the maximizer has to
go first, and let 𝑦∗ be an optimal solution to the max-min problem. Now suppose
that the maximizer goes second. When 𝑦 is chosen second the maximizer can
observe the chosen 𝑥 before making a decision. In the worst case, they can
always pick 𝑦∗, but they may do better. Thus, we get

max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓 (𝑥, 𝑦) ≤ min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓 (𝑥, 𝑦).

In order to prove the other direction we will use our OCO results. We run
a repeated game where the players choose a strategy 𝑥𝑡 , 𝑦𝑡 at each iteration 𝑡.
The 𝑥 player chooses 𝑥𝑡 according to a no-regret algorithm (say OMD), while
𝑦𝑡 is always chosen as arg max𝑦∈𝑌 𝑓 (𝑥𝑡 , 𝑦). Let the average strategies be

𝑥 =
1
𝑇

∑︁
𝑡∈[𝑇]

𝑥𝑡 , �̄� =
1
𝑇

∑︁
𝑡∈[𝑇]

𝑦𝑡 .

Using OMD with the Euclidean DGF (since 𝑋 is compact this is well-
defined), we get the following bound:

𝑅𝑇 =
∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦𝑡) − min
𝑥∈𝑋

∑︁
𝑡∈[𝑇]

𝑓 (𝑥, 𝑦𝑡) ≤ 𝑂

(√
Ω𝑇𝐿

)
. (4.5)

4.6 Historical notes 47

Now we bound the value of the min-max problem as

min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) ≤ max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) ≤ 1
𝑇

max
𝑦∈𝑌

∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦) ≤
1
𝑇

∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦𝑡),

where the first inequality follows because 𝑥 is a valid choice in the minimization
over 𝑋 , the second inequality follows by convexity, and the third inequality
follows because 𝑦𝑡 is chosen to maximize 𝑓 (𝑥𝑡 , 𝑦𝑡). Now we can use the regret
bound (4.5) for OMD to get

min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) ≤ 1
𝑇

min
𝑥∈𝑋

∑︁
𝑡∈[𝑇]

𝑓 (𝑥, 𝑦𝑡) +𝑂

(√
Ω𝐿
√
𝑇

)
≤ min

𝑥∈𝑋
𝑓 (𝑥, �̄�) +𝑂

(√
Ω𝐿
√
𝑇

)
≤ max

𝑦∈𝑌
min
𝑥∈𝑋

𝑓 (𝑥, 𝑦) +𝑂

(√
Ω𝐿
√
𝑇

)
,

where the second inequality is by concavity. Taking the limit as 𝑇 → ∞ we get

min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) ≤ max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓 (𝑥, 𝑦),

which concludes the proof. □

For simplicity, we assumed continuity of 𝑓 . The argument did not really need
continuity, though. The same proof continues to work for 𝑓 which is lower and
upper semicontinuous in 𝑥 and 𝑦, respectively.

4.6 Historical notes

When applied to the offline setting where 𝑓𝑡 = 𝑓 ∀𝑡, OMD is equivalent to
the mirror descent algorithm which was introduced by Nemirovsky and Yudin
(1983), with the more modern variant introduced by Beck and Teboulle (2003).
There’s a functional-analytic interpretation of OMD and mirror descent where
one views 𝑑 as a mirror map that allows us to think of 𝑓 and 𝑥 in terms of the
dual space of linear forms. This was the original motivation for mirror descent,
and allows one to apply the algorithm in broader settings, e.g. Banach spaces.
This is described in several textbooks and lecture notes e.g. Orabona (2019) or
Bubeck et al. (2015). The FTRL algorithm run on an offline setting with 𝑓𝑡 = 𝑓

becomes equivalent to Nesterov’s dual averaging algorithm (Nesterov, 2009).
The minimax theorems in Theorem 4.7 and Theorem 4.8 were developed

48 Regret Minimization and the Minimax Theorem

by John von Neumann in (von Neumann, 1928). The term “von Neumann’s
minimax theorem” is often used to refer to the specific version in Theorem 4.7.
In his original 1928 paper, von Neumann actually proved a more general result
for continuous quasi-convex-quasi-concave functions 𝑓 , which captures the
form given in Theorem 4.8. See Kjeldsen (2001) for a discussion of the history
of von Neumann’s development and conceptualization of the minimax theorem,
including a discussion of the quasi-convex-quasi-concave generalization. The
more general Theorem 4.8, as well as even more general versions that allow
quasi-concavity and quasi-convexity and abstract topological decision spaces,
are often referred to as Sion’s minimax theorem7 , sometimes even in cases that
fall under von Neumann’s generalization beyond the bilinear case. For example,
in his 1958 paper (Sion et al., 1958), Sion claims that von Neumann’s theorem is
only concerned with bilinear functions, whereas it is actually substantially more
general. This misconception that von Neumann only dealt with the bilinear case
may have arisen because that is by far the most important case from a game-
theoretic perspective (since it enables solutions to two-player zero-sum games).
Moreover, von Neumann’s original 1928 paper was written in German, and an
English translation did not appear until 1958 (von Neumann, 1959).

Further reading.
A very broad coverage of online convex optimization can be found in Orabona
(2019). I suggest starting with this book, though some of the below books might
be more approachable depending on the reader’s background. For a more ap-
proachable first text, Hazan et al. (2016), which is a very readable introduction
to OCO and regret minimization. Another good earlier book is Bubeck et al.
(2015). Beck (2017) is an excellent reference for a convex optimization per-
spective on first-order methods.

7 A quite general version of what’s usually referred to as Sion’s minimax theorem can be found
on Wikipedia at https://en.wikipedia.org/wiki/Sion%27s_minimax_theorem.

https://en.wikipedia.org/wiki/Sion%27s_minimax_theorem

5
Blackwell Approachability and Regret Matching

In this chapter we are going to introduce a new type of online-learning problem
concerned with vector-valued games. This framework will eventually be shown
to lead to one of the fastest algorithms for game solving in practice.

5.1 Blackwell Approachability

In two-player zero-sum games we saw that there exists a value for the game 𝑣

such that the row player can choose a strategy 𝑥 assuring that the payoff will
be in the set (−∞, 𝑣] no matter what the column player does. Conversely, the
column player can assure that the payoff lies in the set [𝑣,∞), no matter what
the row player does.

In Blackwell approachability we ask whether there is a way to generalize the
notion of forcing the payoffs to lie in a particular set to vector-valued games.

We consider the following setup:

• Players 1 and 2 choose strategies from compact convex sets 𝑋 and 𝑌 respec-
tively.

• There is a bilinear vector-valued payoff function 𝑓 (𝑥, 𝑦) ∈ R𝑚.
• There is a closed convex target set 𝐶.
• We will assume that 𝑓 (𝑥, 𝑦) ∈ 𝐵(0, 1), where 𝐵(0, 1) = {𝑔 : ∥𝑔∥2 ≤ 1}.

Player 1 wants to force the payoffs 𝑓 (𝑥, 𝑦) to lie inside 𝐶. The case of a
single-shot game is trivially analyzed: it is generally only possible to do this
if there exists 𝑥 such that 𝑓 (𝑥, 𝑦) ∈ 𝐶, ∀𝑦 ∈ 𝑌 . So in general this won’t be
possible. However, it turns out that in a repeated game setting, there is a sense
in which the 𝑥 player can have the payoffs approach 𝐶. In the repeated game,
the players choose actions 𝑥𝑡 , 𝑦𝑡 at each time step 𝑡. The goal for player 1 is to
have the average payoff vector 𝑓𝑡 =

1
𝑡

∑𝑡
𝑖=1 𝑓 (𝑥𝑡 , 𝑦𝑡) approach 𝐶, while the goal

49

50 Blackwell Approachability and Regret Matching

of player 2 is to keep 𝑓𝑡 from approaching 𝐶. We will measure the distance as
𝑑 (𝑓𝑡 , 𝐶) = min𝑧∈𝐶 ∥𝑧 − 𝑓𝑡 ∥2. Formally, we say the following.

Definition 5.1 A target set 𝐶 is approachable if there exists an algorithm for
picking 𝑥𝑡 based on 𝑥1, . . . , 𝑥𝑡−1, 𝑦1, . . . , 𝑦𝑡−1 such that 𝑑 (𝑓𝑡 , 𝐶) → 0 as 𝑡 goes
to infinity.

𝐶

𝑓 1𝑓 2𝑓 3𝑓 4

Figure 5.1 Blackwell approachability requires that the sequence { 𝑓𝑡 }𝑡=1 ap-
proaches 𝐶 no matter the choices of the 𝑦 player.

A stronger notion is that player 1 can force a given set 𝐻. We already con-
cluded that this will not be possible for the target set other than in trivial cases,
but nonetheless, the idea of forcing sets will play a crucial role, particularly
forcing hyperplanes that contain the target set 𝐶.

Definition 5.2 A set 𝐻 is forceable if there exists 𝑥 such that 𝑓 (𝑥, 𝑦) ∈ 𝐶 for
all 𝑦 ∈ 𝑌 .

5.1.1 Scalar Approachability
In the special case where 𝑚 = 1 we get a scalar approachability game. As
discussed at the beginning of this section, this can be analyzed via minimax
theorems. In particular, for the scalar case target sets are intervals, and we may
analyze only intervals of the form (−∞, 𝜆] without loss of generality. Clearly,
an interval (−∞, 𝜆] is approachable if 𝜆 ≥ 𝑣, where 𝑣 is the value of the game
associated to the bilinear function 𝑓 in Sion’s minimax theorem. This follows
because if player 1 plays any strategy 𝑥 such that they are guaranteed at least
𝑣, then 𝑓 (𝑥, 𝑦𝑡) ∈ (−∞, 𝜆] for all 𝑡 no matter the 𝑦𝑡 . Conversely, if 𝜆 < 𝑣, then
by Sion’s theorem player 2 may play a strategy 𝑦 such that no matter the 𝑥𝑡 ,
𝑓 (𝑥𝑡 , 𝑦) ≥ 𝑣 > 𝜆. We thus have the lemma

Lemma 5.3 In scalar approachability games, the following three statements
are equivalent:

5.1 Blackwell Approachability 51

• A target set (−∞, 𝜆] is approachable.
• A target set (−∞, 𝜆] is forceable.
• 𝜆 ≥ 𝑣, where 𝑣 is the value of the game associated to 𝑓 , 𝑋,𝑌 in Sion’s

minimax theorem.

Thus, in the scalar case of Blackwell approachability, approachability of
any target set 𝐶 boils down to whether 𝐶 intersects with the halfspace (i.e.
interval) (−∞, 𝜆). This continues to hold for halfspaces in higher dimension,
but non-halfspace target sets become more nuanced.

5.1.2 Halfspace Approachability
We first analyze the special case where the target set is a halfspace 𝐻 =

{ℎ : ⟨ℎ, 𝑎⟩ ≤ 𝑏}. Halfspaces turn out to have the nice property that forceability
is equivalent to approachability:

Lemma 5.4 A halfspace 𝐻 is approachable if and only if it is forceable.

Proof The proof consists in reducing halfspace approachability to a scalar
approachability game. To do that, let 𝑓 (𝑥, 𝑦) = ⟨𝑎, 𝑓 (𝑥, 𝑦)⟩. Now we clearly
have that forcing 𝐻 wrt. 𝑓 is equivalent to forcing (−∞, 𝑏] wrt. 𝑓 . Say 𝑥∗ forces
(−∞, 𝑏], then

𝑏 ≥ 𝑓 (𝑥∗, 𝑦) = ⟨𝑎, 𝑓 (𝑥∗, 𝑦)⟩, ∀𝑦 ∈ 𝑌,

and so 𝑥∗ also forces 𝐻, and vice versa.
For approachability, we have that the distance from 𝑓𝑡 to 𝐻 satisfies

𝑑 (𝑓𝑡 , 𝐻) = 𝑑
(
⟨𝑎, 𝑓𝑡 ⟩, (−∞, 𝑏]

)
= 𝑑

(
1
𝑡

𝑡∑︁
𝑖=1

⟨𝑎, 𝑓𝑖⟩, (−∞, 𝑏]
)
.

Thus, approachability of 𝐻 is equivalent to approachability of (−∞, 𝑏].
From Lemma 5.3 we have that approachability and forceability are equivalent

for (−∞, 𝑏], so they must be equivalent for 𝐻. □

5.1.3 Blackwell’s Approachability Theorem
Now we are ready to analyze the general case of when a convex closed set 𝐶 is
approachable. Blackwell proved the following:

Theorem 5.5 A convex closed set 𝐶 is approachable if and only if every
halfspace 𝐻 ⊇ 𝐶 is forceable. Moreover, if every halfspace is forceable then
there exists a procedure such that the distance between 𝐶 and the average
payoff vector is bounded by 2√

𝑇
at time 𝑇 .

52 Blackwell Approachability and Regret Matching

𝐶

𝐻𝑡

𝑓 𝑡

𝜙𝑡

Figure 5.2 The tangent halfspace forced in Blackwell’s theorem.

Blackwell’s proof is constructive. It is based on the following algorithm for
approaching 𝐶 when all halfspaces containing 𝐶 are forceable: At every time
step 𝑡, do the following:

• If 𝑓𝑡 ∈ 𝐶, play any 𝑥𝑡 .

• Else consider the projection 𝜙𝑡 of 𝑓𝑡 onto 𝐶. We construct a halfspace 𝐻𝑡

with normal vector 𝑎𝑡 = 𝜙𝑡 − 𝑓𝑡 , and constant 𝑏𝑡 = ⟨𝑎𝑡 , 𝜙𝑡 ⟩. Play any 𝑥𝑡

forcing 𝐻𝑡 . Fig. 5.2 illustrates how 𝐻𝑡 is chosen.

The algorithm repeatedly takes the halfspace tangent to the projection of 𝑓𝑡 ,
and forces it. We now prove Blackwell’s theorem.

Proof Say that𝐶 is approachable. Then we may play any algorithm guaranteed
to approach 𝐶, and we will then be guaranteed to approach every 𝐻 ⊇ 𝐶.

Now assume that all 𝐻 ⊇ 𝐶 are approachable, and play Blackwell’s algo-
rithm. First note that since 𝜙𝑡 is the projection of 𝑓𝑡 onto a convex set 𝐻𝑡 (this
follows from how we constructed 𝐻𝑡) we have from first-order optimality:

⟨𝜙𝑡 − 𝑓𝑡 , 𝑧 − 𝜙𝑡 ⟩ ≥ 0, ∀𝑧 ∈ 𝐻𝑡 . (5.1)

5.2 Regret Matching 53

Let 𝑓𝑡+1 = 𝑓 (𝑥𝑡+1, 𝑦𝑡+1). We have

𝑑 (𝑓𝑡+1, 𝐶)2 =min
𝑧∈𝐶

∥ 𝑓𝑡+1 − 𝑧∥2
2

≤∥ 𝑓𝑡+1 − 𝜙𝑡 ∥2
2

=

 𝑡

𝑡 + 1
𝑓𝑡 +

1
𝑡 + 1

𝑓𝑡+1 − 𝜙𝑡

2

2
; by definition of 𝑓𝑡+1

=

 𝑡

𝑡 + 1
(𝑓𝑡 − 𝜙𝑡) +

1
𝑡 + 1

(𝑓𝑡+1 − 𝜙𝑡)

2

2

=
1

(𝑡 + 1)2

(
𝑡2∥(𝑓𝑡 − 𝜙𝑡)∥2

2 + ∥(𝑓𝑡+1 − 𝜙𝑡)∥2
2 + 2𝑡⟨ 𝑓𝑡 − 𝜙𝑡 , 𝑓𝑡+1 − 𝜙𝑡 ⟩

)
≤ 1
(𝑡 + 1)2

(
𝑡2∥(𝑓𝑡 − 𝜙𝑡)∥2

2 + ∥(𝑓𝑡+1 − 𝜙𝑡)∥2
2

)
; by (5.1)

=
1

(𝑡 + 1)2

(
𝑡2𝑑 (𝑓𝑡 , 𝐶)2 + ∥(𝑓𝑡+1 − 𝜙𝑡)∥2

2

)
.

Telescoping this inequality we have

𝑑 (𝑓𝑡+1, 𝐶)2 ≤ 1
(𝑡 + 1)2

𝑡∑︁
𝑖=1

∥ 𝑓𝑡+1 − 𝜙𝑡 ∥2
2 ≤ 4𝑡

(𝑡 + 1)2 ≤ 4
𝑡 + 1

,

where the second inequality is from the fact that we assumed payoffs lie in the
norm-ball 𝐵(0, 1). Taking the square root of both sides gives the theorem. □

5.2 Regret Matching

Blackwell’s constructive result can be used to develop regret-minimization
algorithms for a variety of sets. A well-known algorithm that we will study
is regret matching, which is an instantiation of Blackwell’s result for regret
minimization over the simplex Δ𝑛 with linear losses 𝑔𝑡 ∈ [0, 1]𝑛. The instan-
tiation works as follows. We let our decision set be 𝑋 = Δ𝑛, and our target
set is the nonpositive orthant 𝐶 = R𝑛≤0. For each pure action 𝑖 we say that
𝑟𝑡 ,𝑖 = ⟨𝑔𝑡 , 𝑥𝑡 ⟩ − 𝑔𝑡 ,𝑖 is the regret from not playing action 𝑖 rather than 𝑥𝑡 at time
𝑡 ∈ [𝑇], and we let 𝑟𝑡 be the vector of all 𝑛 regrets. We will use 𝑟𝑡√

𝑛
as our

vector-valued payoff at time 𝑡 in the Blackwell approachability problem. Note
that the regret is now 𝑅𝑇 = max𝑖

∑
𝑡∈[𝑇] 𝑟𝑡 ,𝑖 , and having regret grow sublinearly

is equivalent to 𝑟𝑡 = 1
𝑡

∑𝑡
𝑘=1 𝑟𝑘 approaching the nonpositive orthant R𝑛≤0, i.e.

our target set.

Proposition 5.6 Suppose we have a regret minimization problem over the
simplex Δ𝑛 with linear losses 𝑔𝑡 ∈ [0, 1]𝑛, and we use Blackwell’s algorithm

54 Blackwell Approachability and Regret Matching

on the approachability instance above. Then the regret is upper bounded as
𝑅𝑇 ≤

√
𝑛𝑇 .

Proof We have

𝑅𝑇 = max
𝑖∈[𝑛]

∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥𝑡 − 𝑒𝑖⟩

= max
𝑖∈[𝑛]

∑︁
𝑡∈[𝑇]

𝑟𝑡 ,𝑖

= 𝑇 max
𝑖∈[𝑛]

𝑟𝑇,𝑖

≤ 𝑇 max
𝑖∈[𝑛]

[𝑟𝑇,𝑖]+

≤ 𝑇
√
𝑛∥ [𝑟𝑇,𝑖]+/

√
𝑛∥2

≤
√
𝑇𝑛.

The first inequality is simply by thresholding values at zero, the second inequal-
ity is by norm equivalence (i.e. ∥ · ∥∞ ≤ ∥ · ∥2) and homogeneity of norms, and
the third inequality is by Theorem 5.5 after noting that the normalized payoff
vector satisfies ∥𝑟𝑡/

√
𝑛∥2 ≤ 1, and noting that the Euclidean distance to the

positive orthant is exactly the norm of the positively-thresholded vector. □

By Blackwell’s theorem having 𝑟𝑡 approach R𝑛≤0 can be done by repeatedly
forcing tangent halfspaces. To do so, let 𝜙𝑡 be the projection of 𝑟𝑡 onto R𝑛≤0.
Note that the normal vector 𝑎𝑡 = 𝑟𝑡 − 𝜙𝑡 simply thresholds 𝑟𝑡 at zero, setting
all negative entries to zero. Now, we will force 𝑟𝑡+1 to be in the halfspace with
normal vector 𝑎𝑡 by ensuring ⟨𝑎𝑡 , 𝑟𝑡+1⟩ = 0. To do so, first consider the square
matrix of pairwise regrets 𝐵, where 𝐵𝑖 𝑗 is the regret incurred by playing 𝑗 rather
than 𝑖 under 𝑔𝑡+1. We have that 𝐵𝑖 𝑗 = −𝐵 𝑗𝑖 , so 𝐵 is skew-symmetric, which
means that ⟨𝑞, 𝐵𝑞⟩ = 0 for all 𝑞. We set 𝑥𝑡+1 =

𝑎𝑡
∥𝑎𝑡 ∥1

, in which case we get that
the next regret is 𝑟𝑡+1 = 𝐵𝑥𝑡+1 = 𝐵

𝑎𝑡
∥𝑎𝑡 ∥1

, and now it satisfies ⟨𝑎𝑡 , 𝑟𝑡+1⟩ = 0, and
thus we forced the desired halfspace.

Summarizing what we did in terms of our standard regret minimization setup,
we have an algorithm that works as follows:

• Play arbitrary 𝑥1.
• Keep a sum 𝑟𝑡 =

∑𝑡
𝑘=1 𝑟𝑘 of regret vectors.

• At time 𝑡 + 1 set 𝑥𝑡+1,𝑖 =
[𝑟𝑡,𝑖]+∑𝑛

𝑘=1 [𝑟𝑡,𝑘]+
.

• If no regrets are positive, play uniform strategy.

This algorithm is called regret matching. By Theorem 5.5 regret matching has

5.3 Regret Matching+ 55

𝐻𝑡

𝑓 𝑡

𝜙𝑡

𝑟𝑡+1

0
𝑅2
−

Figure 5.3 The next regret vector 𝑟𝑡+1 lies in the halfspace forced in Blackwell’s
theorem.

regret that grows on the order of 𝑂
(√

𝑇

)
, assuming 𝑔𝑡 ∈ 𝐵(0, 1) for all 𝑡 (if

this does not hold we may simply normalize the payoffs).

5.3 Regret Matching+

Finally, we present a variation on regret matching, which turns out to be im-
mensely useful in practice. In regret matching, remember that we took the sum
of the regret vectors and thresholded it at zero when generating 𝑥𝑡+1. In regret
matching+ (RM+), we only keep track of positive regrets. Formally, we have
the following algorithm:

• Initialize 𝑄1 = 0 and play 𝑥1 arbitrarily.
• After seeing 𝑟𝑡 , set 𝑄𝑡 =

[
𝑡−1
𝑡
𝑄𝑡−1 + 1

𝑡
𝑟𝑡

]+.

• At time 𝑡 + 1, play 𝑥𝑡+1,𝑖 =
𝑄𝑡,𝑖

∥𝑄𝑡 ∥1
.

The important observation for RM+ is that we are constructing a sequence
that upper-bounds regret, i.e. 𝑄𝑡 ≥ 𝑟𝑡 . This is easy to see, as we are only
dropping negative terms in the summation that makes up 𝑟𝑡 .

Visually, we may think of it as moving along a face ofR𝑛≤0, while maintaining
the same distance 𝑑 to R𝑛≤0 while moving towards 0. See Figure 5.4.

Theorem 5.7 Assume that the payoff vectors satisfy 𝑔𝑡 ∈ 𝐵(0, 1). RM+ ap-
proaches 𝐶 = R𝑛≤0 at a rate of 2√

𝑇+1
.

Proof Let 𝑄∗
𝑡 = 0 be the projection of 𝑄𝑡 onto 𝐶. Let 𝐻 be the halfspace

{𝑞 : ⟨𝑄𝑡 , 𝑞⟩ ≤ 0} corresponding to forcing in Blackwell’s theorem (since 𝑄∗
𝑡 =

56 Blackwell Approachability and Regret Matching

𝑄𝑡 + 𝑟𝑡+1

𝑄𝑡+1d

d

0
𝑅2
−

Figure 5.4 The thresholding used in constructing 𝑄𝑡+1.

0). We have

𝑑 (𝑄𝑡+1, 𝐶)2 =min
𝑧∈𝐶

∥𝑄𝑡+1 − 𝑧∥2

≤||𝑄𝑡+1 −𝑄∗
𝑡 ∥2

=∥𝑄𝑡+1∥2; since 𝑄∗
𝑡 = 0

=

[𝑡

𝑡 + 1
𝑄𝑡 +

1
𝑡 + 1

𝑟𝑡+1

]+

2

≤

 𝑡

𝑡 + 1
𝑄𝑡 +

1
𝑡 + 1

𝑟𝑡+1

2
; since thresholding can only decrease the norm

=
1

(𝑡 + 1)2

(
𝑡2∥𝑄𝑡 ∥2 + ∥𝑟𝑡+1∥2 + 2𝑡⟨𝑄𝑡 , 𝑟𝑡+1⟩

)
=

1
(𝑡 + 1)2

(
𝑡2∥𝑄𝑡 ∥2 + ∥𝑟𝑡+1∥2

)
; by forcing 𝑟𝑡+1 ∈ 𝐻.

By telescoping we now get

𝑑 (𝑄𝑡+1, 𝐶)2 ≤ 1
(𝑡 + 1)2

(
𝑡2𝑑 (𝑄𝑡 , 𝐶) + ∥𝑟𝑡+1∥2

)
≤ 1
(𝑡 + 1)2

𝑡∑︁
𝑘=1

∥𝑟𝑘+1∥2

≤ 1
(𝑡 + 1)2 4𝑡

≤ 4
(𝑡 + 1) .

Taking square roots concludes the theorem. □

Using the same logic as in Proposition 5.6, we get that RM+ has a regret
bound of

√
𝑛𝑇 .

5.4 Overview of Regret Minimizers 57

5.4 Overview of Regret Minimizers

At this point we have covered quite a few regret minimizers. In the coming
chapters we will start to look at how they can be used to solve zero-sum games,
both matrix games and extensive-form games. For now, let us quickly recap and
compare our options. Say that we want to minimize linear losses from [0, 1]𝑛
over a simplex Δ𝑛 (note that this covers convex losses with bounded dual norm
of the gradients). In that case we have covered 5 algorithms with two different
types of regret bounds:

• Regret bound: 𝑂
(√︁

𝑇 log 𝑛
)
: Hedge and OMD with the entropy DGF (in

fact, these are two different perspectives on the same algorithm).
• Regret bound: 𝑂

(√
𝑛𝑇

)
: OMD (Euclidean), Regret Matching, and Regret

Matching+.

It is clear that the entropy-based approach leads to a much more desirable
dependence on the dimension of the problem. However, once we start solving
games using regret minimization in Chapter 6 we will see that the numerical
performance is inverted: the best methods are based on the Euclidean DGF and
regret matching+.

5.5 Historical Notes

Blackwell approachability was introduced in Blackwell (1956). Regret match-
ing was introduced by Hart and Mas-Colell (2000). The RM+ algorithm was
introduced in Tammelin (2014) and its 𝑂 (

√
𝑇) regret bound was proven by

Tammelin et al. (2015), though not through a Blackwell approachability per-
spective. The proof of RM+ via modified Blackwell approachability is, I believe,
new. It was developed together with Gabriele Farina when working on the pa-
pers Farina et al. (2017, 2019b), though we never used it in those works. There
exist extensions of the regret matching reduction to other convex compact sets
based on Blackwell approachability. See Abernethy et al. (2011) for a general
reduction, and Grand-Clément and Kroer (2024) for a numerically-performant
procedure for solving more general convex-concave saddle-point problems us-
ing Blackwell approachability.

Further reading.
Unfortunately there aren’t many places to find coverage of Blackwell approach-
ability, and furthermore all the sources I know of cover it in quite differ-
ent ways and levels of generality. Lecture notes 13 and 14 of Ramesh Jo-

58 Blackwell Approachability and Regret Matching

hari (Johari, 2007) cover the finite-action space case as well as regret matching
and the relationship to calibration. Another nice presentation for that same
case is the one given by Young (2004). The more general proof of Black-
well’s theorem given here largely follows the one given in a blog post by
Farina at http://www.cs.cmu.edu/˜gfarina/2016/approachability/.
The recently-updated edition of Hazan et al. (2016) also added a chapter on
Blackwell approachability.

http://www.cs.cmu.edu/~gfarina/2016/approachability/

6
Self-Play via Regret Minimization

We have covered a slew of no-regret algorithms: hedge, online mirror descent
(OMD), regret matching (RM), and RM+. All of these algorithms can be used
for the case of solving two-player zero-sum matrix games of the form

min
𝑥∈Δ𝑛

max
𝑦∈Δ𝑚

⟨𝑥, 𝐴𝑦⟩.

Matrix games are a special case of the more general saddle-point problems

min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓 (𝑥, 𝑦),

where 𝑓 is convex-concave, meaning that 𝑓 (·, 𝑦) is convex for all fixed 𝑦, 𝑓 (𝑥, ·)
is concave for all fixed 𝑥. In this chapter we will cover how to solve this more
general class of saddle-point problems by using regret minimization for each
“player” and having the regret minimizers perform what is usually called self
play. The name self play comes from the fact that we usually use the same
regret-minimization algorithm for each player, and so in a sense this approach
towards computing equilibria lets the chosen regret-minimization algorithm
play against itself. After covering the self play setup, we will look at some
experiments on practical performance for the matrix-game case.

6.1 From Regret to Nash Equilibrium

In order to use regret-minimization algorithms for computing Nash equilibrium,
we will run a repeated game between the 𝑥 and 𝑦 players. We will assume that
the players have access to regret-minimizing algorithms A𝑥 and A𝑦 (we will
be a bit loose with notation here and implicitly assume that A𝑥 and A𝑦 keep a
state that may depend on the sequence of losses and decisions). The game is as
follows:

59

60 Self-Play via Regret Minimization

𝑋

𝑌

𝑔𝑡−1

ℓ𝑡−1

𝑥𝑡

𝑦𝑡 ℓ𝑡

𝑔𝑡
𝑋

𝑌

𝑥𝑡+1

𝑦𝑡+1
· · ·· · ·

Figure 6.1 The flow of strategies and losses in regret minimization for games.

• Initialize 𝑥1 ∈ 𝑋, 𝑦1 ∈ 𝑌 to be some pair of strategies in the relative interior
(in matrix games we usually start with the uniform strategy)

• At time 𝑡, let 𝑥𝑡 be the recommendation from A𝑥 and 𝑦𝑡 be the recommen-
dation from A𝑦

• Let A𝑥 and A𝑦 observe losses 𝑔𝑡 = 𝑓 (·, 𝑦𝑡), ℓ𝑡 = 𝑓 (𝑥𝑡 , ·) respectively

For a strategy pair 𝑥, �̄�, we will measure proximity to Nash equilibrium via
the saddle-point residual (SPR):

𝜉 (𝑥, �̄�) :=
[
max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, �̄�)
]
+

[
𝑓 (𝑥, �̄�) − min

𝑥∈𝑋
𝑓 (𝑥, �̄�)

]
=max

𝑦∈𝑌
𝑓 (𝑥, 𝑦) − min

𝑥∈𝑋
𝑓 (𝑥, �̄�).

Each bracketed term represents how much each player can improve by deviating
from �̄� or 𝑥 respectively, given the strategy profile (𝑥, �̄�). In game-theoretic
terms, the brackets capture how much each player improves by best responding.

Suppose that A𝑥 and A𝑦 guarantee regret bounds of the form∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦𝑡) − min
𝑥∈𝑋

∑︁
𝑡∈[𝑇]

𝑓 (𝑥, 𝑦𝑡) ≤ 𝜖𝑥 ,

max
𝑦∈𝑌

∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦) −
∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦𝑡) ≤ 𝜖𝑦 .
(6.1)

Then the following theorem holds.

Theorem 6.1 Suppose (6.1) holds, then for the average strategies 𝑥 = 1
𝑇

∑
𝑡∈[𝑇] 𝑥𝑡 , �̄� =

1
𝑇

∑
𝑡∈[𝑇] 𝑦𝑡 the SPR is bounded by

𝜉 (𝑥, �̄�) ≤
(𝜖𝑥 + 𝜖𝑦)

𝑇
.

6.2 Alternation 61

Proof Summing the two inequalities in (6.1) we get

𝜖𝑥 + 𝜖𝑦 ≥ max
𝑦∈𝑌

∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦) −
∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦𝑡) +
∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦𝑡) − min
𝑥∈𝑋

∑︁
𝑡∈[𝑇]

𝑓 (𝑥, 𝑦𝑡)

=max
𝑦∈𝑌

∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦) − min
𝑥∈𝑋

∑︁
𝑡∈[𝑇]

𝑓 (𝑥, 𝑦𝑡)

=𝑇 max
𝑦∈𝑌

∑︁
𝑡∈[𝑇]

1
𝑇
𝑓 (𝑥𝑡 , 𝑦) − 𝑇 min

𝑥∈𝑋

∑︁
𝑡∈[𝑇]

1
𝑇
𝑓 (𝑥, 𝑦𝑡)

≥𝑇
[
max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) − min
𝑥∈𝑋

𝑓 (𝑥, �̄�)
]
,

where the second inequality is by 𝑓 being convex-concave.
□

So now we know how to compute a Nash equilibrium: simply run the above
repeated game with each player using a regret-minimizing algorithm, and the
uniform average of the strategies will converge to a Nash equilibrium.

Figure 6.2 shows the performance of the various regret-minimization algo-
rithms covered so far in the book, when used to compute a Nash equilibrium
of a zero-sum matrix game via Theorem 6.1. Performance is shown on 3 ran-
domized matrix game classes where entries in 𝐴 are sampled according to:
100-by-100 uniform [0, 1], 500-by-100 standard Gaussian, and 100-by-100
standard Gaussian. All plots are averaged across 50 game samples per setup
(we do not show error bars because they are so small that they are hidden by
the markers). We show one additional algorithm for reference: the optimistic
variant of OMD, which is an “accelerated” variant of OMD that converges
to a Nash equilibrium at a rate of 𝑂

(
1
𝑇

)
. We cover OOMD and optimism in

Chapter 7. The plot shows OOMD with the Euclidean distance.
As we see in Figure 6.2, OOMD indeed performs better than all the regret

minimizers with a 𝑂
(

1√
𝑇

)
convergence-rate guarantee using the setup for The-

orem 6.1. On the other hand, the entropy-based variant of OMD, which has
a log 𝑛 dependence on the dimension 𝑛, performs much worse than the algo-
rithms with

√
𝑛 dependence, even though the number of actions is on the order

of hundreds.

6.2 Alternation

Next we introduce a minor change to the self-play setup called alternation. In
alternation, the players are no longer symmetric: one player sees the loss based

62 Self-Play via Regret Minimization

Normal_100_100 Normal_500_100 Uniform_100_100

1 10 100 1000 1 10 100 1000 1 10 100 1000

0.01

0.10

1.00

Iterations

S
ad

dl
e−

po
in

t r
es

id
ua

l

Algorithm
OMD entropy uniform OMD l2 uniform OOMD l2 uniform

RM RM+

Figure 6.2 Plots showing the performance of regret matching, regret matching+,
OMD with the Euclidean DGF, and OMD with the entropy DGF for computing
Nash equilibrium, all using Theorem 6.1. The optimistic variant of OMD (OOMD;
see Chapter 7) with the Euclidean DGF is also presented.

on the previous strategy of the other player as before, but the second player sees
the loss associated to the current strategy.

• Initialize 𝑥1, 𝑦1 to be uniform distributions over actions.
• At time 𝑡, let 𝑥𝑡 be the recommendation from A𝑥 .
• The 𝑦 player observes loss 𝑓 (𝑥𝑡 , ·).
• 𝑦𝑡 is the recommendation from A𝑦 after observing 𝑓 (𝑥𝑡 , ·).
• The 𝑥 player observes loss 𝑓 (·, 𝑦𝑡).

Suppose that the regret-minimizing algorithms guarantee regret bounds of
the form

max
𝑦∈𝑌

∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡+1, 𝑦) −
∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡+1, 𝑦𝑡) ≤ 𝜖𝑦 ,∑︁
𝑡∈[𝑇]

𝑓 (𝑥𝑡 , 𝑦𝑡) − min
𝑥∈𝑋

∑︁
𝑡∈[𝑇]

𝑓 (𝑥, 𝑦𝑡) ≤ 𝜖𝑥 .
(6.2)

Theorem 6.2 Suppose we run two regret minimizers with alternation, and they
give the guarantees in (6.2). Then the average strategies 𝑥 = 1

𝑇

∑𝑇
𝑡=1 𝑥𝑡+1, �̄� =

1
𝑇

∑
𝑡∈[𝑇] 𝑦𝑡 satisfy

𝜉 (𝑥, �̄�) ≤
𝜖𝑥 + 𝜖𝑦 +

∑𝑇
𝑡=1 (𝑓 (𝑥𝑡+1, 𝑦𝑡) − 𝑓 (𝑥𝑡 , 𝑦𝑡))

𝑇
.

6.2 Alternation 63

Proof As before we sum the regret bounds to get

𝜖𝑥 + 𝜖𝑦 ≥ max
𝑦∈𝑌

𝑇∑︁
𝑡=1

𝑓 (𝑥𝑡+1, 𝑦) −
𝑇∑︁
𝑡=1

𝑓 (𝑥𝑡+1, 𝑦𝑡) +
𝑇∑︁
𝑡=1

𝑓 (𝑥𝑡 , 𝑦𝑡) − min
𝑥∈𝑋

𝑇∑︁
𝑡=1

𝑓 (𝑥, 𝑦𝑡)

=max
𝑦∈𝑌

𝑇∑︁
𝑡=1

𝑓 (𝑥𝑡+1, 𝑦) − min
𝑥∈𝑋

𝑇∑︁
𝑡=1

𝑓 (𝑥, 𝑦𝑡) −
𝑇∑︁
𝑡=1

[𝑓 (𝑥𝑡+1, 𝑦𝑡) − 𝑓 (𝑥𝑡 , 𝑦𝑡)]

≥𝑇
[
max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) − min
𝑥∈𝑋

𝑓 (𝑥, �̄�)
]
−

𝑇∑︁
𝑡=1

[𝑓 (𝑥𝑡+1, 𝑦𝑡) − 𝑓 (𝑥𝑡 , 𝑦𝑡)] .

□

Theorem 6.2 shows that if 𝑓 (𝑥𝑡+1, 𝑦𝑡) − 𝑓 (𝑥𝑡 , 𝑦𝑡) ≤ 0 for all 𝑡, then the bound
for alternation is weakly better than the bound in Theorem 6.1. But what does
this condition mean? If we examine it from the regret minimization perspective,
it is saying that 𝑥𝑡+1 does better than 𝑥𝑡 against 𝑦𝑡 . Intuitively, we would expect
this to hold: 𝑥𝑡 is chosen right before observing 𝑓 (·, 𝑦𝑡), whereas 𝑥𝑡+1 is chosen
immediately after observing 𝑓 (·, 𝑦𝑡), and generally we would expect that any
time we make a new observation, we should move somewhat in the direction
of improvement against that observation. Indeed, it turns out to be relatively
straightforward to show that this holds for all the regret minimizers we saw so
far (As an exercise, show that this holds for a few regret minimizers; it is easiest
for OMD).

Figure 6.3 shows the performance of the same set of regret-minimization
algorithms but now using the setup from Theorem 6.2.

Normal_100_100 Normal_500_100 Uniform_100_100

1 10 100 1000 1 10 100 1000 1 10 100 1000

0.001

0.010

0.100

Iterations

S
ad

dl
e−

po
in

t r
es

id
ua

l

Algorithm
OMD entropy uniform alt OMD l2 uniform alt OOMD l2 uniform alt

RM alt RM+ alt

Figure 6.3 Plots showing the performance of four different regret-minimization
algorithms for computing Nash equilibrium, all using Theorem 6.2. The optimistic
variant of OMD (OOMD; see Chapter 7) is also presented.

64 Self-Play via Regret Minimization

Amazingly, Figure 6.3 shows that simply by adding alternation, OMD with
the Euclidean DGF, regret matching, and RM+ all perform about on par with
OOMD, whereas they were noticeably worse before.

6.3 Increasing Iterate Averaging

Now we will look at one final trick. In Theorems 6.1 and 6.2 we generated
a solution by uniformly averaging iterates. We will now consider polynomial
averaging schemes of the form

𝑥 =
1∑

𝑡∈[𝑇] 𝑡𝑞

∑︁
𝑡∈[𝑇]

𝑡𝑞𝑥𝑡 , �̄� =
1∑

𝑡∈[𝑇] 𝑡𝑞

∑︁
𝑡∈[𝑇]

𝑡𝑞𝑦𝑡 .

Figure 6.4 shows the performance of the same set of regret-minimization
algorithms but now using the setup from Theorem 6.2 and linear averaging
in all algorithms. The fastest algorithm with uniform averaging, RM+ with

Normal_100_100 Normal_500_100 Uniform_100_100

1 10 100 1000 1 10 100 1000 1 10 100 1000

1e−04

1e−03

1e−02

1e−01

1e+00

Iterations

S
ad

dl
e−

po
in

t r
es

id
ua

l

Algorithm
OMD l2 linear alt OOMD l2 linear alt RM linear alt

RM+ alt RM+ linear alt

Figure 6.4 Plots showing the performance of four different regret-minimization
algorithms for computing Nash equilibrium, all using Theorem 6.2. All algorithms
use linear averaging. RM+ with uniform averaging is shown as a reference point.

alternation, is shown for reference. OMD with Euclidean DGF and RM+ with
alternation both gain another order of magnitude in performance by introducing
linear averaging.

It can be shown that RM+, online mirror descent, and OOMD all continue to
work with polynomial averaging schemes, in the sense that they have the same
asymptotic rate of convergence as with uniform averaging. Interestingly, this is

6.4 Historical Notes 65

not the case for regret matching and FTRL, which do not work with the more
aggressive averaging schemes.

6.4 Historical Notes

The derivation of a folk theorem for alternation in matrix games was by Burch
et al. (2019), after Farina et al. (2019b) pointed out that the original folk theorem
does not apply when using alternation. The general convex-concave case is new,
although easily derived from the existing results.

The fact that instantiating OMD with the Euclidean distance seems to perform
better than entropy when solving matrix games in practice has been observed in
a few different algorithms both first-order methods (Chambolle and Pock, 2016;
Gao et al., 2021a) and regret-minimization algorithms (Farina et al., 2019c).
The fact that OMD with Euclidean distance performs much better after adding
alternation has not been observed before.

Results for polynomial averaging schemes were shown by Tammelin et al.
(2015) and Brown and Sandholm (2019a) for RM+, in Nemirovski’s lecture
notes1 for mirror descent and mirror prox, and for several other primal-dual
first-order methods by Gao et al. (2021a).

Further reading.
Self play in games via regret minimization as a computational tool is not
covered in other books as far as I know. From a more theoretical perspective,
Cesa-Bianchi and Lugosi (2006) covers some self play results. The best sources
for further reading would be papers such as Tammelin et al. (2015); Farina et al.
(2021b). The PhD thesis of Neil Burch (Burch, 2018) also has a lot of interesting
results and numerics.

1 https://www2.isye.gatech.edu/˜nemirovs/LMCO_LN2019NoSolutions.pdf

https://www2.isye.gatech.edu/~nemirovs/LMCO_LN2019NoSolutions.pdf

7
Optimism and Fast Convergence of Self Play

In this chapter we study optimistic variants of online learning. The idea is
that we have some prediction about the next loss at each time step, and we
want to see how well we can do when using predictions (while ensuring good
performance when the predictions are wrong). This will yield the optimistic
online mirror descent algorithm that we showed in some plots in Chapter 6.
It will also yield an example of an online learning approach that converges
to a Nash equilibrium of a two-player zero-sum game at a rate of 𝑂 (1/𝑇), as
opposed to the 𝑂 (1/

√
𝑇) rate we saw previously.

7.1 Predictive Online Learning

Suppose that we are in an online learning setting as in Chapter 4: we must
repeatedly choose actions 𝑥𝑡 ∈ 𝑋 ⊂ R𝑛 for some convex and compact decision
set 𝑋 , and then we receive (linear) losses 𝑔𝑡 ∈ R𝑛. But now suppose we receive
some additional information about the loss function 𝑔𝑡 before we have to make a
prediction. In particular, we will suppose that at each time 𝑡, we are given some
prediction 𝑚𝑡 ∈ [0, 1]𝑛 of the loss 𝑔𝑡 . Formally, we now have the following
learning protocol: at each time step 𝑡 = 1, . . . , 𝑇 :

(i) We are given a prediction 𝑚𝑡 ∈ [0, 1]𝑛.
(ii) We must choose a decision 𝑥𝑡 ∈ 𝑋 .

(iii) Afterwards, a loss vector 𝑔𝑡 ∈ [0, 1]𝑛 is revealed to us, and we pay the loss
⟨𝑔𝑡 , 𝑥𝑡 ⟩.

The question is to what extent we can use the prediction to do better than in the
standard online learning setting. It is immediately clear that we have to be careful
about what we want. Suppose that the predictions are perfect, i.e. 𝑚𝑡 = 𝑔𝑡 , then
we can simply best respond to 𝑚𝑡 , i.e. select 𝑥𝑡 = arg min𝑥∈Δ𝑛 ⟨𝑚𝑡 , 𝑥⟩, and we

66

7.1 Predictive Online Learning 67

will do as well as the best sequence of decisions in hindsight, and generally
have significant negative regret against the single best action in hindsight. On
the other hand, if 𝑚𝑡 turns out to be inaccurate, then best responding to 𝑚𝑡

could yield linear regret. Ideally, we would like regret guarantees that degrade
gracefully with the accuracy of 𝑚𝑡 , while still doing “well” when 𝑚𝑡 is a good
prediction. Next we will show that this is indeed possible, with variations on
the OMD and FTRL algorithms introduced in Chapter 4.

7.1.1 Online Mirror Descent with Predictions
First we consider OMD with predictions. OMD with predictions is usually
called optimistic online mirror descent (OOMD). There are two ways to incor-
porate the prediction 𝑚𝑡 into the OMD algorithm. The first is what we will call
single-step OOMD:

𝑥𝑡+1 = arg min
𝑥∈𝑋

⟨𝑔𝑡 + 𝑚𝑡+1 − 𝑚𝑡 , 𝑥⟩ +
1
𝜂
𝐷 (𝑥∥𝑥𝑡).

As a base case, let 𝑥0 = arg min𝑥∈𝑋 𝑑 (𝑥) and 𝑚0 = 0. Intuitively, we can think
of 𝑔𝑡 − 𝑚𝑡 as “undoing” the previous move in the direction of 𝑚𝑡 and instead
moving in the direction of 𝑔𝑡 . Then, we additionally “optimistically” move in
the direction of 𝑚𝑡+1.

We now show that single-step OOMD satisfies a regret bound that lets us get
compelling guarantees whether the predictions are accurate or not.

Theorem 7.1 Assume that 𝑚1 = 0 and 𝑑 is 1-strongly convex. The regret
of single-step OOMD with respect to a sequence of losses 𝑔1, . . . , 𝑔𝑇 and
predictions 𝑚1, . . . , 𝑚𝑇 is bounded by

𝑅𝑇 ≤ 𝐷 (𝑥∥𝑥1)
𝜂

+ 𝜂
∑︁
𝑡∈[𝑇]

∥𝑔𝑡 − 𝑚𝑡 ∥2
∗ −

1
4𝜂

∑︁
𝑡∈[𝑇]

∥𝑥𝑡+1 − 𝑥𝑡 ∥2.

Proof By first-order optimality, we have for each 𝑡 ∈ {1, . . . , 𝑇} that

⟨𝑚𝑡+1 + 𝑔𝑡 − 𝑚𝑡 + (1/𝜂)∇𝑑 (𝑥𝑡+1) − (1/𝜂)∇𝑑 (𝑥𝑡), 𝑥 − 𝑥𝑡+1⟩ ≥ 0

⇔ ⟨𝑚𝑡+1 + 𝑔𝑡 − 𝑚𝑡 , 𝑥𝑡+1 − 𝑥⟩ ≤ 1
𝜂
⟨∇𝑑 (𝑥𝑡+1) − ∇𝑑 (𝑥𝑡), 𝑥 − 𝑥𝑡+1⟩.

Applying the three-point lemma (Lemma 4.4) we get

⟨𝑚𝑡+1 + 𝑔𝑡 − 𝑚𝑡 , 𝑥𝑡+1 − 𝑥⟩ ≤ 1
𝜂
(𝐷 (𝑥∥𝑥𝑡) − 𝐷 (𝑥∥𝑥𝑡+1) − 𝐷 (𝑥𝑡+1∥𝑥𝑡)) . (7.1)

68 Optimism and Fast Convergence of Self Play

Summing Eq. (7.1) over 𝑡 = 1, . . . , 𝑇 and removing telescoping terms on
both sides, we get∑︁

𝑡∈[𝑇]
⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑥⟩ +

∑︁
𝑡∈[𝑇]

⟨𝑚𝑡+1 − 𝑚𝑡 , 𝑥𝑡+1⟩ + ⟨𝑚1 − 𝑚𝑇+1, 𝑥⟩

≤ 1
𝜂

©­«𝐷 (𝑥∥𝑥1) − 𝐷 (𝑥∥𝑥𝑇+1) −
∑︁
𝑡∈[𝑇]

𝐷 (𝑥𝑡+1∥𝑥𝑡)
ª®¬ . (7.2)

Now we simplify the left-hand side of Eq. (7.2).∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑥⟩ +
∑︁
𝑡∈[𝑇]

⟨𝑚𝑡+1 − 𝑚𝑡 , 𝑥𝑡+1⟩ + ⟨𝑚1 − 𝑚𝑇+1, 𝑥⟩

=
∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑥⟩ +
∑︁
𝑡∈[𝑇]

⟨𝑚𝑡+1 − 𝑚𝑡 , 𝑥𝑡+1⟩

=
∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ +
∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 − 𝑚𝑡 , 𝑥𝑡+1 − 𝑥𝑡 ⟩ +
∑︁
𝑡∈[𝑇]

⟨𝑚𝑡+1, 𝑥𝑡+1⟩ −
∑︁
𝑡∈[𝑇]

⟨𝑚𝑡 , 𝑥𝑡 ⟩

=
∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ +
∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 − 𝑚𝑡 , 𝑥𝑡+1 − 𝑥𝑡 ⟩ + ⟨𝑚𝑇+1, 𝑥𝑇+1⟩ − ⟨𝑚1, 𝑥1⟩

=
∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ +
∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 − 𝑚𝑡 , 𝑥𝑡+1 − 𝑥𝑡 ⟩. (7.3)

The first step is by noting that we set 𝑚1 = 0, and we can assume 𝑚𝑇+1 = 0
without changing the regret up to time 𝑇 . The second step is by adding and
subtracting ⟨𝑔𝑡 , 𝑥𝑡 ⟩ + ⟨𝑚𝑡 , 𝑥𝑡 ⟩ for each 𝑡. The third step is by telescoping terms.
The fourth step is again by noting that we set 𝑚1 = 0 and 𝑚𝑇+1 = 0.

Combining Eq. (7.2) and Eq. (7.3), we get∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ ≤
∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 − 𝑚𝑡 , 𝑥𝑡 − 𝑥𝑡+1⟩

+ 1
𝜂

©­«𝐷 (𝑥∥𝑥1) − 𝐷 (𝑥∥𝑥𝑇+1) −
∑︁
𝑡∈[𝑇]

𝐷 (𝑥𝑡+1∥𝑥𝑡)ª®¬ .
(7.4)

Notice that the left-hand side is the regret up to time 𝑇 . Next we simplify the
first term on the right-hand side via the Cauchy-Schwarz inequality and the
Peter-Paul inequality (see Eq. (A.3)):

⟨𝑔𝑡 − 𝑚𝑡 , 𝑥𝑡 − 𝑥𝑡+1⟩ ≤ ∥𝑔𝑡 − 𝑚𝑡 ∥∗∥𝑥𝑡 − 𝑥𝑡+1∥

≤ 𝜂∥𝑔𝑡 − 𝑚𝑡 ∥2
∗ +

1
4𝜂

∥𝑥𝑡 − 𝑥𝑡+1∥2.

Plugging this upper bound into Eq. (7.4) and using 𝐷 (𝑥𝑡+1∥𝑥𝑡) ≥ 1
2 ∥𝑥𝑡+1−𝑥𝑡 ∥2

7.2 Optimism and RVU Bounds 69

(see Eq. (A.8) in Appendix A.4) we get the desired result.∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥⟩ ≤
∑︁
𝑡∈[𝑇]

(
𝜂∥𝑔𝑡 − 𝑚𝑡 ∥2

∗ +
1

4𝜂
∥𝑥𝑡 − 𝑥𝑡+1∥2 − 1

2𝜂
∥𝑥𝑡+1 − 𝑥𝑡 ∥2

)
+ 1
𝜂
(𝐷 (𝑥∥𝑥1) − 𝐷 (𝑥∥𝑥𝑇+1))

≤ 1
𝜂
𝐷 (𝑥∥𝑥1) +

∑︁
𝑡∈[𝑇]

(
𝜂∥𝑔𝑡 − 𝑚𝑡 ∥2

∗ −
1

4𝜂
∥𝑥𝑡+1 − 𝑥𝑡 ∥2

)
.

□

The second way to incorporate predictions in OMD is the two-step OOMD
algorithm. In two-step OOMD, we maintain two separate sequences of deci-
sions:

𝑥𝑡+1 = arg min
𝑥∈𝑋

⟨𝑚𝑡+1, 𝑥⟩ +
1
𝜂
𝐷 (𝑥∥𝑧𝑡),

𝑧𝑡+1 = arg min
𝑥∈𝑋

⟨𝑔𝑡 , 𝑥⟩ +
1
𝜂
𝐷 (𝑥∥𝑧𝑡).

Intuitively, we can think of 𝑧𝑡 as the sequence of iterates generated by always
moving in the direction of improvement against the losses 𝑔1, . . . 𝑔𝑡 , while each
𝑥𝑡 is generated by taking one step in the direction of 𝑚𝑡 from the previous
iterate 𝑧𝑡−1. Because the steps in the direction of 𝑚𝑡 are never incorporated into
the sequence 𝑧𝑡 , there is no need to “undo” moves as in single-step OOMD.
Two-step OOMD is arguably less attractive than single-step OOMD, because
it requires an additional proximal step. Two-step OOMD has the same regret
guarantee as single-step OOMD.

The two-step OOMD procedure was the first to be introduced in the literature,
and it was historically referred to simply as OOMD. In the rest of the book,
when we refer to OOMD, it can be thought of as either the single-step or
two-step procedure. For theoretical purposes, there is usually no difference. In
practice single-step OOMD may be preferable, since it avoids the need for an
additional proximal step.

7.2 Optimism and RVU Bounds

Next we study a particular form of prediction: we will use the previous loss as
the prediction of the next loss. In particular, this means that we set 𝑚𝑡 = 𝑔𝑡−1.
Now, we are effectively saying that our predictions will be good if losses are
not changing too rapidly over time. This leads to the notion of Regret bounded
by Variation in Utilities (RVU):

70 Optimism and Fast Convergence of Self Play

Definition 7.2 An online learning algorithm satisfies the Regret bounded by
Variation in Utilities (RVU) property with parameters 𝛼 > 0, 0 < 𝛽 ≤ 𝛾 and
a pair of primal-dual norms ∥ · ∥, ∥ · ∥∗ if its regret on a sequence of losses
𝑔1, . . . , 𝑔𝑇 is bounded by

𝑅𝑇 ≤ 𝛼 + 𝛽
∑︁
𝑡∈[𝑇]

∥𝑔𝑡 − 𝑔𝑡−1∥2
∗ − 𝛾

∑︁
𝑡∈[𝑇]

∥𝑥𝑡 − 𝑥𝑡−1∥2.

If we instantiate OOMD with 𝑚𝑡 = 𝑔𝑡−1, then Theorem 7.1 shows that
OOMD satisfies the RVU property with parameters 𝛼 = max𝑥∈𝑋 (𝐷 (𝑥∥𝑥1)/𝜂,
𝛽 = 𝜂, and 𝛾 = 1/(4𝜂). Note that the sum over ∥𝑥𝑡+1 − 𝑥𝑡 ∥2 in Theorem 7.1
(known as the path length) does not include ∥𝑥1 − 𝑥0∥2, but this value is zero,
since 𝑚1 = 𝑔0 = 0.

7.3 Fast Convergence in Zero-Sum Games

Now we show that the RVU bounds can be used to obtain fast convergence
in two-player zero-sum games. In particular, suppose that we have a game
min𝑥∈𝑋 max𝑦∈𝑌 𝑥⊤𝐴𝑦 where 𝑋,𝑌 are convex and compact, and 𝐴 has operator
norm ∥𝐴∥ ≤ 𝐿 with respect to the norms ∥ · ∥𝑥 , ∥ · ∥𝑦 . Suppose also that we
have distance-generating functions 𝑑𝑥 , 𝑑𝑦 that are each 1-strongly convex with
respect to ∥ · ∥𝑥 , and ∥ · ∥𝑦 .

Before we start studying the repeated game setup, it will be useful to derive
a few inequalities that will allow us to relate 𝐴 to the variation in the dual norm
of losses ∥𝐴(𝑦𝑡 − 𝑦𝑡−1)∥𝑥,∗ and ∥ − 𝐴⊤ (𝑥𝑡 − 𝑥𝑡−1)∥𝑦,∗. By definition of the
operator norm, we have

∥𝐴∥ = max
∥𝑥 ∥𝑥=1

∥𝐴⊤𝑥∥𝑦,∗ = max
∥𝑥 ∥𝑥=1

max
∥𝑦 ∥𝑦=1

𝑥⊤𝐴𝑦,

∥𝐴∥ = max
∥𝑥 ∥𝑥=1

∥𝐴⊤𝑥∥𝑦,∗ = max
𝑥

1
∥𝑥∥𝑥

∥𝐴⊤𝑥∥𝑦,∗ ≥
1

∥𝑥′∥𝑥
∥𝐴⊤𝑥′∥𝑦,∗ ∀𝑥′ ∈ 𝑋,

(7.5)

∥𝐴∥ = max
∥𝑦 ∥𝑦=1

∥𝐴𝑦∥𝑥,∗ = max
𝑦

1
∥𝑦∥𝑦

∥𝐴𝑦∥𝑥,∗ ≥
1

∥𝑦′∥𝑦
∥𝐴𝑦′∥𝑥,∗ ∀𝑦 ∈ 𝑌 . (7.6)

The repeated game is as follows:

• Initialize 𝑥0 ∈ 𝑋, 𝑦0 ∈ 𝑌 to be some pair of strategies in the relative interior
(in matrix games we usually start with the uniform strategy).

• Provide a recommendation 𝑚𝑥
𝑡 = 𝐴𝑦𝑡−1 to A𝑥 and 𝑚

𝑦
𝑡 = −𝐴⊤𝑥𝑡−1 to A𝑦 .

7.3 Fast Convergence in Zero-Sum Games 71

• At time 𝑡, let 𝑥𝑡 be the recommendation from A𝑥 and 𝑦𝑡 be the recommen-
dation from A𝑦 .

• Let A𝑥 and A𝑦 observe losses 𝑔𝑡 = 𝐴𝑦𝑡 , ℓ𝑡 = −𝐴⊤𝑥𝑡 respectively.

In this setup, OOMD satisfies the RVU property with parameters𝛼 = (max𝑥∈𝑋 𝐷 (𝑥∥𝑥1)/𝜂,
𝛽 = 𝜂, and 𝛾 = 1/(4𝜂), as described in the previous section.

Theorem 7.3 Suppose that 𝑥1, . . . , 𝑥𝑇 and 𝑦1, . . . , 𝑦𝑇 are generated by regret
minimizers satisfying the RVU property with parameters 𝛼𝑥 , 𝛽𝑥 , 𝛾𝑥 , 𝛼𝑦 , 𝛽𝑦 , 𝛾𝑦

such that 𝛽𝑥 ∥𝐴∥2 ≤ 𝛾𝑦 and 𝛽𝑦 ∥𝐴∥2 ≤ 𝛾𝑥 , then we have the following
convergence rate for the pair of average strategies 𝑥 = 1

𝑇

∑
𝑡∈[𝑇] 𝑥𝑡 and

�̄� = 1
𝑇

∑
𝑡∈[𝑇] 𝑦𝑡 :

𝜉 (𝑥, �̄�) ≤
𝛼𝑥 + 𝛼𝑦

𝑇
.

Proof We have

𝑇𝜉 (𝑥, �̄�) = 𝑇

(
max
𝑦

⟨𝐴𝑦, 𝑥⟩ − min
𝑥
⟨𝐴�̄�, 𝑥⟩

)
= max

𝑦

∑︁
𝑡∈[𝑇]

⟨𝐴𝑦, 𝑥𝑡 ⟩ − min
𝑥

∑︁
𝑡∈[𝑇]

⟨𝐴𝑦𝑡 , 𝑥⟩

= max
𝑦

∑︁
𝑡∈[𝑇]

⟨𝐴𝑦, 𝑥𝑡 ⟩ −
∑︁
𝑡∈[𝑇]

⟨𝐴𝑦𝑡 , 𝑥𝑡 ⟩ +
∑︁
𝑡∈[𝑇]

⟨𝐴𝑦𝑡 , 𝑥𝑡 ⟩ − min
𝑥

∑︁
𝑡∈[𝑇]

⟨𝐴𝑦𝑡 , 𝑥⟩

≤ 𝛼𝑦 + 𝛽𝑦

∑︁
𝑡∈[𝑇]

∥𝐴⊤ (𝑥𝑡 − 𝑥𝑡−1)∥2
∗ − 𝛾𝑦

∑︁
𝑡∈[𝑇]

∥𝑦𝑡 − 𝑦𝑡−1∥2

𝛼𝑥 + 𝛽𝑥

∑︁
𝑡∈[𝑇]

∥𝐴(𝑦𝑡 − 𝑦𝑡−1)∥2
∗ − 𝛾𝑥

∑︁
𝑡∈[𝑇]

∥𝑥𝑡 − 𝑥𝑡−1∥2. (7.7)

The second equality is by expanding 𝑥 and �̄�. The inequality follows by noting
that we have the sum of the player regrets, and then applying the RVU bound.
Now we upper bound Eq. (7.7) by using Eqs. (7.5) and (7.6) to get

𝐸𝑞. (7.7) ≤ 𝛼𝑦 + 𝛽𝑦 ∥𝐴∥2
∑︁
𝑡∈[𝑇]

∥𝑥𝑡 − 𝑥𝑡−1∥2 − 𝛾𝑦

∑︁
𝑡∈[𝑇]

∥𝑦𝑡 − 𝑦𝑡−1∥2

𝛼𝑥 + 𝛽𝑥 ∥𝐴∥2
∑︁
𝑡∈[𝑇]

∥𝑦𝑡 − 𝑦𝑡−1∥2 − 𝛾𝑥

∑︁
𝑡∈[𝑇]

∥𝑥𝑡 − 𝑥𝑡−1∥2

=𝛼𝑦 + 𝛼𝑥 + (𝛽𝑦 ∥𝐴∥2 − 𝛾𝑥)
∑︁
𝑡∈[𝑇]

∥𝑥𝑡 − 𝑥𝑡−1∥2
∗

+ (𝛽𝑥 ∥𝐴∥2 − 𝛾𝑦)
∑︁
𝑡∈[𝑇]

∥𝑦𝑡 − 𝑦𝑡−1∥2
∗

72 Optimism and Fast Convergence of Self Play

Finally, using 𝛽𝑥 ∥𝐴∥2 ≤ 𝛾𝑦 and 𝛽𝑦 ∥𝐴∥2 ≤ 𝛾𝑥 we get 𝑇𝜉 (𝑥, �̄�) ≤ 𝛼𝑦 + 𝛼𝑥 .
Dividing everything by 𝑇 yields the result. □

Corollary 7.4 Suppose that 𝑥1, . . . , 𝑥𝑇 and 𝑦1, . . . , 𝑦𝑇 are generated by
OOMD with stepsizes 𝜂𝑥 ≤ 1/(2∥𝐴∥), 𝜂𝑦 ≤ 1/(2∥𝐴∥) with the previous loss
as the prediction, then we have the following convergence rate for the pair of
average strategies 𝑥 = 1

𝑇

∑
𝑡∈[𝑇] 𝑥𝑡 and �̄� = 1

𝑇

∑
𝑡∈[𝑇] 𝑦𝑡 :

𝜉 (𝑥, �̄�) ≤ max𝑥∈𝑋 𝐷 (𝑥∥𝑥1)
𝜂𝑥𝑇

+
max𝑦∈𝑌 𝐷 (𝑦∥𝑦1)

𝜂𝑦𝑇
.

7.4 Small Individual Regrets in General-Sum Games

Next we show that the RVU bounds can be used to obtain small individual
regrets in general-sum games. This will rely on each algorithm having a stability
property, meaning that the algorithm’s recommendation does not change too
much between each time step.

Lemma 7.5 The decisions of OOMD are stable in the sense that ∥𝑥𝑡+1−𝑥𝑡 ∥ ≤
𝜂∥𝑚𝑡+1 + 𝑔𝑡 − 𝑚𝑡 ∥∗. Suppose 𝑚𝑡 = 𝑔𝑡−1, then we have ∥𝑥𝑡+1 − 𝑥𝑡 ∥ ≤ 𝜂∥2𝑔𝑡 −
𝑔𝑡−1∥∗.

Proof Since 𝐷 (·∥𝑥) is 1-strongly convex for any 𝑥, we have that its convex
conjugate is 1-Lipschitz with respect to its gradient. The iterates 𝑥𝑡 and 𝑥𝑡+1 are
respectively equal to the gradients of the convex conjugate 𝐷∗ (·∥𝑥𝑡) at 0 and at
𝜂(𝑔𝑡 + 𝑚𝑡+1 − 𝑚𝑡). Thus, we have ∥𝑥𝑡+1 − 𝑥𝑡 ∥ ≤ 𝜂∥𝑔𝑡 + 𝑚𝑡+1 − 𝑚𝑡 ∥∗. □

Consider a general-sum game where we have 𝑛 players, decision spaces 𝑋𝑖 ,
and each player has a concave utility function 𝑢𝑖 (𝑥) which is Lipschitz in the
sense that ∥∇𝑢𝑖 (𝑥) − ∇𝑢𝑖 (𝑥′)∥∗ ≤ 𝐿𝑖

∑𝑛
𝑗=1 ∥𝑥 𝑗 − 𝑥′

𝑗
∥ for some 𝐿𝑖 > 0. This

is satisfied e.g. if 𝑢𝑖 is multilinear, as in the case of normal-form games and
extensive-form games. The repeated game is as follows:

• Initialize 𝑥𝑖0 ∈ 𝑋𝑖 to be a strategy in the relative interior for each player 𝑖 (in
normal-form games we usually start with the uniform strategy)

• Provide a recommendation 𝑚𝑖
𝑡 = ∇𝑢𝑖 (𝑥𝑡−1) to the regret minimizer for each

player 𝑖
• At time 𝑡, let 𝑥𝑖𝑡 be the recommendation for player 𝑖 and 𝑥𝑡 be the collection

of recommendations for all players (i.e. the strategy profile at time 𝑡).
• Let player 𝑖 observe the loss 𝑔𝑖𝑡 = ∇𝑢𝑖 (𝑥𝑡)

As in the previous section, OOMD satisfies the RVU property with parameters
𝛼 = (𝐷 (𝑥∥𝑥1)/𝜂, 𝛽 = 𝜂, and 𝛾 = 1/(4𝜂).

7.5 Historical Notes 73

Theorem 7.6 Suppose that each player’s decisions 𝑖 in a general-sum game
are stable in the sense that ∥𝑥𝑖𝑡 − 𝑥𝑖

𝑡−1∥ ≤ 𝜅 for all 𝑡, and each player uses a
regret minimizer with RVU guarantees 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 . Then each player’s regret is
bounded as follows

𝑅𝑖
𝑇 ≤ 𝛼𝑖 + 𝛽𝑖𝑇𝐿

2
𝑖 𝑛

2𝜅2.

Proof First note that from Lipschitzness of the game, we have∑︁
𝑡∈[𝑇]

∥𝑔𝑖𝑡 − 𝑔𝑖𝑡−1∥
2
∗ ≤

∑︁
𝑡∈[𝑇]

𝐿2
𝑖

(𝑛∑︁
𝑗=1

∥𝑥 𝑗
𝑡 − 𝑥

𝑗

𝑡−1∥
)2

≤
∑︁
𝑡∈[𝑇]

𝐿2
𝑖

(𝑛∑︁
𝑗=1

𝜅

)2

≤𝑇𝐿2
𝑖 𝑛

2𝜅2.

Combining this with the RVU property, we have

𝑅𝑖
𝑇 ≤ 𝛼𝑖 + 𝛽𝑖

∑︁
𝑡∈[𝑇]

∥𝑔𝑖𝑡 − 𝑔𝑖𝑡−1∥
2
∗ − 𝛾𝑖

∑︁
𝑡∈[𝑇]

∥𝑥𝑖𝑡 − 𝑥𝑖𝑡−1∥
2

≤ 𝛼𝑖 + 𝛽𝑖𝑇𝐿
2
𝑖 𝑛

2𝜅2.

□

Now we immediately get a better than
√
𝑇 regret bound for OOMD by setting

the stepsize the right way.

Corollary 7.7 Suppose that each player’s decisions are generated by OOMD
with stepsizes 𝜂𝑖 = Ω

1/4
𝑖

/(𝑇1/4𝐿
1/2
𝑖

𝑛1/2), then each player’s regret is bounded
as follows

𝑅𝑖
𝑇 ≤ 2Ω3/4

𝑖
𝑇1/4𝐿

1/2
𝑖

𝑛1/2.

Proof Instantiating the regret bound with OOMD gives

𝑅𝑖
𝑇 ≤ Ω𝑖

𝜂
+ 𝜂3𝑇𝐿2

𝑖 𝑛
2 ≤ Ω

3/4
𝑖

𝑇1/4𝐿
1/2
𝑖

𝑛1/2 +Ω
3/4
𝑖

𝑇1/4𝐿
1/2
𝑖

𝑛1/2.

□

7.5 Historical Notes

The idea of predictive online learning leading to fast convergence in zero-
sum games was shown by Rakhlin and Sridharan (2013). The formulation of
RVU bounds was given by Syrgkanis et al. (2015), where they showed that the

74 Optimism and Fast Convergence of Self Play

bounds can be used to obtain fast convergence in two-player zero-sum games,
and improved regret bounds in general-sum games. Earlier, Daskalakis et al.
(2015) (while the final journal paper was published in 2015, the conference
version of that work appeared in 2011) had showed that it is possible to achieve
𝑂 (ln𝑇/𝑇) convergence in two-player zero-sum games via self-play with no-
regret learning dynamics, but their result relied on a somewhat intricate learning
dynamic based on a decentralized implementation of the EGT algorithm for
saddle-point problems (Nesterov, 2005a).

The idea of optimism and fast convergence in two-player zero-sum games is
also related to earlier works in the first-order methods literature, where some
form of extrapolation leads to an 𝑂 (1/𝑇) rate of convergence for convex-
concave saddle-point problems. For example, the mirror prox method by Ne-
mirovski (2004) achieves this rate, and as pointed out by Rakhlin and Sridharan
(2013), optimistic OMD in self play can be seen as achieving a similar idea as
mirror prox. Moreover, in the case of using the Euclidean DGF in optimistic
OMD for solving a two-player zero-sum game, the algorithm is equivalent to
an algorithm given by Popov (1980), though the 𝑂 (1/𝑇) rate was not known at
the time. Prior to the 𝑂 (1/𝑇) rate result by Nemirovski (2004), Nesterov was,
to the best of my knowledge, the first to show that such rates are attainable via
first-order methods. Nesterov’s approach used what’s now known as Nesterov
smoothing (Nesterov, 2005b), where a smooth approximation to the nonsmooth
problem is constructed, and then this approximation is solved via accelerated
first-order methods. Though the Nesterov smoothing paper appeared in a jour-
nal in 2005 and the Nemirovski paper appeared in 2004, the Nesterov paper
predates the Nemirovski paper; it was made available online in 2003. In fact,
Nemirovski explicitly credits Nesterov’s work as an inspiration in his paper.
The inversion of dates is due to the tardiness of the journal publication process.
Concurrently with Nemirovski’s mirror prox result, Nesterov also developed
the excessive gap technique (EGT), another method that achieves 𝑂 (1/𝑇) via
first-order updates (Nesterov, 2005a).

Optimism in EFGs was first studied by Farina et al. (2019c), where they
use dilated distance-generating functions (DGFs) such as those we studied in
Section 8.4. However, the numerical performance turned out to be worse than
that of CFR+ algorithms. Lee et al. (2021) showed last-iterate convergence
results for optimistic algorithms in two-player zero-sum EFGs that use dilated
DGFs, though with the assumption of a unique Nash equilibrium in the case of
dilated entropy-based DGFs.

Based on the strong practical performance of CFR+ compared to optimistic
methods in EFG solving, it was a natural question whether “optimistic learning”
in CFR+ is possible. Farina et al. (2021b) and Flaspohler et al. (2021) concur-

7.5 Historical Notes 75

rently showed how to design predictive variants of RM+. Farina et al. (2021b)
introduced predictive CFR+ which combines CFR and predictive RM+. They
show that predictive CFR+ leads to very strong practical performance in many
games. Interestingly, they found that non-predictive CFR+ is faster for poker
games, whereas predictive CFR+ is much faster for various non-poker EFG
benchmark games. However, no theoretical improvement over non-predictive
CFR+ or RM+ is achieved by these algorithms, in terms of dependence on the
number of iterations 𝑇 when used in self play in two-player zero-sum games.
Unlike for OMD, OOMD, and various FTRL variants, it was recently shown
that the RM+ algorithm is not stable (Farina et al., 2023). This is a key reason
why the predictive variant of RM+ does not achieve a 1/𝑇 convergence rate in
zero-sum games (in theory), since it means that the previous loss is not always
a good prediction of the next loss. Farina et al. (2023) also show numerical
examples where predictive RM+ converges at a rate of 1/

√
𝑇 .

Further reading.
Optimism is too recent to have extensive textbook coverage. Orabona (2019)
has some good coverage of optimism. In a game-solving context, I recommend
reading Syrgkanis et al. (2015) for a well-written paper that introduced RVU
bounds and shows a lot of useful results that can be developed from those RVU
bounds. Farina et al. (2021b) is a good paper to read for the use of optimism in
EFG solving.

8
Extensive-Form Games

In this chapter we will cover extensive-form games (EFGs). Extensive-form
games are a richer game description than normal-form games that explicitly
models sequential interaction and chance (such as the dealing of cards). EFGs
are played on a game tree. Each node in the game tree belongs to some player,
and that player gets to choose the branch to traverse. Superhuman poker AIs
were created in large part through the design of good algorithms for computing
(approximate) Nash equilibria in EFGs.

8.1 Perfect-Information EFGs

We start by considering perfect-information EFGs. The term perfect informa-
tion refers to the fact that in these games, every player always knows the exact
state of the game. A perfect-information EFG is a game played on a tree, where
each internal node belongs to some player. The actions for the player at a given
node is the set of branches, and by selecting a branch the game proceeds to the
following node. An example is shown in Figure 8.1 on the left. That game has
four nodes where players take actions, two belong to player 1 (labelled P1) and
two belonging to player 2 (labelled P2). Additionally, the game tree has 6 leaf
nodes. At each leaf node, each player receives some payoff. In this particular
game, it is a zero-sum game, and the value at a leaf denotes the value that player
1 receives.

Perfect-information EFGs are trivially solvable (at least if we are able to
traverse the whole game tree at least once). The way to solve them is via
backward induction. Backward induction works by starting at some bottom
decision node of the game tree, which only leads to leaf nodes after each action
is taken (such a node always exists). Then, the optimal action for the player at the
node is selected (which can be done by choosing the one that maximizes their

76

8.1 Perfect-Information EFGs 77

P1

P2

1-1

P2

P1

12-3

-2

P1

P2

1-1

P2

2-2

P1

-1-2

Figure 8.1 A simple perfect-information EFG. Three versions of the game are
shown, where each stage corresponds to removing one layer of the game via
backward induction.

utility), and the decision node is replaced with the corresponding leaf node.
Now we have a new perfect-information EFG with one less decision node.
Backward induction then repeats this process until there’s no internal nodes
left, at which point we have computed a Nash equilibrium, since every player
acted optimally at every decision node throughout the backward induction. This
immediately shows that perfect-information EFGs always have pure-strategy
Nash equilibria.

While backward induction yields a linear-time algorithm for solving perfect-
information games, in practice, many games of interest are way too large to solve
with it nonetheless. For example, chess and go both have enormous game trees,
with estimates of ∼ 1045 and ∼ 10172 nodes respectively. In such cases, tree
search methods such as Monte Carlo Tree Search (MCTS) are used. Because
our focus will be on the general class of EFGs without perfect information, we
do not go into MCTS.

An EFG can always be represented as a normal-form game. Intuitively, an
action in the corresponding normal-form game should specify what the player
does at every decision point in the EFG. Thus, we create an action corresponding
to every possible way of assigning an action at every decision point. So, if a
player has 𝑑 decision points with 𝐴 actions each, then there are 𝐴𝑑 actions in
the normal form representation of the EFG. Clearly this is not efficient from
a computational perspective, as the NFG representation is exponentially-large
in the size of the EFG representation. Nonetheless, this reduction is a useful
tool that can sometimes be used both algorithmically and theoretically. This
reduction to normal form works for both perfect and imperfect-information
games.

Let’s consider an instructive example. We will model the Cuban Missile
Crisis. The USSR has moved a bunch of nuclear weapons to Cuba, and the US
has to decide how to respond. If they do nothing, then the USSR wins a political

78 Extensive-Form Games

USSR
Nuclear war Compromise

Respond −1000,−1000 2,1

U
SA

Do Nothing 0,2 0,2

Table 8.1 The normal-form payoff matrix for the Cuban Missile Crisis game.

victory, and gets to keep nuclear missiles within firing distance of major US
cities. If the US responds, then it could result in a series of escalations that
would eventually lead to nuclear war, or the USSR will eventually compromise
and remove the missiles. Suppose the payoff are as follows:

USA

USSR 0,2

2,1−1000,−1000

respond do nothing

compromisenuclear war

Figure 8.2 A perfect-information EFG modeling the Cuban missile crisis.

If we convert this game to normal form, we get the following game:
It is straightforward to see from this representation that the Cuban Missile

Crisis game has two PNE: (do nothing, nuclear war) and (respond, compro-
mise). However, the first PNE is in a sense not compelling: what if the USA
just responded? The USSR probably would not be willing to follow through on
taking the action “nuclear war” since it has such low utility for them as well.
This leads to the notion of subgame perfect equilibria, which are equilibria that
remain equilibria if we take any subgame consisting of picking some node in
the tree and starting the game there.

8.2 Imperfect-Information EFGs

Next we study the more general class of EFGs which include imperfect infor-
mation. These are games played on a tree again, but where players may not have
perfect knowledge about the state of the game. From a game-theoretic perspec-

8.2 Imperfect-Information EFGs 79

tive, this class of games is richer, and will rely more directly on equilibrium
concepts for talking about solutions (in contrast to perfect-information EFGs,
where solutions are straightforwardly obtained from backward induction). An
example is shown in Figure 8.3.

C

P1 P1

P2 P2

P1 P1

−1

1 1

−1

3 −2 −2−3

A K

𝑟 𝑟𝑓

𝑓 𝑟 𝑓 𝑟

𝑓

𝑐 𝑓 𝑐 𝑓

Figure 8.3 A poker game where P1 is dealt Ace or King with equal probability
(‘C’ denotes a chance node). “r,” “f,” and “c” stands for raise, fold, and check re-
spectively. Leaf values denote P1 payoffs. The shaded area denotes an information
set: P2 does not know which of these nodes they are at, and must thus use the same
strategy in both.

An EFG has the following:

• Information sets (sometimes shortened to “infosets”): for each player, the
nodes belonging to that player are partitioned into information sets 𝐼 ∈ I𝑖 .
Information sets represent imperfect information: a player does not know
which node in an information set they are at, and thus they must utilize the
same strategy at each node in that information set. In Figure 8.3 P2 has
only 1 information set, which contains both their nodes, whereas P1 has four
information sets, each one a singleton node. For player 𝑖 we will also let J𝑖

be an index set of information sets with generic element 𝑗 .
• Each information set 𝐼 with index 𝑗 has a set of actions that the corresponding

player may take, which is denoted by 𝐴 𝑗 .

80 Extensive-Form Games

• Leaf nodes 𝑍: the set of terminal states. Player 𝑖 gains utility 𝑢𝑖 (𝑧) if leaf
node 𝑧 is reached. 𝑍 is the set of all leaf nodes.

• Chance nodes where Chance or Nature moves with a fixed probability dis-
tribution. In Figure 8.3 chance deals A or K with equal probability.

We will assume throughout that the game has perfect recall, which means that
no player ever forgets something they knew in the past. More formally, it means
that for every information set 𝐼 ∈ I𝑖 , there is a single last information-set action
pair 𝐼 ′, 𝑎′ belonging to 𝑖 that was the last information set and action taken by
that player for every node in 𝐼.

The last action taken by player 𝑖 before reaching an information set with
index 𝑗 is denoted 𝑝 𝑗 . This is well-defined due to perfect recall.

In Chapter 6 we saw how to compute a Nash equilibrium in a two-player
zero-sum game by finding a saddle point of a min-max problem over convex
compact polytopes. This model looked as follows:

min
𝑥∈𝑋

max
𝑦∈𝑌

⟨𝑥, 𝐴𝑦⟩. (8.1)

Now we would like to find a way to represent two-player zero-sum EFGs in
this way. This turns out to be possible, and the key is to find the right way to
represent strategies such that we get a bilinear objective. The next section will
describe this representation.

First, let us see why the most natural formulation of the strategy spaces won’t
work. The natural formulation would be to have a player specify a probability
distribution over actions at each of their information sets. Such strategies are
called behavioral strategies. Let 𝜎 be a strategy profile, where 𝜎𝑎 is the prob-
ability of taking action 𝑎 (from now on we assume that every action is distinct
so that for any 𝑎 there is only one corresponding 𝐼 where the action can be
played). The expected value over leaf nodes is∑︁

𝑧∈𝑍
𝑢2 (𝑧)P(𝑧 |𝜎).

The problem with this formulation is that if a player has more than one action
on the path to any leaf, then the probability P(𝑧 |𝜎) of reaching 𝑧 is non-convex
in that player’s own strategy, since we have to multiply each of the probabilities
belonging to that player on the path to 𝑧. Thus, we cannot get the bilinear form
in (8.1).

8.3 Sequence Form 81

8.3 Sequence Form

In this section we will describe how we can derive a bilinear representation 𝑋

of the strategy space for player 1. Everything is analogous for 𝑌 .
In order to get a bilinear formulation of the expected value we do not write

our strategy in terms of the probability 𝜎𝑎 of playing an action 𝑎. Instead, we
associate to each information-set-action pair 𝐼, 𝑎 a variable 𝑥𝑎 denoting the
probability of playing the sequence of actions belonging to player 1 on the
path to 𝐼, including the probability of 𝑎 at 𝐼. For example, in the poker game
in Fig. 8.3, there would be a variable 𝑥�̂� denoting the product of probabilities
player 1 puts on playing actions 𝑟 and then 𝑐. To be concrete, say that we
have a behavioral strategy 𝜎1 for player 1 in the game of Fig. 8.3, then the
corresponding sequence-form probability on the action 𝑐 would be 𝑥�̂� = 𝜎1

𝑟 ·𝜎1
�̂�
.

Similarly, there would be a variable 𝑥 𝑓 = 𝜎1
𝑟 · 𝜎1

𝑓
denoting the product of

probabilities on 𝑟 and 𝑓 . Clearly, for this to define a valid strategy we must have
𝑥�̂� + 𝑥 𝑓 = 𝑥𝑟 .

More generally, 𝑋 is defined as the set of all 𝑥 ∈ R𝑛, 𝑥 ≥ 0 such that

𝑥𝑝 𝑗
=

∑︁
𝑎∈𝐴 𝑗

𝑥𝑎,∀ 𝑗 ∈ J1, (8.2)

where 𝑛 =
∑

𝐼∈I𝑖 |𝐴|, and 𝑝(𝐼) is the parent sequence leading to 𝐼.
One way to visually think of the set of sequence-form strategies is given in

Figure 8.4. This representation is called a treeplex. Each information set is
represented as a simplex, which is scaled by the parent sequence leading to
that information set (by perfect recall there is a unique parent sequence). After
taking a particular action it is possible that a player may arrive at several next
possible simplexes depending on what the other players or nature does. This
corresponds to the player observing information (e.g. which cards were dealt in
a poker game, or whether the other player bets or checks). This is represented
by the

⊗
symbol.

It is important to understand that the sequence form specifies probabilities on
sequences of actions for a single player. Thus, they are not the same as paths in
the game tree; indeed, the sequence 𝑟∗ for player 2 appears in two separate paths
of the game tree, as player 2 has two nodes in the corresponding information
set.

Say we have a set of probability distributions over actions at each information
set, with 𝜎𝑎 denoting the probability of playing action 𝑎. We may construct a
corresponding sequence-form strategy by applying the following equation in

82 Extensive-Form Games⊗1

Δ2

𝑞4 · Δ5𝑞3 · Δ4

𝑞3 𝑞4

Δ1

𝑞2 · Δ3⊗2

𝑞1 · Δ7𝑞1 · Δ6

𝑜3 𝑜4

𝑞1 𝑞2

𝑜1 𝑜2

Figure 8.4 An example treeplex with 7 decision points (denoted by Δ) and two
observation points (denoted by

⊗
). Only internal edges are given labels, no labels

are given to actions leading to leaf nodes. For each decision point, its scaling factor
is listed, so e.g. 𝑞1 · Δ6 means that the simplex for the 6’th decision point is scaled
by the value of 𝑞1.

top-down fashion (so that 𝑥𝑝 𝑗
is always assigned before 𝑥𝑎):

𝑥𝑎 = 𝑥𝑝 𝑗
𝜎𝑎,∀ 𝑗 ∈ J , 𝑎 ∈ 𝐴 𝑗 . (8.3)

For a two-player zero-sum game, the payoff matrix 𝐴 associated with the
sequence-form setup is a sparse matrix, with each row corresponding to a
sequence of the 𝑥 player and each column corresponding to a sequence of the
𝑦 player. Each leaf has a cell in 𝐴 at the pair of sequences that are last visited
by each player before reaching that leaf, and the value in the cell is the payoff
to the maximizing player. Cells corresponding to pairs of sequences that are
never the last pair of sequences visited before a leaf have a zero. If we let 𝑋 be
the set of sequence-form strategies for player 1 and 𝑌 be the set of sequence-
form strategies for player 2, then the expected value under the pair of strategies
𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 is 𝑥⊤𝐴𝑦, which is bilinear. Thus, we have a bilinear saddle-point
problem as desired:

min
𝑥∈𝑋

max
𝑦∈𝑌

⟨𝑥, 𝐴𝑦⟩.

8.4 Dilated Distance-Generating Functions 83

With this setup we now have an algorithm for computing a Nash equilibrium
in a zero-sum EFG: Choose a distance-generating functions 𝑑𝑥 , 𝑑𝑦 , and run
online mirror descent (OMD) for each player, using either of our folk-theorem
setups from Chapter 6. However, this has one issue. Recall the update for OMD
(also known as a prox mapping or prox update):

𝑥𝑡+1 = arg min
𝑥∈𝑋

⟨𝛾𝑔𝑡 , 𝑥⟩ + 𝐷 (𝑥∥𝑥𝑡),

where 𝐷 (𝑥∥𝑥𝑡) = 𝑑𝑥 (𝑥)−𝑑𝑥 (𝑥𝑡)−⟨∇𝑑𝑥 (𝑥𝑡), 𝑥−𝑥𝑡 ⟩ is the Bregman divergence
from 𝑥𝑡 to 𝑥. In order to run OMD, we need to be able to compute this prox
mapping. When 𝑋 is a simplex the prox mapping is fairly straightforward
to compute: the entropy DGF updates are closed-form, and updates for the
Euclidean DGF can be computed in 𝑛 log 𝑛 time, where 𝑛 is the number of
actions. For treeplexes this question becomes more complicated.

In principle, we could use the standard Euclidean distance for 𝑑. In that case
the update can be rewritten as

𝑥𝑡+1 = arg min
𝑥∈𝑋

∥𝑥 − (𝑥𝑡 − 𝛾𝑔𝑡)∥2
2,

which means that the update requires us to project onto a treeplex. This can be
done in 𝑛 · 𝑑 · log 𝑛 time, where 𝑛 is the number of sequences and 𝑑 is the depth
of the decision space of the player. While this is acceptable, it turns out there
are smarter ways to compute these updates which take linear time in 𝑛.

8.4 Dilated Distance-Generating Functions

We will see two ways to construct regret minimizers for treeplexes. The first is
based on choosing an appropriate distance-generating function (DGF) for the
treeplex, such that prox mappings are easy to compute. To that end, we now
introduce what are called dilated DGFs. In dilated DGFs we assume that we
have a DGF 𝑑 𝑗 for each information set 𝑗 ∈ J . For the polytope 𝑋 we construct
the DGF

𝑑 (𝑥) =
∑︁
𝑗∈J1

𝛽 𝑗𝑥𝑝 𝑗
𝑑 𝑗

(
𝑥 𝑗

𝑥𝑝 𝑗

)
,

where 𝛽 𝑗 > 0 is the weight on information set 𝑗 .
Dilated DGFs have the nice property that the proximal update can be com-

puted recursively as long as we know how to compute the simplex update for

84 Extensive-Form Games

each 𝑗 . Let 𝑥 𝑗 , 𝑔
𝑗
𝑡 , etc., denote the slice of a given vector corresponding to

sequences belonging to information set 𝑗 . The prox update is

arg min
𝑥∈𝑋

⟨𝑔𝑡 , 𝑥⟩ + 𝐷 (𝑥∥𝑥𝑡)

= arg min
𝑥∈𝑋

⟨𝑔𝑡 , 𝑥⟩ + 𝑑 (𝑥) − 𝑑 (𝑥𝑡) − ⟨∇𝑑 (𝑥𝑡), 𝑥 − 𝑥𝑡 ⟩

= arg min
𝑥∈𝑋

⟨𝑔𝑡 − ∇𝑑 (𝑥𝑡), 𝑥⟩ + 𝑑 (𝑥)

= arg min
𝑥∈𝑋

∑︁
𝑗∈J

(
⟨𝑔 𝑗

𝑡 − ∇𝑑 (𝑥𝑡) 𝑗 , 𝑥 𝑗⟩ + 𝛽 𝑗𝑥𝑝 𝑗
𝑑 𝑗 (𝑥 𝑗/𝑥𝑝 𝑗

)
)

= arg min
𝑥∈𝑋

∑︁
𝑗∈J

𝑥𝑝 𝑗

(
⟨𝑔 𝑗

𝑡 − ∇𝑑 (𝑥𝑡) 𝑗 , 𝑥 𝑗/𝑥𝑝 𝑗
⟩ + 𝛽 𝑗𝑑 𝑗 (𝑥 𝑗/𝑥𝑝 𝑗

)
)
.

Now we may consider some information set 𝑗 with no descendant information
sets. Since 𝑥𝑝 𝑗

is on the outside of the parentheses, we can compute the update
at 𝑗 as if it were a simplex update, and the value at the information set can
be added to the coefficient on 𝑥𝑝 𝑗

. That logic can then be applied recursively.
Thus, we can traverse the treeplex in bottom-up order, and at each information
set we can compute the value for 𝑥 𝑗

𝑡+1 in however long it takes to compute an
update for a simplex with DGF 𝑑 𝑗 .

If we use the entropy DGF for each 𝑗 ∈ J and set the weights 𝛽 𝑗 = 1,
then we get a DGF for 𝑋 that is strongly convex modulus 1 with respect to a
specialized treeplex ℓ1 norm ∥ · ∥𝑋,1. One of the key aspects of the treeplex ℓ1
norm is that it is a norm on the space of leaves in the treeplex. Measuring the
size of a payoff vector only over the leaves makes sense in light of Eq. (8.2),
which shows that every non-leaf entry in a sequence-form vector is linearly
dependent on the leaf sequences. We let E𝑋 be the set of leaf sequences for a
treeplex 𝑋 .

The treeplex ℓ1 norm for a given treeplex 𝑋 and a vector 𝑔 ∈ R | E𝑋 | is
denoted as ∥𝑔∥𝑋,1 = ∥𝑔 ∅̂ ∥

𝑋 ∅̂ ,1, and it is defined recursively in terms of treeplex
ℓ1 norms of subtreeplexes. To describe the norm, let L𝑋 be an index set of
leaves in treeplex 𝑋 , J𝑋 an index set of information sets in 𝑋 , and O𝑋 an index
set of observation points in 𝑋 . Then, the treeplex ℓ1 can be described as taking
absolute values at leaves, summing over children at information sets, and taking
maximum over children at observation points. Formally, we get

∥𝑔 𝑗 ∥𝑋 𝑗 ,1 =


|𝑔 𝑗 | if 𝑗 ∈ L𝑋∑

𝑎∈𝐴 𝑗
∥𝑔 𝑗𝑎∥𝑋 𝑗𝑎 ,1 if 𝑗 ∈ J𝑋

max𝑜∈𝑂 𝑗
∥𝑔 𝑗𝑜∥𝑋 𝑗𝑜 ,1 if 𝑗 ∈ O𝑋

.

In the above, we use 𝑔 𝑗 to denote the slice of the vector 𝑔 corresponding

8.5 Counterfactual Regret Minimization 85

to a given decision point, observation point, or leaf 𝑗 , and 𝑋 𝑗 to denote the
corresponding subtreeplex rooted at 𝑗 . We use the notation 𝑗𝑎 to denote the
subsequent observation point after taking action at 𝑎 at information set 𝑗 , and
similarly 𝑗𝑜 denotes the subsequent information set after seeing observation 𝑜

at observation point 𝑗 .
The dual norm of the treeplex ℓ1 norm is the treeplex ℓ∞ norm. This norm is

also obtained recursively, but switches when sums and maxes are taken:

∥𝑔 𝑗 ∥𝑋 𝑗 ,∞ =


|𝑔 𝑗 | if 𝑗 ∈ L𝑋

max𝑎∈𝐴 𝑗
∥𝑔 𝑗𝑎∥𝑋 𝑗𝑎 ,∞ if 𝑗 ∈ J𝑋∑

𝑜∈𝑂 𝑗
∥𝑔 𝑗𝑜∥𝑋 𝑗𝑜 ,∞ if 𝑗 ∈ O𝑋

.

When all payoffs are bounded to lie in [0, 1], then it is possible to show that
any feasible payoff vector 𝑔 generated by choosing a strategy for the opposing
player has dual norm ∥𝑔∥𝑋,∞ ≤ 1. Secondly, the polytope diameter as measured
by the dilated entropy DGF can be bounded by ln |V𝑋 |, whereV𝑋 is the number
of vertices of 𝑋 . The number of vertices can be related to the normal-form
representation of 𝑋; it is exactly the same as the number of strategies in the
normal-form representation, after removing redundant normal-form actions.

If we instantiate the optimistic online mirror descent with the dilated entropy
DGF for 𝑋 and 𝑌 we get an algorithm that converges at a rate of

𝑂

(
2 ln |V𝑋 | + 2 ln |V𝑌 |

𝑇

)
,

whereV𝑋,V𝑌 is the number of vertices of each treeplex polytope. This gives the
fastest theoretical rate of convergence among gradient-based methods. How-
ever, this only works for the optimistic and non-optimistic OMD algorithm.
Regret matching and RM+ were for simplex domains exclusively. Next we de-
rive a way to use these locally at each information set. It turns out that faster
practical performance can be obtained this way, though the theoretical rate of
convergence is worse.

8.5 Counterfactual Regret Minimization

The framework for utilizing simplex regret minimizers at each information set
is called counterfactual regret minimization (CFR). CFR is based on deriving
an upper bound on regret, which allows decomposition into local regret mini-
mization at each information set. We are interested in minimizing the standard

86 Extensive-Form Games

regret notion over the sequence form:

𝑅𝑇 =
∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥𝑡 ⟩ − min
𝑥∈𝑋

∑︁
𝑡∈[𝑇]

⟨𝑔𝑡 , 𝑥⟩.

To get the decomposition, we will define a local notion of regret which is
defined with respect to behavioral strategies 𝜎 ∈ × 𝑗Δ

𝑗 =: Σ (we derive the
decomposition for a single player, say player 1. Everything is analogous for
player 2).

We saw in Section 8.3 that it is always possible to go from behavioral form to
sequence form using the following recurrence, where assignment is performed
in top-down order.

𝑥𝑎 = 𝑥𝑝 𝑗
𝜎𝑎,∀ 𝑗 ∈ J , 𝑎 ∈ 𝐴 𝑗 . (8.4)

It is also possible to go the other direction (though this direction is not a
unique mapping, as one has a choice of how to assign behavioral probabilities
at information sets 𝑗 such that 𝑥𝑝 𝑗

= 0). These procedures produce payoff-
equivalent strategies for perfect-recall EFGs.

For a behavioral strategy vector 𝜎 (or loss vector 𝑔𝑡) we say that 𝜎 𝑗 is the
slice of 𝜎 corresponding to information set 𝑗 . 𝜎 𝑗↓ is the slice corresponding to
𝑗 , and every information set below 𝑗 . Similarly, Σ 𝑗↓ is the set of all behavioral
strategy assignments for the subset of simplexes that are in the tree of simplexes
rooted at 𝑗 .

We let C𝑗𝑎 be the set of next information sets belonging to player 1 that can
be reached from 𝑗 when taking action 𝑎. In other words, the set of information
sets whose parent sequence is 𝑎.

Now, let the value function at time 𝑡 for an information set 𝑗 belonging to
player 1 be defined as

𝑉
𝑗
𝑡 (𝜎) = ⟨𝑔 𝑗

𝑡 , 𝜎
𝑗⟩ +

∑︁
𝑎∈𝐴 𝑗

∑︁
𝑗′∈C𝑗𝑎

𝜎𝑎𝑉
𝑗′

𝑡 (𝜎 𝑗′↓),

where 𝜎 ∈ Σ 𝑗↓. Intuitively, this value function represents the value that player
1 derives from information set 𝑗 , assuming that 𝑖 played to reach it, i.e. if we
counterfactually set 𝑥𝑝 𝑗

= 1.
The subtree regret at a given information set 𝑗 is

𝑅
𝑗↓
𝑇

=
∑︁
𝑡∈[𝑇]

𝑉
𝑗
𝑡 (𝜎

𝑗↓
𝑡) − min

𝜎∈Σ 𝑗↓

∑︁
𝑡∈[𝑇]

𝑉
𝑗
𝑡 (𝜎),

Note that this regret is with respect to the behavioral form.
The local loss that we will eventually minimize is defined as

�̂�
𝑗
𝑡 ,𝑎 = 𝑔𝑡 ,𝑎 +

∑︁
𝑗′∈C𝑗𝑎

𝑉
𝑗′

𝑡 (𝜎 𝑗′↓
𝑡).

8.5 Counterfactual Regret Minimization 87

For each information set 𝑗 , the loss will depend linearly on 𝜎 𝑗 once we take
the inner product ⟨�̂� 𝑗

𝑡 , 𝜎
𝑗⟩; 𝜎 𝑗 does not affect information sets below 𝑗 , since

we use 𝜎𝑡 in the value function for child information sets 𝑗 ′.
Now we show that the subtree regret decomposes in terms of local losses

and subtree regrets.

Theorem 8.1 For any 𝑗 ∈ J , the subtree regret at time 𝑇 satisfies

𝑅
𝑗↓
𝑇

=
∑︁
𝑡∈[𝑇]

⟨�̂� 𝑗
𝑡 , 𝜎

𝑗
𝑡 ⟩ − min

𝜎∈Δ 𝑗

©­«
∑︁
𝑡∈[𝑇]

⟨�̂� 𝑗
𝑡 , 𝜎⟩ −

∑︁
𝑎∈𝐴 𝑗 , 𝑗

′∈C𝑗𝑎

𝜎𝑎𝑅
𝑗′↓
𝑇

ª®¬ .
Proof Using the definition of subtree regret we get

𝑅
𝑗↓
𝑡 =

∑︁
𝑡∈[𝑇]

𝑉
𝑗
𝑡 (𝜎

𝑗↓
𝑡) − min

𝜎∈Σ 𝑗↓

©­«
∑︁
𝑡∈[𝑇]

⟨𝑔 𝑗
𝑡 , 𝜎

𝑗⟩ +
∑︁

𝑎∈𝐴 𝑗 , 𝑗
′∈C𝑗𝑎

𝜎𝑎𝑉
𝑗′

𝑡 (𝜎 𝑗′↓)ª®¬
=

∑︁
𝑡∈[𝑇]

𝑉
𝑗
𝑡 (𝜎

𝑗↓
𝑡) − min

𝜎∈Δ 𝑗

©­«
∑︁
𝑡∈[𝑇]

⟨𝑔 𝑗
𝑡 , 𝜎⟩ +

∑︁
𝑎∈𝐴 𝑗 , 𝑗

′∈C𝑗𝑎

𝜎𝑎 min
�̂�∈Σ 𝑗′↓

𝑉
𝑗′

𝑡 (�̂� 𝑗′↓)ª®¬
=

∑︁
𝑡∈[𝑇]

𝑉
𝑗
𝑡 (𝜎

𝑗↓
𝑡) − min

𝜎∈Δ 𝑗

©­«
∑︁
𝑡∈[𝑇]

⟨�̂� 𝑗
𝑡 , 𝜎⟩ −

∑︁
𝑎∈𝐴 𝑗 , 𝑗

′∈C𝑗𝑎

𝜎𝑎𝑅
𝑗′↓
𝑇

ª®¬ .
The first equality is by expanding𝑉 𝑗

𝑡 (𝜎 𝑗↓). The second equality is by minimiz-
ing sequentially. The third equality is by adding and subtracting 𝜎𝑎𝑉

𝑗′

𝑡 (𝜎 𝑗′↓
𝑡)

for each 𝑎 ∈ 𝐴 𝑗 , 𝑗
′ ∈ C𝑗𝑎 and using the definition of �̂�𝑡 and 𝑅

𝑗′↓
𝑇

. The theorem
follows, since 𝑉 𝑗

𝑡 (𝜎
𝑗↓
𝑡) = ⟨�̂� 𝑗

𝑡 , 𝜎
𝑗
𝑡 ⟩. □

The local regret that we will be minimizing at a given information set 𝑗 is

�̂�
𝑗

𝑇
:=

∑︁
𝑡∈[𝑇]

⟨�̂� 𝑗
𝑡 , 𝜎

𝑗
𝑡 ⟩ − min

𝜎∈Δ 𝑗

∑︁
𝑡∈[𝑇]

⟨�̂� 𝑗
𝑡 , 𝜎⟩.

Note that this regret is in the behavioral form, and it corresponds exactly to the
regret associated to locally minimizing �̂�

𝑗
𝑡 at each simplex 𝑗 .

The CFR framework is based on the following theorem, which says that
the sequence-form regret can be upper-bounded by the behavioral-form local
regrets.

Theorem 8.2 The regret at time 𝑇 satisfies

𝑅𝑇 = 𝑅
∅̂↓
𝑇

≤ max
𝑥∈𝑋

∑︁
𝑗∈J

𝑥𝑝 𝑗
�̂�

𝑗

𝑇
,

88 Extensive-Form Games

where ∅̂ is the root information set.1

Proof For the equality, consider the regret 𝑅𝑇 over the sequence form poly-
tope 𝑋 . Since each sequence-form strategy has a payoff equivalent behavioral
strategy in Σ and vice versa, we get that the regret 𝑅𝑇 is equal to 𝑅

∅̂↓
𝑇

for the
root information set.

By Theorem 8.1 we have for any 𝑗 ∈ J

𝑅
𝑗↓
𝑇

=
∑︁
𝑡∈[𝑇]

⟨�̂� 𝑗
𝑡 , 𝜎

𝑗
𝑡 ⟩ − min

𝜎∈Δ 𝑗

©­«
∑︁
𝑡∈[𝑇]

⟨�̂� 𝑗
𝑡 , 𝜎⟩ −

∑︁
𝑎∈𝐴 𝑗 , 𝑗

′∈C𝑗𝑎

𝜎𝑎𝑅
𝑗′↓
𝑇

ª®¬
≤

∑︁
𝑡∈[𝑇]

⟨�̂� 𝑗
𝑡 , 𝜎

𝑗
𝑡 ⟩ − min

𝜎∈Δ 𝑗

∑︁
𝑡∈[𝑇]

⟨�̂� 𝑗
𝑡 , 𝜎⟩ + max

𝜎∈Δ 𝑗

∑︁
𝑎∈𝐴 𝑗 , 𝑗

′∈C𝑗𝑎

𝜎𝑎𝑅
𝑗′↓
𝑇

, (8.5)

where the inequality is by the fact that independently minimizing the terms∑
𝑡∈[𝑇] ⟨�̂�

𝑗
𝑡 , 𝜎⟩ and −∑

𝑎∈𝐴 𝑗 , 𝑗
′∈C𝑗𝑎

𝜎𝑎𝑅
𝑗′↓
𝑇

is smaller than jointly minimizing
them.

Now we may apply (8.5) recursively in top-down fashion starting at ∅̂ to get
the theorem. □

A direct corollary of Theorem 8.2 is that if the counterfactual regret at each
information set grows sublinearly then overall regret grows sublinearly. This
is the foundation of the counterfactual regret minimization (CFR) framework
for minimizing regret over treeplexes. The CFR framework can succinctly be
described as

(i) Instantiate a local regret minimizer for each information set simplex Δ 𝑗 .
(ii) At iteration 𝑡, for each 𝑗 ∈ J , feed the local regret minimizer the counter-

factual regret �̂� 𝑗
𝑡 .

(iii) Generate 𝑥𝑡+1 as follows: ask for the next recommendation from each lo-
cal regret minimizer. This yields a set of simplex strategies, one for each
information set. Construct 𝑥𝑡+1 via (8.4).

Thus, we get an algorithm for minimizing regret on treeplexes based on mini-
mizing counterfactual regrets. In order to construct an algorithm for computing
a two-player zero-sum Nash equilibrium based on a CFR setup, we may in-
voke the folk theorem from Chapter 6 (or a variation) using the sequence-form
strategies generated by CFR. Doing this yields an algorithm that converges to
a Nash equilibrium a rate of 𝑂

(
1√
𝑇

)
While CFR is technically a framework for constructing local regret minimiz-

ers, the term “CFR” is often overloaded to mean the algorithm that results from
1 If there is more than one root information set then we can add a dummy single information set

that precedes all the root information sets.

8.5 Counterfactual Regret Minimization 89

using the folk theorem with uniform averages, and using regret matching as the
local regret minimizer at each information set. CFR+ is the algorithm resulting
from using the alternation setup, taking linear averages of strategies, and using
RM+ as the local regret minimizer at each information set.

Algorithm 1 CFR(RM+)(J , 𝑋)
1: Input: J : set of infosets, 𝑋 ∈ R𝑛≥0: sequence-form strategy space
2: procedure Setup
3: Q = zeros(𝑛); the all-zero vector
4: 𝑡 = 1

5: function NextStrategy
6: 𝑥 = 0 ∈ R𝑛
7: 𝑥∅ = 1
8: for all 𝑗 ∈ J in top-down order do
9: 𝑠 =

∑
𝑎∈𝐴 𝑗

Q𝑎

10: for all 𝑎 ∈ 𝐴 𝑗 do
11: if 𝑠 = 0 then
12: 𝑥𝑎 = 𝑥𝑝 𝑗

/|𝐴 𝑗 |
13: else
14: 𝑥𝑎 = 𝑥𝑝 𝑗

× Q𝑎/𝑠
15: return 𝑥

16: function ObserveLoss(𝑔𝑡 ∈ R𝑛)
17: for all 𝑗 ∈ J in bottom-up order do
18: 𝑠 =

∑
𝑎∈𝐴 𝑗

Q𝑎

19: 𝑣 = 0 ⊲ value of infoset 𝑗
20: if 𝑠 = 0 then
21: 𝑣 =

∑
𝑎∈𝐴 𝑗

𝑔𝑡 ,𝑎/|𝐴 𝑗 |
22: else
23: 𝑣 =

∑
𝑎∈𝐴 𝑗

⟨𝑔𝑡 ,𝑎,Q𝑎/𝑠⟩
24: 𝑔𝑡 , 𝑝 𝑗

= 𝑔𝑡 , 𝑝 𝑗
+ 𝑣 ⊲ construct local loss �̂�𝑡

25: for all 𝑎 ∈ 𝐴 𝑗 do
26: Q𝑎 = [Q𝑎 + (𝑣 − 𝑔𝑡 ,𝑎)]+

27: 𝑡 = 𝑡 + 1

We now show pseudocode for implementing the CFR algorithm with the
RM+ regret minimizer. In order to compute Nash equilibria with this method
one would use CFR as the regret minimizer in one of the folk-theorem setups

90 Extensive-Form Games

from Chapter 6. NextStrategy implements the top-down recursion in (8.4),
while computing the update corresponding to RM+ at each 𝑗 . ObserveLoss
uses bottom-up recursion to keep track of the regret-like sequence 𝑄𝑎, which
is based on �̂�𝑡 ,𝑎 in CFR.

The pseudocode assumes that there is a dummy empty sequence ∅ at the root
of the treeplex with no corresponding 𝑗 (this corresponds to a single-action
dummy information set at the root, but leaving out that dummy information set
in the index set J). This is similar, but distinct from, the root infoset used in
Theorem 8.2. This makes code much cleaner because there is no need to worry
about the special case where a given 𝑗 has no parent sequence, at the low cost
of increasing the length of each player’s sequence-form vector by 1.

8.6 Numerical Comparison of CFR methods and OMD-like
methods

Figure 8.5 shows the performance of three CFR variants and two optimistic
OMD-based algorithms with dilated entropy (DOMD(Entropy)) and dilated
Euclidean (DOMD(Euclidean)) DGFs for solving three EFGs: Kuhn poker
and Leduc poker, simplified poker games that are standard in EFG solving, and
Sheriff, a simplified version of the Sheriff of Nottingham game. The experiments
were run with the LiteEFG library (Liu et al., 2024).

All algorithms use alternation, and all algorithms were run for 10, 000 itera-
tions. An algorithm uses uniform averaging unless ‘lin’ is appended to the name,
in which case it uses linear averaging. The stepsizes for the optimistic OMD
algorithms were lightly tuned (I tried about 5 stepsizes for each, and picked the
one with the lowest saddle-point residual after the 10, 000 iterations).

Similar to the case of two-player zero-sum normal-form games in Chapter 6,
we see that CFR+ performs very well with linear averaging, especially in
Leduc poker. Optimistic OMD with the dilated Euclidean DGF also performs
extremely well in Kuhn poker and Sheriff. This is a common occurrence in the
literature, where CFR+ (with linear averaging) is usually the best algorithm for
solving poker games, whereas other methods often perform better for non-poker
games. Kuhn poker breaks with this categorization, which is also consistent in
the literature. Most likely, this is because Kuhn poker is too “simple” of a poker
game.

8.7 Stochastic Gradient Estimates 91

kuhn_poker leduc_poker sheriff

1 10 100 1000100001 10 100 1000100001 10 100 100010000

1e−06

1e−04

1e−02

1e+00

Iterations

S
ad

dl
e−

po
in

t r
es

id
ua

l

Algorithm
CFR CFR+ CFR+ lin

DOMD(Entropy) DOMD(Euclidean) lin

Figure 8.5 Solution accuracy as a function of the number of algorithm iterations
in three EFGs: Kuhn poker (left), Leduc poker (center), and Sheriff (right). Results
are shown for CFR with regret matching, CFR+ with uniform averaging (labeled
as CFR+), CFR+ with linear averaging (labeled as “CFR+ lin”), optimistic OMD
with the dilated entropy DGF, and optimistic OMD with the dilated Euclidean
DGF and linear averaging. Both axes are shown on a log scale.

8.7 Stochastic Gradient Estimates

So far we have operated under the assumption that we can easily compute the
gradients for each player, i.e. the matrix-vector products 𝐴𝑦𝑡 and −𝐴⊤𝑥𝑡 , for
the EFG that we are trying to solve. While these can indeed be computed in
time linear in the size of the game tree, there are cases (such as in poker AI)
where the game tree is so large that even one traversal is too much. In that case,
we are interested in developing methods that can work with some stochastic
gradient estimator (say for the 𝑥 player) �̃�𝑡 of the gradient. Typically, one would
consider unbiased gradient estimators, i.e. E[�̃�𝑡] = 𝐴𝑦𝑡 .

Assuming that we have a gradient estimator �̃�𝑡 for each time 𝑡, a natural
approach for attempting to compute a solution would be to apply our previous
approach of running a regret minimizer for each player and using the folk
theorem, but now using �̃�𝑡 at each iteration, rather than 𝑔𝑡 . If our unbiased
gradient estimator �̃�𝑡 is reasonably accurate then we might expect that this
approach should still yield an algorithm for computing a Nash equilibrium.
This turns out to be the case.

Theorem 8.3 Assume that each player uses a bounded unbiased gradient

92 Extensive-Form Games

estimator for their loss at each iteration. Then for all 𝑝 ∈ (0, 1), with probability
at least 1 − 2𝑝

𝜉 (𝑥, �̄�) ≤
�̃�1
𝑇
+ �̃�2

𝑇

𝑇
+

(
2Δ + �̃�1 + �̃�2

) √︄ 2
𝑇

log
1
𝑝
,

where �̃�𝑖
𝑇

is the regret incurred under the losses �̃�𝑖𝑡 for player 𝑖,Δ = max𝑧,𝑧′∈𝑍 𝑢2 (𝑧)−
𝑢2 (𝑧′) is the payoff range of the game, and �̃�1 ≥ max𝑥,𝑥′∈𝑋 ⟨�̃�𝑡 , 𝑥 − 𝑥′⟩,∀�̃�𝑡 is
a bound on the “size” of the gradient estimate, with 𝑀2 defined analogously.

We will not show the proof here, but it follows straightforwardly from intro-
ducing the discrete-time stochastic process

𝑑𝑡 := 𝑔𝑡 (𝑥𝑡 − 𝑥)) − �̃�𝑡 (𝑥𝑡 − 𝑥),

observing that it is a martingale difference sequence, and applying the Azuma-
Hoeffding inequality (see Theorem B.1).

With Theorem 8.3 in hand, we just need a good way to construct gradient
estimates �̃�𝑡 ≈ 𝐴𝑦𝑡 . Generally, one can construct a wide array of gradient
estimators by using the fact that 𝐴𝑦𝑡 can be computed by traversing the EFG
game tree: at each leaf node 𝑧 in the tree, we add −𝑢1 (𝑧)𝑦𝑎 to 𝑔𝑡 ,𝑎′ , where
𝑎 is the last sequence taken by the 𝑦 player, and 𝑎′ is the last sequence taken
by the 𝑥 player. To construct an estimator, we may choose to sample actions
at some subset of nodes in the game tree, and then only traverse the sampled
branches, while taking care to normalize the eventual payoff so that we maintain
an unbiased estimator. One of the most successful estimators construct this way
is the external sampling estimator. In external sampling when computing the
gradient 𝐴𝑦𝑡 , we sample a single action at every node belonging to the 𝑦 player
or chance, while traversing all branches at nodes belonging to the 𝑥 player.

Figure 8.6 shows the performance when using external sampling in CFR
(CFR with sampling is usually called Monte-Carlo CFR or MCCFR), CFR+,
and optimistic OMD. Performance is shown on Kuhn poker, Leduc poker, and
Sheriff again. In the deterministic case we saw that CFR+ was much faster than
CFR, and also faster than the theoretically-superior optimistic OMD in Leduc
poker. In the stochastic case the results are similar for all the algorithms, and
in fact CFR performs slightly better than CFR+. OMD with the dilated entropy
DGF, previously the worst algorithm in the deterministic case, now performs
better slightly better than the other algorithms, though only marginally so.

8.8 Search in Extensive-Form Games 93

kuhn_poker leduc_poker sheriff

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05 1e+01 1e+03 1e+05

0.01

0.10

1.00

Iterations

S
ad

dl
e−

po
in

t r
es

id
ua

l

Algorithm
CFR CFR+

DOMD(Entropy) DOMD(Euclidean)

Figure 8.6 Performance of CFR, CFR+, and optimistic OMD (with both the dilated
entropy and Euclidean DGFs) when using the external sampling gradient estimator.

8.8 Search in Extensive-Form Games

We previously saw how to compute a Nash equilibrium of a two-player zero-
sum extensive-form game (EFG) by using dilated distance-generating functions
or the CFR framework. We also saw that even if computing gradients 𝑔𝑡 = 𝐴𝑦𝑡

is too time-consuming we can still run algorithms using gradient estimates
constructed via sampling. However, for some real-world games such as two-
player no-limit Texas hold’em, this is still not enough. The game tree in this
game has roughly 10170 nodes, and the strategy space is much too large to even
write down strategy iterates. Faced with this situation, we need to make even
coarser approximations to our problem.

One major innovation for solving large-scale poker games was the use of
real-time search. Traditionally, poker AIs were created by precomputing an
approximate Nash equilibrium for some extremely coarsened representation of
the full game using e.g. CFR+. Then, that offline strategy was simply employed
during play. In real-time search, the precomputed Nash equilibrium approxi-
mation is refined in real time for subgames encountered during live play. This
allows the AI to reason in much more detail, especially towards the end of
the game, where the encountered subtree is manageable in size. In order to
understand how search works in EFGs, we will first show how it works in the
simpler setting of perfect-information EFGs, where there are no information

94 Extensive-Form Games

sets, and so players know exactly which node they are currently at. Search in
perfect-information EFGs has historically been extremely successful, it was
used in AI milestones on Chess and Go.

8.8.1 Backward Induction
Perfect-information EFGs (meaning that all information sets consist of a single
node) can be solved via backward induction, as discussed in Section 8.1. Since
the game is played on a tree, and a player always knows exactly where in the
tree they are, we can reason about the optimal strategy at a given node purely
by considering the subgame rooted at the node. We do not need to worry about
what happens in any other parts of the game tree. Backward induction exploits
this fact by recursively solving every subgame. It starts at leaf nodes, and then at
any internal node, the algorithm pick the action that leads to the best subgame
for the player acting at the node (breaking ties arbitrarily). Similarly, search
methods can exploit this structure.

8.8.2 Search in Games
In search, we search for a solution in real-time during play. Say that we are
playing chess, which is a perfect-information EFG. Say that some set of moves
already happened, resulting in the board state shown below:

In order to decide a next move for black, we can now perform real-time
search. We perform backward induction starting at the subgame rooted at the
current board state. What this means is that we try all sequences of legal moves
starting with the current state, and then we pick the best action based on having
solved the subgame via backward induction. However, unless we are close to
the end of the game, the size of the subgame usually makes backward induction
much too slow. Instead, the search is performed only up to a certain depth, say
10 moves ahead. This generally won’t get us to a leaf node of the game, and so
instead we replace the nodes at depth 10 with fake leaf nodes that we assign
some heuristic estimate of the unique value that would have resulted from
backward induction (we will call these fake leaf nodes subgame leaf nodes).
In order to do that, we need to construct an estimate of what value an internal
node would have in the solution. A visualization is shown in Figure 8.8.

In order to estimate the value of some internal node ℎ in the game tree, we
assume that we have some value estimator 𝑣 : 𝐻′ → R, where 𝐻′ is the set of
nodes in the game tree that are leaf nodes in the subgame. Each subgame leaf
node ℎ is then assigned the value 𝑣(ℎ) in the subgame. In perfect-information
games each node ℎ has some unique value associated to the solution arising

8.8 Search in Extensive-Form Games 95

1 e4 e5 2 Nf3 Nc6 3 Bb5

8rZblkans
7opopZpop
60ZnZ0Z0Z
5ZBZ0o0Z0
40Z0ZPZ0Z
3Z0Z0ZNZ0
2POPO0OPO
1SNAQJ0ZR

a b c d e f g h

Figure 8.7 A chess board.

to
o

lar
ge

to
so

lve

subgame leaf
nodes

subgam
e

Figure 8.8 A large game truncated to a depth-limited subgame starting at the root.

from backward induction. In that case, our goal is simply to have 𝑣(ℎ) be a
good approximation to this unique value. If 𝑣(ℎ) provides perfect estimates
then backward induction in the subgame recovers the solution to the original
game.

So how do you get a value estimator? It can be handcrafted based on domain
knowledge (this was done for Deep Blue, a chess AI which beat Garry Kasparov,
at the time considered the best chess player in the world); it can be learned by
training on expert human games (this was done by AlphaGo, a Go AI which
beat Lee Sidol, a top-tier professional Go player); or finally it can be done

96 Extensive-Form Games

via self-play (this was done by AlphaZero, a generalization of AlphaGo, and
Pluribus, a poker AI that beat humans at 6-player poker).

For imperfect-information games such as poker, things are more complicated.
The primary issue is that backward induction no longer works: The value of
a given node cannot be understood purely in terms of the subtree rooted at
the node. Instead, we must take into account the rest of the game tree. Further
complicating matters is the fact that a node does not have a single well-defined
value; the value of a node may change depending on which Nash equilibrium
we are considering. Finally, even if we manage to estimate the value of a node
in equilibrium, we may end up choosing a strategy where the opponent can
best respond in order to exploit us in the truncated part of the game tree. This
is easily seen by considering the EFG representation of rock-paper-scissors: At
the root node player 1 chooses rock, paper, or scissors. Then, player 2 has a
single information set containing all three nodes corresponding to each choice
for player 1, and they choose rock, paper, or scissors at that information set.
If we truncate the game at depth 1 and assign each player 2 node its value in
equilibrium (which is 0), then player 1 ends up with 3 actions, all leading to a
payoff of 0. Thus, for the subgame player 1 can choose any pure strategy, e.g.
always play rock, and based on the subgame think that they achieve a value
of zero. However, once we play in real time, if our opponent knows that we
truncated the game and picked rock, they may exploit us by playing paper.

The above issue arises from a loss of contextual information: the value of
the node corresponding to player 1 choosing rock is affected by how frequently
they choose paper and scissors as well. We can add this contextual information
to our value predictor as follows: instead of deterministically predicting a node
value 𝑣(ℎ), we make our node-value prediction contextual by conditioning on
𝑝. Then, 𝑣(ℎ|𝑝) is our estimate of the value for ℎ, conditional on a probability
distribution 𝑝 over nodes at the truncation level. For the rock-paper-scissors
example, 𝑣(ℎ𝑟 | [𝑝𝑟 , 𝑝𝑝 , 𝑝𝑠]) would estimate the value of, say, the rock node
ℎ𝑟 conditional on the distribution [𝑝𝑟 , 𝑝𝑝 , 𝑝𝑠] over the 3 possible nodes. This
leads to a much more complicated value estimator, since we are now trying
to construct a mapping from 𝐻′ × Δ |𝐻′ | to R. This is the approach taken in
the DeepStack poker AI, which beat a group of professional poker players in
two-player no-limit Texas hold’em. Values are estimated using a deep neural
network that was pretrained by generating random distributions over subgame
leaf nodes, and then solving each of the subgames defined by truncating the top
of the game, and having a chance root node that randomizes over the subgame
leaf nodes using the randomly generated distribution.

Once an estimator 𝑣 has been constructed, real-time search with this setup
works as follows:

8.8 Search in Extensive-Form Games 97

(i) Define a subgame by looking 𝑘 moves ahead.
(ii) Solve the subgame using a regret-minimization algorithm for EFGs (e.g.

CFR+).
(iii) On each iteration 𝑡 of the regret-minimization algorithm:

(a) Algorithms chooses subgame strategies 𝑥𝑡 , 𝑦𝑡 .
(b) 𝑥𝑡 , 𝑦𝑡 defines a probability distribution 𝑝(𝑍) over subgame leaf nodes.
(c) For each leaf node 𝑧, ask value predictor for estimates 𝑣(𝑧, 𝑝(𝑍)).
(d) Set loss for the 𝑥 player to 𝑔𝑡 = 𝐴𝑡 𝑦𝑡 , where 𝐴𝑡 is the payoff matrix

associated to the subgame with subgame leaf estimates 𝑣(𝑧, 𝑝(𝑍)). Define
the loss for the 𝑦 player analogously.

If the value network is perfect, then this setup computes a strategy for the
subgame that is part of some Nash equilibrium in the full game.

To summarize the approach described here: we train our value network
offline, e.g. by generating random distributions over nodes, and solving those
subgames. This generates training data. Then, during play we use the already-
trained value network to solve subgames as we encounter them.

This still leaves open the question of how to solve the subgames needed to
create the value network, since those subgames could be very large themselves
(e.g. subgames starting near the root of the game tree). One way to do it is
to start by randomly generating shallow games near the bottom of the game,
say depth 𝑑1. Once we have a good value network for predicting the value
of nodes at depth 𝑑1, we can move up one level. Next, we randomly generate
distributions over nodes at depth 𝑑2, and truncate those games at depth 𝑑1 using
our value network that we already constructed for depth 𝑑1. We can then apply
this recursively.

So far we have described our methodology and examples as if we are solving
a depth-limited subgame starting at the root node of the game tree. However, in
practice we would like to solve subgames starting at arbitrary decision points
in the game. In perfect-information games this is easily done. We may treat it
exactly the same as solving from the root, since every node provides a well-
defined subgame with that node as the root. However, in imperfect-information
games this is not so.

To construct an imperfect-information EFG subgame, we assume that we
have so far been playing according to some blueprint strategy which we com-
puted ahead of time (our opponent need not follow the blueprint strategy in
practice). Typically, this blueprint strategy would be computed using CFR+ on
a very coarsened abstraction of the game.

When constructing a non-root subgame in an imperfect-information game,
we will in general not know exactly which node we are at, and so instead we

98 Extensive-Form Games

would have to start the subgame at the information set that we are currently at.
But even taking all the nodes in the current information set as the root (and
applying Bayes’ rule to derive a chance node that selects among them), will not
be enough. In particular, nodes in subtrees rooted at the information set may
be in information sets that contain nodes that are not in any of the subtrees. To
remedy this, we construct our subgame by starting with all nodes in subtrees
rooted at the current information set. Then, we add to our subgame every node
that shares an information set with at least one node currently in our subgame.
We then repeatedly add nodes in this fashion, until we reach the point where
there are no nodes outside the subgame which share an information set with
any node in our (now much larger) subgame. Finally, in order to finish our
construction we need a probability distribution over all the nodes that are at the
top level (i.e. same level as the information set we wanted to create a subgame
for) of this new subgame. The most naive approach would be to make a single
chance node as the root, and use the conditional distribution over the set of
top-level nodes given our blueprint strategy. This approach is typically called
unsafe subgame solving. The reason it is called unsafe is that we are generally
not guaranteed that we will be weakly better off by applying subgame solving,
as compared to our blueprint strategy. By not considering the rest of the game,
it turns out that we might open ourselves up to exploitation. Nonetheless, unsafe
subgame solving is often used in practice.

There are various methods for performing “safe” subgame solving. These
typically require adding additional gadgets to the unsafe subgame construction,
either by enforcing that the opponent achieves a certain level of utility in the
subgame (this prevents us from overfitting to the subgame), or replacing the
initial chance node with a number of opponent nodes, where they can reject the
subgame unless they achieve a certain utility level.

8.9 Historical Notes

The sequence form was discovered in the USSR in the 60s (Romanovskii,
1962) and later rediscovered independently (von Stengel, 1996; Koller et al.,
1996). Dilated DGFs for EFGs were introduced by Hoda et al. (2010). Hoda
et al. (2010) proved that any dilated DGF constructed from strongly-convex
simplex DGFs must also be strongly convex, though they did not derive explicit
bounds. Deriving an explicit strong convexity modulus for the dilated entropy
DGF was studied by several papers (Kroer et al., 2020; Farina et al., 2021a).
The final version that we present here was given by Fan et al. (2024), which
also introduced the specialized treeplex ℓ1 and ℓ∞ norms. Fan et al. (2024)

8.9 Historical Notes 99

also show corresponding lower bounds which imply that the bound presented
in Section 8.4 is tight up to log factors. An explicit bound for the dilated
Euclidean DGF can be found in Farina et al. (2019c), though it is possible that
their bound can be improved.

CFR-based algorithms were used as the algorithm for computing Nash equi-
librium in all the recent milestones where AIs beat human players at various
poker games (Bowling et al., 2015; Moravčı́k et al., 2017; Brown and Sand-
holm, 2018, 2019b). CFR was introduced by Zinkevich et al. (2007). Many
later variations have been developed, for example the stochastic method MC-
CFR (Lanctot et al., 2009), and variations on which local regret minimizer to
use in order to speed up practical performance (Tammelin et al., 2015; Brown
and Sandholm, 2019a). The proof of CFR given here is a simplified version of
the more general theorem developed in Farina et al. (2019b). The plots on CFR
vs EGT are from Kroer et al. (2020).

The bound on error from using a stochastic method in Theorem 8.3 is from
Farina et al. (2020), and the plots on stochastic methods are from that same
paper. External sampling and several other EFG gradient estimators were in-
troduced by Lanctot et al. (2009).

Search was used in several poker AIs that beat human poker players of
various degrees of expertise, both in two-player poker (Moravčı́k et al., 2017;
Brown and Sandholm, 2018) and 6-player poker (Brown and Sandholm, 2019b).
Endgame solving, where we solve the remainder of the game, was studied in the
unsafe version by Ganzfried and Sandholm (2015). Safe endgame solving was
studied by Burch et al. (2014); Moravcik et al. (2016) and Brown and Sandholm
(2017). The more general version of subgame solving where we do not have
to solve to the end of the game was studied by Moravčı́k et al. (2017); Brown
et al. (2018b,a).

The benchmark EFGs that we used were introduced by various others. Kuhn
poker was designed by Harold W. Kuhn in 1950 (Kuhn, 2016). Leduc poker
was introduced by Southey et al. (2005). Sheriff was introduced by Farina et al.
(2019a).

Further reading.
An economics-focused introduction to EFGs can be found in Fudenberg and
Tirole (1991). For the sequence-form linear-programming approach to com-
puting Nash equilibria in EFGs, the chapter by Bernhard von Stengel in Nisan
et al. (2007) is a good source, as well as Shoham and Leyton-Brown (2008).
For CFR, I am not aware of a very intuitive coverage. I am partial to the regret-
minimization perspective that we developed in Farina et al. (2019b). For a
more “traditional” introduction to CFR, I recommend the survey by Neller and

100 Extensive-Form Games

Lanctot (2013). Regarding dilated distance-generating functions, the original
paper by Hoda et al. (2010) is a good starting point. For the strongest results
specifically on the dilated entropy, see Farina et al. (2025) and Fan et al. (2024).
Search in imperfect-information games is a very recent topic, and there are no
textbooks covering it. The references listed above are the best source for further
reading.

9
Stackelberg equilibrium and Security Games

In this chapter we introduce Stackelberg equilibrium. Stackelberg equilibrium
is an equilibrium notion for two-player general-sum games where one player
is a leader and the other player is a follower (it can also be generalized to
multiple leaders and/or followers). This model is appropriate for example when
modeling competing firms and first-mover advantage or, as we will see, security
settings centered around asset protection.

9.1 Stackelberg Equilibrium

We will consider a two-player normal-form game where there is a leader ℓ

and a follower 𝑓 . The leader has a finite set of actions 𝐴ℓ and the follower
has a finite set of actions 𝐴 𝑓 . We let Δℓ ,Δ 𝑓 denote the set of probability
distributions over the leader and follower actions. We will consider a general-
sum game with utilities 𝑢𝑖 (𝑎ℓ , 𝑎 𝑓) for 𝑖 ∈ {ℓ, 𝑓 }. Given probability distributions
𝑥 ∈ Δℓ , 𝑦 ∈ Δ 𝑓 over 𝐴ℓ and 𝐴 𝑓 , we abuse notation slightly and let

𝑢𝑖 (𝑥, 𝑦) = E𝑎ℓ∼𝑥,𝑎 𝑓 ∼𝑦
[
𝑢𝑖 (𝑎ℓ , 𝑎 𝑓)

]
,

We assume that the leader is able to commit to a strategy 𝑥 ∈ 𝑋 . Given 𝑥, the
follower observes 𝑥 and chooses their strategy from the best-response set

𝐵𝑅(𝑥) = arg max
𝑦∈Δ 𝑓

𝑢 𝑓 (𝑥, 𝑦).

The goal of the leader is to choose a strategy 𝑥 maximizing their utility
subject to the follower best responding. Formally, they wish to solve

max
𝑥∈Δℓ

𝑢ℓ (𝑥, 𝑦) s.t. 𝑦 ∈ 𝐵𝑅(𝑥). (9.1)

101

102 Stackelberg equilibrium and Security Games

However, this optimization problem has a problem currently. Can you see
what it is?

The issue is that 𝐵𝑅(𝑥) may be set valued, and 𝑢ℓ (𝑥, 𝑦) generally would differ
defending on which 𝑦 ∈ 𝐵𝑅(𝑥) is chosen. Because of this, we need a rule for
how to choose among the best responses. In a strong Stackelberg equilibrium
(SSE) we assume that the follower breaks ties in favor of the leader. In that case
the optimization problem is

max
𝑥∈Δℓ ,𝑦∈𝐵𝑅 (𝑥)

𝑢ℓ (𝑥, 𝑦). (9.2)

SSE is, in a sense, the most optimistic variant. Conversely, we may consider
the most pessimistic assumption, that ties are broken adversarially. This yields
the weak Stackelberg equilibrium (WSE)

max
𝑥∈Δℓ

min
𝑦∈𝐵𝑅 (𝑥)

𝑢ℓ (𝑥, 𝑦). (9.3)

Do not be misled by the minimax structure in this problem; it is not well-
behaved the same way that our other minimax problems have been. This is
because the feasible set for 𝑦 depends on 𝑥, which introduces problems such
as nonexistence (an example is give below for an inspection game). In practice
SSE has been by far the most popular. One major advantage of SSE is that it is
always guaranteed to exist, whereas WSE is not.

A first question we might ask ourselves is whether it always helps or hurts to
be able to first commit to a strategy, as compared to playing a Nash equilibrium.

First, let us consider the zero-sum case. If we are in a zero-sum game, then
we already saw from von Neumann’s minimax theorem that we can represent
the Nash equilibrium problem as

min
𝑥∈Δℓ

max
𝑦∈Δ 𝑓

⟨𝑥, 𝐴𝑦⟩ = max
𝑦∈Δ 𝑓

min
𝑥∈Δℓ

⟨𝑥, 𝐴𝑦⟩.

It follows that Nash equilibrium and Stackelberg equilibrium are equivalent in
this setting (since being able to do better than a Nash equilibrium would violate
the minimax theorem, and we can always commit to a minimax strategy).

Second, consider the case where we restrict the leader to only committing to
pure actions 𝑎 ∈ 𝐴ℓ . Then it is easy to see that committing to a strategy first
may hurt the leader (consider Rock, Paper, Scissors).

Finally, consider the case where we allow commitment a mixed strategy
𝑥 ∈ Δℓ . In this case it turns out that committing to a strategy helps the leader.

Theorem 9.1 In a general-sum game, the leader achieves weakly more utility
in SSE than in any Nash equilibrium.

9.1 Stackelberg Equilibrium 103

cheat no cheat

inspect -6, -9 -1,0
no inspection -10, 1 0, 0

Table 9.1 The payoff matrix for an inspection game.

Proof Consider the Nash equilibrium (𝑥, 𝑦) that yields the highest utility for
the leader. Suppose the leader commits to 𝑥. Since the follower breaks ties in
favor of the leader, we get that if the leader commits to 𝑥 then the follower can
at worst pick 𝑦 from 𝐵𝑅(𝑥). If they don’t pick 𝑦, then they must pick something
that yields even better utility for the leader. So, by committing to 𝑥, the leader
weakly improves on the Nash equilibrium. Thus, they do at least as well, since
they can choose 𝑥, or something better. □

Similarly, it can be shown that the WSE solution is at least as good as some
Nash equilibrium payoff for the leader (see von Stengel and Zamir (2010) for
a proof). Thus, if we consider the range of payoffs [𝐿, 𝐻] from the lowest to
highest in Stackelberg equilibrium, then that range lies above the range that we
would get for Nash equilibrium.

A classic example of the difference between Nash equilibrium and Stackel-
berg equilibrium is in the context of inspection games. In an inspection game, an
inspector chooses whether to inspect or not, and the inspectee chooses whether
to cheat or not. An example game is shown below

The goal of the inspector is to deter cheating, and inspecting incurs a cost of
−1. When cheating occurs the inspector incurs a heavy negative cost, whether
detected or not (so the goal is not to catch cheaters, but rather to deter cheating).
The inspectee gains utility from cheating undetected (-10, 1), but incurs a heavy
fine if they cheat and are inspected (-6,-9).

There is a single unique Nash equilibrium in this game, where the inspector
inspects with probability 1

10 , and the inspectee cheats with probability 1
5 . This

yields expected utilities of (-2, 0) for the two players.
Now consider the same game, but where we allow the inspector to be the

leader in a Stackelberg game. Any strategy that inspects with probability at
least 1

10 will make not cheating a best response for the follower. The SSE of
the game is for the inspector to inspect with probability 1

10 and the inspectee to
not cheat. This yields expected utilities (− 1

10 , 0), which is much better for the
inspector. Note furthermore that if we consider the WSE solution concept, then
the inspector must inspect with probability strictly greater than 1

10 in order to
make not cheating the only best response. But this means that a WSE does not
exist, since for every leader strategy that inspects with probability 𝑝 > 1

10 , the

104 Stackelberg equilibrium and Security Games

leader can improve their utility by inspecting with any probability in the open
interval (1

10 , 𝑝).
In the normal-form game setup given above, an SSE can be computed in

polynomial time. In particular, say that we want to maximize leader utility,
subject to making a particular follower action 𝑎 𝑓 ∈ 𝐴 𝑓 a best response. We
may solve this problem using the following LP:

max
𝑥∈Δℓ

∑︁
𝑎∈𝐴ℓ

𝑥𝑎𝑢ℓ (𝑎, 𝑎 𝑓)

𝑠.𝑡.
∑︁
𝑎∈𝐴ℓ

𝑥𝑎𝑢 𝑓 (𝑎, 𝑎 𝑓) ≥
∑︁
𝑎∈𝐴ℓ

𝑥𝑎𝑢 𝑓 (𝑎, 𝑎′𝑓), ∀𝑎
′
𝑓 ∈ 𝐴 𝑓 .

Now, in order to find the optimal strategy to commit to, we may iterate over all
𝑎 𝑓 ∈ 𝐴 𝑓 , solve the LP for each, and pick the optimal solution 𝑥∗ associated to
the LP with the highest value. This works because of the assumption that ties
are broken in favor of the leader (convince yourself why).

Once we have the optimal strategy 𝑥∗, we may find the associated follower
strategy simply by picking the pure strategy 𝑎 𝑓 for which 𝑥∗ was the LP
solution. Generally, it is easy to see that it is always enough to consider only
pure strategies when choosing the follower strategy in an SSE (why?). The
same holds true for WSE.

This LP-based algorithm also proves that an SSE is always guaranteed to
exist.

9.2 Security Games

Stackelberg equilibrium models have been deployed extensively in asset protec-
tion scenarios, such as deployment of patrols in airports, poaching deterrence,
coast guard patrolling, subway fare inspection, and others. This broad class of
models are called security games.

In the security games model (SGM) a defender (the leader) is interested
in protecting a set of targets using limited resources, while an attacker (the
follower) is able to observe the strategy of the leader, and best respond to
it. A classical example would be that of protecting an airport: say we have
5 vulnerable locations at the airport, but only 2 patrol units. How can we
schedule the patrols to provide maximum coverage across the 5 vulnerable
locations, while taking into account the fact that an attacker prefers certain
locations to others?

The basic security games model has a set 𝑇 of targets (note that we could
have a single physical target appear twice in 𝑇 , representing attacking that

9.2 Security Games 105

target, say, in the morning or evening). The defender controls a set of resources
𝑅 that can be assigned to a schedule from a set 𝑆 ⊆ 2𝑇 of possible schedules.
A schedule is a subset of targets that are simultaneously covered if a resource
is assigned that given schedule (for example in the airport example, a resource
would be a patrol, and schedules would be the set of feasible patrols across
targets). We say that a target is “covered” if the defender assigns a resource to
a schedule that covers it. The action space for the attacker consists of choosing
which single target to attack. In the basic SSG model, the utility function of
both the defender and attacker depends only on which target is attacked, and
whether it is covered or not. Formally, we say that the defender receives utility
𝑢𝑐
𝑑
(𝑡) if target 𝑡 is attacked and covered, and utility 𝑢𝑢

𝑑
(𝑡) if target 𝑡 is attacked

and not covered. Similarly, the attacker gains utility 𝑢𝑐𝑎 (𝑡) if target 𝑡 is attacked
and covered, and 𝑢𝑢𝑎 (𝑡) if target 𝑡 is attacked and not covered. If the resources
𝑅 are not homogenous then there may be an assignment function 𝐴 : 𝑅 → 𝑆

denoting the set of schedules 𝑠 that resource 𝑟 can be assigned.
For security games we will restrict our attention to SSE. Given a strategy 𝑥 for

the defender, we get a deployment of resources to targets for the defender, with
an induced probability distribution 𝑝𝑐 (𝑡 |𝑥) of whether each target is covered.
A strategy for the attacker simply specifies a single target 𝑡 to attack (recall
that it is enough to consider pure strategies for the follower in Stackelberg
equilibrium). For a strategy pair 𝑥, 𝑡 the expected utility for the defender is
𝑝𝑐 (𝑡 |𝑥)𝑢𝑐𝑑 (𝑡) + (1 − 𝑝𝑐 (𝑡 |𝑥))𝑢𝑢𝑑 (𝑡), with attacker utility defined analogously.

9.2.1 Algorithms for Security Games
So now that we have a game model for security games, can we just apply our
LP result on computing SSE in order to get an SSE for security games? Not
quite: in order to convert the SGM into a standard normal-form game we get a
combinatorial blow-up: consider that a pure strategy would be a deployment of
resources to targets. But now let’s say that we just have 𝑑 patrols as our resources
and 𝑘 targets, and a simple model where each patrol can cover exactly one target.
In that case we have

(𝑘
𝑑

)
pure strategies for the leader. A similar blow-up happens

for other natural setups such as when each resource can cover two targets (e.g.
air marshals that protect an outgoing and then ingoing flight as their daily
routine).

In the special case where each resource covers exactly one target (equiv-
alently, schedules have size 1) there is an LP-based approach that can still
construct an SSE in polynomial time. This LP still allows heterogeneous re-
sources; below we let 𝐴(𝑟) be the set of targets that resource 𝑟 is allowed
to cover. The key idea in the LP is to use the marginal coverage probability

106 Stackelberg equilibrium and Security Games

𝑝𝑐 (𝑡 |𝑥) as our decision variable. We will have an LP where the variable 𝑐𝑡

is the coverage probability on target 𝑡, and the variable 𝑐𝑟 ,𝑡 is the probability
that resource 𝑟 provides coverage for 𝑡 ∈ 𝐴(𝑟). The goal is to maximize the
defender utility subject to making some target 𝑡∗ a best response for the attacker.
We can then solve for each 𝑡∗ ∈ 𝑇 as before, and pick the best. In this LP, we
let 𝑢𝑎 (𝑡 |𝑐) = 𝑐𝑡𝑢

𝑐
𝑎 (𝑡) + (1 − 𝑐𝑡)𝑢𝑢𝑎 (𝑡), with 𝑢𝑑 (𝑡 |𝑐) defined analogously.

max
𝑐≥0

𝑢𝑑 (𝑡∗ |𝑐)

𝑠.𝑡. 𝑐𝑡 =
∑︁

𝑟∈𝑅 s.t. 𝑡∈𝐴(𝑟)
𝑐𝑟 ,𝑡 ≤ 1, ∀𝑡 ∈ 𝑇∑︁

𝑡∈𝐴(𝑟)
𝑐𝑟 ,𝑡 ≤ 1, ∀𝑟 ∈ 𝑅

𝑢𝑎 (𝑡 |𝑐) ≤ 𝑢𝑎 (𝑡∗ |𝑐), ∀𝑡 ∈ 𝑇.

(9.4)

This LP is polynomial in size, even though the set of pure strategies is ex-
ponential in size. It is however not immediately obvious whether the given
coverage probabilities are implementable. It turns out that they are, and this
can be shown via the famous Birkhoff-von Neumann theorem. Before stating
the theorem, we need the definition of a doubly substochastic matrix, which is
a matrix 𝑀 ∈ R𝑚×𝑛 such that all entries are nonnegative, each row sums to at
most 1, and each column sums to at most 1.

Theorem 9.2 (Birkhoff-von Neumann theorem) If 𝑀 is doubly substochastic,
then there exist matrices 𝑀1, 𝑀2, . . . , 𝑀𝑞 , and weights 𝑤1, 𝑤2, . . . , 𝑤𝑞 ∈
(0, 1], such that:

(i)
∑

𝑘 𝑤𝑘 = 1.
(ii)

∑
𝑘 𝑤𝑘𝑀𝑘 = 𝑀 .

(iii) For all 𝑘 , 𝑀𝑘 is doubly substochastic, and all entries are in {0, 1}.

Informally, the theorem states that if we have a doubly substochastic matrix,
then it is possible to express it as a convex combination of “pure” or {0, 1}
doubly substochastic matrices.

The coverage probabilities 𝑐𝑟 ,𝑡 from our LP can be viewed as a matrix with
rows corresponding to resources and columns corresponding to targets. By the
constraints in our LP, that matrix is doubly substochastic. It follows from the
Birkhoff-von Neumann theorem that there exists pure-strategy matrices 𝑀𝑘

(they are pure strategies by the 3rd condition of the theorem) such that their
convex combination under the weight vector 𝑤 adds up the correct coverage
probabilities (by the 2nd condition of the theorem). By the first condition, the
vector 𝑤 defines a mixed strategy.

One final worry is that we don’t know how large 𝑞 will be in our application

9.3 Criticisms of Security Games 107

of the Birkhoff-von Neumann theorem. Luckily, it turns out one can show that
𝑞 is 𝑂 ((𝑚 + 𝑛)2), and the corresponding 𝑀𝑘 , 𝑤𝑘 can be found in 𝑂 ((𝑚 + 𝑛)4.5)
time using the Dulmage-Halperin algorithm.

Unfortunately, in the more general case where schedules may cover more
than one target the trick using marginal coverage probabilities turns out to fail.
In that case, computing an SSE turns out to be NP-hard. Still, in practice we
are usually in some variant of the hard case. There are a variety of mixed-
integer programming approaches that have been used to handling this case,
usually leading to acceptable performance on the real-world instances at hand.
Typically, these approaches are tailored to the specific application, in order to
get the most compact formulation. For that reason we will not cover them here.

9.3 Criticisms of Security Games

In security games we make a number of assumptions that can easily be critiqued:
first, we assume that the attacker perfectly observes the defender strategy.
Secondly, the defender knows exactly what the utility function of the attacker
is (and SSE relies heavily on this). Thirdly, we assume that the attacker is
perfectly rational. There are ways to address these assumptions. For example,
a lot of work has gone into modeling adversaries in a way that is robust either
to misspecification of the utility functions, or robust to followers not being
perfectly rational.

9.4 Bayesian Games

One way to deal with uncertainty around follower utility is to assume that each
player has a parameterized utility function 𝑢𝑖 (·, ·|𝜃𝑖), where 𝜃𝑖 ∈ Θ𝑖 is the type
of player 𝑖. In Bayesian games, we assume each player draws their type from
a pair of known distributions over Θℓ ,Θ 𝑓 . The player observes their own type
before choosing an action, but not the type of the follower.

It turns out that in the special case where the follower has a single type 𝜃 𝑓 and
the leader has a probability mass 𝑝ℓ (𝜃) over a finite set Θℓ , the LP approach for
normal-form games can easily be extended to this setting and yields an optimal
strategy for the leader. However, the more interesting case where the follower
has multiple types is unfortunately NP-hard.

108 Stackelberg equilibrium and Security Games

9.5 Historical Notes

The Stackelberg game model was introduced by von Stackelberg (1934) in
order to analyze competing firms and first-mover advantage.

The foundations for the use of Stackelberg equilibrium in security games
were laid by von Stengel and Zamir (2010)(an early version appeared online in
2004) who showed that it always helps to commit to a strategy, as long as mixed
strategies are allowed, and Conitzer and Sandholm (2006) who gave efficient
algorithms and complexity results around computing Stackelberg equilibrium
for various game models.

In the context of security, Stackelberg equilibrium was first applied to airport
security at Los Angeles International Airport Pita et al. (2008), and has since
been applied to problems such as preventing poaching and illegal fishing Fang
et al. (2015) and airport security screening Brown et al. (2016).

The approach based on representing strategies in terms of the marginal
probability of coverage was introduced by Kiekintveld et al. (2009), and the
results on polynomial-time algorithms and computational complexity in this
model were given by Korzhyk et al. (2010).

Further reading.
von Stengel and Zamir (2010) is a great read for a thorough treatment of a
“linear optimization” approach to understanding the mathematical structure of
Stackelberg equilibria. For the use of Stackelberg equilibrium in infrastructure
protection and security games, Tambe (2011) collects many of the early appli-
cation papers in this area. An overview of deployed systems and new directions
can be found in Sinha et al. (2018).

10
Fixed-Point Theorems and Equilibrium

Existence

In this chapter we study fixed-point theorems, which are a critical tool in
economics for showing the existence of a variety of equilibria. Given a function
𝜙 : 𝑋 → 𝑋 mapping a space into itself, a fixed point is a point 𝑥 such that
𝜙(𝑥) = 𝑥. For a set-valued function 𝜙 : 𝑋 → P(𝑋), a fixed point is a point
such that 𝑥 ∈ 𝜙(𝑥). In earlier chapters, we mostly deduced the existence of
equilibria in an algorithmic fashion. For example, in Chapter 4 we showed von
Neumann’s minimax theorem via regret minimization. In Chapter 11 we will
show the existence of Fisher market equilibrium through a constructive convex
program. However, in some settings we do not have algorithmic approaches for
finding equilibria, yet we may wish to show that equilibria are at least guaranteed
to exist, even if we do not know how to find them. The standard way to show
equilibrium existence in such settings is through fixed-point theorems. We will
introduce the most widely-used fixed-point theorems and show how they can
be used to prove the existence of both game-theoretic equilibria and market
equilibria. We will not give proofs of the fixed-point theorems themselves,
which are quite technical and outside the scope of this book.

10.1 Brouwer’s Fixed-Point Theorem

Brouwer’s fixed-point theorem is a theorem asserting that a continuous function
𝜙 that maps a convex compact set unto itself is guaranteed to have a fixed point.

Theorem 10.1 Let 𝑋 ⊂ R𝑛 be a nonempty, convex, and compact set. Let
𝜙 : 𝑋 → 𝑋 be a continuous function mapping 𝑋 to itself. Then there exists a
point 𝑥∗ ∈ 𝑋 such that 𝜙(𝑥∗) = 𝑥∗.

Now let us see how one can use Brouwer’s fixed-point theorem to show the
existence of a Nash equilibrium. Consider a normal-form game (as defined in

109

110 Fixed-Point Theorems and Equilibrium Existence

Chapter 2) with 𝑛 players, where player 𝑖 has a finite set of actions 𝐴𝑖 and a
utility function 𝑢𝑖 : 𝐴1× . . .×𝐴𝑛 → R. LetΔ𝑖 be the simplex over 𝐴𝑖 , i.e. the set
of probability distributions over 𝐴𝑖 . For a strategy profile 𝜎 = (𝜎1, . . . , 𝜎𝑛) ∈
Δ1 × . . . × Δ𝑛, let 𝑢𝑖 (𝜎) be the expected utility of player 𝑖.

We need to construct a map 𝜙 : ×𝑛
𝑖=1Δ𝑖 → ×𝑛

𝑖=1Δ𝑖 that maps a strategy
profile 𝜎 to a new strategy profile 𝜎′, such that every fixed point of the map is a
Nash equilibrium. Intuitively, we would like our map to be some form of best-
response mapping, meaning that 𝜙(𝜎) is a best response to 𝜎 for each player.
Such a map would immediately satisfy the condition that fixed points are Nash
equilibria. However, the best-response map is not continuous (for example, if
two actions are tied as best responses, then an arbitrarily-small perturbation
will break the tie), so it will not allow us to invoke Brouwer’s theorem. The
next section present Kakutani’s fixed-point theorem, which enables working
directly with the best response map.

In order to use Brouwer’s fixed-point theorem, we will construct a “better
response” map 𝜙 which will be continuous, while retaining the property that
every fixed point of 𝜙 is a Nash equilibrium. We will specify 𝜙 on a per-player-
per-action basis. For a player 𝑖 and action 𝑎, let 𝜙𝑖𝑎 be the following updated
probability on action 𝑎:

𝜙𝑖𝑎 (𝜎) =
𝜎𝑖𝑎 + max(0, 𝑢𝑖 (𝑎, 𝜎−𝑖) − 𝑢𝑖 (𝜎))∑

𝑎′∈𝐴𝑖
𝜎𝑖𝑎′ + max(0, 𝑢𝑖 (𝑎′, 𝜎−𝑖) − 𝑢𝑖 (𝜎))

.

Notice that this map increases the probability of every action 𝑎 such that it is a
better response to the current strategy profile 𝜎, and decreases the probability
of all other actions (through renormalization). The denominator ensures that
the probabilities sum to 1.

First we convince ourselves that fixed points correspond to Nash equilibria.
If 𝜎 is not a Nash equilibrium, then at least one of the increments is strictly
positive, and thus 𝜙(𝜎) ≠ 𝜎. If 𝜎 = 𝜙(𝜎), then all the increments are zero
(otherwise at least one action would have its probability increased). But this
implies that for each player 𝑖 and every action 𝑎 ∈ 𝐴𝑖 played with nonzero
probability, it must be a best response to 𝜎−𝑖 , otherwise the increment would
be positive. It follows that 𝜎 is a Nash equilibrium.

Now we want to apply Brouwer’s theorem to conclude that a Nash equilibrium
is guaranteed to exist. To do so, we need to show that all the preconditions are
met. It is straightforward to show continuity: the max operator is continuous,
the sum of a pair of functions is continuous, and the division of two continuous
functions is continuous as long as the denominator is nonzero. Obviously the
product set ×𝑛

𝑖=1Δ𝑖 is nonempty, compact and convex, and the map 𝜙 maps

10.2 Kakutani’s Fixed-Point Theorem 111

the set of strategy profiles to itself. It follows that we can apply Brouwer’s
fixed-point theorem to conclude that there exists a Nash equilibrium.

The idea of setting up a “better response map” is often an easy way to prove
existence of equilibria in games and market models via Brouwer’s theorem.

10.2 Kakutani’s Fixed-Point Theorem

Kakutani’s fixed-point theorem is a generalization of Brouwer’s theorem, which
will allow us to work directly with the best-response map. Kakutani’s theo-
rem works with set-valued mappings: the mapping 𝜙 maps a point 𝑥 to a set
𝜙(𝑥) ⊆ 𝑋 . Set-valued mappings like this are known as correspondences in the
economics literature. In the context of Nash equilibrium, 𝜙 will map a strategy
profile 𝜎 to the set of best responses to 𝜎. Because we are now working with
set-valued mappings, we will need a new notion of continuity, called upper
hemicontinuity. We will use a definition of upper hemicontinuity that is based
on the notion of a closed graph. The typical definition of upper hemicontinuity
is a more complicated definition based on open sets; we prefer the simpler
definition based on having a closed graph (see Appendix A.5 for the usual
definition of upper hemicontinuity). The closed-graph property also has the
benefit of being useful in our eventual existence proof. Upper hemicontinuity
and having a closed graph are equivalent properties when the correspondence is
compact-valued (this equivalence is known as the closed graph theorem). The
correspondence is indeed compact-valued in the settings that we will consider,
because we will assume compactness of 𝑋 .

The graph of 𝜙 is the set

{(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑦 ∈ 𝜙(𝑥)}.

The closed graph theorem states that for compact-valued correspondences,
upper hemicontinuity is equivalent to this graph being closed:

Theorem 10.2 Let 𝜙 be a set-valued mapping from 𝑋 to P(𝑋), where 𝑋 is
compact and 𝜙(𝑥) is closed for all 𝑥 ∈ 𝑋 . Then 𝜙 is upper hemicontinuous if
and only if its graph is closed in 𝑋 × 𝑋 .

Thus, we use having a closed graph as our working definition of upper
hemicontinuity. Kakutani’s fixed-point theorem is as follows:

Theorem 10.3 Let 𝑋 ⊂ R𝑛 be a nonempty, convex, and compact set. Let
𝜙 : 𝑋 → P(𝑋) be a set-valued mapping such that:

• For every 𝑥 ∈ 𝑋 , 𝜙(𝑥) is nonempty, closed, and convex.

112 Fixed-Point Theorems and Equilibrium Existence

• 𝜙 is upper hemicontinuous at every point in 𝑋 .

Then there exists a point 𝑥∗ ∈ 𝑋 such that 𝑥∗ ∈ 𝜙(𝑥∗).

We can now prove the existence of a Nash equilibrium easily. We let 𝑋 =

Δ1 × . . .×Δ𝑛 be the product of the strategy spaces of the players. For a strategy
profile 𝜎 ∈ 𝑋 , let 𝜙(𝜎) be the set of best responses to 𝜎. Obviously 𝑋 is
nonempty, convex, and compact. For every 𝜎 ∈ 𝑋 , there is always at least one
best response for each player, so 𝜙(𝜎) is nonempty. Convexity and closedness
follow from the fact that the set of best responses is the convex hull of the finite
set of pure best responses.

Finally, we show upper hemicontinuity using the closed graph theorem. First,
note that the closed graph theorem applies, since the best response mapping
is compact-valued. Thus, it suffices to show that the graph of 𝜙 is closed.
Consider any sequence of strategy profiles converging to a point 𝜎, and a
corresponding sequence of best responses converging to a point 𝜎′. Then
it follows immediately from the continuity of expected utility that we have
𝜎′ ∈ 𝜙(𝜎). This proves Nash’s theorem.

Existence Theorem for Convex Games
Kakutani’s theorem allows us to extend the above proof to showing existence
of pure-strategy Nash equilibria in a class of games that we call convex games.
Convex games are a more general class of games where each player has a convex
compact strategy space, and the utility function is continuous in the strategies
of the players, and quasi-concave in the player’s own strategy. Convex games
generalize normal-form games by treating the set of mixed-strategies in the
normal-form game as the set of pure strategies in the corresponding convex
game.

Theorem 10.4 Consider a game with 𝑛 players, strategy space 𝐴𝑖 , and utility
function 𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖). A pure-strategy Nash equilibrium exists if the following
conditions are satisfied:

• 𝐴𝑖 is convex, compact, and nonempty for all 𝑖,
• 𝑢𝑖 (𝑠𝑖 , ·) is continuous in 𝑠−𝑖 ,
• 𝑢𝑖 (·, 𝑠−𝑖) is continuous and quasi-concave in 𝑠𝑖 .

The proof of this theorem is similar to the proof of Nash’s theorem via
Kakutani’s fixed-point theorem. Let 𝑋 = ×𝑛

𝑖=1𝐴𝑖 be the set of all strategy
profiles. First note that 𝑋 is nonempty, convex, and compact. For a strategy
profile 𝑠 ∈ 𝑋 , let 𝜙(𝑠) be the set of best responses to 𝑠. The set 𝜙(𝑠) is nonempty
since there is always at least one best response by continuity of utilities and

10.3 Existence Theorems for Market Equilibria 113

the compactness of each action set. The set 𝜙(𝑠) is closed by continuity of
𝑢𝑖 (·, 𝑠−𝑖). To see that 𝜙(𝑥) is convex, notice that for a given player 𝑖 and a
set of two best responses 𝑎, 𝑏 ∈ 𝜙(𝜎) it must be that 𝑢𝑖 (𝑎, 𝜎−𝑖) = 𝑢𝑖 (𝑏, 𝜎−𝑖),
and thus quasi-concavity implies that the same value is attained for any convex
combination of 𝑎 and 𝑏. For upper hemicontinuity, we can use the closed graph
theorem as before, in which case the continuity of the utility functions implies
that the graph of the best response mapping is closed.

10.3 Existence Theorems for Market Equilibria

In Part THREE we will study market equilibria, largely focusing on algorithmic
approaches. Here, we briefly introduce a simple exchange economy and show
how to prove existence of a market equilibrium using the theory developed in
this chapter. In market equilibrium problems, we have a set of buyers, and a set
of items. The goal is to find a set of prices for the items, such that the market
clears: when we allow each buyer to purchase their favorite bundle under the
stated prices, the total demand for each item equals the total supply of that item.
In the Fisher market model that we will study later, each buyer is endowed with
a budget, which restricts the set of feasible allocations that a buyer can purchase
given the prices. In this section, we consider a more general exchange model
where each buyer is endowed with an initial bundle of items, which they get
to sell for the prices that are set by the market, and their income from selling
in turn defines their budget constraint for purchasing other items in the market.
The Fisher market model is a special case of this model where each buyer is
endowed with an equal amount of every item proportional to their budget.

Suppose we have 𝑛 buyers and 𝑚 items. For a given bundle of items 𝑥 ∈ R𝑚≥0,
buyer 𝑖 has a utility function 𝑢𝑖 (𝑥) that is strictly concave, continuous, and
strictly monotonic (i.e. 𝑢𝑖 (𝑥) > 𝑢𝑖 (𝑥′) if 𝑥 ≥ 𝑥′ and 𝑥 𝑗 > 𝑥′

𝑗
for some 𝑗). Each

buyer is endowed with an amount 𝜔𝑖 ∈ R𝑚≥0 of each item. Given a set of prices
𝑝 ∈ R𝑚≥0, we can define the demand of buyer 𝑖 as the solution to the following
optimization problem (which has a unique solution due to strict concavity):

𝐷𝑖 (𝑝) = arg max
𝑥′
𝑖
∈R𝑚≥0

𝑢𝑖 (𝑥𝑖) s.t. ⟨𝑝, 𝑥′𝑖⟩ ≤ ⟨𝑝, 𝜔𝑖⟩. (10.1)

In market equilibrium models it is useful to define and work with the aggregate
demand function 𝑧(𝑝) = ∑𝑛

𝑖=1 𝐷𝑖 (𝑝), which is the total demand for each item in
the market at a given price vector 𝑝. A market equilibrium is then a set of prices
𝑝 such that the market clears, i.e. 0 ∈ 𝑧(𝑝). In general the aggregate demand
function could be set-valued, since the demand of each buyer is potentially set-

114 Fixed-Point Theorems and Equilibrium Existence

valued. Because we assumed strict concavity of each buyer’s utility function
the aggregate demand function output is a single point, since the demand of
each buyer is unique for any price vector 𝑝. If the demands are not unique then
additional smoothing tricks are required in order to prove equilibrium existence.

First we state an abstract existence theorem for single-valued aggregate de-
mand functions. Then we will show how to apply it to our exchange economy.
Consider a function 𝑧 : R𝑚+ → R𝑚 ∪ {+∞}𝑚 that maps a price vector 𝑝 to an
aggregate demand vector 𝑧(𝑝).

Definition 10.5 We say that the aggregate demand function 𝑧 is well-behaved
if it satisfies the following properties:

(i) Continuity: 𝑧(𝑝) is continuous in 𝑝.
(ii) Homogeneity: 𝑧(𝑝) is zero’th order homogeneous, i.e. 𝑧(𝛼𝑝) = 𝑧(𝑝) for any

scalar 𝛼 > 0.
(iii) Walras’ law holds: ⟨𝑝, 𝑧(𝑝)⟩ = 0.
(iv) Lower bounded: there exists a constant 𝑠 > 0 such that for all 𝑝 ∈ R𝑛≥0,

𝑧(𝑝) ≥ −𝑠.
(v) Unbounded demand: If {𝑝𝑡 }∞

𝑡=1 is a sequence of price vectors converging to
𝑝 ≠ 0, with 𝑝 𝑗 = 0 for some 𝑗 , then ∥𝑧(𝑝𝑡)∥1 → ∞.

Theorem 10.6 Any well-behaved demand function 𝑧 has a price vector 𝑝∗ ∈
R𝑛≥0 such that 𝑧(𝑝∗) = 0.

We will not give the full proof of this theorem, but we will sketch the main
ideas. The reader is encouraged to finish the proof on their own. The first thing
to notice is that, from homogeneity, we can restrict the price vector to lie in the
unit simplex Δ𝑚 = {𝑝 ∈ R𝑚≥0 : ∥𝑝∥1 = 1} (if 𝑧(𝑝) = 0 then 𝑧(𝑝/∥𝑝∥1) = 0).
Then we define a map 𝜙 : Δ𝑚 → Δ𝑚 as follows:

𝜙(𝑝) =
{

arg max𝑞∈Δ𝑚 ⟨𝑞, 𝑧(𝑝)⟩ if 𝑝 > 0,
{𝑞 ∈ Δ𝑚 : ⟨𝑞, 𝑝⟩ = 0} if 𝑝 𝑗 = 0 for some 𝑗 .

For a set of items in the interior of the simplex, this price mapping is a “best-
response” mapping if we imagine a seller of the items that tries to maximize
revenue given the stated demand. For a price vector 𝑝 where 𝑝 𝑗 = 0 for some
𝑗 , we will have infinite demand due to condition (v) of Definition 10.5, and
therefore many price vectors would achieve infinite revenue. The definition of
𝜙 restricts the output to be a price vector that only puts positive price on items
with infinite demand (a subset of the vectors that achieve infinite revenue). With
this setup, one can apply Kakutani’s fixed-point theorem.

10.3 Existence Theorems for Market Equilibria 115

Next, we show how to apply this theorem to our exchange economy by
showing that our demand function is well-behaved. Since the utility function
is strictly concave, we have that the demand in Eq. (10.1) for each buyer is
unique for any price vector 𝑝. Therefore, the aggregate demand function is
well-defined and has a unique output. Continuity of the demand function fol-
lows from Berge’s maximum theorem (see Theorem A.8), which is a theorem
guaranteeing continuity properties of parameterized optimization problems.
Berge’s maximum theorem is a very useful tool for analyzing problems in
economics. Specifically, Berge’s maximum theorem for compact convex pro-
grams with a strictly convex objective guarantees that the optimal solution is
a continuous function of the input parameters. In our case the strictly convex
program in question is the demand problem for each buyer, whose feasible set
is parameterized by the price vector 𝑝.

The demand function is also zero’th order homogeneous: if we scale the
price vector by a constant then we scale both the left and right-hand side of the
constraint by the same constant, and thus the feasible set is unchanged.

Walras’ law holds because the budget of each buyer is equal to the total
value of their endowment and their utility is strictly increasing in consumption,
so they must spend their whole budget. From these observations, we have
⟨𝑝,∑𝑛

𝑖=1 𝐷𝑖 (𝑝)⟩ = ⟨𝑝,∑𝑛
𝑖=1 𝜔𝑖⟩. Subtracting the two equalities gives Walras’

law.
The aggregate demand function is lower bounded because demands are

nonnegative, and thus the aggregate demand is bounded below by the sum of
the endowments.

For unbounded demand, consider a sequence of price vectors 𝑝𝑡 converging
to 𝑝 ≠ 0, with 𝑝 𝑗 = 0 for at least one 𝑗 . Then there is at least one buyer 𝑖
whose budget is bounded below by a strictly positive constant for all 𝑡 ≥ 𝑡0,
for some large enough 𝑡0. Now suppose for contradiction that this buyer’s
demand is bounded above by a constant for all 𝑡. In that case, there must be a
convergent subsequence of demands for that buyer. Let {𝑥𝜏

𝑖
} be the converging

subsequence of demands for buyer 𝑖 and let 𝑥𝑖 be the limit point. Now consider
the utility 𝑢𝑖 (𝑥𝑖) that buyer 𝑖 gets from the limit point. Suppose we give buyer
𝑖 an additional unit of item 𝑗 , then this new allocation 𝑥𝑖 + 𝑒 𝑗 is still budget
feasible under the limit price 𝑝, and we have increased the utility of buyer 𝑖 by
some 𝜖 > 0. By lower hemicontinuity of the set of budget-feasible allocations,
there must exist a sequence of allocations 𝑥𝜏

𝑖
converging to the allocation 𝑥𝑖 +𝑒 𝑗

such that each 𝑥𝜏
𝑖

is budget feasible under the price vector 𝑝𝑡𝜏 . But then by the
continuity of the utility function we have a contradiction, since this implies that
𝑥𝜏
𝑖

is not utility maximizing for some sufficiently large 𝜏.

116 Fixed-Point Theorems and Equilibrium Existence

10.4 Historical Notes

Brouwer’s fixed-point theorem was originally proven by Dutch mathematician
and philosopher L.E.J. Brouwer for the special case where 𝑋 is a unit ball.
The generalization follows by using homomorphism to map the unit ball to
any convex compact set. Nash’s theorem, which guarantees the existence of an
equilibrium in a finite game, was originally proved using Kakutani’s fixed-point
theorem (Nash Jr, 1950), which it itself a generalization of Brouwer’s fixed-
point theorem. Interestingly, John von Neumann had proven a generalization of
Brouwer’s fixed-point theorem in 1937 (Neumann, 1937), but it was much less
straightforward to apply, and Kakutani’s fixed-point theorem is a simplified and
easier-to-apply version of von Neumann’s result. One of the most foundational
results in economics, the existence theorem for a competitive equilibrium in the
Arrow-Debreu model of a competitive economy (Arrow and Debreu, 1954) was
proven using an equilibrium existence theorem developed by Debreu (1952).
This theorem, in turn, utilized a generalization of Kakutani’s fixed-point theo-
rem to non-convex sets (Begle, 1950; Eilenberg and Montgomery, 1946).

Further reading
Ok (2011) is a good starting point for a more in-depth study of fixed-point
theorems in finite-dimensional settings (and real analysis for economics more
broadly). For a very comprehensive treatment of fixed-point theorems and their
economic use cases, see Aliprantis and Border (2006). That book is particularly
useful in the context of infinite-dimensional games and economies.

PART THREE

FAIR ALLOCATION AND MARKET
EQUILIBRIUM

11
Fair Division and Market Equilibrium

In this chapter we start the study of fair allocation of resources to a set of
individuals. We start by focusing on the fair division setting. In fair division,
we have one or more items that we wish to allocate to a set of agents, under the
assumption that the items are infinitely-divisible, meaning that we can perform
fractional allocation. In the next chapter we will study the setting with discrete
items. The goal will be to allocate the items in a manner that is efficient, while
attempting to satisfy various notions of fairness towards each individual agent.
Fair allocation has many applications such as assigning course seats to students,
pilot-to-plane assignment for airlines, dividing estates, dividing chores among
a household, rent division for roommates, and fair recommender systems.

We study fair division problems with the following setup: we have a set of
𝑚 infinitely-divisible items that we wish to divide among 𝑛 agents. Without
loss of generality we may assume that each item has supply 1. We shall use
𝑥 ∈ R𝑛×𝑚≥0 to denote an assignment of items to agents, where 𝑥𝑖 𝑗 is how much
agent 𝑖 gets of item 𝑗 We will denote the bundle of items given to agent 𝑖 as
𝑥𝑖 ∈ R𝑚≥0. Each agent has some utility function 𝑢𝑖 (𝑥𝑖) ∈ R≥0 denoting how
much they like the bundle 𝑥𝑖 .

Given the above, we would like to choose a “good” assignment 𝑥 of items to
agents. However, “good” turns out to be very complicated in the setting of fair
division, as there are many possible desiderata we may wish to account for.

First, we would like the allocation to somehow be efficient, meaning that
it should lead to high utilities for the agents in aggregate. One option would
be to try to maximize the social welfare

∑
𝑖 𝑢𝑖 (𝑥𝑖), the sum of agent utilities.

However, this turns out to be incompatible with the fairness notions that we
will introduce later. An easy criticism of social welfare in the context of fair
division is that it favors utility monsters: agents with much greater capacity

119

120 Fair Division and Market Equilibrium

for utility are given more items1 . Instead, we shall focus on the weaker notion
of Pareto optimality: we wish to find an allocation 𝑥 such that for every other
allocation 𝑥′, if some agent 𝑖′ is better off under 𝑥′, then some other agent is
strictly worse off. In other words, 𝑥 should be such that no other allocation 𝑥′ is
“strictly better,” where strictly better means that 𝑢𝑖 (𝑥′) ≥ 𝑢𝑖 (𝑥) for all 𝑖 ∈ [𝑛],
and 𝑢𝑖 (𝑥′) > 𝑢𝑖 (𝑥) for some 𝑖 ∈ [𝑛].

We will consider the following measures of how fair an allocation 𝑥 is:

• No envy: 𝑥 has no envy if for every pair of agents 𝑖, 𝑖′, 𝑢𝑖 (𝑥𝑖) ≥ 𝑢𝑖 (𝑥𝑖′). In
other words, every agent likes their own bundle at least as much as that of
anyone else.

• Proportionality: 𝑥 satisfies proportionality if 𝑢𝑖 (𝑥𝑖) ≥ 𝑢𝑖

(
®1 · 1

𝑛

)
. That is,

every agent likes their bundle 𝑥𝑖 at least as well as the bundle where they
receive 1

𝑛
of every item. This property is also sometimes known as the fair

shares property. The fair share name evokes the following reasoning for
insisting on proportionality: absent any other information or valuations, the
most natural way to divide items would be to simply say that each agent is
entitled to an equal share of each item. Proportionality ensures that agents
are at least as happy as under such an equal shares allocation.

In the case of 𝑛 = 2, no envy and proportionality are equivalent. More
generally, no envy is a stronger guarantee than proportionality, in the sense that
no envy implies that proportionality is satisfied. It is a useful exercise to come
up with an argument for these relationships.

We begin our study of fair division mechanisms with a classic approach:
competitive equilibrium from equal incomes (CEEI). In CEEI, we construct
a mechanism for fair division by giving each agent a unit budget of fake
currency (or funny money), computing what is called a competitive equilibrium
(also known as Walrasian equilibrium or market equilibrium; we will use the
term market equilibrium) under this new market, and using the corresponding
allocation as our fair division. The fake currency is then thrown away, since it
had no purpose except to define a market.

To understand this mechanism, we first introduce market equilibrium. We
focus on a Fisher market economy, where there is a set of buyers [𝑛] (we use
buyer and agent interchangeably), each with some budget 𝐵𝑖 , and a set of items
[𝑚] being sold (we assume that the supply of each item is one without loss of
generality). In a market equilibrium, we wish to find a set of prices 𝑝 ∈ R𝑚≥0
for each of the 𝑚 items such that the market clears. Intuitively, a market clears
when there exists an allocation 𝑥 of items to buyers such that everybody is
1 See also https://existentialcomics.com/comic/8

https://existentialcomics.com/comic/8

Fair Division and Market Equilibrium 121

assigned an optimal allocation given the prices and their budget, and all items
are exactly allocated at their supply. Formally, the demand set of a buyer 𝑖 with
budget 𝐵𝑖 is

𝐷𝑖 (𝑝) = arg max
𝑥𝑖≥0

𝑢𝑖 (𝑥𝑖) s.t. ⟨𝑝, 𝑥𝑖⟩ ≤ 𝐵𝑖 .

Notice that the demand set is only indirectly dependent on the utility function
𝑢𝑖 . In particular, we will mostly focus on utilities that are homogeneous of
degree one, in which case the demand function 𝐷𝑖 is invariant to scaling the
buyer’s utility function by a positive constant.

Definition 11.1 A market equilibrium is an allocation 𝑥 ∈ R𝑛×𝑚≥0 and a price
vector 𝑝 ∈ R𝑚≥0 such that:

(i) Demands are satisfied: 𝑥𝑖 ∈ 𝐷 (𝑝) for all buyers 𝑖.
(ii) The market clears:

∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 ≤ 1, and

∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1 if 𝑝 𝑗 > 0.

Every market equilibrium is Pareto optimal by the first fundamental theorem
of welfare economics, under the mild condition that each utility function is
nonsatiating. A utility function 𝑢𝑖 : R𝑚≥0 → R≥0 is nonsatiating if for any
𝑥𝑖 ∈ R𝑚≥0 and vector of additional items ®𝜖 = 𝜖 · ®1 where 𝜖 > 0, we have
𝑢𝑖 (𝑥 + ®𝜖) > 𝑢𝑖 (𝑥). In words, buyers always strictly improve their utility when
they get an arbitrarily-small additional amount of every good. To prove this, we
will use an extremely useful property of market equilibria under nonsatiating
utilities, which is that the sum of prices must equal the sum of the budgets:

Lemma 11.2 Let each utility function be nonsatiating. Then for any market
equilibrium (𝑥, 𝑝), we have

∑
𝑗∈[𝑚] 𝑝 𝑗 =

∑
𝑖∈[𝑛] 𝐵𝑖 .

Proof Every buyer always spends their budget fully, i.e. 𝑝⊤𝑥𝑖 = 𝐵𝑖 . If not, then
they could buy some additional small amount ®𝜖 of items and strictly improve
their utility. It follows that∑︁

𝑖∈[𝑛]
𝐵𝑖 =

∑︁
𝑖∈[𝑛]

𝑝⊤𝑥𝑖 =
∑︁
𝑗∈[𝑚]

𝑝 𝑗

∑︁
𝑖∈[𝑛]

𝑥𝑖 .

Now notice that 𝑝 𝑗

∑
𝑖∈[𝑛] 𝑥𝑖 = 𝑝 𝑗 , because either

∑
𝑖∈[𝑛] 𝑥𝑖 = 1, or 𝑝 𝑗 = 0 by

the market clearing condition of a market equilibrium. The lemma follows. □

Theorem 11.3 (First fundamental theorem of welfare economics) Let each
utility function be nonsatiating. Then for any market equilibrium (𝑥, 𝑝), the
allocation 𝑥 is Pareto optimal.

122 Fair Division and Market Equilibrium

Proof Let (𝑥, 𝑝) be a market equilibrium. Now suppose that 𝑥 is not Pareto
optimal. Then there exists some 𝑥′ such that 𝑢𝑖 (𝑥′𝑖) ≥ 𝑢𝑖 (𝑥𝑖) for all 𝑖, and some
𝑘 such that 𝑢𝑘 (𝑥′𝑘) > 𝑢𝑘 (𝑥𝑘). Now notice that 𝑝⊤𝑥′

𝑖
≥ 𝐵𝑖 for each buyer 𝑖. If this

does not hold, then buyer 𝑖 can afford 𝑥′
𝑖
+ ®𝜖 for some sufficiently-small ®𝜖 ∈ R𝑚≥0

and strictly improve their utility, which contradicts 𝑥𝑖 being in the demand set
under 𝑝. Now consider buyer 𝑘 . For buyer 𝑘 , we must have 𝑝⊤𝑥′

𝑘
> 𝐵𝑘 , since

otherwise they could afford 𝑥′
𝑘

under 𝑝 and strictly improve their utility, again
contradicting demand satisfaction.

Summing over expenditures under 𝑥′, we have
∑

𝑖∈[𝑛] 𝑝
⊤𝑥′

𝑖
>

∑
𝑖∈[𝑛] 𝐵𝑖 .

Since 𝑥′ is feasible, we have
∑

𝑖∈[𝑛] 𝑝
⊤𝑥′

𝑖
≤ ∑

𝑗∈[𝑚] 𝑝 𝑗 . But this implies∑
𝑗∈[𝑚] 𝑝 𝑗 >

∑
𝑖∈[𝑛] 𝐵𝑖 , which contradicts Lemma 11.2. □

Market equilibria are interesting in their own right, though we will mainly
study them here in the context of the CEEI mechanism for fair allocation. CEEI
is a perfect solution to the desiderata. It is Pareto optimal by Theorem 11.3.
It has no envy: since each agent has the same budget 𝐵𝑖 = 1 in CEEI and
every agent is buying something in their demand set, no envy must be satisfied,
since they can afford the bundle of any other agent. Finally, proportionality is
satisfied, since each agent can afford the bundle where they get 1

𝑛
of each item

(convince yourself why).
Market-equilibrium-based allocation for divisible items has applications in

large-scale Internet markets. First, it can be applied in fair recommender sys-
tems. As an example, consider a job recommendations site. It’s a two-sided
market. On one side are the users, whom view job ads. On the other side are the
companies creating job ads. Naively, a system might try to simply maximize
the number of job ads that users click on, or apply to. This can lead to extremely
imbalanced allocations, where a few job ads get a huge number of views and
applicants, which is bad both for users and the companies. Instead, the system
may wish to fairly distribute user views across the many job ads. In that case,
CEEI can be used. In this setting the agents are the job ads, and the items are
slots in the ranked list of job ads shown to the user. Secondly, there are strong
connections between market equilibrium and the allocation of ads in large-scale
Internet ad markets. This connection will be explored in detail in Chapter 16.

11.1 Fisher Market

We study market equilibrium in the Fisher market setting. As in the fair division
setting, we have a set of 𝑚 infinitely-divisible items that we wish to divide
among 𝑛 buyers, and the setup is the same with respect to supplies and utilities.

11.1 Fisher Market 123

Distinctly from the fair division setting, each buyer is also endowed with a
budget 𝐵𝑖 of currency (possibly fake currency as in CEEI).

We assume throughout the chapter that there always exists a feasible allo-
cation 𝑥 such that 𝑢𝑖 (𝑥𝑖) > 0 for all 𝑖 ∈ [𝑛]. This is benign assumption. For
example, if each buyer has a linear utility function then it merely means that
for every buyer 𝑖 ∈ [𝑛], they have strictly positive value for at least one item. If
some buyer has valuation zero for every item then we can preprocess away that
buyer, since the allocation does not matter to them.

11.1.1 Linear Utilities
We start by studying the simplest setting, where the utility of each buyer is
linear. This means that every buyer 𝑖 has some valuation vector 𝑣𝑖 ∈ R𝑚, and
their utility for an allocation 𝑥𝑖 ∈ R𝑚≥0 is 𝑢𝑖 (𝑥𝑖) = ⟨𝑣𝑖 , 𝑥𝑖⟩.

Amazingly, there is a nice convex program for computing a market equilib-
rium. Before giving the convex program, let us consider some properties that
we would like, which will motivate the structure of the convex program. First,
if we are going to find a feasible allocation, we want the supply constraint to be
respected for each item 𝑗 ∈ [𝑚], i.e.∑︁

𝑖∈[𝑛]
𝑥𝑖 𝑗 ≤ 1,∀ 𝑗 .

Secondly, since a buyer’s demand does not change even if we rescale their
valuation by a constant, we would like the optimal solution to our convex
program to also remain unchanged. Similarly, splitting the budget of a buyer
into two separate buyers with the same valuation function should leave the
allocation unchanged after allocating the items proportionally among the two
split buyers. These conditions are satisfied by the budget-weighted geometric
mean of the utilities: ©­«

∏
𝑖∈[𝑛]

𝑢𝑖 (𝑥𝑖)𝐵𝑖
ª®¬

1/∑𝑖∈ [𝑛] 𝐵𝑖

.

Taking the objective to the
∑

𝑖∈[𝑛] 𝐵𝑖’th power does not change the set of
optimal solutions (after taking this power, the resulting objective is known as
Nash welfare). Secondly, taking the logarithm does not change the set of optimal
solutions. Because we are taking the logarithm, we now have an implicit domain
constraint 𝑢𝑖 (𝑥𝑖) > 0 for each buyer 𝑖 ∈ [𝑛]. Because we assumed that every
buyer has at least one allocation with strictly positive utility, we always have at
least one feasible solution.

Based on the above, maximizing the budget-weighted geometric mean is

124 Fair Division and Market Equilibrium

equivalent to the following convex program, known as the Eisenberg-Gale
(EG) convex program:

max
𝑥≥0

∑︁
𝑖∈[𝑛]

𝐵𝑖 log⟨𝑣𝑖 , 𝑥𝑖⟩ Dual variables

𝑠.𝑡.
∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗 ≤ 1, ∀ 𝑗 = [𝑚], 𝑝 𝑗

(EG)

On the right are the dual variables associated to each constraint. It is easy
to see that this is a convex program. First, the feasible set is defined by linear
inequalities. Second, we are taking a max of a sum of concave functions com-
posed with linear maps. Since taking a sum and composing with a linear map
both preserve concavity we get that the objective is concave.

The solution to the primal problem 𝑥 along with the vector of dual variables
𝑝 yields a market equilibrium. Here we assume that for every item 𝑗 there exists
𝑖 such that 𝑣𝑖 𝑗 > 0, and every buyer values at least one item above 0.

Theorem 11.4 The pair of allocations 𝑥 and dual variables 𝑝 from EG forms
a market equilibrium.

Proof To see this, we need to look at the KKT conditions (see Theorem A.4)
of the primal and dual variables. We omit some KKT conditions that are not
needed. The KKT conditions we use are:

(i) Complementary slackness for item 𝑗 : 𝑝 𝑗 > 0 ⇒ ∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1.

(ii) First-order optimality on 𝑥𝑖 𝑗 : 𝐵𝑖

⟨𝑣𝑖 ,𝑥𝑖 ⟩ ≤ 𝑝 𝑗

𝑣𝑖 𝑗
.

(iii) First-order optimality when 𝑥𝑖 𝑗 > 0: 𝐵𝑖

⟨𝑣𝑖 ,𝑥𝑖 ⟩ =
𝑝 𝑗

𝑣𝑖 𝑗
.

The first KKT condition shows that every item is fully allocated, since for
every 𝑗 there is some buyer 𝑖 with non-zero value and by the second condition
𝑝 𝑗 ≥

𝑣𝑖 𝑗𝐵𝑖

⟨𝑣𝑖 ,𝑥𝑖 ⟩ > 0. Thus, we satisfy the market clearing condition in the definition
of market equilibrium (Definition 11.1).

The other condition in Definition 11.1 is that every buyer is assigned a bundle
from their demand set. We will use 𝛽𝑖 =

𝐵𝑖

⟨𝑣𝑖 ,𝑥𝑖 ⟩ =
𝐵𝑖

𝑢𝑖 (𝑥𝑖) to denote the utility
price that buyer 𝑖 pays. First off, by the second KKT condition we have that the
utility price that buyer 𝑖 gets satisfies

𝛽𝑖 ≤
𝑝 𝑗

𝑣𝑖 𝑗
.

By the third KKT condition, we have that if 𝑥𝑖 𝑗 > 0 then for all other items 𝑗 ′

we have
𝑝 𝑗

𝑣𝑖 𝑗
= 𝛽𝑖 ≤

𝑝 𝑗′

𝑣𝑖 𝑗′
.

11.2 More General Utilities 125

Thus, any item 𝑗 that buyer 𝑖 is assigned has at least as low of a utility price as
any other item 𝑗 ′. In other words, they only buy items that have the best bang-
per-buck among all the items. It remains to show that they spend their whole
budget. Multiplying the third KKT condition by 𝑥𝑖 𝑗 and rearranging gives

𝑥𝑖 𝑗𝑣𝑖 𝑗
𝐵𝑖

⟨𝑣𝑖 , 𝑥𝑖⟩
= 𝑝 𝑗𝑥𝑖 𝑗 ,

for any 𝑗 such that 𝑥𝑖 𝑗 > 0. If 𝑥𝑖 𝑗 = 0 then 𝑝 𝑗𝑥𝑖 𝑗 = 0. Summing across all
𝑗 ∈ [𝑚] yields∑︁

𝑗∈[𝑚]
𝑝 𝑗𝑥𝑖 𝑗 =

∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗𝑣𝑖 𝑗
𝐵𝑖

⟨𝑣𝑖 , 𝑥𝑖⟩
= ⟨𝑣𝑖 , 𝑥𝑖⟩

𝐵𝑖

⟨𝑣𝑖 , 𝑥𝑖⟩
= 𝐵𝑖 .

□

EG gives us an immediate proof of existence for the linear Fisher market
setting: the feasible set is clearly non-empty, and the max is guaranteed to be
achieved.

Theorem 11.3 showed that all market equilibria are Pareto optimal. It is now
trivial to see that Pareto optimality holds in Fisher-market equilibrium: since it
is a solution to EG, it must be. Otherwise, we could construct a solution with
strictly better objective by using the allocation that yields weakly greater utility
for every buyer and strictly better utility for some buyer.

From the EG formulation we can also see that the equilibrium utilities 𝑢𝑖 (𝑥∗)
and prices 𝑝∗ are unique. First note that any market equilibrium allocation
would satisfy the optimality conditions of EG, and thus be an optimal solution.
But if there were more than one set of utility vectors that were equilibria, then
by the strict concavity of the log we would get that there is a strictly better
solution, which is a contradiction. That equilibrium prices are unique now
follows from the third KKT condition, since all terms except the utilities are
constants. The equilibrium allocation 𝑥∗ is not unique, as some buyers may be
indifferent between some items.

11.2 More General Utilities

It turns out that EG can be applied to a broader class of utilities. This class is
the set of utilities that are continuous, concave, nonnegative, and homogeneous
degree one (i.e. 𝑢𝑖 (𝛼𝑥) = 𝛼𝑢𝑖 (𝑥) for 𝛼 ≥ 0) (abbreviated CCNH).

126 Fair Division and Market Equilibrium

In that case we get an optimization problem of the form

max
𝑥≥0

∑︁
𝑖∈[𝑛]

𝐵𝑖 log 𝑢𝑖 (𝑥𝑖) Dual variables

𝑠.𝑡.
∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗 ≤ 1, ∀ 𝑗 ∈ [𝑚], 𝑝 𝑗 .
(EG)

This is still a convex optimization problem, since composing a concave and
nondecreasing function (the log function) with a concave function (𝑢𝑖) yields
a concave function. Beyond linear utilities, the most famous classes of CCNH
utilities are:

(i) Cobb-Douglas utilities: 𝑢𝑖 (𝑥𝑖) =
∏

𝑗 (𝑥𝑖 𝑗)𝑎𝑖 𝑗 , where
∑

𝑗∈[𝑚] 𝑎𝑖 𝑗 = 1, 𝑎𝑖 𝑗 ≥ 0.
(ii) Leontief utilities: 𝑢𝑖 (𝑥𝑖) = min 𝑗

𝑥𝑖 𝑗

𝑎𝑖 𝑗
.

(iii) The family of constant elasticity of substitution (CES) utilities: 𝑢𝑖 (𝑥𝑖) =(∑
𝑗∈[𝑚] 𝑎𝑖 𝑗𝑥

𝜌

𝑖 𝑗

)1/𝜌
, where 𝑎𝑖 𝑗 are the utility parameters of a buyer, and 𝜌

parameterizes the family, with −∞ < 𝜌 ≤ 1 and 𝜌 ≠ 0.

CES utilities turn out to generalize all the other utilities we have seen so far:
Leontief utilities are obtained as 𝜌 approaches −∞, Cobb-Douglas utilities as
𝜌 approaches 0, and linear utilities when 𝜌 = 1. More generally, 𝜌 < 0 means
that items are complements, whereas 𝜌 > 0 means that items are substitutes.

If 𝑢𝑖 is continuously differentiable then the proof that EG computes a market
equilibrium in this more general setting essentially follows that of the linear
case. The only non-trivial change is that when we derive KKT conditions with
respect to 𝑥𝑖 we get

(i) 𝐵𝑖

𝑢𝑖 (𝑥𝑖) ≤ 𝑝 𝑗

𝜕𝑢𝑖 (𝑥𝑖)/𝜕𝑥𝑖 𝑗 .

(ii) 𝑥𝑖 𝑗 > 0 ⇒ 𝐵𝑖

𝑢𝑖 (𝑥𝑖) =
𝑝 𝑗

𝜕𝑢𝑖 (𝑥𝑖)/𝜕𝑥𝑖 𝑗 .

In order to prove that buyers spend their budget exactly in this setting we can
apply Euler’s homogeneous function theorem 𝑢𝑖 (𝑥𝑖) =

∑
𝑗∈[𝑚] 𝑥𝑖 𝑗

𝜕𝑢𝑖 (𝑥𝑖)
𝜕𝑥𝑖 𝑗

to get

∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗 𝑝 𝑗 =
∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗
𝜕𝑢𝑖 (𝑥𝑖)
𝜕𝑥𝑖 𝑗

𝐵𝑖

𝑢𝑖 (𝑥𝑖)
= 𝐵𝑖 .

From the KKT conditions and the above equality, one can conclude that the
KKT conditions of the buyer’s demand optimization problem are satisfied.

11.3 Computing Market Equilibrium 127

11.3 Computing Market Equilibrium

Now we know how to write a market equilibrium problem as a convex program.
How should we solve it? One option is to build the EG convex program explicitly
using mathematical programming software. A lot of contemporary software
is not very good at handling this kind of objective function (formally this
falls under exponential cone programming, which is still relatively new). In
particular, the default solvers e.g. in CVXPY fail due to numerical issues for
relatively small instances with around 150 items and 150 buyers. The Mosek
solver is currently the only industry-grade solver that supports exponential
cone programming. It fares much better, and scales to a few thousand buyers
and items. For problems of moderate-to-large size, this is the most effective
approach. The open-source Clarabel solver also performs quite well on solving
the Eisenberg-Gale convex program, and is a good option for those who do not
have access to Mosek. However, for very large instances, the iterations of the
interior-point solver used in any of these solvers become too slow.

Instead, for large problems we may invoke some of our earlier results on
saddle-point problems. In particular, the EG convex program is amenable to
online mirror descent and the folk-theorem based approach for solving saddle-
point problems (if we construct the Lagrangian based on the prices). In that
framework, we can interpret the repeated game as being played between a pricer
trying to minimize over the prices 𝑝, and the set of buyers choosing allocations
𝑥.

The next chapter will show how to apply OMD to the EG program. In the
case of linear utilities, this leads to a particularly compelling algorithm that
achieves even stronger guarantees than OMD achieved in the case of zero-sum
games in Chapter 6.

11.4 Historical Notes

The original Eisenberg-Gale convex program was given for linear utilities by
Eisenberg and Gale (1959). Eisenberg (1961) later extended it to utilities that
are concave, continuous, and homogeneous.

Fairly assigning course seats to students via market equilibrium was studied
by Budish (2011). Goldman and Procaccia (2015) introduce an online service
spliddit.org which has a user-friendly interface for fairly dividing many
things such as estates, rent, fares, and others. The motivating example of fair
recommender systems, where we fairly divide impressions among content cre-
ators via CEEI was suggested in Kroer et al. (2019) and Kroer and Peysakhovich

spliddit.org

128 Fair Division and Market Equilibrium

(2019). Similar models, but where money has real value, were considered for
ad auctions with budget constraints by several authors Borgs et al. (2007);
Conitzer et al. (2018, 2019)

A fairly comprehensive recent overview of fair division can be found at
https://www.cs.toronto.edu/˜nisarg/papers/Fair-Division-Tutorial.

pdf.

Further reading.
Nisan et al. (2007) has two good chapters on the Eisenberg-Gale convex pro-
gram and market equilibrium computation. For market equilibrium, economics
textbooks typically focus on more general cases than the Fisher market, such as
the Arrow-Debreu model of general equilibrium. A good reference for this is
Mas-Colell et al. (1995), which has a very comprehensive treatment of general
equilibrium theory, including existence and uniqueness of equilibria, welfare
theorems, and applications. For fair division, the book Brams and Taylor (1996)
has in-depth coverage from an economic perspective.

https://www.cs.toronto.edu/~nisarg/papers/Fair-Division-Tutorial.pdf
https://www.cs.toronto.edu/~nisarg/papers/Fair-Division-Tutorial.pdf

12
Computing Fisher Market Equilibrium

In this chapter we will look at methods for computing market equilibrium at
scale. In particular, we will consider two complementary approaches: 1) how
to run fast iterative methods in order to compute a market equilibrium, and 2)
how to abstract the market, either down to a manageable size, or in order to
deal with incomplete valuations. The setup will be the same as in Chapter 11.

12.1 Interlude on Convex Conjugates

Given a function 𝑓 : R𝑛 → R we say that its convex conjugate is the function

𝑓 ∗ (𝑦) = sup
𝑥

⟨𝑦, 𝑥⟩ − 𝑓 (𝑥).

We will be interested in the convex conjugate of the function 𝑓 (𝑥) = − log 𝑥.
We get

𝑓 ∗ (𝑦) = sup
𝑥

𝑦𝑥 + log 𝑥.

For 𝑦 ≥ 0, we get that 𝑓 ∗ (𝑦) = +∞. For 𝑦 < 0, using first-order optimality we
get 𝑥∗ = −1/𝑦. It follows that

𝑓 ∗ (𝑦) = −1 + log(−1/𝑦) = −1 − log(−𝑦). (12.1)

12.2 Duals of the Eisenberg-Gale Convex Program

In Chapter 11 we saw that the Eisenberg-Gale convex program (EG) yields a
market equilibrium for Fisher markets with linear utilities. Recall that 𝑥𝑖 is the
allocation for buyer 𝑖. Overloading notation slightly, we introduce a variable 𝑢𝑖

129

130 Computing Fisher Market Equilibrium

which will represent the utility 𝑢𝑖 (𝑥𝑖). We also add a constraint which enforces
this interpretation. This yields the following program:

max
𝑥≥0

∑︁
𝑖∈[𝑛]

𝐵𝑖 log 𝑢𝑖 Dual variables

𝑠.𝑡. 𝑢𝑖 ≤ ⟨𝑣𝑖 , 𝑥𝑖⟩, ∀𝑖 = 1, . . . , 𝑛, 𝛽𝑖∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗 ≤ 1, ∀ 𝑗 = 1, . . . , 𝑚, 𝑝 𝑗 .

The 𝑢𝑖 variable and its corresponding constraint are redundant, but this rewrite
is very useful for deriving the dual of the EG program (even in the case of
nonlinear utilities this trick is almost always the easiest way to derive the dual).

We will now derive the dual, and eventually use a further duality step to
derive an interesting and very practical algorithm for solving EG. We introduce
dual variables 𝛽𝑖 (corresponding to the utility price of buyer 𝑖), and 𝑝 𝑗 (the
price of item 𝑗). The dual variables are listed on the right of their corresponding
primal constraint. We construct the Lagrangian

𝐿 (𝑥, 𝑢, 𝛽, 𝑝) =
∑︁
𝑖∈[𝑛]

𝐵𝑖 log 𝑢𝑖 +
∑︁
𝑖∈[𝑛]

𝛽𝑖 (⟨𝑣𝑖 , 𝑥𝑖⟩ − 𝑢𝑖) +
∑︁
𝑗∈[𝑚]

𝑝 𝑗 (1 −
∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗).

The standard Lagrangian dual is then

min
𝑝≥0,𝛽≥0

max
𝑥≥0,𝑢

𝐿 (𝑥, 𝑢, 𝛽, 𝑝) (12.2)

Now, we simplify the inner max and use the notation 𝛿[·] to denote an indicator
function of whether a given condition is true:

max
𝑥≥0,𝑢

𝐿 (𝑥, 𝑢, 𝛽, 𝑝) =
∑︁
𝑗∈[𝑚]

𝑝 𝑗 +
∑︁
𝑖

[
max
𝑢𝑖

(𝐵𝑖 log 𝑢𝑖 − 𝛽𝑖𝑢𝑖) + max
𝑥𝑖≥0

⟨𝛽𝑖𝑣𝑖 − 𝑝, 𝑥𝑖⟩
]

=
∑︁
𝑗∈[𝑚]

𝑝 𝑗 +
∑︁
𝑖

[
max
𝑢𝑖

(𝐵𝑖 log 𝑢𝑖 − 𝛽𝑖𝑢𝑖) + 𝛿 [𝛽𝑖𝑣𝑖 ≤ 𝑝]
]

=
∑︁
𝑗∈[𝑚]

𝑝 𝑗 +
∑︁
𝑖

[
𝐵𝑖 max

𝑢𝑖

(
log 𝑢𝑖 −

𝛽𝑖

𝐵𝑖

𝑢𝑖

)
+ 𝛿 [𝛽𝑖𝑣𝑖 ≤ 𝑝]

]
=

∑︁
𝑗∈[𝑚]

𝑝 𝑗 +
∑︁
𝑖

[𝐵𝑖 (−1 − log 𝛽𝑖 + log 𝐵𝑖) + 𝛿 [𝛽𝑖𝑣𝑖 ≤ 𝑝]] .

The first equality is by rearranging terms. The second equality is by noting
that the max over 𝑥𝑖 ≥ 0 is positive infinity if 𝛽𝑖𝑣𝑖 𝑗 > 𝑝 𝑗 for any 𝑗 . The third
equality is by rearranging 𝐵𝑖 . The fourth equality is by (12.1).

12.2 Duals of the Eisenberg-Gale Convex Program 131

Thus, we get that the dual (12.2) is equal to

min
𝑝≥0,𝛽≥0

∑︁
𝑗

𝑝 𝑗 −
∑︁
𝑖∈[𝑛]

𝐵𝑖 log(𝛽𝑖) +
∑︁
𝑖∈[𝑛]

(log 𝐵𝑖 − 𝐵𝑖)

𝑝 𝑗 ≥ 𝑣𝑖 𝑗 𝛽𝑖 , ∀𝑖, 𝑗 .
(12.3)

Finally, we may drop the terms
∑

𝑖∈[𝑛] (log 𝐵𝑖 − 𝐵𝑖) since they are constant.
This yields the standard dual of EG (whose objective at optimality is equal to
the primal objective at optimality, up to the addition of the constants):

min
𝑝≥0,𝛽≥0

∑︁
𝑗∈[𝑚]

𝑝 𝑗 −
∑︁
𝑖∈[𝑛]

𝐵𝑖 log(𝛽𝑖)

𝑝 𝑗 ≥ 𝑣𝑖 𝑗 𝛽𝑖 , ∀𝑖, 𝑗 .
(12.4)

The EG dual can be used to derive several attractive algorithms for computing
Fisher market equilibria. Many of these algorithms are based on the fact that we
can reformulate away either the 𝛽 variables or the 𝑝 variables in Eq. (12.4). To
reformulate away the 𝛽 variables, notice that for each 𝑖 ∈ [𝑛], we want to make
𝛽𝑖 as large as possible. For a fixed set of prices 𝑝, this is achieved by setting
𝛽𝑖 = 𝑝 𝑗/𝑣𝑖 𝑗 . Applying the reformulation yields the following dual program,
which is only concerned with the prices:

min
𝑝≥0

∑︁
𝑗

𝑝 𝑗 −
∑︁
𝑖∈[𝑛]

𝐵𝑖 log(min
𝑗∈[𝑚]

𝑝 𝑗/𝑣𝑖 𝑗). (12.5)

If we apply OGD to the prices of this program, we get the following price
update dynamics:

𝑝𝑡+1 = 𝑝𝑡 − 𝜂
©­«
∑︁
𝑖∈[𝑛]

𝐷𝑖 (𝑝𝑡) − 1ª®¬ ,
where 𝐷𝑖 (𝑝𝑡) should be interpreted as selecting an arbitrary element of the
demand set for each buyer 𝑖. This algorithm is an example of a classic idea
from economics known as tâtonnement. In tâtonnement, the idea is that the
market is adaptively updating the prices based on observing the aggregate
demand of the buyers, and pushing prices in the opposite direction (e.g. if
an item is overdemanded, then the market increases prices, and vice versa).
If natural price-adjustment dynamics such as tâtonnement converge, then it
can be seen as a justification for how a market might arrive at equilibrium
prices without central coordination. We have shown that for Fisher markets, a
very simple tâtonnement update arises directly by applying OGD (equivalently,
subgradient descent) to the EG dual.

To instead reformulate away the prices in Eq. (12.4), we can use the fact that

132 Computing Fisher Market Equilibrium

for a fixed 𝛽 vector, each price 𝑝 𝑗 should be made as small as possible, which
is achieved by setting 𝑝 𝑗 = max𝑖∈[𝑛] 𝛽𝑖𝑣𝑖 𝑗 . This yields the following program:

min
𝛽≥0

∑︁
𝑗∈[𝑚]

max
𝑖∈[𝑛]

𝛽𝑖𝑣𝑖 𝑗 −
∑︁
𝑖∈[𝑛]

𝐵𝑖 log(𝛽𝑖) (12.6)

Eq. (12.6) can be used to derive a very natural auction-based dynamics. Given
some current 𝛽𝑡 , for each item 𝑗 we get that the subdifferential of the first term
in Eq. (12.6) is the set of vectors 𝑥𝑡

𝑗
such that

∑
𝑖∈[𝑛] 𝑥

𝑡
𝑖 𝑗

= 1, and 𝑥𝑡
𝑖 𝑗

> 0
only when 𝑖 ∈ arg max𝑘∈[𝑛] 𝛽

𝑡
𝑘
𝑣𝑖𝑘 . Thus, we have that the item is allocated to

buyers with the highest “bid” 𝑏𝑖 𝑗 = max𝑖∈[𝑛] 𝛽𝑡𝑖 𝑣𝑖 𝑗 , and the price is set equal
to the highest bid. This is exactly the first-price auction rule from Chapter 3.
This leads to what is known as the PACE dynamics, where each buyer updates
their 𝛽𝑡+1

𝑖
using the formula 𝛽𝑡+1

𝑖
= 𝐵𝑖/�̄�𝑡𝑖 , where �̄�𝑡

𝑖
= (1/𝑡)∑𝑡∈[𝑇] ⟨𝑣𝑖 , 𝑥𝑡𝑖 ⟩ is

the average utility the buyer has received across time. PACE arises by applying
the follow-the-leader (FTL) update (see Chapter 4) to the sequence of utilities
observed by each buyer. While FTL did not work in the general no-regret
learning environment of Chapter 4, the curvature induced by the 𝐵𝑖 log(𝛽𝑖)
term is enough to recover convergence.

12.2.1 Shmyrev’s Convex Program
In this section we will derive a new convex program from Eq. (12.4). In the
following section, we will then show that this new convex program yields
another very attractive algorithm for computing Fisher market equilibrium,
by applying OMD. We introduce a change of variables to (12.4), by letting
𝑞 𝑗 = log 𝑝 𝑗 and 𝛾𝑖 = − log 𝛽𝑖 . Plugging these definitions into (12.4) we get

min
𝑞,𝛾

∑︁
𝑗

𝑒𝑞 𝑗 +
∑︁
𝑖∈[𝑛]

𝐵𝑖𝛾𝑖

𝑞 𝑗 + 𝛾𝑖 ≥ log 𝑣𝑖 𝑗 , ∀𝑖, 𝑗 .
(12.7)

Now we introduce Lagrangian variables 𝑏𝑖 𝑗 for the constraint in (12.7) to get
the following dual:

max
𝑏≥0

min
𝑞,𝛾

∑︁
𝑗

𝑒𝑞 𝑗 +
∑︁
𝑖∈[𝑛]

𝐵𝑖𝛾𝑖 +
∑︁
𝑖 𝑗

𝑏𝑖 𝑗
[
log 𝑣𝑖 𝑗 − 𝑞 𝑗 − 𝛾𝑖

]
=max

𝑏≥0


∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log 𝑣𝑖 𝑗 +
∑︁
𝑗∈[𝑚]

min
𝑞 𝑗

𝑒𝑞 𝑗 −
∑︁
𝑖∈[𝑛]

𝑏𝑖 𝑗𝑞 𝑗

 +
∑︁
𝑖∈[𝑛]

min
𝛾𝑖

𝛾𝑖

𝐵𝑖 −
∑︁
𝑗∈[𝑚]

𝑏𝑖 𝑗


 .

First-order optimality on 𝛾𝑖 shows 𝐵𝑖 =
∑

𝑗∈[𝑚] 𝑏𝑖 𝑗 and first-order optimality
on 𝑞 𝑗 shows 𝑒𝑞 𝑗 =

∑
𝑖∈[𝑛] 𝑏𝑖 𝑗 . In a slight abuse of notation, we will introduce a

12.3 Proportional Response Dynamics 133

dual variable 𝑝 𝑗 = 𝑒𝑞 𝑗 (as of right now, it is not clear that this will be the same
prices as the original price variables, but it turns out that this indeed holds at
optimality). Putting this together we get Shmyrev’s convex program:

max
𝑏≥0

∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log 𝑣𝑖 𝑗 +
∑︁
𝑗∈[𝑚]

(
𝑝 𝑗 − 𝑝 𝑗 log 𝑝 𝑗

)
𝑠.𝑡.

∑︁
𝑖∈[𝑛]

𝑏𝑖 𝑗 = 𝑝 𝑗 , ∀ 𝑗 = 1, . . . , 𝑚,∑︁
𝑗∈[𝑚]

𝑏𝑖 𝑗 = 𝐵𝑖 , ∀𝑖 = 1, . . . , 𝑛.

(12.8)

The variable 𝑏𝑖 𝑗 can be interpreted as how much of their budget buyer 𝑖 spends
on a given item 𝑗 . Since

∑
𝑗∈[𝑚] 𝑝 𝑗 =

∑
𝑖∈[𝑛] 𝐵𝑖 is a constant it does not affect

the objective, so we may rewrite Shmyrev’s CP as

max
𝑏≥0

∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log 𝑣𝑖 𝑗 −
∑︁
𝑗∈[𝑚]

𝑝 𝑗 log 𝑝 𝑗

𝑠.𝑡.
∑︁
𝑖∈[𝑛]

𝑏𝑖 𝑗 = 𝑝 𝑗 , ∀ 𝑗 = 1, . . . , 𝑚,∑︁
𝑗∈[𝑚]

𝑏𝑖 𝑗 = 𝐵𝑖 , ∀𝑖 = 1, . . . , 𝑛.

(Shmyrev)

12.3 Proportional Response Dynamics

We will now apply online mirror descent (OMD) to (Shmyrev). Remember that
OMD makes updates according to the rule:

𝑥𝑡+1 = arg min
𝑥∈𝑋

⟨𝜂∇ 𝑓𝑡 (𝑥), 𝑥⟩ + 𝐷 (𝑥∥𝑥𝑡),

where 𝜂 > 0 is the stepsize and 𝐷 (𝑥∥𝑥𝑡) is the Bregman divergence between 𝑥

and 𝑥𝑡 .
In order to instantiate OMD, we first rewrite (Shmyrev) in terms of 𝑏𝑖 𝑗 only

(letting 𝑝 𝑗 (𝑏) =
∑

𝑖 𝑏𝑖 𝑗) to get the objective function

𝑓 (𝑏) = −
∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log 𝑣𝑖 𝑗 +
∑︁
𝑗∈[𝑚]

𝑝 𝑗 (𝑏) log 𝑝 𝑗 (𝑏) = −
∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log(𝑣𝑖 𝑗/𝑝 𝑗 (𝑏)).

The feasible set is the set of feasible allocations of expenditures towards items:

𝑋 =

𝑏 ∈ R𝑛×𝑚≥0 |
∑︁
𝑗∈[𝑚]

𝑏𝑖 𝑗 = 𝐵𝑖 ,∀𝑖
 .

Finally, we use the distance function 𝑑 (𝑏) =
∑

𝑖 𝑗 𝑏𝑖 𝑗 log 𝑏𝑖 𝑗 which gives
𝐷 (𝑏∥𝑎) = ∑

𝑖 𝑗 𝑏𝑖 𝑗 log(𝑏𝑖 𝑗/𝑎𝑖 𝑗)

134 Computing Fisher Market Equilibrium

At each time 𝑡, we see the loss 𝑓 (𝑏𝑡). The gradient is ∇𝑖 𝑗 𝑓 (𝑏) = 1 −
log(𝑣𝑖 𝑗/𝑝 𝑗 (𝑏)). Similar to when using the negative entropy on the simplex, the
OMD update becomes:

𝑏𝑡+1
𝑖 𝑗 ∝ 𝑏𝑡𝑖 𝑗 exp(−1 + log(𝑣𝑖 𝑗/𝑝 𝑗 (𝑏)))

∝ 𝑏𝑡𝑖 𝑗
(
𝑣𝑖 𝑗/𝑝 𝑗 (𝑏)

)
=

1
𝑍
𝑏𝑡𝑖 𝑗

(
𝑣𝑖 𝑗/𝑝 𝑗 (𝑏)

)
,

where 𝑍 is a normalization constant such that
∑

𝑗∈[𝑚] 𝑏
𝑡+1
𝑖 𝑗

= 𝐵𝑖 . We used a
stepsize 𝜂 = 1 in the above derivation. This will be justified by Lemma 12.1
below. Amazingly, OMD on (Shmyrev) using a stepsize of 1 becomes the
following very natural algorithm:

• At each time 𝑡, each buyer 𝑖 submits a bid vector 𝑏𝑡
𝑖

(the current OMD
recommendation).

• Given the bids, a price 𝑝𝑡
𝑗
=

∑
𝑖∈[𝑛] 𝑏

𝑡
𝑖 𝑗

is computed for each item.

• Each buyer is given 𝑥𝑡
𝑖 𝑗
=

𝑏𝑡
𝑖 𝑗

𝑝𝑡
𝑗

of each item.
• Each buyer submits their next bid on item 𝑗 proportional to the utility they

received from item 𝑗 in round 𝑡:

𝑏𝑡+1
𝑖 𝑗 = 𝐵𝑖

𝑥𝑡
𝑖 𝑗
𝑣𝑖 𝑗∑

𝑗′ 𝑥
𝑡
𝑖 𝑗′𝑣𝑖 𝑗′

.

It remains to discuss the fact that we set 𝜂 = 1. In earlier chapters, we saw
that the uniform average of OMD iterates converges to zero average regret at
a rate of 𝑂 (1/

√
𝑇), when using a stepsize proportional to the inverse of the

largest observed dual norm of gradients. However, our objective 𝑓 does not
admit such a bound: the gradient for 𝑖, 𝑗 goes to infinity as 𝑝 𝑗 (𝑏) tends to zero.
Thus based on our existing framework for OMD we are not even guaranteed
a bound on regret. However, it turns out that one can show the following “1-
Lipschitz” condition, by measuring Lipschitzness relative to 𝐷, rather than the
usual Euclidean distance:

Lemma 12.1 For all 𝑎, 𝑏 ∈ 𝑆,

𝑓 (𝑏) ≤ 𝑓 (𝑎) + ⟨∇ 𝑓 (𝑎), 𝑏 − 𝑎⟩ + 𝐷 (𝑏∥𝑎), ∀𝑏, 𝑎 ∈ 𝑋.

This inequality is a generalized Lipschitz condition where we replace the
squared ℓ2 norm ∥𝑎 − 𝑏∥2

2 with our Bregman divergence 𝐷 (this is analogous

12.3 Proportional Response Dynamics 135

to how OMD itself generalized projected gradient descent by changing the
distance function).

To show this inequality, we will need the fact that the Bregman divergence
𝐷 (𝑏∥𝑎) is convex in both arguments for 𝑏, 𝑎 ∈ R𝑛×𝑚++ . To see that convexity
holds, one can expand 𝐷 (𝑏∥𝑎) =

∑
𝑖 𝑗 𝑏𝑖 𝑗 log(𝑏𝑖 𝑗/𝑎𝑖 𝑗) and note that taking a

sum preserves convexity. At that point, we only need to check convexity of the
function ℎ(𝑡, 𝑥) = 𝑡 log(𝑡/𝑥) = −𝑡 log(𝑥/𝑡), which is simply the perspective of
− log(𝑥) with respect to 𝑡. Taking perspectives is known to preserve convexity,
and the negative log is of course convex.

Proof The proof of the inequality can be split into two parts. First, it can
be observed that the difference between 𝑓 (𝑏) and its linearization at 𝑎 is the
Bregman divergence 𝐷 (𝑝(𝑏)∥𝑝(𝑎)):

𝑓 (𝑏) − 𝑓 (𝑎) − ⟨∇ 𝑓 (𝑎), 𝑏 − 𝑎⟩

= −
∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log(𝑣𝑖 𝑗/𝑝 𝑗 (𝑏)) +
∑︁
𝑖 𝑗

𝑎𝑖 𝑗 log(𝑣𝑖 𝑗/𝑝 𝑗 (𝑎))

−
∑︁
𝑖 𝑗

(
1 − log(𝑣𝑖 𝑗/𝑝 𝑗 (𝑎))

)
(𝑏𝑖 𝑗 − 𝑎𝑖 𝑗)

= −
∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log(𝑣𝑖 𝑗/𝑝 𝑗 (𝑏)) +
∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log(𝑣𝑖 𝑗/𝑝 𝑗 (𝑎)) −
∑︁
𝑖 𝑗

(𝑏𝑖 𝑗 − 𝑎𝑖 𝑗)

=
∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log(𝑝 𝑗 (𝑏)/𝑝 𝑗 (𝑎)) −
∑︁
𝑖 𝑗

(𝑏𝑖 𝑗 − 𝑎𝑖 𝑗)

=
∑︁
𝑖 𝑗

𝑏𝑖 𝑗 log(𝑝 𝑗 (𝑏)/𝑝 𝑗 (𝑎)) ; since ∥𝑎∥1 = ∥𝑏∥1 =
∑︁
𝑖∈[𝑛]

𝐵𝑖

=
∑︁
𝑗

𝑝 𝑗 (𝑏) log(𝑝 𝑗 (𝑏)/𝑝 𝑗 (𝑎)) ; since 𝑝 𝑗 (𝑏) =
∑︁
𝑖∈[𝑛]

𝑏𝑖 𝑗

=𝐷 (𝑝(𝑏)∥𝑝(𝑎)).

Secondly, we can bound𝐷 (𝑝(𝑏)∥𝑝(𝑎)) as follows (where ℎ(𝑡, 𝑥) = 𝑡 log(𝑡/𝑥))

𝐷 (𝑝(𝑏)∥𝑝(𝑎)) =𝑛
∑︁
𝑗∈[𝑚]

1
𝑛
ℎ(𝑝 𝑗 (𝑏), 𝑝 𝑗 (𝑎))

=𝑛
∑︁
𝑗∈[𝑚]

ℎ

(
1
𝑛
𝑝 𝑗 (𝑏),

1
𝑛
𝑝 𝑗 (𝑎)

)
≤𝑛

∑︁
𝑗∈[𝑚]

1
𝑛

∑︁
𝑖∈[𝑛]

ℎ
(
𝑏𝑖 𝑗 , 𝑎𝑖 𝑗

)
=𝐷 (𝑏∥𝑎).

Putting together the two bounds we get Lemma 12.1. □

136 Computing Fisher Market Equilibrium

Using the Lipschitz-like condition on 𝑓 , one can show a stronger statement
when running OMD on a static objective 𝑓 (which means that it is the same as
running normal mirror descent):

Theorem 12.2 The OMD iterates with 𝜂 = 1 converge at the rate:

𝑓 (𝑏𝑡) − 𝑓 (𝑏∗) ≤ log 𝑛𝑚
𝑡

.

This holds for any convex and differentiable 𝑓 and 𝐷 satisfying 12.1.

Note two very nice properties here: the convergence rate is improved by a
factor of

√
𝑡, and the iterates themselves converge, with no need for averaging.

We won’t prove the above theorem here, but it holds for any convex minimization
problem that satisfies the relative Lipschitz condition in Lemma 12.1.

12.4 Abstraction Methods

So far we have described a scalable first-order method for computing market
equilibrium. Still, this algorithm makes a number of assumptions that may not
hold in practice. First, the size of an iterate 𝑏𝑡 is 𝑛𝑚; if both are on the order
of 100,000 then writing down an iterate using 64-bit floats requires about 80
GB of memory. For an application such as an Internet advertising market we
might expect the number of buyers 𝑛, and especially the number of items 𝑚,
to be even larger than that. Thus, we may need to find a way to abstract that
market down to some manageable size where we can at least hope to write down
iterates. Secondly, in practice we may not have access to all 𝑣𝑖 𝑗 . Instead, we
may only have samples from 𝑣𝑖 𝑗 , and we need to somehow infer the remaining
valuations. We now move to considering abstraction methods, which will allow
us to deal with both of the above issues.

For the purposes of abstraction, it will be useful to think of the set of
valuations 𝑣𝑖 𝑗 as a matrix 𝑉 , where the 𝑖’th row corresponds to the valuation
vector of buyer 𝑖. We will be interested in what happens if we compute a market
equilibrium using some valuation matrix �̃� ≠ 𝑉 , where �̃� would typically be
obtained from some abstraction method that generates a smaller �̃� (for some
appropriate measure of smaller, e.g. due to a low-rank approximation). Can we
say anything about how “close” to market equilibrium we are in terms of the
original𝑉 , for example if ∥�̃� −𝑉 ∥𝐹 is small? We first describe two reasons that
we might compute a market equilibrium for �̃� rather than 𝑉 :

(i) Low-rank markets: When there are missing valuations, we need to somehow
impute the missing values. Of course, if there is no relationship between the

12.4 Abstraction Methods 137

entries of 𝑉 that we observed, and those that are missing, then we have no
hope of recovering 𝑉 . However, in practice this is typically not the case. In
practice, the valuations are often assumed to (approximately) belong to some
low-dimensional space. A popular model is to assume that the valuations are
low rank, meaning that every buyer 𝑖 has some 𝑑-dimensional vector 𝜙𝑖 ,
every good 𝑗 has some 𝑑-dimensional vector 𝜓 𝑗 , and the valuation of buyer
𝑖 for good 𝑗 is �̃�𝑖 𝑗 = ⟨𝜙𝑖 , 𝜓 𝑗⟩. One may interpret this model as every item
having some associated set of 𝑑 features, with 𝜓 𝑗 describing the value for
each feature, and 𝜙𝑖 describes the value that 𝑖 places on each feature. In a low-
rank model 𝑑 is expected to be much smaller than min(𝑛, 𝑚), meaning that𝑉
is far from full rank. If the real valuations do not have this structure, but are
approximately rank 𝑑 (meaning that the sum of singular values

∑min(𝑛,𝑚)
𝑘=𝑑+1 𝜎𝑘

is small), then �̃� will be close to 𝑉 .
This model can also be motivated via the singular-value decomposition

(SVD). Assume that we wish to solve the following problem:

min
�̃�

∑︁
𝑖 𝑗

(𝑣𝑖 𝑗 − �̃�𝑖 𝑗)2 = ∥𝑉 − �̃� ∥2
𝐹

𝑠.𝑡. rank(�̃�) ≤ 𝑑.

The optimal solution to this problem can be found easily via the SVD:
Letting 𝜎1, . . . , 𝜎𝑑 be the first 𝑑 singular values of 𝑉 , and �̄�1, . . . , �̄�𝑑 the
first left singular vectors, and �̄�1, . . . , �̄�𝑑 the first right singular vectors, the
optimal solution is

�̃� =

𝑑∑︁
𝑘=1

𝜎𝑘 �̄�𝑘 �̄�
𝑇
𝑘 .

If the remaining singular values 𝜎𝑘+1, . . . are small relative to the first 𝑘

singular values, then this model captures most of the valuation structure.
(ii) Representative Markets: We may wish to try to generate a smaller set of

representative buyers, where each original buyer 𝑖 maps to some particular
representative buyer 𝑟 (𝑖). Similarly, we may wish to generate representative
goods that correspond to many non-identical but similar goods from the
original market. In practice these representative buyers and goods would
typically be generated via clustering techniques. In this case, our approximate
valuation matrix �̃� has as row 𝑖 the valuation vector of the representative buyer
𝑟 (𝑖). This means that all 𝑖, 𝑖′ such that 𝑟 (𝑖) = 𝑟 (𝑖′) have the same valuation
vector in �̃� , and thus they can be treated as a single buyer for equilibrium-
computation purposes. The same grouping can also be applied to the goods.
If the number of buyers and goods is reduced by a factor of 10, then the

138 Computing Fisher Market Equilibrium

resulting mathematical program is reduced by a factor of 102, since we have
𝑛 × 𝑚 variables.

12.4.1 Measuring Solution Quality
We now analyze what happens when we compute a market equilibrium under �̃�
rather than𝑉 . Throughout this section we will let (𝑥, 𝑝) be a market equilibrium
for �̃� . We will use the error matrix Δ𝑉 = 𝑉 − �̃� to quantify the solution quality,
and we will measure the size of Δ𝑉 using the ℓ1 − ℓ∞ matrix norm:

∥Δ𝑉 ∥1,∞ = max
𝑖

∥Δ𝑣𝑖 ∥1.

We will also use the norm of the error vector for an individual buyer ∥Δ𝑣𝑖 ∥1 =

∥𝑣𝑖 − �̃�𝑖 ∥1.
A very useful property is that under linear utilities, the change in utility when

going from 𝑣𝑖 to �̃�𝑖 is linear in Δ𝑣𝑖 .

Proposition 12.3 If ⟨�̃�𝑖 , 𝑥𝑖⟩ + 𝜖 ≥ ⟨�̃�𝑖 , 𝑥′𝑖⟩ then ⟨𝑣𝑖 , 𝑥𝑖⟩ + 𝜖 + ∥Δ𝑣𝑖 ∥1 ≥ ⟨𝑣𝑖 , 𝑥′𝑖⟩

Proof We have

⟨�̃�𝑖 , 𝑥𝑖⟩ + 𝜖 ≥ ⟨�̃�𝑖 , 𝑥′𝑖⟩
⇔ ⟨𝑣𝑖 − Δ𝑣𝑖 , 𝑥𝑖⟩ + 𝜖 ≥ ⟨𝑣𝑖 + Δ𝑣𝑖 , 𝑥

′
𝑖⟩

⇔ ⟨𝑣𝑖 , 𝑥𝑖⟩ + ⟨Δ𝑣𝑖 , 𝑥′𝑖 − 𝑥𝑖⟩ + 𝜖 ≥ ⟨𝑣𝑖 , 𝑥′𝑖⟩.

Now the proposition follows by ⟨Δ𝑣𝑖 , 𝑥′𝑖 − 𝑥𝑖⟩ ≤ ∥Δ𝑣𝑖 ∥1. □

This proposition can be used to immediately derive bounds on envy, pro-
portionality, and regret (how far each buyer is from achieving the utility of
their demand bundle). For example, we know that under �̃� , each buyer 𝑖 has no
envy towards any other buyer 𝑘: ⟨�̃�𝑖 , 𝑥𝑖⟩ ≥ ⟨�̃�𝑖 , 𝑥𝑘⟩. By Proposition 12.3 each
buyer 𝑖 has envy at most ∥Δ𝑣𝑖 ∥1 under𝑉 when using (𝑥, 𝑝). All envies are thus
bounded by ∥Δ𝑉 ∥1,∞. Regret and proportionality is bounded similarly using
guaranteed inequalities under �̃� .

Market equilibrium also guarantees Pareto optimality. Can we give any mean-
ingful guarantees on how much social welfare improves under Pareto-improving
allocations for �̃�? Unfortunately the answer to that is no, as the following ex-
ample of real and abstracted matrices shows:

𝑉 =

[
1 𝜖 𝜖

0 1 𝜖

]
, �̃� =

[
1 𝜖 0
0 1 𝜖

]
.

12.5 Historical Notes 139

If we set 𝐵1 = 𝐵2 = 1, then for supply-aware market equilibrium, we end up
with competition only on item 2, and we get prices 𝑝 = (0, 2, 0) and allocation
𝑥1 = (1, 0.5, 0), 𝑥2 = (0, 0.5, 1). Under 𝑉 this is a terrible allocation, and we
can Pareto improve by using 𝑥1 = (1, 0, 0.5), 𝑥2 = (0, 1, 0.5), which increases
overall social welfare by 1

2 − 𝜖 , in spite of ∥Δ𝑉 ∥1 = 𝜖 .
On the other hand, we can show that under any Pareto-improving allocation,

some buyer 𝑖 improves by at most ∥Δ𝑉 ∥1,∞. To see this, note that for any Pareto
improving allocation 𝑥, under �̃� there existed at least one buyer 𝑖 such that
⟨�̃�𝑖 , 𝑥𝑖 − 𝑥𝑖⟩ ≥ 0, and so this buyer must improve by at most ∥Δ𝑣𝑖 ∥1 under 𝑉 .

12.5 Historical Notes

The Shmyrev convex program was given by Shmyrev (2009). The observation
that the Shmyrev convex program is related to EG via duality and change of
variables was by Cole et al. (2017). The original proportional response dy-
namics were given by Wu and Zhang (2007), and was shown to be effective
for BitTorrent sharing dynamics by Levin et al. (2008). The relationship of
proportional response dynamics to Shmyrev’s convex program and mirror de-
scent were given by Birnbaum et al. (2011). For rules on convexity-preserving
operations, see Boyd and Vandenberghe (2004).

There is a long history of first-order algorithms for computing market equi-
librium in various Fisher-market models. We focused on proportional response
dynamics, which have particularly strong numerical performance.

There is a rich literature on various iterative approaches to computing market
equilibrium in Fisher markets. One can apply first-order methods or regret-
minimization approaches to the Lagrangian of EG directly, which was done in
Kroer et al. (2019) and Gao et al. (2021a). Classical projected gradient descent
applied directly on EG achieves linear convergence (Gao and Kroer, 2020).
There is a large optimization and computer science literature on discrete-time
tâtonnement dynamics (Cole and Fleischer, 2008; Cheung et al., 2012, 2019;
Nan et al., 2024). In the economics literature, tâtonnement was initially studied
in continuous time, see e.g. Mas-Colell et al. (1995). There is also a literature
deriving auction-like algorithms, which can similarly sometimes be viewed
as instantiations of gradient descent and related algorithms (Bei et al., 2019;
Nesterov and Shikhman, 2018; Gao et al., 2021b; Liao et al., 2022; Yang et al.,
2024).

The material on abstracting large market equilibrium problems is from Kroer
et al. (2019). A brief introduction to the broader idea of low-rank models can
be found in Udell and Townsend (2019). Udell et al. (2016) gives a more

140 Computing Fisher Market Equilibrium

thorough exposition and describes more general model types. Low-rank market
equilibrium models were also studied in Kroer and Peysakhovich (2019), where
it is shown that large low-rank markets enjoy a number of properties not satisfied
by small-scale markets.

Further reading.
Cole et al. (2017) is a good reference for how to derive the dual of the Eisenberg-
Gale convex program, and they also show how to extend those results to a
variety of settings such as for quasi-linear utilities. Birnbaum et al. (2011) is
a good reference for the relationship between proportional response dynamics
and Shmyrev’s convex program, and they give a variety of useful inequalities
for analyzing proportional response dynamics.

13
Fair Allocation with Indivisible Goods

In this chapter we study the problem of fair allocation when the items are
indivisible. This setting presents a number of challenges that were not present
in the divisible case.

It is obviously an important setting in practice. For example, the website
http://www.spliddit.org/ allows users to fairly split estates, financial
assets, toys, or other goods. Another important application is that of fairly al-
locating course seats to students. This setting is even more intricate, because
valuations in that setting are combinatorial. In order to design suitable mecha-
nisms for fairly dividing discrete goods, we will need to reevaluate our fairness
concepts.

The setup is similar to Chapter 11. We have a set of 𝑚 indivisible goods
that we wish to divide among 𝑛 agents. Each good has supply 1. We will
denote the bundle of goods given to agent 𝑖 as 𝑥𝑖 , where 𝑥𝑖 𝑗 is the amount
of good 𝑗 that is allocated to buyer 𝑖. The set of feasible allocations is then
{𝑥 |∑𝑖∈[𝑛] 𝑥𝑖 𝑗 ≤ 1 ∀ 𝑗 ∈ [𝑚], 𝑥𝑖 𝑗 ∈ {0, 1}}

Unless otherwise specified, each agent is assumed to have a linear utility
function 𝑢𝑖 (𝑥𝑖) = 𝑣⊤

𝑖
𝑥𝑖 denoting how much they like the bundle 𝑥𝑖 .

13.1 Fair Allocation

In the case of indivisible items, several of our fairness properties become much
harder to achieve. We will assume that we are required to construct a Pareto-
optimal allocation.

Proportional fairness does not even make sense anymore: it rested on the
idea of assigning each agent their fractional share 1

𝑛
of each item. There is

however, a suitable generalization of proportionality that does make sense for
the indivisible case: the maximin share (MMS) guarantee. For agent 𝑖, their

141

http://www.spliddit.org/

142 Fair Allocation with Indivisible Goods

MMS guarantee is the value they would get if they get to divide the items up
into 𝑛 bundles, but were then required to take the worst bundle. Formally:

MMS𝑖 := max
𝑥≥0

min
𝑗

𝑢𝑖 (𝑥 𝑗)

s.t.
∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗 ≤ 1,∀ 𝑗

𝑥𝑖 𝑗 ∈ {0, 1},∀𝑖, 𝑗 .

For the divisible setting, the value of the above optimization problem becomes
the buyer’s utility of the proportional allocation. We say that an allocation 𝑥 is
an MMS allocation if every agent 𝑖 receives at least their MMS share, i.e. utility
𝑢𝑖 (𝑥𝑖) ≥ MMS𝑖 . In the case of 2 agents, an MMS allocation always exists. As
an exercise, you might try to come up with an algorithm for finding such an
allocation.1 In the case of 3 or more agents, an MMS allocation may not exist.
The counterexample is very involved, so we won’t cover it here.

Theorem 13.1 For 𝑛 ≥ 3 agents, there exist additive valuations for which an
MMS allocation does not exist. However, an allocation 𝑥 such that each agent
receives utility at least 𝑢𝑖 (𝑥) ≥ 3

4 MMS𝑖 always exists.

The original Spliddit algorithm for dividing goods worked as follows: first,
compute (e.g. via integer programming) the 𝛼 ∈ [0, 1] such that every agent
can be guaranteed an 𝛼 fraction of their MMS guarantee (this always ends
up being 𝛼 = 1 in practice). Then, an allocation that maximizes social welfare
subject to supply feasibility and the constraints 𝑢𝑖 (𝑥𝑖) ≥ 𝛼 MMS𝑖 for all 𝑖 ∈ [𝑛]
is computed. However, this can lead to some weird results.

Example 13.2 Three agents each have valuation 1 for 5 items. The MMS
guarantee is 1 for each agent. But now the social welfare-maximizing solution
can allocate three items to agent 1, and 1 item each to agents 2 and 3. A more
fair solution would be to allocate 2 items to 2 agents, and 1 item to the last
agent. One way to quantify how unfair the 3/1/1 solution is, as compared to the
2/2/1 solution, is that envy is twice as high in the 3/1/1/ solution.

With the above motivation, let us consider envy in the discrete setting. It is
easy to see that we generally won’t be able to get envy-free solutions if we are
required to assign all items. Consider 2 agents splitting an inheritance: a house
worth $500k, a car worth $10k, and a jewelry set worth $5k. Since we have
1 Solution: compute one of the solutions to agent 1’s MMS computation problem. Then let agent

2 choose their favorite bundle, and give the other bundle to agent 1. Agent 1 clearly receives
their MMS guarantee, or better. Agent 2 also does: their MMS guarantee is at most 1

2 ∥𝑣2 ∥1,
and here they receive utility of at least 1

2 ∥𝑣2 ∥1.

13.1 Fair Allocation 143

to give the house to a single agent, the other agent is guaranteed to have envy.
Instead, we will consider a relaxed notion of envy:

Definition 13.3 An allocation 𝑥 is envy-free up to one good (EF1) if for
every pair of agents 𝑖, 𝑘 , there exists an item 𝑗 such that 𝑥𝑘 𝑗 = 1 and 𝑢𝑖 (𝑥𝑖) ≥
𝑢𝑖 (𝑥𝑘 − 𝑒 𝑗), where 𝑒 𝑗 is the 𝑗’th basis vector.

Intuitively, this definition says that for any pair of agents such that one agent
envies the other, we only need to remove one item from the bundle in order to
remove the envy. Requiring EF1 would have forced us to use the 2/2/1 allocation
in Example 13.2.

For linear utilities, an EF1 allocation is easily found (if we disregard Pareto
optimality). As an exercise, come up with an algorithm for computing an
EF1 allocation for linear valuations2 In fact, EF1 allocations can be computed
in polynomial time for any monotone set of utility functions (meaning that
if 𝑥𝑖 ≥ 𝑥′

𝑖
then 𝑢𝑖 (𝑥𝑖) ≥ 𝑢𝑖 (𝑥′𝑖)), using an algorithm known as envy-cycle-

elimination.
However, ideally we would like to come up with an algorithm that gives us

EF1 as well as Pareto efficiency. To achieve this, we will consider the product of
utilities, which we saw previously in the Eisenberg-Gale program. This product
is also called the Nash welfare of an allocation:

𝑁𝑊 (𝑥) =
∏
𝑖

𝑢𝑖 (𝑥𝑖).

The max Nash welfare (MNW) solution picks an allocation that maximizes
𝑁𝑊 (𝑥):

max
𝑥

∏
𝑖

𝑢𝑖 (𝑥𝑖)

𝑠.𝑡.
∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗 ≤ 1,∀ 𝑗

𝑥𝑖 𝑗 ∈ {0, 1},∀𝑖, 𝑗 .

Note that here we have to worry about the degenerate case where 𝑁𝑊 (𝑥) = 0
for all 𝑥, meaning that it is impossible to give strictly positive utility to all agents.
We will assume that there exists 𝑥 such that 𝑁𝑊 (𝑥) > 0. If this does not hold,
typically one seeks a solution that maximizes the number of agents with strictly

2 This is achieved by the round-robin algorithm: simply have agents take turns picking their
favorite item. It is easy to see that EF1 is an invariant of the partial allocations resulting from
this process.

144 Fair Allocation with Indivisible Goods

positive utility, and then the largest NW achievable among subsets of that size
is chosen.

The MNW solution turns out to achieve both Pareto optimality (otherwise
we contradict optimality), and EF1:

Theorem 13.4 The MNW solution for linear utilities is EF1.

Proof Let 𝑥 be the MNW solution. Say for contradiction that agent 𝑖 envies
agent 𝑘 by more than one good. Let 𝑗 be the item allocated to agent 𝑘 that
minimizes the ratio 𝑣𝑘 𝑗

𝑣𝑖 𝑗
. Let 𝑥′ be the same allocation as 𝑥, except we give

item 𝑗 to agent 𝑖 instead, i.e. 𝑥′
𝑖 𝑗

= 1, 𝑥′
𝑘 𝑗

= 0. The proof is by showing that
𝑁𝑊 (𝑥′) > 𝑁𝑊 (𝑥), which contradicts optimality of 𝑥 for the MNW problem.

Using the linearity of utilities we have 𝑢𝑖 (𝑥′𝑖) = 𝑢𝑖 (𝑥𝑖) + 𝑣𝑖 𝑗 and 𝑢𝑘 (𝑥′𝑘) =
𝑢𝑘 (𝑥𝑘) − 𝑣𝑘 𝑗 . Every other utility stays the same. Now we have

𝑁𝑊 (𝑥′) > 𝑁𝑊 (𝑥)
⇔

[
𝑢𝑖 (𝑥𝑖) + 𝑣𝑖 𝑗

]
·
[
𝑢𝑘 (𝑥𝑘) − 𝑣𝑘 𝑗

]
> 𝑢𝑖 (𝑥𝑖)𝑢𝑘 (𝑥𝑘)

⇔
[
𝑢𝑖 (𝑥𝑖) + 𝑣𝑖 𝑗

]
𝑢𝑘 (𝑥𝑘) > 𝑢𝑖 (𝑥𝑖)𝑢𝑘 (𝑥𝑘) +

[
𝑢𝑖 (𝑥𝑖) + 𝑣𝑖 𝑗

]
𝑣𝑘 𝑗 (13.1)

⇔𝑣𝑖 𝑗𝑢𝑘 (𝑥𝑘) >
[
𝑢𝑖 (𝑥𝑖) + 𝑣𝑖 𝑗

]
𝑣𝑘 𝑗 (13.2)

⇔𝑢𝑘 (𝑥𝑘) >
𝑣𝑘 𝑗

𝑣𝑖 𝑗

[
𝑢𝑖 (𝑥𝑖) + 𝑣𝑖 𝑗

]
. (13.3)

By how we chose 𝑗 we have (see Eq. (A.5)):

𝑣𝑘 𝑗

𝑣𝑖 𝑗
≤

∑
𝑗′∈𝑥𝑘 𝑣𝑘 𝑗′∑
𝑗′∈𝑥𝑘 𝑣𝑖 𝑗′

≤ 𝑢𝑘 (𝑥𝑘)
𝑢𝑖 (𝑥𝑘)

,

and by the envy property we have

𝑢𝑖 (𝑥𝑖) + 𝑣𝑖 𝑗 < 𝑢𝑖 (𝑥𝑘).

Now we can multiply together the last two inequalities to get (13.3). □

The MNW solution also turns out to give a guarantee on MMS, but not a very
strong one: every agent is guaranteed to get 2

1+
√

4𝑛−3
of their MMS guarantee,

and this bound is tight. Luckily, in practice the MNW solution seems to fare
much better. On Spliddit data, the following ratios are achieved. In the table
below are shown the MMS approximation ratios across 1281 “divide goods”
instances submitted to the Spliddit website for fairly allocating goods

In over 95% of the instances every player receives their full MMS guarantee.

13.2 Computing Discrete Max Nash Welfare 145

MMS approximation ratio [0.75, 0.8) [0.8, 0.9) [0.9, 1) 1

% of instances in interval 0.16% 0.7% 3.51% 95.63%

Table 13.1 MMS approximation ratios for Spliddit instances.

13.2 Computing Discrete Max Nash Welfare

13.2.1 Complexity

Solving the MNW problem is generally not easy. In fact, the problem turns out
to be not only NP-hard, but NP-hard to approximate within a factor 𝜇 ≈ 1.00008
(the best current algorithm achieves an approximation factor of 1.45, so the gap
between 1.00008 and 1.45 is open).

The reduction is based on the vertex-cover problem on 3-regular graphs,
which is NP-hard to approximate within a factor ≈ 1.01. The vertex cover
problem asks: given a graph 𝐺, find the smallest set of vertices such that every
edge is incident to at least one of them. The decision version of the problem
is: “Given 𝐺 and integer 𝑘 , does 𝐺 contain a vertex cover of size ≤ 𝑘?” A
3-regular graph is a graph where each vertex has degree 3.

The proof is not particularly illuminating, so we will skip it here. However,
let’s see a quick way to prove a simpler statement: that the problem is NP-hard
even for 2 players with identical linear valuations. The hardness is by reduction
from the Partition problem, which is a well-known NP-hard problem.

Definition 13.5 Partition problem: you are given a multiset of integers
𝑆 = {𝑠1, . . . , 𝑠𝑚} (potentially with duplicates), and your task is to figure out if
there is a way to partition 𝑆 into two sets 𝑆1, 𝑆2 such that

∑
𝑖∈𝑆1 𝑠𝑖 =

∑
𝑖∈𝑆2 𝑠𝑖 .

Given a Partition instance with multiset 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑚}, we can
construct an MNW instance as follows: we create two agents and 𝑚 items. Both
agents have value 𝑠 𝑗 for item 𝑗 (and thus identical valuations). Now, by the
AM-GM inequality (see Eq. (A.2)) there exists a correct partitioning if and
only if the MNW allocation has value (1

2
∑

𝑗∈[𝑚] 𝑠 𝑗)2.
This result can be extended to show strong NP-hardness by considering the 𝑘-

equal-sum-subset problem: given a multiset S of 𝑥1, . . . , 𝑥𝑛 positive integers,
are there 𝑘 nonempty disjoint subsets 𝑆1, . . . , 𝑆𝑘 ⊂ S such that 𝑠𝑢𝑚(𝑆1) =

. . . = 𝑠𝑢𝑚(𝑆𝑘). The exact same reduction as before works, but with 𝑘 agents
rather than two.

146 Fair Allocation with Indivisible Goods

13.2.2 Algorithms
Given these computational complexity problems, how should we compute an
MNW allocation in practice?

We present two approaches here. First, we can take the log of the objective,
to get a concave function. After taking logs, we get the following mixed-integer
exponential-cone program:

max
∑︁
𝑖∈[𝑛]

log 𝑢𝑖

s.t. 𝑢𝑖 ≤ ⟨𝑣𝑖 , 𝑥𝑖⟩, ∀𝑖 ∈ [𝑛]∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗 ≤ 1, ∀ 𝑗 ∈ [𝑚]

𝑥𝑖 𝑗 ∈ {0, 1}, ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚] .

(13.4)

This is simply the discrete version of the Eisenberg-Gale convex program. One
approach is to solve this problem directly, e.g. using Mosek.

Alternatively, we can impose some additional structure on the valuation
space: if we assume that all valuations are integer-valued, then we know that
𝑢𝑖 (𝑥𝑖) will take on some integer value in the range 0 to ∥𝑣𝑖 ∥1. In that case,
we can add a variable 𝑤𝑖 for each agent 𝑖, and use either (1) the linearization
of the log at each integer value, or (2) the linear function from the line seg-
ment (log 𝑘, 𝑘), (log(𝑘 + 1), 𝑘 + 1), as upper bounds on 𝑤𝑖 . This gives 1

2 ∥𝑣𝑖 ∥1
constraints for each 𝑖 using the line segment approach (the linearization uses
twice as many constraints), but ensures that 𝑤𝑖 is equal to log⟨𝑣𝑖 , 𝑥𝑖⟩ for all
integer-valued ⟨𝑣𝑖 , 𝑥𝑖⟩. Using the line segment approach gives the following
mixed-integer linear program (MILP):

max
∑︁
𝑖∈[𝑛]

𝑤𝑖

s.t. 𝑤𝑖 ≤ log 𝑘 + log(𝑘 + 1)
log 𝑘

(
⟨𝑣𝑖 , 𝑥𝑖⟩ − 𝑘

)
, ∀𝑖 ∈ [𝑛], 𝑘 = 1, 3, . . . , ∥𝑣𝑖 ∥1∑︁

𝑗∈[𝑚]
𝑣𝑖 𝑗𝑥𝑖 𝑗 ≥ 1, ∀𝑖 ∈ [𝑛]∑︁

𝑖∈[𝑛]
𝑥𝑖 𝑗 ≤ 1, ∀ 𝑗 ∈ [𝑚]

𝑥𝑖 𝑗 ∈ {0, 1}, ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚] .
(13.5)

These two mixed-integer programs both have some drawbacks: For the
mixed-integer exponential-cone program in Eq. (13.4), we must resort to much

13.3 Fair Allocation with Combinatorial Utilities 147

less mature technology than for mixed-integer linear programs. On the other
hand, the discrete EG program is reasonably compact: the program is roughly
the size of a solution. For the MILP in Eq. (13.5), the good news is that MILP
technology is quite mature, and so we might expect this to solve quickly. On
the other hand, adding 𝑛 × ∥𝑣𝑖 ∥1 additional constraints can be quite a lot, and
could lead to slow LP solves as part of the branch-and-bound procedure.

Figure 13.1 shows the performance of the two approaches.

● ● ● ● ● ● ●

●

●

●

0

50

100

150

10 20 30 40 50

num agents

R
un

tim
e Algo

● eg_runtime

mip_runtime

Figure 13.1 Plot showing the runtime of discrete Eisenberg-Gale and the MILP
approach.

13.3 Fair Allocation with Combinatorial Utilities

Recall that for the setting of indivisible goods, a market equilibrium is not
guaranteed to exist. Moreover, envy-free allocations are also not guaranteed to
exist. In this section we will see how to recover existence by considering an
appropriate notion of approximate market equilibria, which will be guaranteed
to exist and yield approximate envy freeness. Our setup will allow for a very
broad class of combinatorial utilities, and we will use this to model the allocation
of course seats to students.

Specifically, we will look at a generalization of the competitive equilibrium
from equal incomes (CEEI) allocation mechanism. Since a market equilibrium
is not guaranteed to exist for equal budgets, we will instead look at approximate
CEEI (A-CEEI). In A-CEEI the idea is to relax two parts of CEEI: (1) we give
agents approximately equal, rather than exactly equal, budgets, and (2) we only
clear the market approximately. Let’s see how this works with an example.

Example 13.6 Two students are trying to register for four courses, where each

148 Fair Allocation with Indivisible Goods

course has a single seat left, and each student can take at most two courses. The
courses are: machine learning (ML), statistics (STAT), algorithms (ALGO),
and real analysis (RA). Both students appreciate the finer things in life, so they
prefer any bundle that includes real analysis over any bundle that does not.
More generally, both students’ preferences are such that they rank the courses
in the order RA > ML > STAT > ALGO. Their preferences over bundles of
two courses are to always prefer the bundle with the highest-ranked course in
it, breaking ties using the lower-ranked course.

Clearly, if budgets are equal we cannot hope to price these items in a way
that clears the market, since both students will always want the bundle with the
real analysis course int it if they can afford it. But if we instead give student 1 a
budget of 1.2 and student 2 a budget of 1, then we can set the prices as follows,
RA: 1.1, ML: 0.8, STAT: 0.2, ALGO: 0.1. Now student 1 wishes to buy (RA,
ALGO) for a total price of 1.2, and student 2 wishes to buy (ML, STAT) for a
total price of 1.

As long as we decide the budget perturbations in a randomized way, the
allocation in Example 13.6 is in some sense fair in expectation, and furthermore
we might hope that the budget perturbations are small enough that for instances
with more than four items, things look even fairer. Note that the allocation we
found satisfies both EF1 and the MMS guarantee. The example also achieves
Pareto optimality, though we will in general only guarantee approximate Pareto
optimality for A-CEEI.

13.3.1 Approximate CEEI
We will describe the problem in the context of matching students to seats in
courses. This setup is used in the Course Match software, which is used for
matching students to course seats in a variety of business schools in the US
and Canada. There is a set of 𝑚 courses, and each course 𝑗 has some integer
capacity 𝑠 𝑗 . There is a set of 𝑛 students. Each student has a set Ψ𝑖 ⊆ 2𝑚
of feasible subsets of courses that they may be allocated, with each bundle
containing at most 𝑘 ≤ 𝑚 courses (note that this assumes that each student can
only consume one unit of a good, even if 𝑠 𝑗 > 1; this is of course reasonable
in course allocation, but not for all applications). The set Ψ𝑖 encodes both
scheduling constraints such as mutually exclusive courses that are taught in the
same time slot, as well as constraints specific to the student such as whether
they satisfy course prerequisites.

So far in the book we have only worked with cardinal preferences, where
each agent 𝑖 has a numerical value specifying how much they like a given

13.3 Fair Allocation with Combinatorial Utilities 149

outcome. However, the Approximate CEEI setting is historically studied as
an ordinal setting. In an ordinal setting we are not given utility values for
outcomes, but are instead given an ordering over outcomes. We gave ordinal
rankings in the two-student two-course Example 13.6. Informally, given two
bundles of courses 𝑥𝑖 , 𝑥′𝑖 , the ordering tells us which of the two bundles student
𝑖 prefers. If the reader is not familiar with ordinal settings, then it is fine to
think of these orderings as simply being the result of the student having some
underlying cardinal utility that generates the pairwise preferences.

The preferences of student 𝑖 are assumed to be given as a complete and
transitive ordinal preference ordering ≽𝑖 over Ψ𝑖 . Completeness simply means
that for all schedules 𝑥, 𝑥′ ∈ Ψ𝑖 , 𝑥 ≽𝑖 𝑥′, 𝑥′ ≽𝑖 𝑥, or both. Transitivity means
that if 𝑥 ≽𝑖 𝑥′ and 𝑥′ ≽𝑖 𝑥′′ then 𝑥 ≽𝑖 𝑥

′′.

Example 13.7 In Course Match, the representation of ≽𝑖 is as follows: the set
of feasible schedules Ψ𝑖 is taken as given. Then, student 𝑖 ranks each course on
an integer scale from 0 − 100, and is additionally allowed to specify pairwise
penalties or bonuses in [−200,−199, . . . , 199, 200] for being assigned a given
pair of courses. Thus, the students’ utility for a bundle is the sum of their values
for the individual courses in the bundles, plus the sum of penalties and bonuses
for all pairs of courses in the bundle. This induces a complete and transitive
preference ordering.

Given a set of prices 𝑝 for each course, a vector 𝑥∗
𝑖

is in the demand set for
student 𝑖 if

𝑥∗𝑖 ∈ 𝐷𝑖 (𝑝) = arg max
≽𝑖

{𝑥𝑖 ∈ Ψ𝑖 : ⟨𝑥𝑖 , 𝑝⟩ ≤ 𝐵𝑖}.

This maximum is well-defined because we assumed that preferences are com-
plete. In the actual Course Match implementation, ≽𝑖 is represented numeri-
cally by the utility function described in Example 13.7 for each student, but the
A-CEEI theory works for the more general case of ordinal preferences.

Since we have existence issues (these arise both from indivisibility as seen
earlier, but also from the very general preference orderings allowed), we resort
to an approximation to CEEI:

Definition 13.8 An allocation 𝑥, prices 𝑝, and budgets 𝐵 constitute an (𝛼, 𝛽)-
CEEI if:

(i) Demands are met: 𝑥𝑖 ∈ 𝐷𝑖 for all 𝑖 ∈ [𝑛].
(ii) 𝛼-approximate market clearance: ∥𝑧∥2 ≤ 𝛼, where 𝑧 ∈ R𝑚≥0 is defined as

𝑧 𝑗 =
∑

𝑖∈[𝑛] 𝑥𝑖 𝑗 − 𝑠 𝑗 if 𝑝 𝑗 > 0, and 𝑧 𝑗 = max(∑𝑖∈[𝑛] 𝑥𝑖 𝑗 − 𝑠 𝑗 , 0) if 𝑝 𝑗 = 0.
(iii) 𝛽-approximately equal budgets: 𝐵𝑖 ∈ [1, 1 + 𝛽] for all 𝑖.

150 Fair Allocation with Indivisible Goods

The first condition in (𝛼, 𝛽)-CEEI simply says that each student 𝑖 buys an
item in their demand set. The second condition says that supply constraints are
approximately satisfied, and courses with strictly positive price are approxi-
mately allocated at their supply. The third constraint says that all budgets are
almost the same, up to a difference of 𝛽.

The main theorem regarding (𝛼, 𝛽)-CEEI is that they are guaranteed to exist:

Theorem 13.9 Let𝜎 = min(2𝑘, 𝑚). For any 𝛽 > 0, there exists a (
√
𝜎𝑚/2, 𝛽)-

CEEI. Moreover, given budgets 𝐵 ∈ [1, 1 + 𝛽]𝑛 and any 𝜖 > 0, there exists a
(
√
𝜎𝑚/2, 𝛽)-CEEI using budgets 𝐵∗ such that ∥𝐵∗ − 𝐵∥∞ ≤ 𝜖 .

One major concern with this result is that we are not quite guaranteed a
feasible solution. In general the allocation may oversubscribe some courses,
though the oversubscription vector 𝑧 has bounded ℓ2 norm. In practice, the
bound is relatively modest: First, the bound

√
𝜎𝑚/2 does not grow with the

number of agents or number of course seats. Second, in practice students take
at most a modest number of courses per semester among a reasonably-small
number of courses offered (an example given in the literature is that students take
𝑘 = 5 courses out of 50 courses total at Harvard’s MBA program), thus yielding
a bound of roughly 11. Technically a single course could be oversubscribed by
11 students, but in practice we expect this to be smoothed out reasonably across
many courses.

The proof of the existence theorem is rather involved and relies on smoothing
out the market in order to invoke fixed-point theorems. Here we give some
intuition for the role that each approximation plays.

As in other discontinuous settings, the main difficulty for existence without
approximation is the discontinuity of student demands with respect to price.
However, in the course match setting,

√
𝜎 is an upper bound on the discontinuity

of the demand of any single agent. To see this, note that a demand 𝑥𝑖 has at
most 𝑘 entries set to 1, and so a student can at most drop all courses from 𝑥𝑖

and switch to 𝑘 new courses under their new demand 𝑥′
𝑖
. At the same time,

there’s only 𝑚 courses total, so the change is bounded by min(2𝑘, 𝑚), and thus
∥𝑥𝑖 − 𝑥′

𝑖
∥2 ≤

√
𝜎.

The second discontinuity issue is large discontinuous aggregate changes in
demand from the students. When budgets are the same, as in standard CEEI,
the demand discontinuity for different students may occur at the same point in
the space of prices. Thus, if this happens, aggregate discontinuity may be on
the order of 𝑛𝜎. With distinct budgets, it becomes possible to change a single
student’s demand without changing those of other students. For each bundle 𝑥,
we may think of the hyperplane 𝐻 (𝑖, 𝑥) = {𝑝 : ⟨𝑝, 𝑥⟩ ≤ 𝐵𝑖} which denotes the
boundary between two halfspaces in the price space: those where student 𝑖 can

13.3 Fair Allocation with Combinatorial Utilities 151

afford 𝑥, and those where 𝑖 cannot afford 𝑥. By having each budget distinct, one
can show that in a generic sense, at most 𝑚 hyperplanes can intersect at any
particular point in price space. This implies that aggregate demand changes by
at most 𝜎𝑚.

The remainder of the proof is concerned with smoothing out the aggre-
gate demands so that a fixed-point existence theorem can be applied to show
existence.

Fairness and Optimality Properties of A-CEEI
Since we are only approximately clearing the market, we do not get Pareto
optimality. However, it is possible to show that if we construct a modified
market where 𝑠 𝑗 = 𝑠 𝑗 − 𝑧 𝑗 , then we have Pareto optimality in that market.
Thus, any Pareto-improving allocation must utilize unused supply, which can
potentially be used to bound the inefficiency once more structure is imposed
on utilities.

Crucially, (𝛼, 𝛽)-CEEI does guarantee some fairness properties. If we select
𝛽 ≤ 1

𝑘−1 , then EF1 is guaranteed in any (𝛼, 𝛽)-CEEI. Furthermore, there exists
𝛽 small enough such that each student is also guaranteed to receive their (𝑛+1)-
MMS share, which is their utility if they were forced to partition the items into
𝑛 + 1 bundles and take the worst one.

13.3.2 Computing A-CEEI
In general computing an A-CEEI is PPAD complete. This is the same class
of problem that general-sum Nash equilibrium falls in. It is conjectured to
require exponential time in the worst case, and thus we cannot hope to have
nice scalable algorithms like we had for the divisible case.

In practice, A-CEEI is computed using local search. A tabu search is used
on the space of prices. This works as follows:

(i) A price vector is generated randomly
(ii) A set of “neighbors” are generated using two different generation approaches:

• “Price gradient:” all the demands under the current prices are added up,
and the excess demand vector is treated as a gradient. Then, 20 different
stepsizes are tried along the price gradient

• A single item has its price changed, and all other prices are kept the same.
The new price on the chosen item is set high enough to stop it from being
oversubscribed, or low enough to stop being undersubscribed. A neighbor
is generated for each over or undersubscribed item

152 Fair Allocation with Indivisible Goods

(iii) The best neighbor (among the ones generating a previously-unseen alloca-
tion) is selected as the next price vector, and the procedure repeats from step
2 (unless the last 5 iterations yielded no improving prices, in which case the
local search stops)

(iv) Finally, step 1 is repeated with a new random price vector. This repeats until
a time limit is reached

In practice this procedure generates an A-CEEI solution with significantly
better 𝛼 and 𝛽 values than the theory predicts. After an A-CEEI has been
generated, additional heuristics are implemented in order to force the solution
to not have oversubscription.

13.4 Historical Notes

The maximin share was introduced by Budish (2011). The results on nonexis-
tence of MMS allocation, and an approximation guarantee of 2

3 were given by
Kurokawa et al. (2018). The approximation guarantee was improved to 3

4 by
Ghodsi et al. (2018). The application of MNW to fair division was proposed
by Caragiannis et al. (2016).

The envy freeness up to one good (EF1) notion was implicitly introduced by
Lipton et al. (2004), which introduced the envy-cycle elimination algorithm,
which yields an EF1 allocation. It was formally introduced by Budish (2011).

The 1.00008 inapproximability result was by Lee (2017). The 1.45 approx-
imation algorithm was given by Barman et al. (2018). Strong NP-hardness of
𝑘-equal-sum-subset is shown in Cieliebak et al. (2008).

The MILP which approximates the log of the utility function at each integer
point was introduced by Caragiannis et al. (2019). At the time, Mosek did not
support exponential cones, and so they did not compare the MILP approach to
directly solving the discrete Eisenberg-Gale program. The results shown here
are the first direct comparison of the two, to the best of my knowledge.

A-CEEI was introduced by Budish (2011), and an implementation of A-
CEEI used at Wharton was given by Budish et al. (2016). The proof of PPAD
completeness was by Othman et al. (2016).

Further reading.
As with fair division in the previous chapter, Brams and Taylor (1996) has
coverage of discrete fair allocation problems as well. The paper introducing
MNW as a methodology for fair allocation by Caragiannis et al. (2016) is
well-written and a good research-level introduction to the topic. A really nice

13.4 Historical Notes 153

overview talk targeted at a technical audience is given by Ariel Procaccia here:
https://www.youtube.com/watch?v=7lUtS-l9ytI.

CEEI for combinatorial utilities is too recent of a topic to have textbooks
covering it. The original paper by Budish (2011) is a good starting point, and
the followup paper by Budish et al. (2016) gives a lot of practical details.

https://www.youtube.com/watch?v=7lUtS-l9ytI

14
Power Flows and Equilibrium Pricing

This chapter introduces a new topic: electricity markets, and their associated
optimization problems. As we shall see, both economics and optimization play
a key role in modern electricity grids.

For the first hundred years or so of the existence of the US power grid,
it was managed by what are called vertically integrated utilities. These were
companies that generated, sold, and transferred electricity directly to users.
Typically, these would also be monopolies, meaning that they were the only
possible supplier in a given region. In contrast, the late 1990s and early 2000s
saw what’s usually referred to as the deregulation1 of the electric grid.

In the deregulated markets, the choice of who generates electricity, and at
what price, is made using auction-based mechanisms where the auctioneer is
an independent system operator (ISO). ISOs are quasi-governmental entities
whose charter is to operate the grid, including deciding who generates what
using auctions. The overarching market setup is very complicated. For example
the New York market uses two electricity auctions: a spot auction every five
minutes (which decides on the allocation of generation and purchasing for the
next five minutes), and a day-ahead auction every hour (which allocates power
generation and purchasing for that hourly interval of the following day), as
well as several capacity auctions meant to ensure that the grid has sufficient
generation capacity. We will focus more on the electricity auctions in this
chapter. This chapter will start by introducing the operational optimization
problems that ISOs need to solve on a continuous basis.

Compared to other markets, the electric grid has many peculiarities. For
example:

(i) The grid operates in a continuous fashion, whereas the spot markets are

1 This name is arguably misleading, as the electric grid is still highly regulated industry. Better
terms would be restructuring, or decompositioning.

154

14.1 Optimal Power Flow 155

cleared in 5 minute intervals. This means that the outcome from a given
auction is only approximately what will actually happen.

(ii) Supply (power generation) and demand (load generated by users) must be
balanced at all times. The system will collapse if these quantities are not kept
in check.

(iii) Goods (electricity) is generated at particular locations, and must be “trans-
ported” to the point of usage, potentially with a loss in power, or with
congestion of the wires.

(iv) Electricity should be thought of as a “flow” in a network; therefore it’s
generally not possible to say that a particular user takes electricity from a
particular plant. Both simply take electricity in and out of the “pool.”

(v) Different types of electricity generators (e.g. wind, gas, nuclear) all have very
different operating constraints, and thus differ in their ability to increase or
decrease productions, and the speed at which they can do so.

These peculiarities are good to keep in mind when thinking about the grid and
its markets, because they mean that e.g. incentives can be a tricky subject.

14.1 Optimal Power Flow

We now introduce the optimal power flow (OPF) problem. In OPF, we are given
a directed network 𝑉, 𝐸 of nodes and edges representing the electric grid in
question. The set of nodes 𝑉 in power parlance is called the set of buses. We
will use nodes and buses interchangeably. The buses should be thought of as
important locations in the physical grid, e.g. generation points, load points, or
substations. The set of edges 𝐸 is the connections between buses. In power
parlance, these are called transmission lines. We will also use edges and lines
interchangeably. We let 𝐸𝑖 be the set of edges departing bus 𝑖.

Unlike every other section of this book, we will briefly need to work with
complex numbers in this section. To that end, we let i refer to the imaginary
unit satisfying i2 = −1. We will also use the notation 𝑧∗ to refer to the complex
conjugate of a complex number 𝑧.

These complex numbers arise because the power that flows through an elec-
trical line is a complex number. The real part of this number is the real power
that flows through the line, and the imaginary part is the reactive power. The
real power is the “useful” part, it is the power that is eventually consumed by
users, and it will be represented by the real part of the complex variable de-
scribing the power flow on a line. The reactive power is needed to maintain the
voltage levels in the grid, and is not consumed by the end users. It arises from

156 Power Flows and Equilibrium Pricing

the alternating current flowing back and forth in a circuit. It will be represented
by the imaginary part of the complex variable describing the power flow on a
line.

The alternating current OPF (ACOPF) problem is a nonconvex quadratic
optimization problem which models the physics of the power flow problem,
including the fact that complex variables are needed. In particular, the net
addition or removal of flow at a bus 𝑖 will be a complex variable 𝑝𝑖 + i𝑞𝑖 ,
and similarly the power flow on a line (𝑖, 𝑗) ∈ 𝐸 will be a complex variable
𝑝𝑖 𝑗 + i𝑞𝑖 𝑗 . We will mostly work with a linearization of this model, but I want
to briefly describe it, so that you are aware of the approximation that is being
made in the eventual LP we will use. To represent the problem, we will need
the following variables:

• 𝑣𝑖 is a complex number describing the voltage at bus 𝑖 ∈ 𝑉 .

• 𝑝𝑖 is a real number describing the difference between generation and demand
of real power at bus 𝑖 ∈ 𝑉 .

• 𝑞𝑖 is the complex part of the difference between generation and demand of
reactive power at bus 𝑖 ∈ 𝑉 .

• 𝑝𝑖 𝑗 is the real part of the power flow on line 𝑖, 𝑗 ∈ 𝐸 ; 𝑝𝑖 𝑗 > 0 means power
is flowing from 𝑖 to 𝑗 and 𝑝𝑖 𝑗 < 0 means power flows the opposite direction.

• 𝑞𝑖 𝑗 is the reactive power flow on line 𝑖, 𝑗 ∈ 𝐸 .

We will also need the following constants:

• 𝑦𝑖 𝑗 = 𝑔𝑖 𝑗 + i𝑏𝑖 𝑗 is a complex number describing the admittance of the line 𝑖
to 𝑗 .

• 𝑣
𝑖
, 𝑣𝑖 are lower and upper bounds on the voltage at bus 𝑖.

• Each bus 𝑖 ∈ 𝑉 is subject to box constraints on its real power 𝑝
𝑖
, 𝑝𝑖 , and

reactive power 𝑞
𝑖
, 𝑞𝑖 .

• Each line 𝑖, 𝑗 ∈ 𝐸 is subject to a bound 𝑠𝑖 𝑗 on the apparent power flow
𝑝2
𝑖 𝑗
+ 𝑞2

𝑖 𝑗
.

With all that, the ACOPF problem looks as follows, where 𝑓 is some objective

14.2 Linearized Power Flow 157

functions that we wish to optimize subject to the power flow constraints:

min
𝑣,𝑝,𝑞

𝑓 (𝑣, 𝑝, 𝑞)

s.t. 𝑝𝑖 𝑗 + i𝑞𝑖 𝑗 = 𝑣𝑖 (𝑣∗𝑖 − 𝑣∗𝑗)𝑦∗𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ 𝐸

𝑝2
𝑖 𝑗 + 𝑞2

𝑖 𝑗 ≤ 𝑠𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ 𝐸∑︁
𝑗∈𝐸𝑖

𝑝𝑖 𝑗 = 𝑝𝑖 , ∀𝑖 ∈ 𝑉∑︁
𝑗∈𝐸𝑖

𝑞𝑖 𝑗 = 𝑞𝑖 , ∀𝑖 ∈ 𝑉

𝑝𝑖 ∈ [𝑝
𝑖
, 𝑝𝑖], 𝑞𝑖 ∈ [𝑞

𝑖
, 𝑞𝑖], |𝑣𝑖 | ∈ [𝑣

𝑖
, 𝑣𝑖] ∀𝑖 ∈ 𝑉

(ACOPF)

The above problem is a very difficult optimization problem. In particular,
even if 𝑓 is a linear function, the first constraint is a nonconvex quadratic
constraint, which makes the problem NP-hard in general. This leads to several
problems, including the fact that this problem is typically too hard to solve to
optimality for real-world OPF problems. It also means that we do not have strong
duality, and strong duality is a critical component in the market-equilibrium-
based mechanism used for pricing electricity.

Ideally, power system operators would solve Eq. (ACOPF) every five minutes
in order to make dispatch decisions. However, because of the difficulty of
solving ACOPF, they typically solve the linearized problem that we present
in the next section. The ACOPF problem is sometimes solved for day-ahead
markets, but even there they may resort to approximations. This leads to a
variety of inefficiencies both in terms of operational efficiency, and in terms of
market efficiency.

14.2 Linearized Power Flow

Going forward, we will work with a simplified model of power flows, which
linearizes the nonconvex quadratic constraint in Eq. (ACOPF). We will call
this model DC power flow (DCOPF), though this terminology is misleading,
because it does not actually model direct-current power flows. Instead, it is
simply a linearized approximation to AC power flows. There are many DCOPF
models in the literature, what we cover is a representative one, but different
modeling assumptions lead to different models.

A DCOPF model is obtained by making a number of simplifying assumptions
of Eq. (ACOPF). First, because reactive power is negligible relative to real

158 Power Flows and Equilibrium Pricing

power, we set all reactive power variables to zero, meaning that we can remove
all 𝑞 variables and associated constraints.

Next, we write the complex variables using polar coordinates 𝑣𝑖 = 𝑚𝑖𝑒
i𝜃𝑖

for each 𝑖 and apply Euler’s formula (Eq. (A.4)). Then, we get the following
equation for the real part of the nonconvex equation:

𝑝𝑖 𝑗 = 𝑔𝑖 𝑗𝑚
2
𝑖 − 𝑚𝑖𝑚 𝑗

(
𝑔𝑖 𝑗 cos(𝜃𝑖 − 𝜃 𝑗) − 𝑏𝑖 𝑗 sin(𝜃𝑖 − 𝜃 𝑗)

)
.

Then, we assume that all voltage magnitudes equal to one, i.e. |𝑚𝑖 | = 1. Finally,
we set 𝑔𝑖 𝑗 = 0 because 𝑔𝑖 𝑗 ≪ 𝑏𝑖 𝑗 .

After making all these simplifications, the DCOPF problems has only linear
constraints:

min
𝜃, 𝑝

𝑓 (𝜃, 𝑝)

s.t. 𝑝𝑖 𝑗 = 𝑏𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗), ∀(𝑖, 𝑗) ∈ 𝐸∑︁
𝑗∈𝐸𝑖

𝑝𝑖 𝑗 = 𝑝𝑖 , ∀𝑖 ∈ 𝑉

𝑝𝑖 ∈ [𝑝
𝑖
, 𝑝𝑖], ∀𝑖 ∈ 𝑉

|𝑝𝑖 𝑗 | ≤ 𝑠𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ 𝐸.

(DCOPF)

If 𝑓 is also a linear function, then Eq. (DCOPF) is an LP. In the formulation
given here, each node 𝑖 ∈ 𝑉 has a single power flow 𝑝𝑖 into it (if 𝑝𝑖 > 0) or out
of it (if 𝑝𝑖 < 0).

14.3 Economic Dispatch

In practice, nodes are often thought of as locations that potentially have both
generators and demands. While Eq. (DCOPF) is completely general, it will be
more convenient to explicitly include these multiple types of generators and
demands in the model. Let Ψ𝐷

𝑖
be the set of demands at node 𝑖, where each

demand 𝑑 ∈ Ψ𝐷
𝑖

has some utility 𝑢𝑑 of receiving power, and some upper
bound 𝑝𝑑 on how much power they can consume. Similarly, let Ψ𝐺

𝑖
be the

set of generators at node 𝑖, where each generator 𝑔 ∈ Ψ𝐺
𝑖

has some cost 𝑐𝑑
of generating power, and a maximum generating capacity 𝑝𝑔. We focus on
a linear model of utility for simplicity; in practice nonlinear concave utilities
for consumption and convex cost functions (e.g. quadratic cost functions for
thermal generators) are sometimes used. The framework extends readily to this
more general setting. If we now set our objective 𝑓 to be equal to the social
welfare of the resulting allocation, we get the following LP:

14.3 Economic Dispatch 159

max
𝜃, 𝑝

∑︁
𝑖∈𝑉

©­«
∑︁

𝑑∈Ψ𝐷
𝑖

𝑢𝑑 𝑝𝑑 −
∑︁

𝑔∈Ψ𝐺
𝑖

𝑐𝑔𝑝𝑔
ª®¬

s.t. 𝑝𝑖 𝑗 = 𝑏𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗), ∀(𝑖, 𝑗) ∈ 𝐸∑︁
𝑗∈𝐸𝑖

𝑝𝑖 𝑗 =
∑︁

𝑔∈Ψ𝐺
𝑖

𝑝𝑔 −
∑︁

𝑑∈Ψ𝐷
𝑖

𝑝𝑑 , ∀𝑖 ∈ 𝑉

𝑝𝑑 ∈ [0, 𝑝𝑑], ∀𝑖 ∈ 𝑉, 𝑑 ∈ Ψ𝐷
𝑖

𝑝𝑔 ∈ [0, 𝑝𝑔], ∀𝑖 ∈ 𝑉, 𝑔 ∈ Ψ𝐺
𝑖

|𝑝𝑖 𝑗 | ≤ 𝑠𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ 𝐸.

(14.1)

A solution of this LP is referred to as economic dispatch because it maximizes
social welfare over buyers and sellers. Let 𝜆∗

𝑖
be the dual variable associated

to the second equality in Eq. (14.1) in an optimal solution. Then 𝜆∗
𝑖

can be
thought of as the locational marginal price (LMP) of electricity at node 𝑖: each
demand at 𝑖 is charged this price, and each generator at 𝑖 is paid this price per
unit of electricity. In fact, a variant of this LP that takes into account addi-
tional operational constraints is used for pricing in many real-world electricity
markets.

14.3.1 Market Equilibrium Interpretation
We now show that economic dispatch has a market equilibrium interpretation.
We will use the Lagrange multiplier 𝜆∗

𝑖
as the price of electricity at a given node

𝑖 ∈ 𝑉 . The allocation will be the one output by Eq. (14.1). Then we wish to show
that under these prices, every market participant at a given node 𝑖 optimizes their
own utility given the local price 𝜆∗

𝑖
. If we consider the Lagrangified problem

using the optimal dual variables 𝜆∗
𝑖
, we get the problem

max
𝜃, 𝑝

∑︁
𝑖∈𝑉

©­«
∑︁

𝑑∈Ψ𝐷
𝑖

𝑢𝑑 𝑝𝑑 −
∑︁

𝑔∈Ψ𝐺
𝑖

𝑐𝑔𝑝𝑔
ª®¬+

∑︁
𝑖∈𝑉

𝜆∗𝑖
©­«

∑︁
𝑔∈Ψ𝐺

𝑖

𝑝𝑔 −
∑︁

𝑑∈Ψ𝐷
𝑖

𝑝𝑑 −
∑︁
𝑗∈𝐸𝑖

𝑝𝑖 𝑗
ª®¬

s.t. 𝑝𝑖 𝑗 = 𝑏𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗), ∀(𝑖, 𝑗) ∈ 𝐸

𝑝𝑑 ∈ [0, 𝑝𝑑], ∀𝑖 ∈ 𝑉, 𝑑 ∈ Ψ𝐷
𝑖

𝑝𝑔 ∈ [0, 𝑝𝑔], ∀𝑖 ∈ 𝑉, 𝑔 ∈ Ψ𝐺
𝑖

|𝑝𝑖 𝑗 | ≤ 𝑠𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ 𝐸.

(14.2)

Now, if we consider the problem faced by an individual generator 𝑔 ∈ Ψ𝐺
𝑖

160 Power Flows and Equilibrium Pricing

for some node 𝑖, in order to maximize their own utility they would like to solve
the problem

max
𝑝𝑔

(𝜆∗𝑖 − 𝑐𝑔)𝑝𝑔

s.t. 𝑝𝑔 ∈ [0, 𝑝𝑔] .
(14.3)

Comparing Eq. (14.2) and Eq. (14.3), we see that the variable 𝑝𝑔 appears with
the exact same set of constraints in both problems, and with the same coefficient
in the objective. In other words, Eq. (14.2) decomposes along generators. Thus,
by stationarity conditions we get that the value 𝑝∗𝑔 from the economic dispatch
solution is also optimal for the individual generator, if we set the price equal to
𝜆∗
𝑖
. A completely analogous argument shows that each demand also maximizes

its own utility.
It follows from the above that the prices and allocation from economic dis-

patch constitute a market equilibrium, in the sense that the supply of electricity
equals the demand for electricity, and every market participant is receiving an
allocation in their demand set given the prices.

14.3.2 Spatial Arbitrage
Finally, let us try to understand the transmission variables 𝑝𝑖 𝑗 . To do so, we
introduce the spatial arbitrage problem. Given the optimal dual variables 𝜆∗

this problem is defined as:

max
𝑝𝑖 𝑗 , 𝜃

∑︁
𝑖∈𝑉

𝜆∗𝑖

∑︁
𝑗∈𝐸𝑖

𝑝𝑖 𝑗

s.t. 𝑝𝑖 𝑗 = 𝑏𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗), ∀(𝑖, 𝑗) ∈ 𝐸

|𝑝𝑖 𝑗 | ≤ 𝑠𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ 𝐸.

(14.4)

This can be thought of as a spatial arbitraging operation, where the variable 𝑝𝑖 𝑗

is interpreted as the amount of electricity the arbitrageur purchases at node 𝑖 in
order to sell it at node 𝑗 . Since

∑
𝑗∈𝐸𝑖

𝑝𝑖 𝑗 =
∑

𝑑∈Ψ𝐷
𝑖
𝑝𝑑 −

∑
𝑑∈Ψ𝐺

𝑖
𝑝𝑔, we know

that 𝜆∗
𝑖

∑
𝑗∈𝐸𝑖

𝑝𝑖 𝑗 is the excess payment at node 𝑖, which can be either positive or
negative. While individual line revenues for the arbitrageur may thus be positive
or negative, Eq. (14.4) maximizes all the possible ways of transferring power
across the network, given the prices. Since one possible feasible solution is to
set all variables equal to zero, the spatial arbitrage revenue is nonnegative. By
a similar decomposition argument as before, we see that the economic dispatch
solution optimally solves the spatial arbitrage problem, since 𝑝𝑖 𝑗 and 𝜃 appears
with the same set of constraints and objective coefficients in both problems.
Thus, if we let the transmission operator collect these excess payments, then

14.3 Economic Dispatch 161

the transmission operator acts as a spatial arbitrageur, who optimally tries to
buy and sell power while satisfying the (linearized) transmission constraints.
Since the arbitrage is nonnegative, the transmission operator is always budget
balanced, and may collect additional payments. In practice, spatial arbitrage
payments are used to fund grid operations such as transmission infrastructure
and system reliability. They may also be used to compensate generators for
providing capacity guarantees.

14.3.3 Economic Dispatch as a Mechanism
The economic dispatch framework derived in this section gives us a way to use
markets to allocate power consumption and generation:

• Have every demand and generator submit their utility per unit of electricity,
along with the consumption and generation caps.

• Compute an economic dispatch solution to decide which generators and
demands get allocated.

• Charge everyone according to the dual prices.

This is how allocation and pricing is performed in many of the spot markets
used by various ISOs. Spot markets run on a frequent basis (e.g. every five
minutes), and determine generation and consumption for any uncommitted
load and generation capacity. I stress the uncommitted part here, because some
generators and demands will already have entered binding contracts on price
and quantity in earlier markets, such as the day-ahead market.

We now investigate a few properties that would be nice to have for this
market.

• Truthfulness: Unfortunately this mechanism is not truthful: while each par-
ticipant acts optimally given the prices, they can themselves influence how
those prices are set. This is already observed in a network with a single node;
with a single node it is straightforward to see that some pair of generator and
demander end up being the two entities setting the marginal price. That gen-
erator may then be incentivized to submit a slightly higher cost of generation
in order to increase the price (and vice versa for the demander).

• Efficiency: If the submitted bids are truthful, then we would get efficiency
since the economic dispatch model maximizes social welfare. That said,
we already noted that this mechanism is easily seen to not be truthful. A
second concern for efficiency is that we introduced a lot of approximations
in order to arrive at an LP. It is not clear what those approximations do to
the truthfulness or efficiency of the mechanism.

162 Power Flows and Equilibrium Pricing

• Budget balance: The ISO needs to ensure that after paying generators and
charging demands it ends up with a nonnegative amount of leftover money.
However, we already saw in the spatial arbitrage section that the excess
payments are captured via the 𝑝𝑖 𝑗 variables, and the spatial arbitrager can
make their utility at least zero, so revenue adequacy is guaranteed. ISOs are
typically not allowed to make money either; for that reason the money made
from spatial arbitrage is usually thought of as going to the providers of the
transmission network, or towards additional investment in the network.

• Individual rationality: Is every participant better off participating in the
market, as compared to simply exiting? It is easy to see from the market
equilibrium conditions that every participant is incentivized to participate,
as long as participants do not overstate their capacity, or report utilities/costs
that are respectively higher/lower than their true values.

In addition to the approximations that we made going from ACOPF to
DCOPF, this chapter also made some implicit assumptions. One of the biggest
is that every generator can choose in continuous fashion how much electricity
to produce. In practice, generators have various types of constraints on how
they can change their output. For example, several types of energy producers
require a long time to ramp production up or down (up to a day), and they
may have minimum generation levels for when they are turned on. This is the
case for several traditional generators such as nuclear and coal. Natural gas also
has similar constraints. This introduces a discrete nature into the problem: we
may need a day or more to reach certain production levels, and so the real-time
market is operating “too late” for some decisions to be made. Renewables also
have different types of constraints on their production, that depend on the type
of renewable. For example, wind generators are not necessarily able to adjust
their output at all, and are thus required to produce electricity at whatever level
the weather dictates. This can even lead to negative energy prices, depending
on whether we have a cost-free way of handling excess power.

All these constraints, as well as a general desire on the part of market
participants for a certain amount of predictability in their revenues, necessitate
additional market mechanisms that allow us to settle some generation and
consumption further in advance than the spot market allows. This motivates
the use of day-ahead markets, which we will study in Section 14.4.

14.4 Unit Commitment 163

14.4 Unit Commitment

So far, we have talked about the economic dispatch problem as if we solve
it once, using a simple LP for finding the optimal generation and demand
allocations. However, this is not how the ISOs actually decide on how to
allocate. Instead, as mentioned briefly, there are several stages of allocation
at various points in time. A key issue mentioned above is that many types of
power-generating plants require long startup and shutdown times (on the order
of hours to a day). This is one reason to consider day-ahead (DA) markets,
where we commit some plants to producing energy on the following day, based
on predicted demand. Beyond startup and shutdown times, another attractive
property of DA markets is that they reduce uncertainty for the parties that
settle on generation and load taking in the DA market. This may, for example,
simplify staff scheduling.

14.4.1 Pricing via Linear Relaxation of Integer Variables

In this section we study how to handle binary operational decisions. For ex-
ample, a nuclear or coal power plant must decide ahead of time whether to
commit to turning the plant on or not. If they do commit, they usually have
some minimum power output level (in addition to an upper bound), and if they
do not, then they cannot generate any power. This binary decision problem
obviously causes some problems for our market-based mechanism from Chap-
ter 14: we used strong duality to get locational marginal prices for each node
in the network. But with binary variables, we will not have strong duality! This
section will discuss a few potential remedies to this problem, though none of
them are perfect.

For simplicity, let us consider a single-node problem, where demand is fixed
at 𝑝𝑑 . We extend the generator model from earlier by letting each generator
have some cost 𝐶𝑔 ≥ 0 of “switching on” their power generation. Switching
on the plant will be represented by a binary variable 𝑧𝑔 ∈ {0, 1}. If we write
the economic dispatch problem with this new model, we get the following

164 Power Flows and Equilibrium Pricing

mixed-integer linear program (MILP):

min
𝑝,𝑧

∑︁
𝑔∈Ψ𝐺

𝑐𝑔𝑝𝑔 + 𝐶𝑔𝑧𝑔

s.t.
∑︁

𝑔∈Ψ𝐺

𝑝𝑔 ≥ 𝑝𝑑

𝑝𝑔 ≤ 𝑧𝑔𝑝𝑔, ∀𝑔 ∈ Ψ𝐺

𝑝𝑔 ≥ 𝑧𝑔𝑝
𝑔
, ∀𝑔 ∈ Ψ𝐺

𝑧𝑔 ∈ {0, 1} ∀𝑔 ∈ Ψ𝐺 .

(14.5)

Suppose we solve this problem, and get a set of optimal binary variables 𝑧∗.
Now we want to find a set of prices that support our efficient allocation. It turns
out that we can in fact construct prices using these binary variables. The idea
is to consider the continuous relaxation of Eq. (14.5), and then constrain each
continuous variable 𝑧𝑔 to take on exactly the value 𝑧∗𝑔. If we then apply strong
duality to this new LP with an additional constraint, we still get a Lagrange
multiplier on the demand constraint for setting prices, but we also get additional
Lagrange multipliers acting as generator-specific payments or charges based on
the newly-added constraint. Formally, we get the following LP:

min
𝑝,𝑧

∑︁
𝑔∈Ψ𝐺

𝑐𝑔𝑝𝑔 + 𝐶𝑔𝑧𝑔

s.t.
∑︁

𝑔∈Ψ𝐺

𝑝𝑔 ≥ 𝑝𝑑

𝑝𝑔 ≤ 𝑧𝑔𝑝𝑔, ∀𝑔 ∈ Ψ𝐺

𝑝𝑔 ≥ 𝑧𝑔𝑝
𝑔
, ∀𝑔 ∈ Ψ𝐺

𝑧𝑔 = 𝑧∗𝑔 ∀𝑔 ∈ Ψ𝐺 .

(14.6)

Now consider an optimal solution 𝑥∗, 𝑧∗, and let 𝜆∗ be the corresponding
Lagrange multiplier on the first constraint in Eq. (14.6) and 𝜇∗𝑔 be the Lagrange
multiplier for the last constraint in Eq. (14.6) for each 𝑔. We will set the payment
for one unit of electricity at 𝜆∗, and for each generator 𝑔 such that 𝑧∗𝑔 = 1, we
pay them 𝜇∗𝑔 for turning on (or charge them −𝜇∗𝑔 if 𝜇∗𝑔 is negative).

This turns out to yield a market equilibrium, as we will now show. Consider

14.4 Unit Commitment 165

a generator 𝑔. They wish to solve the following problem:

max
𝑝𝑔 ,𝑧𝑔

∑︁
𝑔∈Ψ𝐺

(𝜆∗ − 𝑐𝑔)𝑝𝑔 + (𝜇𝑔 − 𝐶𝑔)𝑧𝑔

s.t. 𝑝𝑔 ≤ 𝑧𝑔𝑝𝑔

𝑝𝑔 ≥ 𝑧𝑔𝑝
𝑔

𝑧𝑔 ∈ {0, 1}.

(14.7)

One way to solve this problem is to make 𝑧𝑔 continuous, and hope that an
integral solution happens to pop out. That yields the following program

max
𝑝𝑔 ,𝑧𝑔

∑︁
𝑔∈Ψ𝐺

(𝜆∗ − 𝑐𝑔)𝑝𝑔 + (𝜇𝑔 − 𝐶𝑔)𝑧𝑔

s.t. 𝑝𝑔 ≤ 𝑧𝑔𝑝𝑔

𝑝𝑔 ≥ 𝑧𝑔𝑝
𝑔

𝑧𝑔 ∈ R.

(14.8)

Clearly an optimal solution to this problem upper bounds the optimal solution
to the integral version. But now it is easy to see that if we form the Lagrangian
of Eq. (14.6):

min
𝑝,𝑧

∑︁
𝑔∈Ψ𝐺

𝑐𝑔𝑝𝑔 + 𝐶𝑔𝑧𝑔 + 𝜆∗
©­«𝑝𝑑 −

∑︁
𝑔∈Ψ𝐺

𝑝𝑔
ª®¬ +

∑︁
𝑔∈Ψ𝐺

𝜇∗𝑔

(
𝑧∗𝑔 − 𝑧𝑔

)
s.t.

𝑝𝑔 ≤ 𝑧𝑔𝑝𝑔, ∀𝑔 ∈ Ψ𝐺

𝑝𝑔 ≥ 𝑧𝑔𝑝
𝑔
, ∀𝑔 ∈ Ψ𝐺 ,

(14.9)
then we get a problem which includes exactly the same constraints on 𝑝𝑔, 𝑧𝑔,
and has the same coefficients in the objective. But then by strong duality we
know that 𝑝𝑔 = 𝑝∗𝑔, 𝑧𝑔 = 𝑧∗𝑔 is an optimal solution to this problem, which shows
that it must be an optimal solution to the LP for generator 𝑖. Since 𝑧𝑔 = 𝑧∗𝑔,
this LP solution satisfies the integrality condition. It follows that the generator
receives an allocation in their demand set.

While the above approach was described in the context of unit commitment
(i.e. a single Boolean “turning on” decision), it works much more broadly. If a
generator has multiple binary decision then we can simply add one constraint
per decision, and we will then get a price for each of their binary decisions.

One drawback of this pricing approach is that it tends to produce highly
volatile prices, which can be both negative and positive. This can lead to prices

166 Power Flows and Equilibrium Pricing

that can seem very unfair (and materialize suddenly through minor changes to
the pricing problem). A second concern is that we may no longer have budget
balance, meaning that the ISO could potentially fall short on money due to
the unit commitment prices. Third, a cost allocation issue arises, where it is
not clear which consumers of electricity should be responsible for paying the
start-up and shut-down costs.

14.4.2 Uplift Payments
In practice, ISOs often use what are called uplift payments. Uplift payments are
an asymmetric variant of the previous pricing approach. The ISO will compute
only locational marginal prices. Then, for generators with discrete decisions
such as unit commitment, if the LMPs do not support their assigned decisions
and power output, the ISO will pay the difference. Note that this can make
the generator better or worse off depending on context. For example, 𝜇𝑔 being
negative is ignored which helps the generator, but when 𝜇𝑔 is positive the uplift
payment could be smaller than 𝜇𝑔 still.

14.4.3 Convex Hull Pricing
An alternative pricing approach is that of convex hull pricing (CH pricing). CH
pricing is very easy to set up. We simply Lagrangify the demand constraint,
and solve the resulting minimization problem over electricity prices. Formally,
we solve

min
𝜆

𝑞(𝜆),

where 𝑞(𝜆) is defined as

𝑞(𝜆) :=

min
𝑝,𝑧

∑︁
𝑔∈Ψ𝐺

𝑐𝑔𝑝𝑔 + 𝐶𝑔𝑧𝑔 + 𝜆
(
𝑝𝑑 −

∑︁
𝑔∈Ψ𝐺

𝑝𝑔
)

s.t. 𝑝𝑔 ≤ 𝑧𝑔𝑝𝑔, ∀𝑔 ∈ Ψ𝐺

𝑝𝑔 ≥ 𝑧𝑔𝑝
𝑔
, ∀𝑔 ∈ Ψ𝐺

𝑧𝑔 ∈ {0, 1} ∀𝑔 ∈ Ψ𝐺 .

From an optimization perspective this approach has some attractive prop-
erties, especially the fact that given a fixed 𝜆, solving 𝑞(𝜆) decomposes into
simple per-generator optimization problems. On the other hand, since we do
not have strong duality, this approach does not necessarily give us a feasible
solution. In practice, the resulting CH prices 𝜆∗ would be extracted, but the
allocation would use the original MILP for finding a feasible allocation. This

14.4 Unit Commitment 167

means that in general CH pricing will not be such that generators get alloca-
tions that are in their demand set. To fix this issue, ISOs would then provide
additional uplift payments.

14.4.4 Connecting DA and RT Markets

So far we have discussed RT and DA markets in isolation. In practice, the RT
market operates after a number of contracts for consumption and generation
have been settled in the DA market. For example, suppose a generator was
assigned 100 megawatt (MW) of generation for an RT period, but it turns
out that they will only be able to produce 97MW. In that case, the remaining
3MW must be purchased in the RT market. Financially speaking, the generator
would then be viewed as having purchased 3MW of power in that RT market.
Similarly, a demand that purchased 100MW of power in the DA market but
then consumed only 90MW would be viewed as selling 10MW of power in the
RT market. In general, we can view the RT market as a balancing operation that
corrects any imbalances that occur due to increased or decreased consumption
or generation specified in the DA market.

If not for uncertainty, it is easy to convince yourself that the price in the DA
and RT markets should be the same. If they were not, then any generator that
was assigned to generate in the market with the lower price would simply wish
to change their bids such that they end up getting assigned the same generation
in the market with the higher price. A similar argument holds for demands.

A key reason why the RT market may nonetheless require balancing is that
consumer electricity usage as forecasted in the DA market will differ from the
realized usage in the RT market. This causes relatively manageable imbalances
in the market, and the ISO needs to correct these imbalances in order to keep
the system functioning. A second and more severe imbalance issue that can
occur is generator outages. A generator outage can lead to large imbalances
that require significant additional generation allocation in the RT market.

Due to these imbalances, and the very short-term nature of the RT market,
flexible generation and consumption entities will be rewarded at a higher rate
in the RT market when realized demands turns out to be higher than realized
generation. On the other hand, expensive generators that are primarily used to
cover the case of excess demand in the RT market will not make any money
when realized demand is lower than realized generation. Thus, the cost of
generation for such plants is often high, which can lead to higher volatility in
RT market prices.

168 Power Flows and Equilibrium Pricing

14.5 Historical Notes

Schweppe et al. (1988) introduced the idea of spot pricing in the context of
competitive markets for electricity and is credited with laying the theoretical
foundations for electricity markets. Hogan (1992) introduced many of the ideas
leading to the idea of pricing for transmission rights. The approach for pricing
binary decision by using the MIP solution as constraints in the LP was intro-
duced by O’Neill et al. (2005). Convex hull pricing was introduced by Gribik
et al. (2007).

Further Reading
For the DCOPF problem, Stott et al. (2009) gives a comprehensive overview of
different modeling assumptions, the resulting models, and their pros and cons.
Wood et al. (2013) gives textbook coverage of these topics.

Taylor (2015) covers many of the optimization aspects of the power grid. This
book also has some coverage of energy markets. Kirschen and Strbac (2018)
has extensive coverage of the economic aspects of energy systems.

Sweeney (2013) provides a detailed account of the California energy crisis,
which is an interesting story that highlights a number of bad market design de-
cisions, many of them politically motivated. That crisis lead to severe blackouts,
huge budget deficits for several energy companies (with one going bankrupt),
and had large ramifications for the state budget.

Jalal Kazempour from the Danish Technical University has a set of slides
and lecture videos2 that give a nice optimization-based introduction to energy
markets.

2 Found here: https://www.jalalkazempour.com/teaching

https://www.jalalkazempour.com/teaching

PART FOUR

AUCTIONS AND INTERNET ADVERTISING
MARKETS

15
Internet Advertising Auctions: Position Auctions

In this chapter we begin our study of another class of more advanced auction
mechanisms, motivated by internet advertising auctions. Internet advertising
auctions provide the funding for almost every free internet service such as
Google Search, Facebook, Twitter, and so on. At the heart of these monetiza-
tion schemes is a market design based around independently running auctions
every time a user shows up. This happens many times per second, advertisers
participate in millions of auctions, have budget constraints that span the auc-
tions, and each user query generates multiple potential slots for showing ads.
For all these reasons, these markets turn out to require a lot of new theory for
understanding them. Moreover, the scale and speed of the problem necessitates
the design of algorithmic agents for bidding on behalf of advertisers.

First we will introduce the position auction, which is a highly structured
multi-item auction. It is designed to capture the fact that ads are usually shown
as a ranked list as part of e.g. a Google query. We will look at the two most
practically-important auction formats: the generalized second-price auction
(GSP), and the Vickrey-Clarke-Groves (VCG) auction. Then in the following
chapters, we will study auctions with budgets, and repeated auctions over time.

15.0.1 Considerations for internet advertising
Consider the following problem: a user shows up and searches for the word
“mortgage” on Google; now, you are Google, and you have thousands of ads
that you could show to the user when returning the search result. Typically,
Google shows a few ads at the top of the search results (say 2 ads, to be
concrete); an example is shown in Fig. 15.1. This setting is referred to as the
“sponsored search setting.” How do you decide which ads to show? And how do
you decide how much to charge each advertiser for showing their ad? A natural
suggestion would be to try to use auctions. Based on earlier chapters of the

171

172 Internet Advertising Auctions: Position Auctions

Figure 15.1 A Google query for “mortgage” shows 2 ads. Organic search results
follow further down.

book, one might think of running four separate first or second-price auctions,
one for each ad slot. In that case, it is clear how to decide winners and how
to set prices. Yet this immediately runs into a problem: the same ad may win
multiple auctions, and thus be shown in several slots. This looks bad for the
user, the advertiser almost surely does not want to pay for multiple slots, and it
is inefficient (in the sense that multiple advertisers could have generated value,
rather than just the one). Instead, we need to design an auction format that
allows multiple items to be allocated simultaneously. But we cannot simply use
the multi-item generalization of e.g. the second-price auction, where each item
is identical. This is because different slots are not identical: users are generally
more likely to click on the first ad than the second ad, and so on. This motivates
the position auction, which we study in this chapter.

The position auction model can also be used to approximate other settings
such as the insertion of ads in a news feed; a news feed is the familiar infinitely-
scrolling list of e.g. Facebook posts, Reddit posts, Instagram posts, or Twitter
posts. For example, Reddit typically inserts one ad in the set of visible results
before scrolling, with another ad appearing in the next 10-15 results (I tested this
on June 24th 2025). Similarly, Facebook and Twitter insert 1-2 sponsored posts
near the top of the feed. Truly capturing feed auctions does require some care,
however. The assumption of there being a fixed number of items is incorrect
for that setting. Instead, the number of ads shown depends on how far the user
scrolls, the size of the ads, and what else is being shown in terms of organic
content. We will focus on the simpler setting with a fixed number of slots;
properly handling feed auctions is an interesting extension of what we discuss.

Beyond the multi-item, budget, and time aspects, internet advertising has a
few other interesting quirks. These are discussed briefly below, though we will
mostly abstract away considerations around these issues.

Internet Advertising Auctions: Position Auctions 173

Targeted advertising.
In a classical advertising setting such as TV or newspaper advertising, the
same ad is shown to every viewer of a given TV channel, or every reader of a
newspaper. This means that it is largely not feasible for smaller, and especially
niche, retailers to advertise, since their return on investment is very low due
to the small fraction of viewers or readers that fit their niche. All this changed
with the advent of internet advertising, where niche retailers can perform much
more fine-grained targeting of their ads. This has enabled many niche retailers
to scale up their audience reach significantly.

One way that targeting can occur is directly through association with the
search term in sponsored search. For example, by bidding on the search term
“mortgage,” a lender is effectively performing a type of targeting. However, a
second type of targeting occurs by matching on query and user features (such
targeting is used across many types of internet advertising including search,
feed ads, and others). For example, a company selling surf boards might wish to
target users at the intersection of the categories {age 16-30, lives in California}.
Because each individual auction corresponds to a single user query, the idea
of targeted advertising can be captured in the valuations that we will use for
the buyers in our auction setup: each buyer corresponds to an advertiser, each
auction corresponds to a query, and the buyer will have value zero for all items
in a given auction if the associated query features do not match their targeting
criteria.

Targeted advertising has the potential for some adverse effects. Of particular
note are demographic biases in the types of ads being shown (a well-documented
example is that in some settings, ads for new luxury housing developments were
disproportionately shown to certain demographics). In Chapter 18 we will study
some questions around demographic fairness.

Pay per click.
Another revolution compared to pre-internet advertising is the pay per click
nature of most internet advertising auctions. Many advertisers are not actually
interested in the user simply viewing their ad. Instead, their goal is to get the user
to click on the ad, or even something downstream of clicking on the ad, such
as selling the advertised product via the linked website. Because the platform,
such as Google, is in a much better position to predict whether a given user will
click on a given ad, these auctions operate on a cost per click basis, rather than
a cost per impression.1 What this means is that any given advertiser does not

1 An impression is industry lingo for the user being shown the ad, regardless of whether they
interact with it.

174 Internet Advertising Auctions: Position Auctions

actually pay just because they won the auction and got their ad shown, instead
they pay only if the user actually clicks on their ad.

From an auction perspective, this means that the valuations used in the
auctions must take into account the probability that the user will click on the
ad. Valuations are typically constructed by breaking down the value that a buyer
𝑖 (in this case an advertiser) has for an item (which is a particular slot in the
search query or user feed) into several components. The value per click of
advertiser 𝑖 is the value 𝑣𝑖 > 0 they place on any user within their targeting
criteria clicking on their ad (modern platforms generalize this concept to a
value per conversion, where a conversion can be a click, an actual sale of a
product, the user viewing a video, etc.). The click-through-rate is the likelihood
that the user behind query 𝑗 will click on the ad of advertiser 𝑖, independently
of where on the page the ad is shown. We denote this by CTR𝑖 𝑗 ; we will assume
that CTR𝑖 𝑗 = 0 if query 𝑗 does not fall under the targeting criteria of buyer
𝑖. Finally, the slot qualities 𝑞1, . . . , 𝑞𝑆 are scalar values denoting the quality
of each slot that an ad could end up in. These are monotonically decreasing
values, indicating the fact that it’s generally preferable to be shown higher up
on the page. Now, finally, the value that buyer 𝑖 has for being shown in slot 𝑠 of
query 𝑗 is modeled as 𝑣𝑖 𝑗𝑠 = 𝑣𝑖 · CTR𝑖 𝑗 ·𝑞𝑠 .

For the rest of the chapter, we will assume that we can work directly with a
value 𝑣𝑖 𝑗 = 𝑣𝑖 · CTR𝑖 𝑗 which captures the value that buyer 𝑖 has for auction 𝑗 ;
this value encodes the value per click, the CTR, and the targeting criteria (but
can allow for more general valuations that do not decompose). Then, the buyer’s
valuation for a particular slot can be written as 𝑣𝑖 𝑗𝑠 = 𝑣𝑖 𝑗 · 𝑞𝑠 . Working directly
with 𝑣𝑖 𝑗 implicitly assumes correct CTR predictions, which is obviously not
true in practice. In practice the CTRs are estimated using machine learning,
and it is of interest to understand which discrepancies this introduces into the
market. Secondly, we are assuming that buyers are maximizing their expected
utility, rather than observed utility. This is largely a non-problem; because
advertiser participate in thousands or even millions of auctions, the law of large
numbers implies that their realized value can reasonably be expected to match
the expectation (at least if the CTR predictions are correct). The slot quality 𝑞𝑠

will be handled separately in the next section.

15.1 Position Auctions

In the position auction model, a set of 𝑆 slots on a fixed item 𝑗 are for sale.
Because we are analyzing this individual auction in isolation, we can drop the
𝑗 index and simply assume that 𝑣𝑖 gives the expected value per click for buyer

15.1 Position Auctions 175

𝑖 in the current auction. The slots in the auction are shown in ranked order, and
the value that an advertiser derives from showing their ad in a particular slot 𝑠
decomposes into two terms 𝑣𝑖𝑠 = 𝑣𝑖𝑞𝑠 where 𝑣𝑖 is the value that the advertiser
places on a user clicking on their ad, and 𝑞𝑠 is the advertiser-independent
click probability of slot 𝑠. Here we assume that 𝑣𝑖 already incorporates the
click-through rate (so in particular it could be that 𝑣𝑖 = 𝑣′

𝑖
· CTR𝑖 where 𝑣′

𝑖
is

their actual value per click, and CTR𝑖 is the click-through rate in the current
auction). It is assumed that 𝑞1 ≥ 𝑞2 ≥ · ≥ 𝑞𝑆 , i.e. the top slot is better than the
second slot, and so on. Going back to the original setting, a position auction
corresponds to the individual auction that is run when a particular user query
shows up.

Now suppose that the 𝑛 advertisers submit bids 𝑏 ∈ R𝑛≥0. Both auction for-
mats we will use then proceed to perform allocation via welfare maximization,
assuming that the bids are truthful. We will also refer to this as bid maxi-
mization. In order to maximize (reported) welfare, we sort the bids 𝑏 (suppose
without loss of generality that 𝑏1 ≥ 𝑏2 ≥ · · · ≥ 𝑏𝑛), and allocate the slots in
order of bids (so buyer 1 with bid 𝑏1 gets slot 1, buyer 2 gets slots 2, and so on
up to bid 𝑏𝑆 getting slot 𝑆).

Example 15.1 Suppose we have two slots with quality scores 𝑞1 = 1, 𝑞2 = 0.5,
and three buyers with values 𝑣1 = 10, 𝑣2 = 8, 𝑣3 = 2, and suppose they all
bid their values. Then buyer 1 is allocated slot 1, and they obtain a value of
𝑣1 · 𝑞1 = 10. Buyer 2 is allocated slot 2, and they generate a value 𝑣2 · 𝑞2 = 4.
Buyer 3 gets nothing.

15.1.1 Generalized Second-Price Auctions
The generalized second-price (GSP) auction sells the 𝑆 slots as follows: First, we
allocate via bid maximization as described above. If the user clicks on ad 𝑖 ≤ 𝑆,
then advertiser 𝑖 is charged the next-highest bid 𝑏𝑖+1. GSP generalizes second-
price auctions in the sense that if 𝑆 = 1 then this auction format is equivalent
to the standard second-price auction (if we take expected values in lieu of the
pay-per-click model). However, this is a fairly superficial generalization, since
GSP turns out to lose the key property of the second-price auction: truthfulness!

In particular, consider Example 15.1 again, and suppose that buyers 2 and
3 bid truthfully. With GSP prices, buyer 1 pays 𝑣2 · 𝑞1 = 8 and gets utility
𝑞1 (𝑣1 − 𝑣2) = 2 when everyone bids truthfully. If buyer 1 instead bids some
value between 2 and 8, then they get utility 𝑞2 (𝑣1 − 𝑣3) = 4. Thus, buyer 1 is
better off misreporting. More generally, it turns out that the GSP auction can
have several pure-Nash equilibria, and some of these lead to allocations that are

176 Internet Advertising Auctions: Position Auctions

not welfare-maximizing. Consider the following bid vector for Example 15.1,
𝑏 = (4, 8, 2). Buyer 1 gets utility 0.5(10 − 2) = 4 (whereas they’d get utility
2 for bidding above 8). Buyer 2 gets utility 1(8 − 4) = 4 (whereas they’d get
utility 0.5(8 − 2) = 3 for bidding below 4). Buyer 3 is priced out.

In spite of the above, the GSP rule has been in widespread use in the internet
advertising industry since 2002. See the historical notes for pointers to some
interesting retrospectives on how GSP arose.

15.1.2 VCG for Position Auctions
The second pricing rule we will consider is the VCG rule. Recall from Chapter 3
that VCG computes the welfare-maximizing allocation (assuming truthful bids),
and then charges buyer 𝑖 their externality (i.e. how much the presence of buyer
𝑖 decreases the social welfare across the remaining agents).

Let 𝑊𝑆
−𝑖 =

∑𝑖−1
𝑘=1 𝑏𝑘𝑞𝑘 + ∑𝑆+1

𝑘=𝑖+1 𝑏𝑘𝑞𝑘−1 be the social welfare achieved by
buyers [𝑛]\{𝑖} if we maximize welfare across only those buyers, and let𝑊𝑆−𝑖

−𝑖 =∑𝑖−1
𝑘=1 𝑏𝑘𝑞𝑘 + ∑𝑆

𝑘=𝑖+1 𝑏𝑘𝑞𝑘 be the social welfare of [𝑛] \ {𝑖} if we maximize
welfare using all slots except slot 𝑖. Buyer 𝑖 gets charged their externality, which
is as follows:

𝑊𝑆
−𝑖 −𝑊𝑆−𝑖

−𝑖 =
∑︁

𝑘∈{𝑖+1,...,𝑆+1}
𝑏𝑘 · 𝑞𝑘−1 −

∑︁
𝑘∈{𝑖+1,...,𝑆}

𝑏𝑘 · 𝑞𝑘 (15.1)

=
∑︁

𝑘∈{𝑖+1,...,𝑆+1}
𝑏𝑘 · (𝑞𝑘−1 − 𝑞𝑘). (15.2)

Where we let 𝑞𝑆+1 = 0. We already saw a sketch of the fact that VCG is
incentive compatible in Chapter 3, but here we show the result specifically for
the position auction setting, where the proof is nice and short.

Theorem 15.2 The VCG auction for position auctions is incentive compatible.

Proof Suppose again that buyer bids are sorted, with buyer 𝑖 winning slot
𝑖 when bidding truthfully. Now suppose buyer 𝑖 misreports and gets slot 𝑘

instead. Now we want to show that bidding truthfully maximizes utility, which
means:

𝑞𝑖 · 𝑣𝑖 − [𝑊𝑆
−𝑖 −𝑊𝑆−𝑖

−𝑖] ≥ 𝑞𝑘 · 𝑣𝑖 − [𝑊𝑆
−𝑖 −𝑊𝑆−𝑘

−𝑖] .

Simplifying this expression gives

𝑞𝑖 · 𝑣𝑖 +𝑊𝑆−𝑖
−𝑖 ≥ 𝑞𝑘 · 𝑣𝑖 +𝑊𝑆−𝑘

−𝑖 .

Now we see that both the right-hand and left-hand sides correspond to social
welfare under two different allocations (where we treat bids from other buyers

15.2 Historical Notes 177

as their true value). The left-hand side is social welfare when 𝑖 bids truthfully,
while the right-hand side is social welfare when 𝑖 misreports in a way that gives
them slot 𝑘 . Given that VCG picked the left-hand side, and VCG allocates via
welfare maximization, the left-hand side must be larger. □

15.2 Historical Notes

An early version of the GSP auction was introduced in the early internet search
days at Overture, which was an innovator in sponsored search advertising, and
they were later acquired by Yahoo, which used this rule as well. Google then
started using the more modern version of GSP. From an academic perspective,
the GSP rule and position auctions in general started to be studied by Varian
(2007) and Edelman et al. (2007), motivated by its use in practice. An interesting
historical perspective on why VCG was not chosen is discussed by Varian and
Harris (2014) who worked at Google at the time. The primary reasons are
essentially inertial: a lot of engineering work was already going into GSP, and
advertisers had gotten used to bidding in GSP. A major concern would be that
they would need to raise their bids in VCG due to its truthfulness, which might
be hard to explain to them given their existing experience with GSP. Facebook
notably uses VCG rather than GSP (Varian and Harris, 2014), unlike the prior
internet companies.

Further reading.
Easley et al. (2010) and Nisan et al. (2007) both have a few chapters on internet
advertising auctions. Devanur and Mehta (2023) surveys a number of topics
that we did not cover here, including the AdWords problem and a famous
approximation algorithm for that problem.

16
Auctions with Budgets and Pacing Equilibria

The previous chapter introduced a new aspect to auctions associated with
internet advertising auctions: the multiple-slot issue. This chapter studies a
second major practical aspect of internet advertising auctions: budgets. In
these auctions, most advertisers specify a budget constraint that must hold
in aggregate across all the payments made by the advertiser over a given period
of time. Because these budget constraints are applied across all the auctions that
an advertiser participates in, they couple the auctions together, and force us to
consider the aggregate incentives across auctions. This is in contrast to all of our
previous auction results, which studied a single auction in isolation. Notably,
these budgets constraints break the incentive compatibility of the second-price
auction; for an advertiser with a budget constraint, it is not necessarily optimal
to bid their true value in each auction!

16.1 Auction Markets

Throughout the rest of this chapter, we will consider settings where each indi-
vidual auction is a single-item auction, using either first or second-price rules.
This is of course a simplification: in practice each individual auction would
be more complicated (e.g. a position auction), but even just for single-item
individual auctions it turns out that there are a lot of interesting problems.

In this setting we have 𝑛 buyers and 𝑚 goods. Buyer 𝑖 has value 𝑣𝑖 𝑗 for good
𝑗 , and each buyer has some budget 𝐵𝑖 . Each good 𝑗 will be sold via sealed-bid
auction, using either first or second-price. We assume that for all buyers 𝑖, there
exists some item 𝑗 such that 𝑣𝑖 𝑗 > 0, and similarly for all 𝑗 there exists 𝑖 such
that 𝑣𝑖 𝑗 > 0. Let 𝑥 ∈ R𝑛×𝑚 be an allocation of items to buyers, with associated

178

16.2 Second-Price Auction Markets 179

prices 𝑝 ∈ R𝑚. The utility that a buyer 𝑖 derives from this allocation is

𝑢𝑖 (𝑥𝑖 , 𝑝) =
{
⟨𝑣𝑖 , 𝑥𝑖⟩ − ⟨𝑝, 𝑥𝑖⟩ if ⟨𝑝, 𝑥𝑖⟩ ≤ 𝐵𝑖

−∞ otherwise
.

We call this setting an auction market. If second-price auctions are used then
we call it a second-price auction market, and conversely we call it a first-price
auction market if first-price auctions are used.

16.2 Second-Price Auction Markets

In Chapter 3 we saw that the second-price auction is incentive compatible.
However, this relied on there being a single auction, and no budgets. It’s easy to
construct an example showing that this is no longer true in second-price auction
markets. Consider a market with two buyers and two items, with valuations
𝑣1 = (100, 100), 𝑣2 = (1, 1) and budgets 𝐵1 = 𝐵2 = 1. If both buyers submit
their true valuations then buyer 1 wins both items, pays 2, and gets −∞ utility.

Instead, each buyer needs to somehow smooth out their spending across
auctions. For large-scale internet auctions this is typically achieved via some
sort of pacing rule. Typically, these pacing rules are implemented by an auto-
bidder, which is an algorithm offered by the platform, which bids on behalf the
advertiser. The two most prevalent pacing rules are:

(i) Probabilistic pacing: each buyer 𝑖 is given a parameter 𝛼𝑖 ∈ [0, 1] denoting
the probability that they should participate in each auction. For each auction
𝑗 , an independent coin is flipped which comes up heads with probability
𝛼𝑖 , and if it comes up heads then the buyer submits a bid 𝑏𝑖 𝑗 = 𝑣𝑖 𝑗 to that
auction. If it comes up tails then they do not bid in the auction.

(ii) Multiplicative pacing: each buyer 𝑖 is given a parameter 𝛼𝑖 ∈ [0, 1], which
acts as a scalar multiplier on their truthful bids. For each auction 𝑗 , buyer 𝑖
submits a bid 𝑏𝑖 𝑗 = 𝛼𝑖𝑣𝑖 𝑗 .

Both are offered by the major internet advertising platforms such as Google
and Meta. Figure 16.1 shows a comparison of pacing methods for a simplified
setting where time is taken into account. Here we assume that we are considering
some buyer 𝑖 whose value is the same for every item, but other bidders are
causing the items to have different prices. On the x-axis we plot time, and on
the y-axis we plot the price of each item. On the left is the outcome from naive
bidding: the buyer spends their budget too fast, and ends up running out of
budget when there are many high-value items left for them to buy. In practice,

180 Auctions with Budgets and Pacing Equilibria

Figure 16.1 Comparison of pacing methods. The x-axis displays time. The y-
axis is the price divided by the click probability for each opportunity. Each circle
denotes an impression. Hollow circles represent impression not won, while filled-
in circles denote impressions that are won. The horizontal bid line represents the
truthful bid without any modifications. Left: no pacing, right: probabilistic pacing,
bottom: multiplicative pacing.

many buyers also prefer to smoothly spend their budget throughout the day.
In the middle we show probabilistic pacing, where we do get smooth budget
expenditure. However, the buyer ends up buying some very expensive item,
while missing out on much cheaper items that have the same value to them.
Finally, on the right is the result from multiplicative pacing, where the buyer
picks an optimal threshold to buy at, and thus buys item optimally in order
of bang-per-buck. In this chapter we will focus on multiplicative pacing, but
see the historical notes section for some references to papers that also consider
probabilistic pacing.

The intuition given in Figure 16.1 can be shown to hold more generally.
Given a set of bids by all the other bidders, a buyer can always implement a
best response by choosing an optimal pacing multiplier:

Proposition 16.1 Suppose we allow arbitrary bids in each auction. If we hold
all bids for buyers 𝑘 ≠ 𝑖 fixed, then buyer 𝑖 has a best response that consists of
choosing a pacing multiplier (assuming that if a buyer is tied for winning an
auction, they can specify the fraction that they win).

Proof Since every other bid is held fixed, we can think of each item as having

16.2 Second-Price Auction Markets 181

some price 𝑝 𝑗 = max𝑘≠𝑖 𝑏𝑘 𝑗 , which is what 𝑖 would pay if they bid 𝑏𝑖 𝑗 ≥ 𝑏𝑘 𝑗 .
Now we may sort the items in decreasing order of bang-per-buck 𝑣𝑖 𝑗

𝑝 𝑗
. An

optimal allocation for 𝑖 clearly consists of buying items in this order, until they
reach some index 𝑗 such that if they buy every item with index 𝑙 < 𝑗 and some
fraction 𝑥𝑖 𝑗 of item 𝑗 , they either spend their whole budget, or 𝑗 is the first item
with 𝑣𝑖 𝑗

𝑝 𝑗
≥ 1 (if 𝑣𝑖 𝑗

𝑝 𝑗
> 1 then 𝑥𝑖 𝑗 = 0). Now set 𝛼𝑖 =

𝑝 𝑗

𝑣𝑖 𝑗
. With this bid, 𝑖 gets

exactly this optimal allocation: for all items 𝑙 ≤ 𝑗 (which are the items in the
optimal allocation), we have 𝛼𝑖𝑣𝑖𝑙 =

𝑝 𝑗

𝑣𝑖 𝑗
𝑣𝑖𝑙 ≥ 𝑝𝑙

𝑣𝑖𝑙
𝑣𝑖𝑙 = 𝑝𝑙 . □

The goal will be to find a pacing equilibrium:

Definition 16.2 A second-price pacing equilibrium (SPPE) is a vector of
pacing multipliers 𝛼 ∈ [0, 1]𝑛, a fractional allocation 𝑥𝑖 𝑗 , and a price vector
such that for every buyer 𝑖:

• For all 𝑗 ,
∑

𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1, and if 𝑥𝑖 𝑗 > 0 then 𝑖 is tied for highest bid on item
𝑗 .

• If 𝑥𝑖 𝑗 > 0 then 𝑝 𝑗 = max𝑘≠𝑖 𝛼𝑘𝑣𝑘 𝑗 .
• For all 𝑖,

∑
𝑗∈[𝑚] 𝑝 𝑗𝑥𝑖 𝑗 ≤ 𝐵𝑖 . Additionally, if the inequality is strict then

𝛼𝑖 = 1.

The first and second conditions of pacing equilibrium simply enforce that the
item always goes to winning bids at the second-price rule. The third condition
ensures that a buyer is only paced if their budget constraint is binding. It follows
(almost) immediately from Proposition 16.1 that every buyer is best responding
in SPPE.

A nice property of SPPE is that it is always guaranteed to exist. This fact is
not immediate from the existence of Nash equilibrium in convex games (see
Chapter 10), since an SPPE corresponds to a specific type of pure-strategy Nash
equilibrium:

Theorem 16.3 An SPPE of a pacing game is always guaranteed to exist.

We won’t cover the whole proof here, but we will state the main ingredients,
which are useful to know more generally.

• First, a smoothed pacing game is constructed. In the smoothed game, the
allocation is smoothed out among all bids that are within 𝜖 of the maxi-
mum bid, thus making the allocation a deterministic function of the pacing
multipliers 𝛼. Several other smooth approximations are also introduced to
deal with other discontinuities. In the end, a game is obtained, where each
player simply has as their action space the interval [0, 1] and utilities are
nice continuous and quasi-concave functions.

182 Auctions with Budgets and Pacing Equilibria

Figure 16.2 Multiplicity of SPPE. On the left is shown a problem instance, and
on the right is shown two possible second-price pacing equilibria.

• Secondly, the fixed-point theorem for pure-strategy equilibrium existence in
convex games is invoked (see Theorem 10.4). This guarantees existence of a
pure-strategy Nash equilibrium in the smoothed game.

• Finally, the limit point of smoothed games as the smoothing factor 𝜖 tends
to zero is shown to yield an equilibrium in the original pacing problem.

Unfortunately, while SPPE is guaranteed to exist, it turns out that sometimes
there are several SPPE, and they can have large differences in revenue, social
welfare, and so on. An example is shown in Figure 16.2. In practice this means
that we might need to worry about whether we are in a “good” equilibrium (e.g.
in terms of revenue or social welfare).

Another positive property of SPPE is that every SPPE is also a market
equilibrium, if we consider a market equilibrium setting where each buyer has
a quasi-linear demand function that respects the total supply as follows:

𝐷𝑖 (𝑝) = arg max
0≤𝑥𝑖≤1

⟨𝑣𝑖 − 𝑝, 𝑥𝑖⟩ s.t. ⟨𝑝, 𝑥𝑖⟩ ≤ 𝐵𝑖 .

This follows immediately by simply using the allocation 𝑥 and prices 𝑝 from the
SPPE as a market equilibrium. Proposition 16.1 tells us that 𝑥𝑖 ∈ 𝐷𝑖 (𝑝), and the
market clears by definition of SPPE. This means that SPPE has a number of nice
properties such as no (budget-adjusted) envy. Pareto optimality does not follow,
because the buyers have satiating preferences, thus violating the condition for
the first theorem of welfare economics (Theorem 11.3). Nonetheless, one can
show that Pareto optimality is recovered if the seller’s utility is included, and
they are assumed to have linear utility in revenue, with no value for the items
in the auctions.

Finally, we turn to the question of computing an SPPE. Unfortunately the
news there is bad. It is known that computing an SPPE is a PPAD-complete

16.3 First-Price Auction Markets 183

problem, and thus in the same equivalence class of problems as the problem of
computing a Nash equilibrium in a two-player general-sum game. Moreover, it
is also known that we cannot hope for iterative methods to efficiently compute
an approximate SPPE. Beyond merely computing any SPPE, we could also try
to find one that maximizes revenue or social welfare. This problem turns out to
be an NP-complete problem.

There is a mixed-integer program for computing SPPE (see Conitzer et al.
(2022a)), but unfortunately it is not very scalable. In Conitzer et al. (2022a) the
program does not scale beyond about 18 buyers and 18 goods.

In spite of the above issues, major internet platforms such as Google and
Meta run markets whose autobidders attempt to implement a generalization of
the second-price auction market, and it appears to work well in practice. It is
unknown whether there is a nice model to explain why these issues are not a
problem in practice.

16.3 First-Price Auction Markets

Next we consider what happens if we instead sell each item by first-price auction
as part of an auction market.

First we start by defining what we call budget-feasible pacing multipliers.
Intuitive, this is simply a set of pacing multipliers such that everything is
allocated according to first-price auction, and everybody is within budget.

Definition 16.4 A set of budget-feasible pacing multipliers (BFPM) is a vector
of pacing multipliers 𝛼 ∈ [0, 1]𝑛 and a fractional allocation 𝑥𝑖 𝑗 such that for
every buyer 𝑖:

• Prices are defined to be 𝑝 𝑗 = max𝑘 𝛼𝑘𝑣𝑘 𝑗 .
• For all 𝑗 ,

∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1, and if 𝑥𝑖 𝑗 > 0 then 𝑖 is tied for highest bid on item

𝑗 .
• For all 𝑖,

∑
𝑗∈[𝑚] 𝑝 𝑗𝑥𝑖 𝑗 ≤ 𝐵𝑖 .

Again, the goal will be to find a pacing equilibrium. This is simply a BFPM
that satisfied the complementarity condition on the budget constraint and pacing
multiplier.

Definition 16.5 A first-price pacing equilibrium (FPPE) is a BFPM (𝛼, 𝑥)
such that for every buyer 𝑖:

• For all 𝑖, if
∑

𝑗∈[𝑚] 𝑝 𝑗𝑥𝑖 𝑗 < 𝐵𝑖 then 𝛼𝑖 = 1.

184 Auctions with Budgets and Pacing Equilibria

Notably, the only difference to SPPE is the pricing condition, which now uses
first price. This seemingly-small change leads to improvement on all the issues
we saw above, though at the cost of losing the pure-strategy Nash equilibrium
property.

A very nice property of the first-price setting is that BFPMs satisfy a mono-
tonicity condition: if (𝛼′, 𝑥′) and (𝛼′′, 𝑥′′) are both BFPM, then the pacing
vector 𝛼 = max(𝛼′, 𝛼′′) (where the max is taken component-wise) is also a
BFPM. The associated allocation is that for each item 𝑗 , we first identify whether
the highest bid comes from 𝛼′ or 𝛼′′, and use the corresponding allocation of
𝑗 (breaking ties towards 𝛼′).

Intuitively, the reason that (𝛼, 𝑥) is also BFPM is that for every buyer 𝑖, their
bids are the same as in one of the two previous BFPMs (say (𝛼′, 𝑥′) without
loss of generality), and so the prices they pay are the same as in (𝛼′, 𝑥′).
Furthermore, since every other buyer is bidding at least as much as in (𝛼′, 𝑥′),
they win weakly less of each item (using the tie-breaking scheme described
above). Since (𝛼′, 𝑥′) satisfied budgets, (𝛼, 𝑥) must also satisfy budgets. The
remaining conditions are easily checked.

In addition to component-wise maximality, there is also a maximal BFPM
(𝛼, 𝑥) (there could be multiple 𝑥 compatible with 𝛼) such that 𝛼 ≥ 𝛼′ for all 𝛼′

that are part of any BFPM. Consider 𝛼∗
𝑖
= sup{𝛼𝑖 |𝛼 is part of a BFPM}. For

any 𝜖 and 𝑖, we know that there must exist a BFPM such that 𝛼𝑖 > 𝛼∗
𝑖
− 𝜖 . For

a fixed 𝜖 we can take component-wise maxima to conclude that there exists
(𝛼𝜖 , 𝑥 𝜖) that is a BFPM. This yields a sequence {(𝛼𝜖 , 𝑥 𝜖)} as 𝜖 → 0. Since
the space of both 𝛼 and 𝑥 is compact, the sequence has a limit point (𝛼∗, 𝑥∗).
By continuity (𝛼∗, 𝑥∗) is a BFPM.

We can use this maximality to show existence and uniqueness (of multipliers,
not allocations) of FPPE:

Theorem 16.6 An FPPE always exists and the set of pacing multipliers {𝛼}
that are part of an FPPE is a singleton.

Proof Consider the component-wise maximal 𝛼 and an associated allocation
𝑥 such that they form a BFPM. Since 𝛼, 𝑥 is a BFPM, we only need to check that
it has no unnecessarily paced bidders. Suppose some buyer 𝑖 is spending strictly
less than 𝐵𝑖 and 𝛼𝑖 < 1. If 𝑖 is not tied for any items, then we can increase
𝛼𝑖 for some sufficiently small 𝜖 and retain budget feasibility, contradicting the
maximality of 𝛼. If 𝑖 is tied for some item, consider the set 𝑁 (𝑖) of all bidders
tied with 𝑖. Now take the transitive closure of this set by repeatedly adding any
bidder that is tied with any bidder in 𝑁 (𝑖). We can now redistribute all the tied
items among bidders in 𝑁 (𝑖) such that no bidder in 𝑁 (𝑖) is budget constrained
(this can be done by slightly increasing 𝑖’s share of every item they are tied

16.3 First-Price Auction Markets 185

on, then slightly increasing the share of every other buyer in 𝑁 (𝑖) who is now
below budget, and so on). But now there must exist some small enough 𝛿 > 0
such that we can increase the pacing multiplier of every bidder in 𝑁 (𝑖) by 𝛿

while retaining budget feasibility and creating no new ties. This contradicts 𝛼
being maximal. We get that there can be no unnecessarily paced bidders under
𝛼.

Finally, to show uniqueness, consider any alternative BFPM 𝛼′, 𝑥′. Consider
the set 𝐼 of buyers such that 𝛼′

𝑖
< 𝛼𝑖; Since 𝛼 ≥ 𝛼′ and 𝛼 ≠ 𝛼′ this set must

have size at least one. Suppose some buyer in 𝐼 spends no money under 𝛼. Then
that buyer is unnecessarily paced, since 𝛼′

𝑖
< 𝛼𝑖 ≤ 1. Now, suppose the buyers

in 𝐼 all spend money. Then the collective spending of the buyers in 𝐼 strictly
decreases under 𝛼′. Since all buyers in 𝐼 were spending less than their budget
under 𝛼, and their collective spending strictly decreased, at least one buyer in 𝐼

must not be spending their whole budget. But 𝛼′
𝑖
< 𝛼𝑖 ≤ 1 for all 𝑖 ∈ 𝐼, so that

buyer must be unnecessarily paced. □

16.3.1 Sensitivity

FPPE enjoys several nice monotonicity and sensitivity properties that SPPE
does not. Several of these follow from the maximality property of FPPE: the
unique FPPE multipliers 𝛼 are such that 𝛼 ≥ 𝛼′ for any other BFPM (𝛼′, 𝑥′).

The following are all guaranteed to weakly increase revenue of the FPPE:

(i) Adding a bidder 𝑖: the former FPPE (𝛼, 𝑥) is still a BFPM by setting 𝛼𝑖 =

0, 𝑥𝑖 = 0. By 𝛼 monotonicity prices increase weakly.

(ii) Adding an item: The new FPPE 𝛼′ satisfies 𝛼′ ≤ 𝛼 (for contradiction,
consider the set of bidders whose multipliers increased, since they win weakly
more and prices went up, somebody must break their budget). Now consider
the bidders such that 𝛼′

𝑖
< 𝛼𝑖 . Those bidders spend their whole budget by

the FPPE “no unnecessary pacing” condition. For bidders such that 𝛼′
𝑖
= 𝛼𝑖 ,

they pay the same as before, and win weakly more.

(iii) Increasing a bidder 𝑖’s budget: the former FPPE (𝛼, 𝑥) is still BFPM, so this
follows by 𝛼 maximality.

It is also possible to show that revenue enjoys a Lipschitz property: increasing
a single buyer’s budget by Δ increases revenue by at most Δ. Similarly, social
welfare can be bounded in terms of Δ, though multiplicatively, and it does not
satisfy monotonicity.

186 Auctions with Budgets and Pacing Equilibria

16.3.2 Convex Program
Next we consider how to compute an FPPE. This turns out to be easier than for
SPPE. This is due to a direct relationship between FPPE and market equilibrium:
FPPE solutions are exactly the set of solutions to the quasi-linear variant of the
Eisenberg-Gale convex program for computing a market equilibrium:

max
𝑥≥0, 𝛿≥0,𝑢

∑︁
𝑖

𝐵𝑖 log(𝑢𝑖) − 𝛿𝑖

𝑢𝑖 ≤
∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗𝑣𝑖 𝑗 + 𝛿𝑖 ,∀𝑖 (16.1)∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗 ≤ 1,∀ 𝑗 , (16.2)

min
𝑝≥0,𝛽≥0

∑︁
𝑗

𝑝 𝑗 −
∑︁
𝑖∈[𝑛]

𝐵𝑖 log(𝛽𝑖)

𝑝 𝑗 ≥ 𝑣𝑖 𝑗 𝛽𝑖 ,∀𝑖
𝛽𝑖 ≤ 1.

(16.3)

On the left is shown the primal convex program, and on the right is shown the
dual convex program. The variables 𝑥𝑖 𝑗 denote the amount of item 𝑗 that bidder
𝑖 wins. The leftover budget is denoted by 𝛿𝑖 , it arises from the dual program: it
is the primal variable for the dual constraint 𝛽𝑖 ≤ 1, which constrains bidder 𝑖
to paying at most a price-per-utility rate of 1.

The dual variables 𝛽𝑖 , 𝑝 𝑗 correspond to constraints (16.1) and (16.2), re-
spectively. They can be interpreted as follows: 𝛽𝑖 is the inverse bang-per-buck:
min 𝑗𝑠.𝑡 .𝑥𝑖 𝑗>0

𝑝 𝑗

𝑣𝑖 𝑗
for buyer 𝑖, and 𝑝 𝑗 is the price of good 𝑗 .

We can use KKT conditions (see Theorem A.4) to show that FPPE and EG
are equivalent. Informally, the correspondence between FPPE and solutions to
the convex program follows because 𝛽𝑖 specifies a single price-per-utility rate
per bidder which exactly yields the pacing multiplier 𝛼𝑖 = 𝛽𝑖 . Complementary
slackness then guarantees that if 𝑝 𝑗 > 𝑣𝑖 𝑗 𝛽𝑖 then 𝑥𝑖 𝑗 = 0, so any item allocated
to 𝑖 has exactly rate 𝛽𝑖 . Similarly, complementary slackness on 𝛽𝑖 ≤ 1 and
the associated primal variable 𝛿𝑖 guarantees that bidder 𝑖 is only paced if they
spend their whole budget.

Theorem 16.7 An optimal solution to the quasi-linear Eisenberg-Gale convex
program corresponds to an FPPE with pacing multiplier 𝛼𝑖 = 𝛽𝑖 and allocation
𝑥𝑖 𝑗 , and vice versa.

Proof Clearly the quasi-linear Eisenberg-Gale convex program satisfies the
Slater constraint qualification: it is satisfies by the proportional allocation where
every buyer gets 1

𝑛
of every item. Thus the optimal solution must satisfy the

following KKT conditions:

(i) 𝐵𝑖

𝑢𝑖
= 𝛽𝑖 ⇔ 𝑢𝑖 =

𝐵𝑖

𝛽𝑖
,

(ii) 𝛽𝑖 ≤ 1,

(iii) 𝛽𝑖 ≤
𝑝 𝑗

𝑣𝑖 𝑗
,

(iv) 𝑥𝑖 𝑗 , 𝛿𝑖 , 𝛽𝑖 , 𝑝 𝑗 ≥ 0,

16.3 First-Price Auction Markets 187

(v) 𝑝 𝑗 > 0 ⇒ ∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1,

(vi) 𝛿𝑖 > 0 ⇒ 𝛽𝑖 = 1,
(vii) 𝑥𝑖 𝑗 > 0 ⇒ 𝛽𝑖 =

𝑝 𝑗

𝑣𝑖 𝑗
.

It is easy to see that 𝑥𝑖 𝑗 is a valid allocation: the primal program has the exact
packing constraints. Budgets are also satisfied (here we may assume 𝑢𝑖 > 0
since otherwise budgets are satisfied since the bidder wins no items): by KKT
condition (i) and KKT condition (vii) we have that for any item 𝑗 that bidder 𝑖
is allocated part of:

𝐵𝑖

𝑢𝑖
=

𝑝 𝑗

𝑣𝑖 𝑗
⇒

𝐵𝑖𝑣𝑖 𝑗𝑥𝑖 𝑗

𝑢𝑖
= 𝑝 𝑗𝑥𝑖 𝑗 .

If 𝛿𝑖 = 0 then summing over all 𝑗 gives∑︁
𝑗∈[𝑚]

𝑝 𝑗𝑥𝑖 𝑗 = 𝐵𝑖

∑
𝑗∈[𝑚] 𝑣𝑖 𝑗𝑥𝑖 𝑗

𝑢𝑖
= 𝐵𝑖 .

This part of the budget argument is exactly the same as for the standard
Eisenberg-Gale proof in Theorem 11.4. Note that (16.1) always holds exactly
since the objective is strictly increasing in 𝑢𝑖 . Thus 𝛿𝑖 = 0 denotes full budget
expenditure. If 𝛿𝑖 > 0 then (16.1) implies that 𝑢𝑖 >

∑
𝑗∈[𝑚] 𝑣𝑖 𝑗𝑥𝑖 𝑗 which gives:∑︁

𝑗∈[𝑚]
𝑝 𝑗𝑥𝑖 𝑗 = 𝐵𝑖

∑
𝑗∈[𝑚] 𝑣𝑖 𝑗𝑥𝑖 𝑗

𝑢𝑖
< 𝐵𝑖 .

This shows that 𝛿𝑖 > 0 denotes some leftover budget.
If bidder 𝑖 is winning some of item 𝑗 (𝑥𝑖 𝑗 > 0) then KKT condition (vii)

implies that the price on item 𝑗 is 𝛼𝑖𝑣𝑖 𝑗 , so bidder 𝑖 is paying their bid, as is
necessary in a first-price auction. Bidder 𝑖 is also guaranteed to be among the
highest bids for item 𝑗 : KKT conditions (vii) and (iii) guarantee 𝛼𝑖𝑣𝑖 𝑗 = 𝑝 𝑗 ≥
𝛼𝑖′𝑣𝑖′ 𝑗 for all 𝑖′.

Finally, each bidder either spends their entire budget or is unpaced: KKT
condition (vi) says that if 𝛿𝑖 > 0 (that is, some budget is leftover) then 𝛽𝑖 =

𝛼𝑖 = 1, so the bidder is unpaced.
Now we show that any FPPE satisfies the KKT conditions for EG. We set

𝛽𝑖 = 𝛼𝑖 and use the allocation 𝑥 from the FPPE. We set 𝛿𝑖 = 0 if 𝛼 < 1,
otherwise we set it to 𝐵𝑖 −

∑
𝑗 𝑥𝑖 𝑗𝑣𝑖 𝑗 . We set 𝑢𝑖 equal to the utility of each

bidder. KKT condition (i) is satisfied since each bidder either gets a utility
rate of 1 if they are unpaced and so 𝑢𝑖 = 𝐵𝑖 , or their utility rate is 𝛼𝑖 , so they
spend their entire budget for utility 𝐵𝑖/𝛼𝑖 . KKT condition (ii) is satisfies since
𝛼𝑖 ∈ [0, 1]. KKT condition (iii) is satisfied since each item bidder 𝑖 wins has
price-per-utility 𝛼𝑖 =

𝑝 𝑗

𝑣𝑖 𝑗
= 𝛽𝑖 , and every other item has a higher price-per-

utility. KKT conditions ((iv)) and ((v)) are trivially satisfied by the definition

188 Auctions with Budgets and Pacing Equilibria

of FPPE. KKT condition (vi) is satisfied by our solution construction. KKT
condition (vii) is satisfied because a bidder 𝑖 being allocated any amount of
item 𝑗 means that they have a winning bid, and their bid is equal to 𝑣𝑖 𝑗𝛼𝑖 . □

It follows that an FPPE can be computed in polynomial time (e.g. via the
ellipsoid method). Moreover, we can apply various first-order methods to com-
pute large-scale FPPE. For example, the proportional response dynamics can
be extended to the FPPE setting.

16.4 In what sense are we in equilibrium?

We introduced the pacing equilibrium using terminology similar to how we
previously discussed game-theoretic equilibria such as Nash equilibria. Yet,
it is useful to take a moment to consider what the actual equilibrium proper-
ties that we are getting under pacing equilibria are. When we defined pacing
equilibria, we asked for a certain complementarity condition on the pacing
multipliers, the “no unnecessary pacing” condition (Definition 16.5). This con-
dition is not a game-theoretic equilibrium condition, but rather a condition on
the budget-management algorithms that the buyers are using. In particular, it is
a condition that an online learning algorithm on the Lagrange multiplier of the
budget constraint would try to maintain. Now, assuming that you are in a static
environment where at each time step, the items from the pacing model show
up, then a pacing equilibrium would be stable, in the sense that if everyone
bids according to the computed multipliers, and tied goods are split according
to the fractional amounts from the equilibrium, then “no unnecessary pacing”
is satisfied, so the budget-management algorithms won’t change their pacing
multipliers. In this sense we are in equilibrium.

However, from the perspective of the buyers, they may or may not be best
responding to each other. In the context of second-price pacing equilibrium,
it is possible to show that a pacing equilibrium is a pure Nash equilibrium of
a game where each buyer is choosing their pacing multiplier, and observing
their quasi-linear utility (with −∞ utility for breaking the budget). Moreover, in
the second-price setting, if we fix the bids of every other buyer, then a pacing
multiplier 𝛼𝑖 that satisfies no unnecessary pacing is actually a best response
over the set of all possible ways to bid in each individual auction. In the case of
first-price pacing equilibrium, we do not have this property: a buyer might wish
to shade their own price in FPPE. In that case, FPPE should be thought of only
as a budget-management equilibrium among the algorithmic proxy bidders that
control budget expenditure. Secondly, due to this shading, the values 𝑣𝑖 𝑗 that

16.5 Conclusion 189

we took as input to the FPPE problem should probably be thought of as the
bids of the buyers, which would generally be lower than their true values.

Thirdly, we may think of the FPPE concept as a form of market equilibrium,
rather than game-theoretic equilibrium. That FPPE corresponds to a market
equilibrium under a quasilinear utility model can be shown straightforwardly
using the EG result in Theorem 16.7 using largely the same steps as in the proof
of Theorem 11.4.

16.5 Conclusion

There are interesting differences in the properties satisfied by SPPE and FPPE.
We summarize them quickly here (these are all covered in the literature noted
in the Historical Notes):

• FPPE is unique (this can be shown from the convex program, or directly
from the monotonicity property of BFPM), SPPE is not.

• FPPE can be computed in polynomial time, computing an SPPE is a PPAD-
complete problem.

• FPPE is less sensitive to perturbation (e.g. revenue increases smoothly as
budgets are increased).

• SPPE corresponds to a pure-strategy Nash equilibrium, and thus buyers are
best responding to each other.

• Both correspond to different market equilibria (but SPPE requires buyer
demands to be “supply aware”).

• Neither of them are incentive compatible.
• Due to the market equilibrium connection, both can be shown incentive

compatible in an appropriate “large market” sense.

FPPE and SPPE have also been studied experimentally, both via random in-
stances, and instances generated from real ad auction data. The most interesting
takeaways from those experiments are:

• In practice SPPE multiplicity seems to be very rare
• Manipulation is hard in both SPPE and FPPE if you can only lie about your

value per click
• FPPE dominates SPPE on revenue
• Social welfare can be higher in either FPPE or SPPE. Experimentally it

seems to largely be a toss-up on which solution concept has higher social
welfare.

190 Auctions with Budgets and Pacing Equilibria

16.6 Historical Notes

The multiplicative pacing equilibrium results shown in this chapter were devel-
oped by Conitzer et al. (2018) for second-price auction markets, and Conitzer
et al. (2019) for first-price auction markets. Another strand of literature has
studied models where items arrive stochastically and valuations are then drawn
independently. Balseiro et al. (2021) show existence of pacing equilibrium for
multiplicative pacing as well as several other pacing rules for such a setting;
they also give a very interesting comparison of revenue and social welfare
properties of the various pacing options in the unique symmetric equilibrium
of their setting. Most notably, multiplicative pacing achieves strong social wel-
fare properties, while probabilistic pacing achieves higher revenue properties.
Balseiro et al. (2015) show that when bidders get to select their bids individu-
ally, multiplicative pacing equilibrium arises naturally via Lagrangian duality
on the budget constraint, under a fluid-based mean-field market model. The
PPAD-completeness of computing an SPPE was given by Chen et al. (2021a)

The quasi-linear variant of Eisenberg-Gale was given by Chen et al. (2007)
and independently by Cole et al. (2017) (an unpublished note from one of
the authors in Cole et al. (2017) was in existence around a decade before the
publication of Cole et al. (2017)).

The fixed-point theorem that is invoked to guarantee existence of a pure-
strategy Nash equilibrium in the smoothed game is by Debreu (1952), Glicks-
berg (1952), and Fan (1952).

Further reading.
The two papers introducing the SPPE and FPPE models are a good starting
point (Conitzer et al., 2022a,b). Balseiro et al. (2021) is a good reference for
alternative budget management strategies such as probabilistic throttling. Chen
et al. (2021b) is a good reference for probabilistic throttling studied in a setting
similar to the SPPE and FPPE models that we studied.

Beyond auctions with budget constraints, there is a broader literature on
what is referred to as autobidding. Autobidding refers to the broader paradigm
of online advertising auctions moving towards a setup where each advertiser
offloads their bidding to some form of autobidder (i.e. an algorithm or AI),
and the autobidder takes care of optimizing the bids in individual auctions
while maintaining constraints expressed by the advertiser, including budget
constraints, but also other constraints such as certain return-on-investment
constraints. Aggarwal et al. (2024) is a good entry point into the broader
autobidding literature. Chapter 17 will discuss some algorithmic details on
how an individual autobidder can be implemented via online learning.

17
Pacing Algorithms for Budget Management

In the previous chapter we studied auctions with budgets and repeated auctions.
However, we ignored one important aspect: time. In this chapter we consider
an auction market setting where a buyer is trying to adaptively pace their bids
over time. The goal is to hit the “right” pacing multiplier as before, but each
bidder has to learn that multiplier as the market plays out. We will show how
to approach this problem using ideas from regret minimization.

17.1 Online Resource Allocation and Second-Price Auctions

Suppose we have a sequence of second-price auctions happening at time steps
𝑡 = 1, . . . , 𝑇 , and a buyer that is trying to decide how to allocate their budget
𝐵 across the 𝑇 time steps. At each time 𝑡, the buyer observes their value 𝑣𝑡 ,
and must then submit a bid 𝑏𝑡 to the auction. After submitting their bid, they
observe whether they won or not, and the price they paid. Let 𝑝𝑡 be the highest
bid submitted by any other buyer (The notation 𝑝𝑡 intentionally suggests a
price, since we can think of 𝑝𝑡 as the price the buyer pays in the event that they
win auction 𝑡). The algorithm that we will devise does not require the buyer to
observe 𝑝𝑡 ; the algorithm will only require learning the price paid when the
buyer wins an auction.

Suppose that the buyer has the benefit of hindsight, and knows the “prices”
𝑝𝑡 for each 𝑡. Then, if the buyer has a quasilinear utility function, the hindsight
optimization problem simply chooses the optimal subset of items to win while
satisfying the budget constraint, which is a knapsack problem. Formally, the
hindsight optimization problem is the following problem, where 𝑥𝑡 ∈ {0, 1}

191

192 Pacing Algorithms for Budget Management

denotes whether to get item 𝑡:

max
𝑥∈{0,1}𝑇

∑︁
𝑡∈[𝑇]

𝑥𝑡 (𝑣𝑡 − 𝑝𝑡)

s.t.
∑︁
𝑡∈[𝑇]

𝑥𝑡 𝑝𝑡 ≤ 𝐵.
(17.1)

17.1.1 Pacing Structure of the Hindsight Optimum
Suppose that we relax Eq. (17.1) to allow for fractional allocation rather than
integral allocation. Note that this can only improve the objective value. In
that case, we know from strong duality that we can equivalently minimize the
Lagrangian

min
𝜇≥0

max
𝑥∈[0,1]𝑇

∑︁
𝑡∈[𝑇]

𝑥𝑡 (𝑣𝑡 − 𝑝𝑡) − 𝜇
©­«
∑︁
𝑡∈[𝑇]

𝑥𝑡 𝑝𝑡 − 𝐵
ª®¬ .

If we collect all terms that depend on 𝑝𝑡 , we get the following:

min
𝜇≥0

max
𝑥∈[0,1]𝑇

∑︁
𝑡∈[𝑇]

𝑥𝑡 (𝑣𝑡 − (1 + 𝜇)𝑝𝑡) + 𝜇𝐵.

From here, we see that for a fixed 𝜇, 𝑥𝑡 should be one exactly when 𝑣𝑡 ≥
(1 + 𝜇)𝑝𝑡 , and zero otherwise. If we divide through by 1 + 𝜇 we get the
following condition for when 𝑥𝑡 should be one:

𝑣𝑡

1 + 𝜇
≥ 𝑝𝑡 . (17.2)

Notice that this is exactly what pacing achieves: if we set the pacing multiplier
𝛼 = 1/(1+𝜇) and bid according to 𝑏𝑡 = 𝛼𝑣𝑡 in each auction 𝑡 then we implement
the rule, since we win exactly when Eq. (17.2) is satisfied, without needing to
observe the price 𝑝𝑡 . Thus, if we know the optimal Lagrange multiplier 𝜇∗, then
we can implement the hindsight optimal solution via paced bidding in second-
price auctions (modulo tie breaking for auctions 𝑡 such that 𝑣𝑡/(1 + 𝜇) = 𝑝𝑡).

One way to think about why this works is as follows: the second-price auction
is truthful, and so we do not need to worry about knowing the competing bids,
we only need to bid our truthful valuation. We can think of 1

1+𝜇 𝑣𝑡 as our
“budget-adjusted” truthful valuation for each auction 𝑡.

Now let us go back to the discrete setting where 𝑥𝑡 ∈ {0, 1} for all 𝑡, in which
case we no longer have strong duality. We will present a more general result
that works for online resource allocation problems, of which repeated second-
price auctions with budgets are a special case. We will see that even with weak

17.2 Online Resource Allocation 193

duality, we can achieve very nice guarantees, at least under well-behaved inputs
(such as stationary stochastic inputs).

17.2 Online Resource Allocation

In the online resource allocation (ORA) problem, we have a set of 𝑚 resources
and a vector 𝐵 ∈ R𝑚≥0 specifying our supply of each resource. We receive a
sequence of requests 𝛾𝑡 = (𝑓𝑡 , 𝑏𝑡 ,X𝑡) for each time step 𝑡, whereX𝑡 is a decision
set, 𝑓𝑡 : X𝑡 → [0, 𝑓] is a bounded reward function, and 𝑏𝑡 : X𝑡 → [0, �̄�]𝑚
is a bounded function specifying how much of each resource a given decision
consumes. It is assumed that we observe the entire request 𝛾𝑡 before making a
decision, and that there is always a null action 𝑥∅ such that 𝑓𝑡 (𝑥∅) = 𝑏𝑡 (𝑥∅) = 0.
It will be convenient to denote by 𝜌 = 𝐵/𝑇 the per-round expenditure target.

The ORA setting is sometimes referred to as a “packing” setting, because
the resource consumption constraints always have non-negative consumption,
and each constraint is a less-than-or-equals constraint. The case with general
constraints will briefly be discussed in Section 17.5.2, where we discuss how
to handle constraints such as return-on-investment (ROI) constraints.

Example 17.1 (Pacing in Second-Price Auctions) In the case of repeated
second-price auctions with budgets, we have that a request corresponds to an
auction. The decision set is X𝑡 = {0, 1}, the reward is 𝑓𝑡 (𝑥𝑡) = (𝑣𝑡 − 𝑝𝑡)𝑥𝑡 , and
the resource consumption function is 𝑏𝑡 (𝑥𝑡) = 𝑝𝑡𝑥𝑡 . In the second-price setting
the buyer does not observe the price 𝑝𝑡 ahead of time, and thus they technically
do not observe the entire request 𝛾𝑡 . However, we will see that the algorithm only
needs to be able to choose the optimal solution arg max𝑥𝑡 ∈X𝑡

𝑥𝑡 (𝑣𝑡 − (1 − 𝜇)𝑝𝑡)
for an arbitrary 𝜇 ≥ 0 in order to function, and we saw how to do that via paced
bidding in Eq. (17.2).

Now we can generalize the hindsight optimization problem from Eq. (17.1)
to the online resource allocation problem as follows:

OPT(®𝛾) := max
{𝑥𝑡 ∈X𝑡 }𝑇𝑡=1

∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡)

s.t.
∑︁
𝑡∈[𝑇]

𝑏𝑡 (𝑥𝑡) ≤ 𝐵.
(17.3)

Similarly to the case of Eq. (17.2), we wish to work with the dual of Eq. (17.3).
If we Lagrangify the resource constraints then the problem decomposes into

194 Pacing Algorithms for Budget Management

Algorithm 2 Dual Mirror Descent (DMD) for Online Resource Allocation
Input: Total time steps𝑇 , total budget 𝐵, stepsize 𝜂 > 0, Bregman divergence
𝐷 derived from a 1-strongly convex DGF 𝑑, and initial Lagrange multiplier
vector 𝜆.
Set 𝐵1 = 𝐵, 𝜌 = 𝐵/𝑇 .
for 𝑡 = 1, . . . , 𝑇 do

See request 𝛾𝑡 = (𝑓𝑡 , 𝑏𝑡 ,X𝑡).
Compute decision 𝑥𝑡 :

𝑥𝑡 = arg max
𝑥∈X𝑡

𝑓𝑡 (𝑥) − ⟨𝜆𝑡 , 𝑏𝑡 (𝑥)⟩,

𝑥𝑡 =

{
𝑥𝑡 if 𝑏𝑡 (𝑥𝑡) ≤ 𝐵𝑡

𝑥∅ otherwise

Update remaining budget: 𝐵𝑡+1 = 𝐵𝑡 − 𝑏𝑡 (𝑥𝑡).
Obtain dual subgradient 𝑔𝑡 = 𝜌 − 𝑏𝑡 (𝑥𝑡)
Update dual variables with OMD:

𝜆𝑡+1 = arg min
𝜆∈R𝑚≥0

𝜂⟨𝑔𝑡 , 𝜆⟩ + 𝐷 (𝜆∥𝜆𝑡)

per-time-period problems, and we get the following problem

min
𝜆≤0

∑︁
𝑡∈[𝑇]

max
𝑥𝑡 ∈X𝑡

[𝑓𝑡 (𝑥𝑡) − ⟨𝜆, 𝑏𝑡 (𝑥𝑡)⟩] + ⟨𝜆, 𝐵⟩.

Define the conjugate-like function

𝑓 ∗𝑡 (𝜆) = max
𝑥𝑡 ∈X𝑡

𝑓𝑡 (𝑥𝑡) − ⟨𝜆, 𝑏𝑡 (𝑥𝑡)⟩.

Now use 𝐵 = 𝜌𝑇 to move ⟨𝜆, 𝐵⟩ into the parentheses and define the dual
function

𝐷 (𝜆 | ®𝛾) =
∑︁
𝑡∈[𝑇]

[
𝑓 ∗𝑡 (𝜆) + ⟨𝜆, 𝜌⟩

]
,

By weak duality we have that the dual function upper bounds Eq. (17.3), i.e.
OPT(®𝛾) ≤ 𝐷 (𝜆 | ®𝛾).

The dual mirror descent (DMD) algorithm for online resource allocation is
given in Algorithm 2. At each time step 𝑡, DMD computes the optimal decision
𝑥𝑡 using the Lagrangified problem, and then uses the decision 𝑥𝑡 as long as it
is budget feasible (one can slightly improve the algorithm by explicitly taking
the budget constraint into account when choosing 𝑥𝑡 ; the performance analysis

17.3 Stochastic Inputs 195

will be robust to such variations). If it is not feasible, then the null action 𝑥∅
is used. Then, the remaining budget is updated, and an online mirror descent
steps is taken on the dual multiplier vector 𝜆𝑡 .

The DMD algorithm can be thought of as minimizing the dual 𝐷 (𝜆 | ®𝛾). In
particular, let 𝐷𝑡 (𝜆) = 𝑓 ∗𝑡 (𝜆) + ⟨𝜆, 𝜌⟩ be the 𝑡’th dual term. Then we have
𝐷 (𝜆 | ®𝛾) = ∑

𝑡∈[𝑇] 𝐷𝑡 (𝜆). Now, notice that 𝑥𝑡 is the maximizer of 𝑓 ∗𝑡 (𝜆𝑡), and
therefore 𝑔𝑡 is a subgradient of 𝐷𝑡 (𝜆𝑡) whenever 𝑥𝑡 = 𝑥𝑡 . It follows that the
DMD algorithm is running online mirror descent (OMD) on the subgradients
of the dual functions. Let ∥ · ∥∗ be the dual norm of the norm ∥ · ∥ that 𝑑
is strongly convex with respect to. Now notice that the gradients 𝑔𝑡 satisfy
∥𝑔𝑡 ∥∗ ≤ ∥𝜌 + �̄�∥∗. The OMD regret guarantee from Theorem 4.6 then gives
that for any 𝜆 ∈ R𝑚≥0 and 𝑡 ∈ [𝑇]:

𝑡∑︁
𝑠=1

⟨𝜆𝑠 − 𝜆, 𝜌 − 𝑏𝑠 (𝑥𝑠)⟩ ≤
𝐷 (𝜆∥𝜆1)

𝜂
+ 𝜂𝑡∥𝜌 + �̄�∥2

∗
2

(17.4)

We now cover the performance guarantees given by DMD for online resource
allocation. We will describe guarantees for the case of stochastic input in detail,
and give an overview of results for the case of adversarial inputs.

DMD is called a best-of-both-worlds algorithm, because it achieves the best
possible guarantee both under stochastic and adversarial inputs. In fact, it is
described as best-of-many-worlds, because it also has optimal guarantees under
a variety of nonstationary input models as well, though we will not cover those
here. In the next section we show that under stochastic inputs, DMD achieves an
𝑂 (

√
𝑇) regret guarantee, and in the following section we show that it achieves

a constant factor approximation guarantee under adversarial inputs.

17.3 Stochastic Inputs

In the stochastic case, we assume that each request 𝛾𝑡 is sampled i.i.d. from
some underlying probability distribution P which is unknown to the algorithm.
We measure regret as the expected difference between the hindsight optimum
and the rewards achieved by our algorithm, under the worst-case distribution.
Formally, this is defined as

𝑅𝑇 = sup
P
E ®𝛾∼P𝑇

OPT(®𝛾) −
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡)
 . (17.5)

For each resource 𝑗 ∈ [𝑚], we consider that resource nearly depleted at the
first time step 𝜏𝑗 such that

∑𝜏 𝑗

𝑡=1 𝑏𝑡 𝑗 (𝑥𝑡) + �̄� > 𝐵 𝑗 . Notice that 𝜏𝑗 is a random

196 Pacing Algorithms for Budget Management

variable. At time 𝜏𝑗 , we are potentially at risk of selecting an action that causes
us to exceed the budget for resource 𝑗 , in which case Algorithm 2 chooses the
zero action. If a resource never reaches nearly depleted status then 𝜏𝑗 = 𝑇 . Now
consider 𝜏 = min 𝑗∈[𝑚] 𝜏𝑗 , the first time that any resource is nearly depleted.
The analysis of the algorithm will hinge on 𝜏: we will analyze the performance
of the algorithm up to time 𝜏, and show that the rewards achieved by time 𝜏

already achieve a good regret guarantee.

Theorem 17.2 Algorithm 2 with stepsize 𝜂 > 0, initial dual multiplier 𝜆1 ∈
R𝑚≥0, and strongly convex DGF with dual norm ∥ · ∥∗, satisfies

𝑅𝑇 ≤ 𝑓 �̄�

min 𝑗∈[𝑚] 𝜌 𝑗

+ Ω

𝜂
+ 𝜂𝑇 ∥𝜌 + �̄�∥2

∗
2

,

where Ω = max
{
𝐷 (𝜆∥𝜆1) |𝜆 ∈

{
0, (𝑓 /𝜌1)𝑒1, . . . , (𝑓 /𝜌𝑚)𝑒𝑚

}}
. If we set 𝜂 =√

2Ω/(
√
𝑇 ∥𝜌 + �̄�∥∗) then

𝑅𝑇 ≤ 𝑓 �̄�

min 𝑗∈[𝑚] 𝜌 𝑗

+
√

2Ω𝑇 ∥𝜌 + �̄�∥∗.

Proof In order to bound the regret, we will first provide upper and lower
bounds on the first and second term in the regret from Eq. (17.5), respectively.

Upper-bounding the hindsight optimum. In order to upper-bound the hind-
sight optimum, we introduce the expected dual �̄� (𝜆 |P) = E(𝑓 ,𝑏)∼P [𝑓 ∗ (𝜆)] +
⟨𝜆, 𝜌⟩. Applying weak duality for an arbitrary𝜆 ∈ R𝑚≥0 and using OPT(®𝛾) ≤ 𝑇 𝑓 ,
we have for any 𝜏 ∈ [𝑇] that

E ®𝛾∼P𝑇 [OPT(®𝛾)] = 𝜏

𝑇
E ®𝛾∼P𝑇 [OPT(®𝛾)] + 𝑇 − 𝜏

𝑇
E ®𝛾∼P𝑇 [OPT(®𝛾)]

≤ 𝜏

𝑇
E ®𝛾∼P𝑇 [𝐷 (𝜆 | ®𝛾)] + (𝑇 − 𝜏) 𝑓

=𝜏�̄� (𝜆 |P) + (𝑇 − 𝜏) 𝑓 . (17.6)

Lower-bounding algorithm rewards. For the sum of rewards obtained by
Algorithm 2, we first consider the expected reward obtained at a given round
𝑡 ∈ [𝜏]. By how we choose 𝑥𝑡 , we have

𝑓𝑡 (𝑥𝑡) = 𝑓 ∗𝑡 (𝜆𝑡) + ⟨𝜆𝑡 , 𝑏𝑡 (𝑥𝑡)⟩.

Now consider the expected value of 𝑓𝑡 (𝑥𝑡) conditional on the information
𝜉𝑡−1 = {𝛾1, . . . , 𝛾𝑡−1}; note that 𝜆𝑡 is known given 𝜉𝑡−1. Then we have that the

17.3 Stochastic Inputs 197

expected value is

E [𝑓𝑡 (𝑥𝑡) |𝜉𝑡−1] =E[𝑓 ∗𝑡 (𝜆𝑡)] + ⟨𝜆𝑡 ,E[𝑏𝑡 (𝑥𝑡) |𝜉𝑡−1] + 𝜌 − 𝜌⟩
=�̄� (𝜆𝑡 |P) − E[⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩|𝜉𝑡−1] . (17.7)

Next we wish to remove the dependence on the conditioning on 𝜉𝑡−1 in the
above expression. To do so, we use a common strategy from the online learning
literature based on martingales (see Appendix B). We apply the same strategy
separately for the expenditure term and the reward term. We do the reward term
first. Consider the stochastic process

𝑍𝑡 =

𝑡∑︁
𝑠=1

[𝑓𝑠 (𝑥𝑠) − E[𝑓𝑠 (𝑥𝑠) |𝜉𝑠−1]] .

In words, this process is the sum of deviations around the mean reward for each
time step. The process 𝑍𝑡 is a martingale sequence, since the expected value
of the unknown term for the current time 𝑡 is always zero. Next, note that the
time 𝜏 where some resource becomes nearly depleted is a stopping time with
respect to the martingale sequence.1 Since 𝜏 is bounded, the optional stopping
theorem (see Theorem B.2) implies that E[𝑍𝜏] = 0. Expanding the definition
of 𝑍𝜏 , we have

E

[
𝜏∑︁
𝑡=1

[𝑓𝑡 (𝑥𝑡) − E[𝑓𝑡 (𝑥𝑡) |𝜉𝑡−1]]
]
= 0 (17.8)

⇔ E
[

𝜏∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡)
]
= E

[
𝜏∑︁
𝑡=1
E[𝑓𝑡 (𝑥𝑡) |𝜉𝑡−1]

]
(17.9)

Similarly, for the term E[⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩|𝜉𝑡−1] we define the martingale
sequence

𝑌𝑡 =

𝑡∑︁
𝑠=1

[⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩ − E[⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩|𝜉𝑡−1]] .

Again, 𝜏 is a stopping time for this sequence, and so the optional stopping
theorem implies E[𝑌𝜏] = 0, and hence

E

[
𝜏∑︁
𝑡=1

⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩
]
= E

[
𝜏∑︁
𝑡=1
E[⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩|𝜉𝑡−1]

]
. (17.10)

1 A stopping time for a finite set of random variables 𝑍1, . . . , 𝑍𝑇 is a random variable 𝜏 ∈ [𝑇]
such that knowing 𝑍1, . . . , 𝑍𝑡 is enough information to determine whether 𝜏 = 𝑡 .

198 Pacing Algorithms for Budget Management

Now sum Eq. (17.7) over 𝑡 ∈ [𝜏] and apply Eq. (17.9) and Eq. (17.10) to get

E

[
𝜏∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡)
]
= E

[
𝜏∑︁
𝑡=1

�̄� (𝜆𝑡 |P)
]
− E

[
𝜏∑︁
𝑡=1

⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩
]

≥ E
[
𝜏�̄� (�̄�𝜏 |P)

]
− E

[
𝜏∑︁
𝑡=1

⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩
]
. (17.11)

The inequality follows by letting �̄�𝜏 = 𝜏−1 ∑𝜏
𝑡=1 𝜆𝑡 and noting that �̄� (·|P) is a

convex function.
Combining upper and lower bounds Now we can bound the expected regret

of Algorithm 2 by combining Eq. (17.6) and Eq. (17.11) to get

𝑅𝑇 ≤ E
[
𝜏�̄� (�̄�𝜏 |P) + (𝑇 − 𝜏) 𝑓 − 𝜏�̄� (�̄�𝜏 |P) +

𝜏∑︁
𝑡=1

⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩
]

= E

[
(𝑇 − 𝜏) 𝑓 +

𝜏∑︁
𝑡=1

⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩
]
.

Next we show how to use the regret guarantees from OMD to obtain the
result. Let 𝐸 (𝑡, 𝜆) = 𝜂𝑡 ∥ �̄�+ �̄�∥2

∗
2 + 𝐷 (𝜆,𝜆1)

𝜂
be the OMD bound on the dual regret

at time 𝑡 against an arbitrary dual vector 𝜆. Applying Eq. (17.4) and using
𝐸 (𝜏, 𝜆) ≤ 𝐸 (𝑇, 𝜆), we have

𝑅𝑇 ≤ E
[
(𝑇 − 𝜏) 𝑓 +

𝜏∑︁
𝑡=1

⟨𝜆, 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩ + 𝐸 (𝑇, 𝜆)︸ ︷︷ ︸
♣

]

If 𝜏 = 𝑇 then we choose the comparator 𝜆 = 0 for the dual regret to get that
the bracketed term ♣ is less than 𝐸 (𝑇, 0).

If 𝜏 < 𝑇 , then there is some nearly-depleted resource 𝑗 ∈ [𝑚], meaning
that

∑𝜏
𝑡=1 𝑏𝑡 𝑗 (𝑥𝑡) + �̄� > 𝐵 𝑗 = 𝜌 𝑗𝑇 . Now we use the comparator 𝜆 = (𝑓 /𝜌 𝑗)𝑒 𝑗

(recall that 𝑒 𝑗 is the 𝑗’th unit vector) for the dual regret to get

♣ ≤ (𝑇 − 𝜏) 𝑓 + 𝑓

𝜌 𝑗

𝜏∑︁
𝑡=1

(
𝜌 𝑗 − 𝑏𝑡 𝑗 (𝑥𝑡)

)
+ 𝐸 (𝑇, (𝑓 /𝜌 𝑗)𝑒 𝑗)

≤ (𝑇 − 𝜏) 𝑓 + 𝑓

𝜌 𝑗

(
�̄� − (𝑇 − 𝜏)𝜌 𝑗

)
+ 𝐸 (𝑇, (𝑓 /𝜌 𝑗)𝑒 𝑗)

=
𝑓 �̄�

𝜌 𝑗

+ 𝐸 (𝑇, (𝑓 /𝜌 𝑗)𝑒 𝑗)

≤ 𝑓 �̄�

min𝑘∈[𝑚] 𝜌𝑘
+ max

𝑘∈[𝑚]
𝐸 (𝑇, (𝑓 /𝜌𝑘)𝑒𝑘)

17.4 Adversarial Inputs 199

Combining the two bounds on ♣ and taking the maximum over the compara-
tors in the two bounds yields the theorem. □

Theorem 17.2 shows that DMD achieves 𝑂 (
√
𝑇) regret under stochastic

inputs if we choose a stepsize on the order of 1/
√
𝑇 , and it is known that

this is the best possible dependence on 𝑇 that can be achieved without further
restrictions on the input (in fact, the 𝑂 (

√
𝑇) lower bound holds even when the

underlying distribution P is known ahead of time). As mentioned earlier, DMD
also achieves compelling regret guarantees under certain forms of nonstationary
input. To give a flavor of such results, suppose that we are in the stochastic
setting, but an adversary is given a budget of corruption, where they can
arbitrarily manipulate up to 𝛿 time steps (while respecting the upper bounds on
rewards and expenditure). In that case, it is possible to show that the guarantee
from Theorem 17.2 extends to this case, with an additional additive term in the
regret bound which is linear in 𝛿.

17.4 Adversarial Inputs

Suppose now that the inputs are adversarial, meaning that we face a worst-case
sequence of requests {𝛾1, . . . , 𝛾𝑡 }𝑇𝑡=1, rather than having each of them sampled
from the same underlying distribution P. In the basic online learning setting of
Chapter 4 we were able to give sublinear regret guarantees for adversarial input.
However, this turns out to be impossible in the online second-price auctions with
budgets setting (and thus it is impossible in the more general ORA setting). We
will give an example pair of input sequences that demonstrate this impossibility.
First, however, let us introduce the alternative regret notion that one can target
with DMD in the adversarial setting.

We will use the idea of asymptotic 𝛼-competitiveness instead. This notion is
similar to our regret definition in Eq. (17.5), except that we scale the cumulative
reward obtained by our algorithms by 𝛼 before comparing to the hindsight
optimum:

𝑅𝑇 (®𝛾) = OPT(®𝛾) − 𝛼
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡). (17.12)

So, for example, if we can show that the above regret notion is guaranteed to
be sublinear for 𝛼 = 2, then we have shown that, asymptotically and when
averaged over the number of time steps, our algorithm achieves half of the
hindsight optimum.

In the online second-price auctions with budgets setting, achieving 𝛼 < �̄�/𝜌
is impossible, where 𝜌 = 𝐵/𝑇 is the per-round budget, and �̄� is the highest

200 Pacing Algorithms for Budget Management

possible competing price 𝑝𝑡 that the buyer may end up paying. Notice that
�̄� ≤ �̄� in the case where we have an upper bound on the buyer’s valuation,
since we never bid more than our value, and thus cannot win any auction prices
above our valuation. Based on this bound, if our target expenditure 𝜌 is much
smaller than our largest possible per-round expenditure, then we cannot expect
to do anywhere near as well as the hindsight-optimal strategy.

The general proof is quite involved, but the high-level idea is not too com-
plicated. Here we show the construction for �̄� = 1, 𝜌 = 1/2, and thus the claim
is that 𝛼 < �̄�/𝜌𝑖 = 2 is unachievable. The impossibility is via a worst-case
instance. In this instance, the buyer always has value 1 for every auction, and
the highest other bid 𝑝𝑡 comes from one of the two following sequences:

®𝑝1 = (𝑝ℎ, . . . , 𝑝ℎ, 1, , 1)
®𝑝2 = (𝑝ℎ, . . . , 𝑝ℎ, 𝑝ℓ , . . . , 𝑝ℓ) ,

for �̄� = 1 ≥ 𝑝ℎ > 𝑝ℓ > 0. In the top sequence, the buyer sees a sequence of
high prices 𝑝ℎ for 𝑇/2 steps, and then sees a sequence of maximal prices for
𝑇/2 steps. In the bottom sequence, the buyer sees the same sequence of high
prices for 𝑇/2 steps, but then sees a sequence of low prices 𝑝ℓ for 𝑇/2 steps.
The general idea behind this construction is that in the sequence ®𝑝1, the buyer
must buy many of the expensive items priced at 𝑝ℎ in order to maximize their
utility, since they receive zero utility for winning items with price 1. However,
in the sequence ®𝑝2, the buyer must save money so that they can buy the cheaper
items priced at 𝑝ℓ .

For the case we consider here, there are 𝑇/2 high bids 𝑝ℎ (assume 𝑇 is
even for convenience), followed by the remaining 𝑇/2 bids. Now, we may set
𝑝ℎ = 2𝜌 − 𝜖 = 1 − 𝜖 and 𝑝ℓ = 2𝜌 − 𝑘𝜖 = 1 − 𝑘𝜖 , where 𝜖 and 𝑘 are constants
that can be tuned. For sufficiently small 𝜖 , the buyer can only afford to buy 𝑇/2
items total, no matter the combination of items. Furthermore, buying an item
at price 𝑝ℓ yields 𝑘 times as much utility as buying an item at 𝑝ℎ.

In order to achieve at least half of the optimal utility under ®𝑝1, the buyer
must purchase at least 𝑇/4 of the items priced at 𝑝ℎ. Since they don’t know
whether they are facing sequence ®𝑝1 or ®𝑝2 until after deciding whether to buy
at least 𝑇/4 of the 𝑝ℎ items, this must also occur under ®𝑝2. But then buyer 𝑖 can
at most afford to buy 𝑇/4 of the items priced at 𝑝ℓ when they find themselves
in the ®𝑝2 case. Now for any 𝛼 < 2, we can pick 𝑘 and 𝜖 such that achieving
(1/𝛼) OPT(®𝛾) requires buying at least 𝑇/4 + 1 of the 𝑝ℓ items.

It follows that we cannot hope to design an online algorithm that competes
with (1/𝛼) OPT(®𝛾) for 𝛼 < �̄�/𝜌. It turns out that DMD achieves the opti-

17.4 Adversarial Inputs 201

mal asymptotic competitive ratio of 𝛼 = �̄�/𝜌. For the general setting with 𝑚

resources, we define 𝛼 = max(�̄�/min 𝑗∈[𝑚] 𝜌 𝑗 , 1).

Theorem 17.3 For any sequence of requests ®𝛾, the reward obtained by DMD
satisfies

OPT(®𝛾) − 𝛼
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡) ≤
𝑓 �̄�

min 𝑗∈[𝑚]𝜌 𝑗

+ 𝛼Ω

𝜂
+ 𝜂𝑇𝛼∥�̄� + 𝜌∥2

∗
2

,

where Ω = max
{
𝐷 (𝜆∥𝜆1) |𝜆 ∈ {0, (𝑓 /𝛼𝜌1)𝑒1, . . . , (𝑓 /𝛼𝜌𝑚)𝑒𝑚

}
and 𝛼 =

max(�̄�/min 𝑗∈[𝑚] 𝜌 𝑗 , 1). If we set 𝜂 =
√

2Ω/(
√
𝑇 ∥𝜌 + �̄�∥∗) then

OPT(®𝛾) − 𝛼
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡) ≤
𝑓 �̄�

min 𝑗∈[𝑚] 𝜌 𝑗

+ 𝛼
√

2Ω𝑇 ∥𝜌 + �̄�∥∗.

Proof The proof of this result works directly in the primal space, rather than
going through the dual as in the stochastic case. We let 𝜏 ∈ [𝑇] be the stopping
time of the algorithm again. Let 𝑥∗1, . . . , 𝑥

∗
𝑇

be an optimal solution to OPT(®𝛾).
For each 𝑡 ∈ [𝜏], by our choice of 𝑥𝑡 we have 𝑓𝑡 (𝑥𝑡) ≥ 𝑓𝑡 (𝑥∗𝑡) − ⟨𝜆𝑡 , 𝑏𝑡 (𝑥∗𝑡) −
𝑏𝑡 (𝑥𝑡)⟩ and 0 = 𝑓𝑡 (𝑥∅) ≤ 𝑓𝑡 (𝑥𝑡) − ⟨𝜆𝑡 , 𝑏𝑡 (𝑥𝑡)⟩. It follows that we have

𝛼 𝑓𝑡 (𝑥𝑡) = 𝑓𝑡 (𝑥𝑡) + (𝛼 − 1) 𝑓𝑡 (𝑥𝑡)
≥ 𝑓𝑡 (𝑥∗𝑡) − ⟨𝜆𝑡 , 𝑏𝑡 (𝑥∗𝑡) − 𝑏𝑡 (𝑥𝑡)⟩ + (𝛼 − 1)⟨𝜆𝑡 , 𝑏𝑡 (𝑥𝑡)⟩
= 𝑓𝑡 (𝑥∗𝑡) − ⟨𝜆𝑡 , 𝑏𝑡 (𝑥∗𝑡) − 𝛼(𝜌 − 𝑏𝑡 (𝑥𝑡)) + 𝛼𝜌⟩
≥ 𝑓𝑡 (𝑥∗𝑡) − ⟨𝜆𝑡 , 𝛼(𝜌 − 𝑏𝑡 (𝑥𝑡))⟩,

(17.13)

where the last inequality used 𝛼⟨𝜆𝑡 , 𝜌⟩ ≥ ⟨𝜆𝑡 , 𝑏𝑡 (𝑥∗𝑡)⟩ by the definition of 𝛼.
Now, we have that the regret satisfies

OPT(®𝛾) − 𝛼
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡) ≤
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥∗𝑡) − 𝛼
∑︁
𝑡∈[𝜏]

𝑓𝑡 (𝑥𝑡)

≤
𝑇∑︁

𝑡=𝜏+1
𝑓𝑡 (𝑥∗𝑡) + 𝛼

∑︁
𝑡∈[𝜏]

⟨𝜆𝑡 , 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩

≤(𝑇 − 𝜏) 𝑓 + 𝛼
∑︁
𝑡∈[𝜏]

⟨𝜆, 𝜌 − 𝑏𝑡 (𝑥𝑡)⟩ + 𝛼𝐸 (𝑇, 𝜆),

(17.14)

where we used nonnegativity in the first inequality, Eq. (17.13) in the second
inequality, and the regret bound for DMD plus the upper bound on rewards in
the third inequality.

Now we can use similar logic as in the stochastic case to finish the proof.

202 Pacing Algorithms for Budget Management

First, if 𝜏 = 𝑇 , then we set 𝜆 = 0 to get the desired bound. If 𝜏 < 𝑇 , then we
proceed as in the stochastic case by identifying a resource 𝑗 ∈ [𝑚] satisfying∑

𝑡∈[𝜏] 𝑏𝑡 𝑗 (𝑥𝑡) + �̄� ≥ 𝐵 𝑗 = 𝑇𝜌 𝑗 . Compared to the stochastic case, we scale the
comparator by 𝛼−1 to get 𝜆 = (𝑓 /(𝛼𝜌 𝑗))𝑒 𝑗 . Then we get:

𝐸𝑞. (17.14) ≤(𝑇 − 𝜏) 𝑓 + 𝑓

𝜌 𝑗

∑︁
𝑡∈[𝜏]

(𝜌 𝑗 − 𝑏𝑡 𝑗 (𝑥𝑡)) + 𝛼𝐸 (𝑇, (𝑓 /(𝛼𝜌 𝑗))𝑒 𝑗)

≤(𝑇 − 𝜏) 𝑓 + 𝑓

𝜌 𝑗

(�̄� − (𝑇 − 𝜏)𝜌 𝑗) + 𝛼𝐸 (𝑇, (𝑓 /(𝛼𝜌 𝑗))𝑒 𝑗)

≤ 𝑓 �̄�

min𝑘∈[𝑚] 𝜌𝑘
+ 𝛼𝐸 (𝑇, (𝑓 /(𝛼𝜌 𝑗))𝑒 𝑗)

Taking the maximum over the different possible comparators yields the theo-
rem. □

17.5 Extensions

In this section we show a few extensions of the DMD approach to a variety of
settings that include additional complications that arise in practice. We omit
proofs for these results, but the reader can refer to the historical notes for the
papers where these results are first shown and proved.

17.5.1 Spend Plans
While the guarantees for DMD are compelling in that they show robustness
against a variety of input models, the adversarial results do leave something
to be desired from a practical standpoint. Suppose that we are in an online
second-price auctions with budgets setting, and the time steps in the previous
ORA model corresponds to minutes of a given day. In that case, a “request”
at a given time step corresponds to the set of all auctions that occur in that
particular minute of the day. In such a case, we do not expect the input to be
adversarial, but we also do not expect it to be stationary (generally we might
expect increased relevant traffic during certain times of day, e.g. around 8 am
to 10 am if we are advertising something coffee-related). This traffic pattern
is fairly predictable (although day-to-day variation may be significant), and we
might hope to do better than the adversarial guarantee by predicting how much
traffic there will be at each time step. In practice, this predictability is addressed
through a spend plan. A spend plan breaks up the total budget 𝐵 ∈ R𝑚≥0 into

17.5 Extensions 203

a set of per-time-step expenditure targets 𝜌1, . . . , 𝜌𝑇 such that
∑

𝑡∈[𝑇] 𝜌
𝑡 = 𝐵.

The goal for our learning algorithm should then be to track this spend plan.
The DMD algorithm in Algorithm 2 attempts to spend the same amount 𝜌

at every time step. A natural way to incorporate the spend plan is to change
the step “Obtain dual subgradient” from 𝑔𝑡 = 𝜌 − 𝑏𝑡 (𝑥𝑡) to 𝑔𝑡 = 𝜌𝑡 − 𝑏𝑡 (𝑥𝑡),
and keep all other parts of the algorithm the same. Intuitively, this change will
make it such that for a time step 𝑡 where the algorithm wants to spend a lot (or
a little) due to the structure of 𝑓𝑡 and 𝑏𝑡 , we do not penalize such overspending
(or underspending) relative to the mean spend 𝜌, because the predicted spend
plan already accounts for such increased (or decreased) spending through the
variation in 𝜌𝑡 .

Suppose now that the input requests ®𝛾 are sampled from a set of distributions
𝛾𝑡 ∼ P𝑡 , where each distribution P𝑡 can change arbitrarily, subject to the upper
bounds on rewards and expenditure. This generalizes the adversarial setting,
since we can make each distribution put all of its probability mass on a single
request, thereby replicating any adversarial input sequence.

Now we require the hindsight optimum to mostly agree with the spending
plan. In particular, we redefine OPT(®𝛾) to take as input a set of nonnegative
slack variables 𝜖1, . . . , 𝜖𝑇 , as follows (note that we now consider in-expectation
rewards and expenditures, rather than the actual hindsight optimum):

OPT(®𝛾, ®𝜌, 𝜖1, . . . , 𝜖𝑇) := max
{𝑥𝑡 ∈X𝑡 }𝑇𝑡=1

∑︁
𝑡∈[𝑇]

E 𝑓𝑡∼P𝑡
[𝑓𝑡 (𝑥𝑡)]

s.t.
∑︁
𝑡∈[𝑇]

E𝑏𝑡∼P𝑡
[𝑏𝑡 (𝑥𝑡)] ≤ 𝐵,

E𝑏𝑡∼P𝑡
[𝑏𝑡 (𝑥𝑡)] ≤ 𝜌𝑡 + 𝜖𝑡 ,∀𝑡 ∈ [𝑇] .

(17.15)
Intuitively, if the optimal strategy, when disregarding the spend plan, has ex-
penditures that are captured well by ®𝜌 then there will exist a set of small
𝜖1, . . . , 𝜖𝑇 ≥ 0 such that Eq. (17.15) captures the unconstrained optimum.

The regret measure is then the difference between this new notion of hindsight
optimum minus the cumulative reward achieved by the algorithm:

R𝑇 := OPT(®𝛾, ®𝜌, 𝜖) −
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡).

The analysis of DMD (with the updated dual subgradients from the expendi-
ture targets 𝜌𝑡) can be extended to show the following high-probability regret
bound:

204 Pacing Algorithms for Budget Management

Theorem 17.4 For any given success probability 𝛿 ∈ (0, 1), DMD guarantees

R𝑇 ≤
𝜌min + 1 + 2𝑅𝐷

𝑇

𝜌min
+

(
8 + 8

𝜌min

) √︁
2𝑇 ln(𝑇/𝛿) + 1

𝜌min

∑︁
𝑡∈[𝑇]

𝜖𝑡 ,

where 𝑅𝐷
𝑇

is the dual regret bound of online mirror descent on the new subgra-
dients 𝑔𝑡 , and 𝜌min = min 𝑗∈[𝑚],𝑡∈[𝑇] 𝜌

𝑡
𝑗
.

17.5.2 Extension to Return on Investment Constraints
In the ad-auction industry, another widespread constraint expressed by ad-
vertisers is the return on spend (RoS) constraint, sometimes referred to as
return on investment or return on ad spend as well. For this section, let there
be a single resource (the advertiser budget in the case of auctions), so that
𝑏𝑡 (𝑥𝑡) ∈ [0, 1]. Then, the advertiser has a RoS parameter 𝛾 > 0, and they
require that the total value that they receive is greater than 𝛾 times the total
cost, i.e.

∑
𝑡∈[𝑇] 𝑓𝑡 (𝑥𝑡) ≥ 𝛾

∑
𝑡∈[𝑇] 𝑏𝑡 (𝑥𝑡). In that model, the hindsight problem

solved by the advertiser is the following:

OPT(®𝛾) := max
{𝑥𝑡 ∈X𝑡 }𝑇𝑡=1

∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡)

s.t.
∑︁
𝑡∈[𝑇]

𝑏𝑡 (𝑥𝑡) ≤ 𝐵,

𝛾
∑︁
𝑡∈[𝑇]

𝑏𝑡 (𝑥𝑡) ≤
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡).

(17.16)

The DMD framework can be extended to this setting. First, if we introduce
dual variables 𝜆 ≥ 0 and 𝜇 ≥ 0, then the Lagrangified hindsight problem is as
follows,

max
{𝑥𝑡 ∈X𝑡 }𝑇𝑡=1

∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡) − 𝜆

(∑︁
𝑡∈[𝑇]

𝑏𝑡 (𝑥𝑡) − 𝐵

)
− 𝜇

(
𝛾

∑︁
𝑡∈[𝑇]

𝑏𝑡 (𝑥𝑡) −
∑︁
𝑡∈[𝑇]

𝑓𝑡 (𝑥𝑡)
)
.

(17.17)
To get some intuition, and see how this applies in practice, we go back to

the second-price auction setting from Section 17.1, but with an additional RoS
constraint. Then we can apply the same tricks as when we derived Eq. (17.2).
We let X𝑡 = [0, 1], meaning that 𝑥𝑡 is a variable denoting whether the advertiser
wins the good at time 𝑡, and 𝑏𝑡 (𝑥) = 𝑝𝑡𝑥 is the price of the good at time 𝑡. This
corresponds to the second-price auction setting, where 𝑓𝑡 (𝑥) = (𝑣𝑡 − 𝑝𝑡)𝑥 is
the quasilinear utility maximization setting under budget and RoS constraints.
For a given pair of estimated dual multipliers 𝜆, 𝜇, the advertiser wants to win

17.6 Historical Notes 205

the auction (i.e. set 𝑥 = 1) exactly when

(1 + 𝜇) 𝑓𝑡 (𝑥) ≥ (𝜆 + 𝛾𝜇)𝑝𝑡 (17.18)

In the quasilinear case, this means that the advertiser should bid 1+𝜇
1+𝜆+𝛾𝜇 𝑣𝑡 .

In practice, advertisers often wish to maximize value subject to the budget
and RoS constraint (as opposed to maximizing quasilinear utility). In that case,
we have the same setup as in the preceding paragraph, except 𝑓𝑡 (𝑥) = 𝑣𝑡𝑥. The
advertiser should then bid 1+𝜇

𝜆+𝛾𝜇 𝑣𝑡 .
In order to learn 𝜆 and 𝜇 in an online fashion, we can apply the DMD

framework in Algorithm 2. Algorithm 2 must be changed as follows: When
choosing 𝑥𝑡 , we must follow Eq. (17.17). When obtaining the dual subgradient,
we obtain two gradients, 𝑔𝜆𝑡 = 𝜌 − 𝑏𝑡 (𝑥𝑡) and 𝑔

𝜇
𝑡 = 𝛾 𝑓𝑡 (𝑥𝑡) − 𝑏𝑡 (𝑥𝑡). Then,

when we apply OMD we solve

𝜆𝑡+1 = arg min
𝜆∈R≥0

𝜂𝑔𝜆𝑡 𝜆 + 𝐷𝜆 (𝜆∥𝜆𝑡), 𝜇𝑡+1 = arg min
𝜇∈R≥0

𝜂𝑔
𝜇
𝑡 𝜇 + 𝐷𝜇 (𝜇∥𝜇𝑡).

Assuming that we use a separable DGF such as the Euclidean DGF, the entropy
DGF, or the logarithm DGF, we can treat these two separate OMD updates
as running a single instance of OMD on the two-dimensional decision set
(𝜆, 𝜇) ∈ R2

≥0, with the corresponding Bregman divergence for R2
≥0.

What type of guarantees can DMD achieve for this setting? The first thing
to note is that we cannot hope to maintain feasibility of the RoS constraint;
we may end up violating the RoS constraint on the very first iteration! Instead,
what we can hope to show is that the average violation over time tends to zero.
Secondly, it turns out that the specifics of the DGF choice for OMD become
more important. If one uses the Euclidean DGF, then it is possible to show that
under stochastic input, DMD achieves 𝑂 (log(𝑇)

√
𝑇) regret, while achieving

a violation of the RoS constraint also on the order of 𝑂 (log(𝑇)
√
𝑇), and thus

the average violation across time decreases at a rate of 𝑂 (log𝑇/
√
𝑇). See the

historical notes for pointers to the literature on these results.

17.6 Historical Notes

The presentation that we give in Section 17.2 to Section 17.3 builds off of Bal-
seiro et al. (2022) who introduced best-of-many-worlds guarantees for DMD,
and showed the result for online resource allocation with non-convex decision
sets and non-concave reward functions. The proofs of Theorem 17.2 and Theo-
rem 17.3 follow Balseiro et al. (2022), with some reorganization of the proof of
Theorem 17.2. The counterexample for the adversarial input setting was given

206 Pacing Algorithms for Budget Management

by Balseiro and Gur (2019), who also introduced a DMD algorithm specifi-
cally in the context of repeated second-price auctions with a budget constraint,
showed no-regret guarantees under stochastic input, and an asymptotically-
optimal competitive ratio under adversarial input. Dual-based schemes had
been studied extensively prior to that for online linear programming, a special
case of online resource allocation, e.g. in Agrawal et al. (2014); Gupta and
Molinaro (2016); Devanur et al. (2019). Beyond auction markets, the idea of
using paced bids based on the Lagrange multiplier 𝜇 has been studied in the
revenue management literature, see e.g. Talluri and Van Ryzin (1998), where
it is shown that this scheme is asymptotically optimal as 𝑇 tends to infinity.
There is also recent work on the adaptive bidding problem using multi-armed
bandits (Flajolet and Jaillet, 2017).

There are a few different papers that deal with the general issue of how
to allocate the spending of DMD non-uniformly across the time steps. Jiang
et al. (2025) study a nonstationary setting where there is variability in the
distributions P𝑡 , but a prior estimate P̃𝑡 for each distribution is supplied to the
algorithm. This is a stronger form of prior information than the spend plan we
describe in Section 17.5.1. Balseiro et al. (2023a) study a model where there
is adversarial uncertainty about the total number of time steps that will occur,
called horizon uncertainty, and develop approaches for constructing optimal
spending plans under such horizon uncertainty. Balseiro et al. (2023b) focus on
a nonstationary setting like the one in Section 17.5.1, but where we receive a
single sample from each P𝑡 , and they show how to construct spend plans using
such single-sample information, in order to achieve regret bounds. Stradi et al.
(2025) develop the approach presented in Section 17.5.1 where the underlying
benchmark is constrained to approximately follow the spend plan, and show no-
regret guarantees for a broader framework that generalizes DMD, and also show
similar results for the online learning and bandit settings where the request 𝛾𝑡 is
not observed before choosing 𝑥𝑡 . Note that Jiang et al. (2025) appeared before
all the other works in this paragraph, but the publication times are inverted due
to differences in how rapidly conferences and journals publish results.

Further reading.
Balseiro et al. (2022) is a good starting point, the paper is very well-written, and
the authors provide a nice overview of the proof techniques that are used. For
the setting with spend plans, Balseiro et al. (2023b) is a good starting point. For
settings where the requests are not observed ahead of time, the reader can refer
to Celli et al. (2022) for best-of-many-worlds results similar to those of DMD
in the ORA setting. For bidding in first-price auctions with budget constraints,
the reader can refer to Wang et al. (2023) or Castiglioni et al. (2024). The latter

17.6 Historical Notes 207

also handles return-on-spend constraints, a form of non-packing constraint. For
bidding in either first-price or second-price auctions with both budget and RoS
constraints, in addition to Castiglioni et al. (2024), the reader can also consult
Aggarwal et al. (2025).

18
Demographic Fairness

This chapter studies the issue of demographic fairness. Demographic fairness
is a distinct fairness topic from the earlier fairness topics studied in Chap-
ters 11 and 13 such as envy-freeness and proportionality. Those topics focused
on individual fairness guarantees. Moreover, in the context of ad auctions,
those fairness guarantees are with respect to advertisers, since they are the
buyers/agents in the market equilibrium model of the ad auction markets. De-
mographic fairness, on the other hand, is a fairness notion with respect to the
users who are being shown the ads. In the context of the Fisher market models
we have studied so far, this means that demographic fairness will be a prop-
erty measured on the item side, since items correspond to ad impressions for
particular users. Secondly, some demographic fairness notions will be with
respect to groups of users, rather than individual users. A serious concern with
internet advertising auctions and recommender systems is that the increased
ability to target users based on features could lead to harmful effects on subsets
of the population, such as gender or race-based biases in the types of ads or
content being shown. We will start by looking at a few real-world examples
where notions of demographic fairness were observed to be violated. We will
then describe some potential ideas for implementing fairness in the context of
Fisher markets and first-price ad auctions. It is important to emphasize that
this is an evolving area, and it is not clear that there is a simple answer to the
question of how to guarantee certain types of demographic fairness. Moreover,
there are trade-offs between various notions, as well as between fairness and
other objectives such as revenue or welfare.

Age Discrimination in Job Ads
ProPublica reported in 2017 that many companies were using age as part of
their targeting criteria for job ads they were placing on Facebook (Angwin et al.,

208

Demographic Fairness 209

2016). This included Amazon, Verizon, UPS and Facebook itself. Quoting from
the article:

Verizon placed an ad on Facebook to recruit applicants for a unit focused on financial
planning and analysis. The ad showed a smiling, millennial-aged woman seated at a
computer and promised that new hires could look forward to a rewarding career in
which they would be “more than just a number.”

Some relevant numbers were not immediately evident. The promotion was set to run
on the Facebook feeds of users 25 to 36 years old who lived in the nation’s capital, or
had recently visited there, and had demonstrated an interest in finance.

Whether age-based targeting of job ads is illegal was not yet resolved legally, as
of the 2017 article. The federal Age Discrimination in Employment Act of 1967
prohibits bias against people aged 40 or older both in hiring and employment.
Whether the company placing the ad, as well as Facebook, could be held liable
for age discrimination was similarly not clear, since the law was written before
the internet age and thus was not formulated with this type of media in mind.

Targeting Housing Ads along Racial Boundaries
ProPublica also reported in 2016 on the fact that advertisers had the ability to
run ads that exclude certain “ethnic affinities” such as “Hispanic affinity” or
“African-American affinity” on Facebook Angwin and Parris Jr. (2016). Since
Facebook does not ask users about race, these affinity categories are stand-
in estimates based on user interests and behavior. On the benign side, these
features can be used to test for example how an ad in Spanish versus English
will perform in a Hispanic population. More generally, it can be used as a
tool for advertisers to understand how their products are received by different
groups.

However, ProPublica reported that they were able to create a (fake) ad for an
event related to first-time home buying, where they could use these categories
to exclude various ethnic groups from seeing the ad. When it comes to topics
such as housing, the Fair Housing Act from 1968 made it illegal

”to make, print, or publish, or cause to be made, printed, or published any notice,
statement, or advertisement, with respect to the sale or rental of a dwelling that indicates
any preference, limitation, or discrimination based on race, color, religion, sex, handicap,
familial status, or national origin.”

In other contexts, such as e.g. traditional newspapers, advertisements are re-
viewed before being accepted to be shown, in order to ensure that they do not
violate these laws. However, in the context of online advertising, the process is
much more automated and algorithmic, and the targeting criteria are powerful
enough that one has to think carefully about what fairness means and how it
can be implemented algorithmically.

210 Demographic Fairness

For the remainder of the chapter, we will operate under the assumption that
we wish to ensure various demographic properties of how ads are shown, for
ads that are viewed as “sensitive”. Beyond employment and housing, another
category of ads that are viewed as sensitive are credit opportunities. Again,
existing laws that were created prior to the internet disallow discrimination
based on demographic properties in lending.

18.1 Disallowing Targeting

If we wish to prohibit the potential discrimination described above, we could
introduce a category of “sensitive ads,” where we do not allow age, gender, or
racial features to be used as a feature. One might naively think that this would
work, but unfortunately there are many ways to perform indirect targeting of
these categories. For example, zip code can often be a strong proxy for race,
and thus care is needed in order to ensure that we do not allow proxy-based
targeting of these sensitive features.

Facebook took such an approach in 2019 (Sandberg, 2019), based on a set-
tlement with various civil rights organizations. In that approach, they disallow
targeting on age, gender, zip code, and “cultural affinities” for what they cate-
gorize as sensitive ads. That categorization includes housing, employment, and
credit opportunities.

While this approach ensures that a certain type of discrimination cannot
occur, it does not necessarily rule out other forms of biases in how ads are
served. For example, other features can be used as proxies for the above features,
or competition from non-sensitive ads may case bias in how sensitive ads are
shown. We will show an example of this later case in the next section.

18.2 Demographic Fairness Measures

We will now study some explicit quantitative measures of demographic fairness.
These can potentially be used to audit whether a given ad or system contains
biases, or as guiding measures for how to adaptively change the allocation
system in order to ensure unbiasedness.

To make things concrete, suppose we have 𝑚 users, and a single sensitive
ad 𝑖. We will assume that each user 𝑗 is associated with a feature vector 𝑤 𝑗

of non-sensitive features. Additionally, each user also belongs to one of two
demographic groups, 𝐴 or 𝐵, which is considered a sensitive attribute. Let
𝑔 𝑗 ∈ {𝐴, 𝐵} denote this group. We let 𝐺𝐴 and 𝐺𝐵 be the set of all indices

18.2 Demographic Fairness Measures 211

denoting users in group 𝐴 or group 𝐵, respectively. As usual, we will use
𝑥𝑖 𝑗 ∈ [0, 1] to denote the probability that the ad 𝑖 is shown to user 𝑗 .

Statistical Parity
This notion of demographic fairness asks that ad 𝑖 is shown at an equal rate
across the two groups, in the following sense:

1
|𝐺𝐴 |

∑︁
𝑗∈𝐺𝐴

𝑥𝑖 𝑗 =
1

|𝐺𝐵 |
∑︁
𝑗∈𝐺𝐵

𝑥𝑖 𝑗 .

This is an aggregate guarantee; individuals in either group have no guarantee
of being treated fairly.

Next, let’s see an example of how statistical parity could be broken even
though targeting by demographic features is disallowed. Suppose that a sensitive
ad (say a job ad) wishes to target users in either demographic, and has a value
of $1 per click, with a click-through rate that depends only on 𝑤 𝑗 and not 𝑔 𝑗 .
Secondly, there’s another ad which is not sensitive, which has a value per click
of $2, and click-through rates of 0.1 and 0.6 for groups 𝐴 and 𝐵 respectively.
Now, the sensitive ad will never be able to win any slots for group 𝐵 since even
with a CTR of 1, their bid will be lower than 0.6 · 2 = 1.2. As a result, the
sensitive ad will be shown only to group 𝐴. A concrete example of how this
competition-driven form of bias might occur is when the non-sensitive ad is
some form of female-focused product such as clothing or make-up.

A potential criticism of this fairness measure is that it does not require the
ad to be shown to equally interested users in both groups. Thus, one could for
example worry that the ad might end up buying highly relevant slots among
one group, and cheap irrelevant slots in the other group in order to satisfy the
constraint.

Similar Treatment
Similar treatment (ST) asks for an individual-level fairness guarantee: if two
users 𝑗 and 𝑘 have the same non-sensitive feature vector 𝑤 𝑗 = 𝑤𝑘 , then they
should be treated similarly regardless of the value of 𝑔 𝑗 and 𝑔𝑘 . A simple version
of this principle for ad auctions could be that we require 𝑥𝑖 𝑗 = 𝑥𝑖𝑘 whenever
𝑤 𝑗 = 𝑤𝑘 . In practice some features are continuous and thus exact equality
between 𝑤 𝑗 and 𝑤𝑘 never occurs. More generally, we may want to insist on
some form of similar treatment whenever two users satisfy 𝑤 𝑗 ≈ 𝑤𝑘 , for some
appropriate measure of similarity. Suppose we have a measure 𝑑 (𝑤 𝑗 , 𝑤𝑘) that
measures similarity between feature vectors. Then, ST can be defined as

|𝑥𝑖 𝑗 − 𝑥𝑖𝑘 | ≤ 𝑑 (𝑤 𝑗 , 𝑤𝑘).

212 Demographic Fairness

With this definition, we are asking for more than just equality when 𝑤 𝑗 = 𝑤𝑘 ;
instead we also ask that the difference between 𝑥𝑖 𝑗 and 𝑥𝑖𝑘 should decrease
smoothly as the non-sensitive feature vectors get closer to each other, as mea-
sured by 𝑑.

18.3 Fairness Constraints in FPPE via Taxes and Subsidies

Now we study a potential way that we could implement demographic fairness
in the context of Fisher markets and first-price ad auctions. Specifically, we will
see that the Eisenberg-Gale convex program lets us derive a tax/subsidy scheme
for demographic fairness. The high-level idea is that we can consider a more
constrained variant of EG for FPPE, where we insist that the computed alloca-
tion satisfies our fairness constraints, and then we can use KKT conditions to
derive appropriate taxes and subsidies from the resulting Lagrange multipliers
on the fairness constraints. To be concrete, suppose that for a group of buyers
𝐼 ⊂ [𝑛], perhaps representing a particular group of sensitive ads such as job
ads, we wish to enforce statistical parity across this group in an FPPE setting.
Then, we can consider the following constrained version of the EG program:

max
𝑥≥0, 𝛿≥0,𝑢

∑︁
𝑖

𝐵𝑖 log(𝑢𝑖) − 𝛿𝑖

𝑢𝑖 ≤
∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗𝑣𝑖 𝑗 + 𝛿𝑖 ,∀𝑖 (18.1)∑︁
𝑖∈[𝑛]

𝑥𝑖 𝑗 ≤ 1,∀ 𝑗 , (18.2)∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐺𝐴

𝑥𝑖 𝑗 =
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐺𝐵

𝑥𝑖 𝑗 . (18.3)

Now, our EG program maximizes the quasilinear EG objective, but over a
smaller set of feasible allocations: those that satisfy the statistical parity con-
straint across buyers in 𝐼.

The key to analyzing this new quasilinear EG variant is to use the Lagrange
multipliers on Eq. (18.3). Let (𝑥, 𝑝) be the optimal allocation, and let 𝑝 be
the prices derived from the Lagrange multipliers on the supply constraints
Eq. (18.2). Let 𝜆 be the Lagrange multiplier on Eq. (18.3). We will show that
(𝑥, 𝑝, 𝜆) is a form of market equilibrium, where we charge each buyer 𝑖 ∈ 𝐼 a
price of 𝑝 𝑗 +𝜆 for 𝑗 ∈ 𝐴 and a price of 𝑝 𝑗 −𝜆 for 𝑗 ∈ 𝐵, where 𝜆 is the Lagrange
multiplier on Eq. (18.3). Buyers 𝑖 ∉ 𝐼 are simply charged the price vector 𝑝.
Clearly, this is not our usual notion of market equilibrium: we are charging two

18.4 Historical Notes 213

different sets of prices: demographically-adjusted prices for buyers in 𝐼 and
regular prices for buyers not in 𝐼.

First, consider some non-sensitive buyer 𝑖 ∉ 𝐼. For such a buyer, we can show
that 𝑥𝑖 ∈ 𝐷𝑖 (𝑝) using the exact same argument as in the case of the standard
quasilinear EG program in Theorem 16.7. Similarly, we can show that each
item is fully allocated if 𝑝 𝑗 > 0 using the same arguments as before. It is also
direct from feasibility that the statistical parity constraint is satisfied.

Given the above, we only need to see what happens for buyers 𝑖 ∈ 𝐼. Ignoring
feasibility conditions which are straightforward, the KKT conditions pertaining
to buyer 𝑖 are as follows:

(i) 𝐵𝑖

𝑢𝑖
= 𝛽𝑖 ⇔ 𝑢𝑖 =

𝐵𝑖

𝛽𝑖
,

(ii) 𝛽𝑖 ≤ 1,
(iii) 𝛽𝑖 ≤

𝑝 𝑗±𝜆
𝑣𝑖 𝑗

,

(iv) 𝛿𝑖 > 0 ⇒ 𝛽𝑖 = 1,

(v) 𝑥𝑖 𝑗 > 0 ⇒ 𝛽𝑖 =
𝑝 𝑗±𝜆
𝑣𝑖 𝑗

.

Here, the ± should be interpreted as ‘+’ for 𝑗 ∈ 𝐴 and ‘−’ for 𝑗 ∈ 𝐵. Now
it is straightforward from KKT conditions (iii) and (v) that buyer 𝑖 buys only
items with optimal price-per-utility under the prices 𝑝 𝑗 ± 𝜆. From here, the
same argument as in Theorem 16.7 can be performed in order to show that
buyer 𝑖 spends their whole budget, which shows that they received a bundle
𝑥𝑖 ∈ 𝐷𝑖 (𝑝 ± 𝜆).

It follows from the above that (𝑥, 𝑝, 𝜆) is a market equilibrium (with different
prices for 𝐼 and [𝑛] \ 𝐼), and thus we can use the Lagrange multiplier 𝜆 as a
tax/subsidy scheme in order to enforce statistical parity.

18.4 Historical Notes

The field of “algorithmic fairness” pioneered a lot of the fairness considerations
that we considered in this chapter, in the context of machine learning. Dwork
et al. (2012) introduced similar treatment in the context of machine learning
classification, and the notion that we use here for ad auction allocation is an
adaptation of their definitions. They also study statistical parity in the classifi-
cation context. A book-level treatment of fairness in machine learning is given
by Barocas et al. (2019). Many of these fairness notions were also previously
known in the education testing and psychometrics literature. See the biograph-
ical notes in Barocas et al. (2019) for an overview of these older works. The
quasilinear Fisher market model with statistical parity constraints via taxes and
subsidies was studied in Peysakhovich et al. (2023), which also studies several
other fairness questions in the context of Fisher markets. A related work is

214 Demographic Fairness

Jalota et al. (2023). This work does not study fairness directly, but shows how
per-buyer linear constraints can be implemented similarly to what we describe
in Section 18.3.

Further reading.
The book by Barocas et al. (2019) is a good introduction to the field of algo-
rithmic fairness, and contains many references to the literature on fairness in
machine learning and recommender systems.

Appendix A
Optimization Background

A.1 Basic Definitions

Definition A.1 A function 𝑓 is quasi-concave if for all 𝑥, 𝑦 and 𝜆 ∈ [0, 1] it
holds that 𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≥ min(𝑓 (𝑥), 𝑓 (𝑦)).

Definition A.2 For 𝜇 ≥ 0, a function 𝑓 is 𝜇-strongly convex (also stated as
“strongly convex with modulus 𝜇”) relative to the norm ∥ · ∥ if

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨∇ 𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝜇

2
∥𝑦 − 𝑥∥2,

where ∇ 𝑓 (𝑥) is an arbitrary subgradient of 𝑓 at 𝑥.

Instead of saying that 𝑓 is “strongly convex with modulus 𝜇,” we often use
the shorthand “ 𝑓 is 𝜇-strongly convex.”

For a twice differentiable function 𝑓 : R𝑚 → R with Hessian ∇2 𝑓 , a
sufficient, but not necessary, condition for strong convexity of 𝑓 on a set 𝑋

relative to a norm ∥ · ∥ is the following:

ℎ⊤∇2 𝑓 (𝑥)ℎ ≥ 𝜇∥ℎ∥2, ∀𝑥 ∈ 𝑋, ℎ ∈ R𝑚.

The condition is necessary when 𝑋 is full-dimensional in its ambient space.

A.2 Basic Inequalities

In the following I list a number of inequalities that are used in the book. All but
the last inequality are “standard” inequalities and stated without proof. Many
have elegant proofs, see e.g. Steele (2004) for a beautiful book on inequalities
and their proofs.

215

216 Optimization Background

The Cauchy-Schwarz inequality states that

⟨𝑎, 𝑏⟩ ≤ ∥𝑎∥2∥𝑏∥2. (A.1)

The AM-GM inequality (AM-GM stands for arithmetic-mean geometric-
mean) states that

𝑛
√
𝑥1 · 𝑥2 · · · 𝑥𝑛 ≤ 1

𝑛

∑︁
𝑖∈[𝑛]

𝑥𝑖 . (A.2)

The “Young’s inequality with 𝜖” or “Peter-Paul inequality” states that for all
𝜖 > 0,

𝑎𝑏 ≤ 𝑎2

2𝜖
+ 𝜖𝑏2

2
. (A.3)

Euler’s formula for complex numbers states

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥). (A.4)

Suppose we have a set of numbers 𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑛 such that they
are all nonnegative, and

∑
𝑖∈[𝑛] 𝑏𝑖 > 0. Then we have∑

𝑖∈[𝑛] 𝑎𝑖∑
𝑖∈[𝑛] 𝑏𝑖

≥ min
𝑖∈[𝑛]

𝑎𝑖

𝑏𝑖
. (A.5)

To see this, let 𝜌 = min𝑖∈[𝑛] 𝑎𝑖/𝑏𝑖 . Then we have 𝑎𝑖 ≥ 𝜌𝑏𝑖 for all 𝑖 ∈ [𝑛].
Summing this inequality gives∑︁

𝑖∈[𝑛]
𝑎𝑖 ≥ 𝜌

∑︁
𝑖∈[𝑛]

𝑏𝑖 .

Dividing through by
∑

𝑖∈[𝑛] 𝑏𝑖 yields the inequality.

A.3 Karush-Kuhn-Tucker Conditions

Consider a convex program and its dual

min
𝑥

𝑓 (𝑥)

𝑔 𝑗 (𝑥) ≤ 0, ∀ 𝑗 ∈ [𝑚]
𝑥 ≥ 0,

(A.6)

max
𝜆≥0

𝑞(𝜆)

𝑞(𝜆) := min
𝑥≥0

𝐿 (𝑥, 𝜆)

𝐿 (𝑥, 𝜆) := 𝑓 (𝑥) +
∑︁
𝑗∈[𝑚]

𝜆𝑖𝑔𝑚 (𝑥),

(A.7)
with Lagrange multipliers 𝜆𝑖 for each constraint 𝑖.

To guarantee KKT conditions and Strong duality, we need Slater’s condition:

A.4 Bregman Divergences and Proximal Mappings 217

there exists some 𝑥 ≥ 0 such that 𝑔 𝑗 (𝑥) < 0 for all 𝑗 , and 𝑥 is in the domain of
𝑓 .

First we state a result purely related to the existence of Lagrange multipli-
ers supporting an optimal solution, without reference to the dual problem in
Eq. (A.7).

Theorem A.3 Suppose Slater’s condition is satisfied, and let 𝑥∗ be an optimal
solution to Eq. (A.6). Then there exists Lagrange multiplier vectors 𝜆 ∈ R𝑚≥0
and 𝜇 ∈ 𝑅𝑝𝑙𝑢𝑠𝑛 such that:

(i) Stationarity: 0 ∈ 𝜕 𝑓 (𝑥∗) + ∑
𝑗∈[𝑚] 𝜆 𝑗𝜕𝑔 𝑗 (𝑥∗) + 𝜇.

(ii) Complementary slackness: 𝜆 𝑗𝑔 𝑗 (𝑥∗) = 0,∀ 𝑗 ∈ [𝑚] and 𝑥∗
𝑖
𝜇𝑖 = 0,∀𝑖 ∈ [𝑛].

Similarly, under Slater’s condition we have strong duality, in which case we
get the following primal and dual KKT conditions:

Theorem A.4 Assume that Slater’s condition is satisfied. If (A.6) has a
finite optimal value 𝑓 ∗ then (A.7) has a finite optimal value 𝑞∗ and 𝑓 ∗ = 𝑞∗.
Furthermore, a solution pair 𝑥∗, 𝜆∗ is optimal if and only if the following
Karush-Kuhn-Tucker (KKT) conditions hold:

• (primal feasibility) 𝑥∗ is a feasible solution of (A.6).
• (dual feasibility) 𝜆∗ ≥ 0.
• (complementary slackness) 𝜆∗

𝑖
𝑔𝑖 (𝑥∗) = 0 for all 𝑖.

• (stationarity) 𝑥∗ ∈ arg min𝑥≥0 𝐿 (𝑥, 𝜆∗).

Theorem A.4 is a specialization to settings covered in this book. In reality
much stronger statements can be made: For a more general statement of the
strong duality theorem and KKT conditions used here, see Bertsekas et al.
(2003) Proposition 6.4.4. The KKT conditions can be significantly generalized
beyond convex programming. Bauschke and Combettes (2017, Proposition
27.21) also gives a very general KKT theorem.

A.4 Bregman Divergences and Proximal Mappings

Consider the problem

prox(𝑔) = arg min
𝑥∈X

⟨𝑔, 𝑥⟩ + 𝑑 (𝑥),

where 𝑑 : 𝑋 → R is a strongly convex function with modulus 𝜇 > 0 with respect
to a norm ∥ · ∥ (see Definition A.1). Let ∥ · ∥∗ denote the dual norm. The function
prox(𝑔) has a useful interpretation in terms of the convex conjugate 𝑑∗ (𝑔) =

218 Optimization Background

max𝑥 ⟨𝑔, 𝑥⟩ − 𝑑 (𝑥). Notice that if we change the maximum to a minimum by
dividing through by −1, then we get 𝑑∗ (𝑔) = −(min𝑥 ⟨−𝑔, 𝑥⟩ + 𝑑 (𝑥)). We have
that prox(𝑔) is equal to the argument of this minimization problem. Next we note
that the gradient∇𝑑∗ (𝑔) is exactly equal to this argument by Danskin’s theorem,
due to the strong convexity of 𝑑 which ensures that there is a unique optimal
solution to the minimization problem. It follows that prox(𝑔) = ∇𝑑∗ (−𝑔).

A basic fact from convex analysis says that if a function 𝑑 is strongly convex
with modulus 𝜇, then the gradient of its convex conjugate is 1/𝜇-Lipschitz.
This is formalized below, where we also provide a direct proof.

Lemma A.5 The prox function satisfies

∥ prox(𝑔) − prox(�̂�)∥ ≤ 1
𝜇
∥𝑔 − �̂�∥∗.

Proof Let 𝑥∗ = prox(𝑔) and 𝑥∗ = prox(�̂�). Let 𝑓 (𝑥) = ⟨𝑔, 𝑥⟩ + 𝑑 (𝑥) and
𝑓 (𝑥) = ⟨�̂�, 𝑥⟩ + 𝑑 (𝑥). Since the sum of a linear and strongly convex function is
strongly convex with the same modulus, we have that 𝑓 is strongly convex with
modulus 𝜇. Combining strong convexity and optimality of 𝑥∗ and 𝑥∗, we have
that

𝜇

2
∥𝑥∗ − 𝑥∗∥2 ≤ 𝑓 (𝑥∗) − 𝑓 (𝑥∗) = ⟨𝑔, 𝑥∗ − 𝑥∗⟩ + 𝑑 (𝑥∗) − 𝑑 (𝑥∗),

𝜇

2
∥𝑥∗ − 𝑥∗∥2 ≤ 𝑓 (𝑥∗) − 𝑓 (𝑥∗) = ⟨�̂�, 𝑥∗ − 𝑥∗⟩ + 𝑑 (𝑥∗) − 𝑑 (𝑥∗).

Summing the inequalities and applying Hölder’s inequality yields

𝜇∥𝑥∗ − 𝑥∗∥2 ≤ ⟨𝑔 − �̂�, 𝑥∗ − 𝑥∗⟩ ≤ ∥𝑔 − �̂�∥∗∥𝑥∗ − 𝑥∗∥.

□

The Bregman divergence 𝐷 (𝑥′∥𝑥) = 𝑑 (𝑥′) − 𝑑 (𝑥) = ⟨∇𝑑 (𝑥), 𝑥′ − 𝑥⟩ (in-
troduced in Chapter 4) is strongly convex as long as the distance-generating
function 𝑑 is strongly convex, with the same modulus. Since 𝑑 is strongly
convex and 𝐷 (𝑥′∥𝑥) measures the difference between 𝑑 (𝑥′) and the first-order
approximation at 𝑑 (𝑥), we have the inequality

𝐷 (𝑥′∥𝑥) ≥ ∥𝑥′ − 𝑥∥2, (A.8)

where ∥ · ∥ is the norm that 𝑑 is strongly convex with respect to.

A.5 Berge’s Maximum Theorem 219

A.5 Berge’s Maximum Theorem

Berge’s maximum theorem is a useful tool from optimization theory which gives
conditions under which the solution to a maximization problem is continuous
in the parameters of the problem. The theorem is stated below. It is used widely
in economics, since the decision problem of an agent in a game or a buyer in a
competitive market may face a parameterized maximization problem, e.g. with
prices as the parameters in the case of a buyer in a competitive market. Proofs
of the results stated here can be found in Sundaram (1996).

Let 𝜃 ∈ Θ be the set of parameters that we vary (e.g. the prices that are input
to a demand function), and let the optimization variables 𝑥 ∈ X. The theorem
is concerned with optimization problems of the form

max
𝑥

𝑓 (𝑥, 𝜃)

s.t. 𝑥 ∈ 𝑋 (𝜃).
(A.9)

Let 𝑓 ∗ (𝜃) ∈ R be the optimal value of the problem for the parameter choice
𝜃, and let 𝑥∗ (𝜃) ⊂ X be the set of optimal solutions to the problem. Berge’s
maximum theorem gives conditions under which these functions are continuous
in 𝜃. In order to work with Berge’s maximum theorem, we will need the notion
of upper hemicontinuity.

Definition A.6 A set-valued mapping 𝜙 : 𝑋 → P(𝑋) is upper hemicontinu-
ous at a point 𝑥 ∈ 𝑋 if for every open set 𝑈 ⊂ 𝑋 containing 𝜙(𝑥), there exists
an open set𝑉 ⊂ 𝑋 containing 𝑥 such that for all 𝑦 ∈ 𝑉 , 𝜙(𝑦) ⊆ 𝑈. A set-valued
mapping 𝜙 is upper hemicontinuous on 𝑋 if it is upper hemicontinuous at every
point in 𝑋 .

If the correspondence 𝜙 is compact-valued, then upper hemicontinuity is
equivalent to having a closed graph (see Section 10.2).

The standard version of the theorem guarantees continuity of the optimal
value function 𝑓 ∗ (𝜃) and upper hemicontinuity of the optimal solution set
𝑥∗ (𝜃) under mild continuity conditions:

Theorem A.7 Let 𝑓 : X×Θ → R be a continuous function, and let 𝑋 (𝜃) be a
nonempty compact set for all 𝜃 ∈ Θ. If 𝑋 (𝜃) is continuous (i.e. both upper and
lower hemicontinuous) in 𝜃, then the optimal value function 𝑓 ∗ (𝜃) is continuous
in 𝜃, and the optimal solution set 𝑥∗ (𝜃) is upper hemicontinuous in 𝜃.

There is also a stronger version of the theorem which gives additional prop-
erties of the optimal solution set 𝑥∗ (𝜃) when the optimization problem is a
convex program. We use the same setup as in Theorem A.7, but we assume that
𝑓 is concave in 𝑥 for all 𝜃 ∈ Θ and the decision set 𝑋 (𝜃) is convex for any 𝜃.

220 Optimization Background

Theorem A.8 Let 𝑓 : X ×Θ → R be a concave continuous function, and let
𝑋 (𝜃) be a nonempty compact convex set for all 𝜃 ∈ Θ.

(i) If 𝑓 is concave in 𝑥 for all 𝜃 ∈ Θ, then 𝑥∗ (𝜃) is a convex-valued correspon-
dence.

(ii) If 𝑓 is strictly concave in 𝑥 for all 𝜃 ∈ Θ, then the optimal solution set 𝑥∗ (𝜃)
is single-valued and continuous in 𝜃.

Appendix B
Probability Background

A discrete-time martingale is a stochastic process consisting of a sequence of
random variables 𝑍1, 𝑍2, . . . such that for any time 𝑡, we have

E[𝑍𝑡] < ∞,

E[𝑍𝑡 |𝑍1, . . . , 𝑍𝑡−1] = 𝑍𝑡−1.

The first condition is a regularity condition ensuring finiteness. In applications
of martingales in online learning this is often satisfied trivially because rewards
are usually assumed to be bounded, such as in Section 17.2. The second con-
dition, in words, requires that the expected value of the process at a given time
step 𝑡 (conditional on all past realizations of random variables) is exactly the
realized value at time step 𝑡 −1. In applications in online learning, a martingale
is often constructed by defining a random variable equal to the sum of devi-
ations around the expected value of some sequence of random variables, e.g.
rewards or resource expenditures.

Martingales are often exemplified via gambling: suppose that the stochastic
process describes a gambler’s wealth over a discrete set of time steps. Then the
martingale property ensures that the gambling process is fair in the sense that
the expected losses and gains cancel out.

A classical result that is used extensively in online learning is the Azuma-
Hoeffding inequality, which allows one to bound how much a martingale process
varies around its initial value. This is frequently used in online learning to bound
a martingale difference sequence such as the sum of deviations around the mean
loss at each iteration 𝑡 when an online learning algorithm observes unbiased
estimates of a loss vector.

Theorem B.1 (Azuma-Hoeffding inequality) Suppose 𝑍0, 𝑍1, . . . is a martin-
gale such that |𝑍𝑡 −𝑍𝑡−1 | ≤ 𝑐𝑡 almost surely for all 𝑡 ∈ [𝑇]. Let 𝑑𝑡 =

∑
𝜏∈[𝑡] 𝑐

2
𝜏 .

221

222 Probability Background

Then we have that

P[|𝑋𝑡 − 𝑋0 | ≥ 𝜖] ≤ 2 exp
(
−𝜖2

2𝑑𝑡

)
.

A random variable 𝜏 ∈ Z>0 is a stopping time with respect to a martingale
sequence 𝑍1, 𝑍2, . . . if the question of whether 𝜏 = 𝑡 for any 𝑡 > 0 is determined
purely by the variables up to time 𝑡, i.e. the variables 𝑍1, . . . , 𝑍𝑡 .

We define the stopped process �̄�𝑡 as

�̄�𝑡 =

{
𝑍𝑡 if 𝑡 ≤ 𝜏

𝑍𝜏 if 𝑡 > 𝜏

Suppose 𝑍𝑡 is the wealth of a gambler for each round of gambling they partic-
ipate in. Now suppose that 𝜏 is a random variable deciding when the gambler
quits the gambling process. In that case, the stopped process �̄�𝑡 tells us the
wealth of the gambler when they stop. The optional stopping theorem, shown
below, tells us that when 𝑍𝑡 is a martingale, i.e. a fair gambling process, then
the expected initial wealth of the gambler equals their expected wealth at the
stopped time. Thus, there is no way for the gambler to devise a stopping process
such that their expected wealth when they quit is higher (or lower) than their
initial wealth.

Theorem B.2 (Optional Stopping Theorem) Let 𝑍1, . . . be a martingale se-
quence, and let 𝜏 be a stopping time. If any of the following conditions hold:

(i) The random variables �̄�1, �̄�2, . . . are uniformly bounded,
(ii) 𝜏 is bounded,

(iii) E[𝜏] < ∞, and there exists 𝑀 < ∞ such that E[|𝑍𝑡+1 − 𝑍𝑡 |𝑍1, . . . , 𝑍𝑡] < 𝑀 ,

then E[𝑍𝜏] = E[𝑍1].

Further reading.
The reader is referred to Ross (1995) for an introduction to the tools from
stochastic processes used here. For a measure-theoretic introduction, the reader
is referred to Schilling (2017).

Bibliography

Abernethy, Jacob, Bartlett, Peter L, and Hazan, Elad. 2011. Blackwell approachabil-
ity and no-regret learning are equivalent. Pages 27–46 of: Proceedings of the
24th Annual Conference on Learning Theory. JMLR Workshop and Conference
Proceedings.

Aggarwal, Gagan, Badanidiyuru, Ashwinkumar, Balseiro, Santiago R, Bhawalkar,
Kshipra, Deng, Yuan, Feng, Zhe, Goel, Gagan, Liaw, Christopher, Lu, Haihao,
Mahdian, Mohammad, et al. 2024. Auto-bidding and auctions in online advertis-
ing: A survey. ACM SIGecom Exchanges, 22(1), 159–183.

Aggarwal, Gagan, Fikioris, Giannis, and Zhao, Mingfei. 2025. No-regret algorithms
in non-truthful auctions with budget and roi constraints. Pages 1398–1415 of:
Proceedings of the ACM on Web Conference 2025.

Agrawal, Shipra, Wang, Zizhuo, and Ye, Yinyu. 2014. A dynamic near-optimal algo-
rithm for online linear programming. Operations Research, 62(4), 876–890.

Aliprantis, Charalambos D, and Border, Kim C. 2006. Infinite dimensional analysis: a
hitchhiker’s guide. Springer Science & Business Media.

Angwin, Julia, and Parris Jr., Terry. 2016. Facebook Lets Advertisers Exclude Users by
Race. ProPublica.

Angwin, Julia, Scheiber, Noam, and Tobin, Ariana. 2016. Dozens of Companies Are
Using Facebook to Exclude Older Workers From Job Ads. ProPublica.

Arrow, Kenneth J, and Debreu, Gerard. 1954. Existence of an equilibrium for a com-
petitive economy. Econometrica: Journal of the Econometric Society, 265–290.

Balseiro, Santiago, Kim, Anthony, Mahdian, Mohammad, and Mirrokni, Vahab. 2021.
Budget-Management Strategies in Repeated Auctions. Operations research, 859–
876.

Balseiro, Santiago, Kroer, Christian, and Kumar, Rachitesh. 2023a. Online resource
allocation under horizon uncertainty. Pages 63–64 of: Abstract Proceedings of the
2023 ACM SIGMETRICS International Conference on Measurement and Model-
ing of Computer Systems.

Balseiro, Santiago R, and Gur, Yonatan. 2019. Learning in repeated auctions with
budgets: Regret minimization and equilibrium. Management Science, 65(9), 3952–
3968.

Balseiro, Santiago R, Besbes, Omar, and Weintraub, Gabriel Y. 2015. Repeated auctions

223

224 Bibliography

with budgets in ad exchanges: Approximations and design. Management Science,
61(4), 864–884.

Balseiro, Santiago R, Lu, Haihao, and Mirrokni, Vahab. 2022. The best of many worlds:
Dual mirror descent for online allocation problems. Operations Research.

Balseiro, Santiago R, Kumar, Rachitesh, Mirrokni, Vahab, Sivan, Balasubramanian, and
Wang, Di. 2023b. Robust budget pacing with a single sample. Pages 1636–1659
of: International Conference on Machine Learning. PMLR.

Barman, Siddharth, Krishnamurthy, Sanath Kumar, and Vaish, Rohit. 2018. Finding
fair and efficient allocations. Pages 557–574 of: Proceedings of the 2018 ACM
Conference on Economics and Computation.

Barocas, Solon, Hardt, Moritz, and Narayanan, Arvind. 2019. Fairness and Machine
Learning. fairmlbook.org. http://www.fairmlbook.org.

Bauschke, Heinz H, and Combettes, Patrick L. 2017. Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. Springer.

Beck, Amir. 2017. First-order methods in optimization. Vol. 25. SIAM.
Beck, Amir, and Teboulle, Marc. 2003. Mirror descent and nonlinear projected sub-

gradient methods for convex optimization. Operations Research Letters, 31(3),
167–175.

Begle, Edward G. 1950. A fixed point theorem. Annals of Mathematics, 51(3), 544–550.
Bei, Xiaohui, Garg, Jugal, and Hoefer, Martin. 2019. Ascending-price algorithms for

unknown markets. ACM Transactions on Algorithms (TALG), 15(3), 1–33.
Bertsekas, Dimitri P, Nedic, A, and Ozdaglar, A. 2003. Convex analysis and optimiza-

tion. 2003. Athena Scientific.
Bertsimas, Dimitris, and Tsitsiklis, John N. 1997. Introduction to linear optimization.

Vol. 6. Athena scientific Belmont, MA.
Birnbaum, Benjamin, Devanur, Nikhil R, and Xiao, Lin. 2011. Distributed algorithms

via gradient descent for fisher markets. Pages 127–136 of: Proceedings of the 12th
ACM conference on Electronic commerce. ACM.

Blackwell, David. 1956. An analog of the minimax theorem for vector payoffs. Pacific
Journal of Mathematics, 6(1), 1–8.

Börgers, Tilman. 2015. An introduction to the theory of mechanism design. Oxford
university press.

Borgs, Christian, Chayes, Jennifer, Immorlica, Nicole, Jain, Kamal, Etesami, Omid,
and Mahdian, Mohammad. 2007. Dynamics of bid optimization in online ad-
vertisement auctions. Pages 531–540 of: Proceedings of the 16th international
conference on World Wide Web.

Bowling, Michael, Burch, Neil, Johanson, Michael, and Tammelin, Oskari. 2015. Heads-
up limit hold’em poker is solved. Science, 347(6218), 145–149.

Boyd, Stephen P, and Vandenberghe, Lieven. 2004. Convex optimization. Cambridge
university press.

Brams, Steven J, and Taylor, Alan D. 1996. Fair Division: From cake-cutting to dispute
resolution. Cambridge University Press.

Brown, Matthew, Sinha, Arunesh, Schlenker, Aaron, and Tambe, Milind. 2016. One
size does not fit all: A game-theoretic approach for dynamically and effectively
screening for threats. In: Thirtieth AAAI Conference on Artificial Intelligence.

http://www.fairmlbook.org

Bibliography 225

Brown, Noam, and Sandholm, Tuomas. 2017. Safe and nested subgame solving for
imperfect-information games. Pages 689–699 of: Advances in neural information
processing systems.

Brown, Noam, and Sandholm, Tuomas. 2018. Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals. Science, 359(6374), 418–424.

Brown, Noam, and Sandholm, Tuomas. 2019a. Solving imperfect-information games
via discounted regret minimization. Pages 1829–1836 of: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33.

Brown, Noam, and Sandholm, Tuomas. 2019b. Superhuman AI for multiplayer poker.
Science, 365(6456), 885–890.

Brown, Noam, Lerer, Adam, Gross, Sam, and Sandholm, Tuomas. 2018a. Deep Coun-
terfactual Regret Minimization. arXiv preprint arXiv:1811.00164.

Brown, Noam, Sandholm, Tuomas, and Amos, Brandon. 2018b. Depth-limited solv-
ing for imperfect-information games. Pages 7663–7674 of: Advances in Neural
Information Processing Systems.

Bubeck, Sébastien, et al. 2015. Convex optimization: Algorithms and complexity.
Foundations and Trends® in Machine Learning, 8(3-4), 231–357.

Budish, Eric. 2011. The combinatorial assignment problem: Approximate competitive
equilibrium from equal incomes. Journal of Political Economy, 119(6), 1061–
1103.

Budish, Eric, Cachon, Gérard P, Kessler, Judd B, and Othman, Abraham. 2016. Course
match: A large-scale implementation of approximate competitive equilibrium from
equal incomes for combinatorial allocation. Operations Research, 65(2), 314–336.

Burch, Neil. 2018. Time and space: Why imperfect information games are hard. Ph.D.
thesis, University of Alberta.

Burch, Neil, Johanson, Michael, and Bowling, Michael. 2014. Solving imperfect in-
formation games using decomposition. In: Twenty-Eighth AAAI Conference on
Artificial Intelligence.

Burch, Neil, Moravcik, Matej, and Schmid, Martin. 2019. Revisiting cfr+ and alternating
updates. Journal of Artificial Intelligence Research, 64, 429–443.

Caragiannis, Ioannis, Kurokawa, David, Moulin, Hervé, Procaccia, Ariel D, Shah, Nis-
arg, and Wang, Junxing. 2016. The unreasonable fairness of maximum Nash
welfare. Pages 305–322 of: Proceedings of the 2016 ACM Conference on Eco-
nomics and Computation. ACM.

Caragiannis, Ioannis, Kurokawa, David, Moulin, Hervé, Procaccia, Ariel D, Shah, Nis-
arg, and Wang, Junxing. 2019. The unreasonable fairness of maximum Nash
welfare. ACM Transactions on Economics and Computation (TEAC), 7(3), 1–32.

Castiglioni, Matteo, Celli, Andrea, and Kroer, Christian. 2024. Online Learning under
Budget and ROI Constraints via Weak Adaptivity. Pages 5792–5816 of: Interna-
tional Conference on Machine Learning. PMLR.

Celli, Andrea, Castiglioni, Matteo, and Kroer, Christian. 2022. Best of many worlds
guarantees for online learning with knapsacks. arXiv preprint arXiv:2202.13710.

Cesa-Bianchi, Nicolo, and Lugosi, Gábor. 2006. Prediction, learning, and games.
Cambridge university press.

Chambolle, Antonin, and Pock, Thomas. 2016. On the ergodic convergence rates of
a first-order primal–dual algorithm. Mathematical Programming, 159(1-2), 253–
287.

226 Bibliography

Chen, Lihua, Ye, Yinyu, and Zhang, Jiawei. 2007. A note on equilibrium pricing as
convex optimization. Pages 7–16 of: International Workshop on Web and Internet
Economics. Springer.

Chen, Xi, and Teng, Shang-Hua. 2009. Spending is not easier than trading: on the
computational equivalence of Fisher and Arrow-Debreu equilibria. Pages 647–
656 of: International Symposium on Algorithms and Computation. Springer.

Chen, Xi, Deng, Xiaotie, and Teng, Shang-Hua. 2009. Settling the complexity of
computing two-player Nash equilibria. Journal of the ACM (JACM), 56(3), 1–57.

Chen, Xi, Kroer, Christian, and Kumar, Rachitesh. 2021a. The Complexity of Pacing
for Second-Price Auctions. In: Proceedings of the 2021 ACM Conference on
Economics and Computation.

Chen, Xi, Kroer, Christian, and Kumar, Rachitesh. 2021b. Throttling Equilibria in
Auction Markets. Page 551 of: Web and Internet Economics - 17th International
Conference, WINE. Lecture Notes in Computer Science, vol. 13112. Springer.

Cheung, Yun Kuen, Cole, Richard, and Rastogi, Ashish. 2012. Tatonnement in ongoing
markets of complementary goods. Pages 337–354 of: Proceedings of the 13th
ACM Conference on Electronic Commerce.

Cheung, Yun Kuen, Cole, Richard, and Devanur, Nikhil R. 2019. Tatonnement beyond
gross substitutes? Gradient descent to the rescue. Games and Economic Behavior.

Cieliebak, Mark, Eidenbenz, Stephan J, Pagourtzis, Aris, and Schlude, Konrad. 2008.
On the Complexity of Variations of Equal Sum Subsets. Nord. J. Comput., 14(3),
151–172.

Clarke, Edward H. 1971. Multipart pricing of public goods. Public choice, 17–33.
Codenotti, Bruno, Saberi, Amin, Varadarajan, Kasturi, and Ye, Yinyu. 2006. Leontief

economies encode nonzero sum two-player games. Pages 659–667 of: SODA, vol.
6.

Cole, Richard, and Fleischer, Lisa. 2008. Fast-converging tatonnement algorithms for
one-time and ongoing market problems. Pages 315–324 of: Proceedings of the
fortieth annual ACM symposium on Theory of computing.

Cole, Richard, Devanur, Nikhil R, Gkatzelis, Vasilis, Jain, Kamal, Mai, Tung, Vazirani,
Vijay V, and Yazdanbod, Sadra. 2017. Convex program duality, fisher markets, and
Nash social welfare. In: 18th ACM Conference on Economics and Computation,
EC 2017. Association for Computing Machinery, Inc.

Conitzer, Vincent, and Sandholm, Tuomas. 2006. Computing the optimal strategy to
commit to. Pages 82–90 of: Proceedings of the 7th ACM conference on Electronic
commerce.

Conitzer, Vincent, and Sandholm, Tuomas. 2008. New complexity results about Nash
equilibria. Games and Economic Behavior, 63(2), 621–641.

Conitzer, Vincent, Kroer, Christian, Sodomka, Eric, and Stier-Moses, Nicolás E. 2018.
Multiplicative Pacing Equilibria in Auction Markets. In: International Conference
on Web and Internet Economics.

Conitzer, Vincent, Kroer, Christian, Panigrahi, Debmalya, Schrijvers, Okke, Sodomka,
Eric, Stier-Moses, Nicolas E, and Wilkens, Chris. 2019. Pacing Equilibrium in
First-Price Auction Markets. In: Proceedings of the 2019 ACM Conference on
Economics and Computation. ACM.

Bibliography 227

Conitzer, Vincent, Kroer, Christian, Sodomka, Eric, and Stier-Moses, Nicolas E. 2022a.
Multiplicative pacing equilibria in auction markets. Operations Research, 70(2),
963–989.

Conitzer, Vincent, Kroer, Christian, Panigrahi, Debmalya, Schrijvers, Okke, Stier-
Moses, Nicolas E, Sodomka, Eric, and Wilkens, Christopher A. 2022b. Pacing
equilibrium in first price auction markets. Management Science, 68(12), 8515–
8535.

Daskalakis, Constantinos, Goldberg, Paul W, and Papadimitriou, Christos H. 2009. The
complexity of computing a Nash equilibrium. SIAM Journal on Computing, 39(1),
195–259.

Daskalakis, Constantinos, Deckelbaum, Alan, and Kim, Anthony. 2015. Near-optimal
no-regret algorithms for zero-sum games. Games and Economic Behavior, 92,
327–348.

Debreu, Gerard. 1952. A social equilibrium existence theorem. Proceedings of the
National Academy of Sciences, 38(10), 886–893.

Deligkas, Argyrios, Fearnley, John, Hollender, Alexandros, and Melissourgos, Themis-
toklis. 2024. Pure-circuit: Tight inapproximability for PPAD. Journal of the ACM,
71(5), 1–48.

Devanur, Nikhil R, and Mehta, Aranyak. 2023. Online Matching in Advertisement
Auctions. Online and Matching-Based Market Design, 130.

Devanur, Nikhil R, Jain, Kamal, Sivan, Balasubramanian, and Wilkens, Christopher A.
2019. Near optimal online algorithms and fast approximation algorithms for
resource allocation problems. Journal of the ACM (JACM), 66(1), 1–41.

Dwork, Cynthia, Hardt, Moritz, Pitassi, Toniann, Reingold, Omer, and Zemel, Richard.
2012. Fairness through awareness. Pages 214–226 of: Proceedings of the 3rd
innovations in theoretical computer science conference. ACM.

Easley, David, Kleinberg, Jon, et al. 2010. Networks, crowds, and markets: Reasoning
about a highly connected world. Vol. 1. Cambridge university press.

Edelman, Benjamin, and Ostrovsky, Michael. 2007. Strategic bidder behavior in spon-
sored search auctions. Decision support systems, 43(1), 192–198.

Edelman, Benjamin, Ostrovsky, Michael, and Schwarz, Michael. 2007. Internet adver-
tising and the generalized second-price auction: Selling billions of dollars worth
of keywords. American economic review, 97(1), 242–259.

Eilenberg, Samuel, and Montgomery, Deane. 1946. Fixed point theorems for multi-
valued transformations. American Journal of mathematics, 68(2), 214–222.

Eisenberg, Edmund. 1961. Aggregation of utility functions. Management Science, 7(4),
337–350.

Eisenberg, Edmund, and Gale, David. 1959. Consensus of subjective probabilities: The
pari-mutuel method. The Annals of Mathematical Statistics, 30(1), 165–168.

Fan, Ky. 1952. Fixed-point and minimax theorems in locally convex topological linear
spaces. Proceedings of the National Academy of Sciences of the United States of
America, 38(2), 121.

Fan, Zhiyuan, Kroer, Christian, and Farina, Gabriele. 2024. On the Optimality of Dilated
Entropy and Lower Bounds for Online Learning in Extensive-Form Games. In:
Advances in Neural Information Processing Systems, NeurIPS 2024.

228 Bibliography

Fang, Fei, Stone, Peter, and Tambe, Milind. 2015. When security games go green:
Designing defender strategies to prevent poaching and illegal fishing. In: Twenty-
Fourth International Joint Conference on Artificial Intelligence.

Farina, Gabriele, Kroer, Christian, and Sandholm, Tuomas. 2017. Regret minimization
in behaviorally-constrained zero-sum games. Pages 1107–1116 of: Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org.

Farina, Gabriele, Ling, Chun Kai, Fang, Fei, and Sandholm, Tuomas. 2019a. Cor-
relation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks.
In: Wallach, Hanna M., Larochelle, Hugo, Beygelzimer, Alina, d’Alché-Buc, Flo-
rence, Fox, Emily B., and Garnett, Roman (eds), Advances in Neural Information
Processing Systems, NeurIPS 2019.

Farina, Gabriele, Kroer, Christian, and Sandholm, Tuomas. 2019b. Online convex
optimization for sequential decision processes and extensive-form games. Pages
1917–1925 of: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
33.

Farina, Gabriele, Kroer, Christian, and Sandholm, Tuomas. 2019c. Optimistic Regret
Minimization for Extensive-Form Games via Dilated Distance-Generating Func-
tions. Pages 5222–5232 of: Advances in Neural Information Processing Systems.

Farina, Gabriele, Kroer, Christian, and Sandholm, Tuomas. 2020. Stochastic Regret
Minimization in Extensive-Form Games. In: International Conference on Machine
Learning. PMLR.

Farina, Gabriele, Kroer, Christian, and Sandholm, Tuomas. 2021a. Better Regularization
for Sequential Decision Spaces: Fast Convergence Rates for Nash, Correlated, and
Team Equilibria. In: Proceedings of the 2021 ACM Conference on Economics and
Computation.

Farina, Gabriele, Kroer, Christian, and Sandholm, Tuomas. 2021b. Faster Game Solving
via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror
Descent. In: Proceedings of the AAAI Conference on Artificial Intelligence. AAAI.

Farina, Gabriele, Grand-Clément, Julien, Kroer, Christian, Lee, Chung-Wei, and Luo,
Haipeng. 2023. Regret matching+:(in) stability and fast convergence in games.
Advances in Neural Information Processing Systems, 36, 61546–61572.

Farina, Gabriele, Kroer, Christian, and Sandholm, Tuomas. 2025. Better regularization
for sequential decision spaces: Fast convergence rates for nash, correlated, and
team equilibria. Operations Research.

Filos-Ratsikas, Aris, Hansen, Kristoffer Arnsfelt, Høgh, Kasper, and Hollender, Alexan-
dros. 2024. PPAD-membership for problems with exact rational solutions: a gen-
eral approach via convex optimization. Pages 1204–1215 of: Proceedings of the
56th Annual ACM Symposium on Theory of Computing.

Flajolet, Arthur, and Jaillet, Patrick. 2017. Real-time bidding with side information.
Pages 5168–5178 of: Proceedings of the 31st International Conference on Neural
Information Processing Systems. Curran Associates Inc.

Flaspohler, Genevieve E, Orabona, Francesco, Cohen, Judah, Mouatadid, Soukayna,
Oprescu, Miruna, Orenstein, Paulo, and Mackey, Lester. 2021. Online learning
with optimism and delay. Pages 3363–3373 of: International Conference on
Machine Learning. PMLR.

Fudenberg, Drew, and Tirole, Jean. 1991. Game theory. MIT press.

Bibliography 229

Ganzfried, Sam, and Sandholm, Tuomas. 2015. Endgame Solving in Large Imperfect-
Information Games. Pages 37–45 of: Proceedings of the 2015 International Con-
ference on Autonomous Agents and Multiagent Systems.

Gao, Yuan, and Kroer, Christian. 2020. First-order methods for large-scale market
equilibrium computation. Advances in Neural Information Processing Systems,
33.

Gao, Yuan, Kroer, Christian, and Goldfarb, Donald. 2021a. Increasing Iterate Averaging
for Solving Saddle-Point Problems. In: Proceedings of the AAAI Conference on
Artificial Intelligence.

Gao, Yuan, Peysakhovich, Alex, and Kroer, Christian. 2021b. Online market equilibrium
with application to fair division. Advances in Neural Information Processing
Systems, 34, 27305–27318.

Ghodsi, Mohammad, HajiAghayi, MohammadTaghi, Seddighin, Masoud, Seddighin,
Saeed, and Yami, Hadi. 2018. Fair allocation of indivisible goods: Improvements
and generalizations. Pages 539–556 of: Proceedings of the 2018 ACM Conference
on Economics and Computation.

Gilboa, Itzhak, and Zemel, Eitan. 1989. Nash and correlated equilibria: Some complexity
considerations. Games and Economic Behavior, 1(1), 80–93.

Glicksberg, Irving L. 1952. A further generalization of the Kakutani fixed point theo-
rem, with application to Nash equilibrium points. Proceedings of the American
Mathematical Society, 3(1), 170–174.

Goldman, Jonathan, and Procaccia, Ariel D. 2015. Spliddit: Unleashing fair division
algorithms. ACM SIGecom Exchanges, 13(2), 41–46.

Grand-Clément, Julien, and Kroer, Christian. 2024. Solving optimization problems with
Blackwell approachability. Mathematics of Operations Research, 49(2), 697–728.

Gribik, Paul R, Hogan, William W, Pope, Susan L, et al. 2007. Market-clearing elec-
tricity prices and energy uplift. Cambridge, MA, 1–46.

Groves, Theodore. 1973. Incentives in teams. Econometrica: Journal of the Econometric
Society, 617–631.

Gupta, Anupam, and Molinaro, Marco. 2016. How the experts algorithm can help solve
lps online. Mathematics of Operations Research, 41(4), 1404–1431.

Hart, Sergiu, and Mas-Colell, Andreu. 2000. A simple adaptive procedure leading to
correlated equilibrium. Econometrica, 68(5), 1127–1150.

Hazan, Elad, et al. 2016. Introduction to online convex optimization. Foundations and
Trends® in Optimization, 2(3-4), 157–325.

Hoda, Samid, Gilpin, Andrew, Pena, Javier, and Sandholm, Tuomas. 2010. Smoothing
techniques for computing Nash equilibria of sequential games. Mathematics of
Operations Research, 35(2), 494–512.

Hogan, William W. 1992. Contract networks for electric power transmission. Journal
of regulatory economics, 4(3), 211–242.

Jalota, Devansh, Pavone, Marco, Qi, Qi, and Ye, Yinyu. 2023. Fisher markets with linear
constraints: Equilibrium properties and efficient distributed algorithms. Games
and Economic Behavior, 141, 223–260.

Jiang, Jiashuo, Li, Xiaocheng, and Zhang, Jiawei. 2025. Online stochastic optimization
with wasserstein-based nonstationarity. Management Science.

Johari, Ramesh. 2007. MS&E 336: Dynamics and Learning in Games.

230 Bibliography

Kiekintveld, Christopher, Jain, Manish, Tsai, Jason, Pita, James, Ordóñez, Fernando,
and Tambe, Milind. 2009. Computing optimal randomized resource allocations for
massive security games. Pages 689–696 of: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1.

Kirschen, Daniel S, and Strbac, Goran. 2018. Fundamentals of power system economics.
John Wiley & Sons.

Kjeldsen, Tinne Hoff. 2001. John von Neumann’s conception of the minimax theorem:
a journey through different mathematical contexts. Archive for history of exact
sciences, 56(1), 39–68.

Koller, Daphne, Megiddo, Nimrod, and von Stengel, Bernhard. 1996. Efficient computa-
tion of equilibria for extensive two-person games. Games and economic behavior,
14(2), 247–259.

Korzhyk, Dmytro, Conitzer, Vincent, and Parr, Ronald. 2010. Complexity of computing
optimal stackelberg strategies in security resource allocation games. In: Twenty-
Fourth AAAI Conference on Artificial Intelligence.

Krishna, Vijay. 2009. Auction theory. Academic press.
Kroer, Christian, and Peysakhovich, Alexander. 2019. Scalable Fair Division for’At

Most One’Preferences. arXiv preprint arXiv:1909.10925.
Kroer, Christian, Peysakhovich, Alexander, Sodomka, Eric, and Stier-Moses, Nicolas E.

2019. Computing large market equilibria using abstractions. Pages 745–746 of:
Proceedings of the 2019 ACM Conference on Economics and Computation.

Kroer, Christian, Waugh, Kevin, Kılınç-Karzan, Fatma, and Sandholm, Tuomas. 2020.
Faster algorithms for extensive-form game solving via improved smoothing func-
tions. Mathematical Programming, 1–33.

Kuhn, HW. 2016. A SIMPLIFIED TWO-PERSON POKER. Contributions to the
Theory of Games, Volume I, 97.

Kurokawa, David, Procaccia, Ariel D, and Wang, Junxing. 2018. Fair enough: Guaran-
teeing approximate maximin shares. Journal of the ACM (JACM), 65(2), 1–27.

Lanctot, Marc, Waugh, Kevin, Zinkevich, Martin, and Bowling, Michael. 2009. Monte
Carlo sampling for regret minimization in extensive games. Pages 1078–1086 of:
Advances in neural information processing systems.

Lee, Chung-Wei, Kroer, Christian, and Luo, Haipeng. 2021. Last-iterate Convergence in
Extensive-Form Games. In: Advances in Neural Information Processing Systems,
NeurIPS 2019.

Lee, Euiwoong. 2017. APX-hardness of maximizing Nash social welfare with indivisible
items. Information Processing Letters, 122, 17–20.

Levin, Dave, LaCurts, Katrina, Spring, Neil, and Bhattacharjee, Bobby. 2008. Bittorrent
is an auction: analyzing and improving bittorrent’s incentives. Pages 243–254 of:
Proceedings of the ACM SIGCOMM 2008 conference on Data communication.

Liao, Luofeng, Gao, Yuan, and Kroer, Christian. 2022. Nonstationary dual averaging
and online fair allocation. Advances in Neural Information Processing Systems,
35, 37159–37172.

Lipton, Richard J, Markakis, Evangelos, Mossel, Elchanan, and Saberi, Amin. 2004. On
approximately fair allocations of indivisible goods. Pages 125–131 of: Proceedings
of the 5th ACM Conference on Electronic Commerce.

Bibliography 231

Liu, Mingyang, Farina, Gabriele, and Ozdaglar, Asuman. 2024. LiteEFG: An Ef-
ficient Python Library for Solving Extensive-form Games. arXiv preprint
arXiv:2407.20351.

Mas-Colell, Andreu, Whinston, Michael Dennis, Green, Jerry R, et al. 1995. Microe-
conomic theory. Vol. 1. Oxford university press New York.

Moravcik, Matej, Schmid, Martin, Ha, Karel, Hladik, Milan, and Gaukrodger, Stephen J.
2016. Refining subgames in large imperfect information games. In: Thirtieth AAAI
Conference on Artificial Intelligence.

Moravčı́k, Matej, Schmid, Martin, Burch, Neil, Lisỳ, Viliam, Morrill, Dustin, Bard,
Nolan, Davis, Trevor, Waugh, Kevin, Johanson, Michael, and Bowling, Michael.
2017. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker.
Science, 356(6337), 508–513.

Nan, Tianlong, Gao, Yuan, and Kroer, Christian. 2024. On the Convergence of T\ˆ
atonnement for Linear Fisher Markets. arXiv preprint arXiv:2406.12526.

Nash Jr, John F. 1950. Equilibrium points in n-person games. Proceedings of the
national academy of sciences, 36(1), 48–49.

Neller, Todd W, and Lanctot, Marc. 2013. An introduction to counterfactual regret
minimization. In: Proceedings of model AI assignments, the fourth symposium on
educational advances in artificial intelligence (EAAI-2013), vol. 11.

Nemirovski, Arkadi. 2004. Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM Journal on Optimization, 15(1), 229–251.

Nemirovsky, Arkadi, and Yudin, David Borisovich. 1983. Problem complexity and
method efficiency in optimization.

Nesterov, Yu. 2005a. Excessive gap technique in nonsmooth convex minimization.
SIAM Journal on Optimization, 16(1), 235–249.

Nesterov, Yu. 2005b. Smooth minimization of non-smooth functions. Mathematical
programming, 103, 127–152.

Nesterov, Yurii. 2009. Primal-dual subgradient methods for convex problems. Mathe-
matical programming, 120(1), 221–259.

Nesterov, Yurii, and Shikhman, Vladimir. 2018. Computation of Fisher–Gale Equi-
librium by Auction. Journal of the Operations Research Society of China, 6(3),
349–389.

Neumann, Von. 1937. Uber ein okonomsiches gleichungssystem und eine verallge-
meinering des browerschen fixpunktsatzes. Pages 73–83 of: Erge. Math. Kolloq.,
vol. 8.

Nisan, Noam, Roughgarden, Tim, Tardos, Eva, and Vazirani, Vijay V. 2007. Algorithmic
game theory. Cambridge University Press.

Ok, Efe A. 2011. Real analysis with economic applications. Princeton University Press.
O’Neill, Richard P, Sotkiewicz, Paul M, Hobbs, Benjamin F, Rothkopf, Michael H,

and Stewart Jr, William R. 2005. Efficient market-clearing prices in markets with
nonconvexities. European journal of operational research, 164(1), 269–285.

Orabona, Francesco. 2019. A Modern Introduction to Online Learning. arXiv preprint
arXiv:1912.13213.

Osborne, Martin J, and Rubinstein, Ariel. 1994. A course in game theory. MIT press.

232 Bibliography

Othman, Abraham, Papadimitriou, Christos, and Rubinstein, Aviad. 2016. The com-
plexity of fairness through equilibrium. ACM Transactions on Economics and
Computation (TEAC), 4(4), 1–19.

Peysakhovich, Alexander, Kroer, Christian, and Usunier, Nicolas. 2023. Implement-
ing Fairness Constraints in Markets Using Taxes and Subsidies. Pages 916–930
of: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and
Transparency.

Pita, James, Jain, Manish, Marecki, Janusz, Ordóñez, Fernando, Portway, Christopher,
Tambe, Milind, Western, Craig, Paruchuri, Praveen, and Kraus, Sarit. 2008. De-
ployed ARMOR protection: the application of a game theoretic model for security
at the Los Angeles International Airport.

Popov, Leonid Denisovich. 1980. A modification of the Arrow-Hurwicz method for
search of saddle points. Mathematical notes of the Academy of Sciences of the
USSR, 28(5), 845–848.

Rakhlin, Alexander, and Sridharan, Karthik. 2013. Optimization, learning, and games
with predictable sequences. Pages 3066–3074 of: Proceedings of the 26th Inter-
national Conference on Neural Information Processing Systems-Volume 2.

Romanovskii, IV. 1962. Reduction of a Game with Full Memory to a Matrix Game.
Doklady Akademii Nauk SSSR, 144(1), 62–+.

Ross, Sheldon M. 1995. Stochastic processes. John Wiley & Sons.
Roughgarden, Tim. 2016. Twenty lectures on algorithmic game theory. Cambridge

University Press.
Sandberg, Sheryl. 2019. Doing More to Protect Against Discrimination in Housing,

Employment and Credit Advertising. Facebook.
Schilling, René L. 2017. Measures, integrals and martingales. Cambridge University

Press.
Schweppe, FC, Tabors, RD, Caraminis, MC, and Bohn, RE. 1988. Spot pricing of

electricity.
Shmyrev, Vadim I. 2009. An algorithm for finding equilibrium in the linear exchange

model with fixed budgets. Journal of Applied and Industrial Mathematics, 3(4),
505.

Shoham, Yoav, and Leyton-Brown, Kevin. 2008. Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press.

Sinha, Arunesh, Fang, Fei, An, Bo, Kiekintveld, Christopher, and Tambe, Milind. 2018.
Stackelberg security games: Looking beyond a decade of success. IJCAI.

Sion, Maurice, et al. 1958. On general minimax theorems. Pacific Journal of mathe-
matics, 8(1), 171–176.

Southey, Finnegan, Bowling, Michael, Larson, Bryce, Piccione, Carmelo, Burch, Neil,
Billings, Darse, and Rayner, Chris. 2005. Bayes’ bluff: opponent modelling in
poker. Pages 550–558 of: Proceedings of the Twenty-First Conference on Uncer-
tainty in Artificial Intelligence.

Steele, J Michael. 2004. The Cauchy-Schwarz master class: an introduction to the art
of mathematical inequalities. Cambridge University Press.

Stott, Brian, Jardim, Jorge, and Alsaç, Ongun. 2009. DC power flow revisited. IEEE
Transactions on Power Systems, 24(3), 1290–1300.

Bibliography 233

Stradi, Francesco Emanuele, Castiglioni, Matteo, Marchesi, Alberto, Gatti, Nicola,
and Kroer, Christian. 2025. No-Regret Learning Under Adversarial Resource
Constraints: A Spending Plan Is All You Need!

Sundaram, Rangarajan K. 1996. A first course in optimization theory. Cambridge
university press.

Sweeney, James L. 2013. The California electricity crisis. Hoover Press.
Syrgkanis, Vasilis, Agarwal, Alekh, Luo, Haipeng, and Schapire, Robert E. 2015. Fast

convergence of regularized learning in games. Pages 2989–2997 of: Proceedings
of the 28th International Conference on Neural Information Processing Systems-
Volume 2.

Talluri, Kalyan, and Van Ryzin, Garrett. 1998. An analysis of bid-price controls for
network revenue management. Management science, 44(11-part-1), 1577–1593.

Tambe, Milind. 2011. Security and game theory: algorithms, deployed systems, lessons
learned. Cambridge university press.

Tammelin, Oskari. 2014. Solving large imperfect information games using CFR+. arXiv
preprint arXiv:1407.5042.

Tammelin, Oskari, Burch, Neil, Johanson, Michael, and Bowling, Michael. 2015. Solv-
ing heads-up limit Texas Hold’em. In: Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence.

Taylor, Joshua Adam. 2015. Convex optimization of power systems. Cambridge Univer-
sity Press.

Udell, Madeleine, and Townsend, Alex. 2019. Why are big data matrices approximately
low rank? SIAM Journal on Mathematics of Data Science, 1(1), 144–160.

Udell, Madeleine, Horn, Corinne, Zadeh, Reza, Boyd, Stephen, et al. 2016. Generalized
low rank models. Foundations and Trends® in Machine Learning, 9(1), 1–118.

Varian, Hal R. 2007. Position auctions. international Journal of industrial Organization,
25(6), 1163–1178.

Varian, Hal R, and Harris, Christopher. 2014. The VCG auction in theory and practice.
American Economic Review, 104(5), 442–45.

Vickrey, William. 1961. Counterspeculation, auctions, and competitive sealed tenders.
The Journal of finance, 16(1), 8–37.

von Neumann, John. 1928. Zur theorie der gesellschaftsspiele. Mathematische annalen,
100(1), 295–320.

von Neumann, John. 1959. On the theory of games of strategy. Contributions to the
Theory of Games, 4, 13–42.

von Stackelberg, Heinrich. 1934. Marktform und gleichgewicht. J. springer.
von Stengel, Bernhard. 1996. Efficient computation of behavior strategies. Games and

Economic Behavior, 14(2), 220–246.
von Stengel, Bernhard, and Zamir, Shmuel. 2010. Leadership games with convex

strategy sets. Games and Economic Behavior, 69(2), 446–457.
Wang, Qian, Yang, Zongjun, Deng, Xiaotie, and Kong, Yuqing. 2023. Learning to bid in

repeated first-price auctions with budgets. Pages 36494–36513 of: International
Conference on Machine Learning. PMLR.

Wood, Allen J, Wollenberg, Bruce F, and Sheblé, Gerald B. 2013. Power generation,
operation, and control. John wiley & sons.

234 Bibliography

Wu, Fang, and Zhang, Li. 2007. Proportional response dynamics leads to market
equilibrium. Pages 354–363 of: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing.

Yang, Zongjun, Liao, Luofeng, and Kroer, Christian. 2024. Greedy-Based Online Fair
Allocation with Adversarial Input: Enabling Best-of-Many-Worlds Guarantees.
Pages 9960–9968 of: Proceedings of the 38th AAAI Conference on Artificial In-
telligence (AAAI).

Young, H Peyton. 2004. Strategic learning and its limits. OUP Oxford.
Zinkevich, Martin, Johanson, Michael, Bowling, Michael, and Piccione, Carmelo. 2007.

Regret minimization in games with incomplete information. Pages 1729–1736 of:
Advances in neural information processing systems.

Index

ℓ2 norm, 41

A-CEEI, 150
abstraction, 136
ACOPF, 157
adversarial losses, 35
aggregate demand, 114
alternation, 61
AM-GM inequality, 216
approachable set, 50, 53, 55
approximate CEEI, 152
auction

first price,
see first-price auction24

independent private values, 24
sealed bid, 23
second price,

see second-price auction24
auction market, 178
autobidding, 179
Azuma-Hoeffding inequality, 221

backward induction, 76
Bayes-Nash equilibrium, 24

in first-price auctions, 28
Bayes-Nash incentive compatible, 25
Bayesian game, 107
Bayesian incentive compatible, 30
behavioral strategy, 80
Berge’s maximum theorem, 115, 219
best response, 60, 101
best-response map, 101, 110, 111
bimatrix, 4
Birkhoff-von Neumann theorem, 106
Blackwell approachability, 49
Blackwell’s approachability theorem, 52
Bregman divergence, 40, 43, 218

Brouwer’s fixed-point theorem, 109
budget balance, 162
budget-feasible pacing multipliers, 183

Cauchy-Schwarz inequality, 215
CCNH utilities, 125
CFR, 90, 92
CFR+, 90, 97
chess, 77
Clarabel, 127
click-through rate, 174
closed graph, 111
Cobb-Douglas utilities, 126
competitive equilibrium,
see market equilibrium120
competitive equilibrium from equal incomes,

120, 150
complexity, 20

computational complexity, 16, 19, 22, 145, 182
constant elasticity of substitution utilities, 126
convex conjugate, 129
convex games, 112
convex hull pricing, 166
correspondence, 111
counterfactual regret minimization,
see CFR85
course seat allocation, 10, 147
CVXPY, 127

DCOPF, 157, 158
demand function, 113, 121
demographic fairness, 208

similar treatment, 211
statistical parity, 211

descent lemma, 44
DGF,
see distance-generating function40

235

236 Index

dilated DGF, 90
dilated entropy, 83
distance-generating function, 40, 83, 133

set width, 40, 45
dominant strategy incentive compatible, 25,

26, 30
dominant-strategy equilibrium, 13
DSIC,
see dominant strategy incentive compatible25
dual mirror descent, 194
dual norm, 41, 69
dual program, 130
economic dispatch, 159, 164
efficient mechanism, 25
Eisenberg-Gale dual, 131, 186
Eisenberg-Gale program, 12, 124, 129, 186

discrete variant, 146
energy market, 154
entropy DGF, 41, 84, 133

dual norm, 42
set width, 42

entropy distance-generation function, 83
envy free, 120, 142, 144, 151, 152
envy free up to one good, 142
envy freeness, 11
equilibrium existence, 15, 102
equilibrium selection, 15
Euclidean DGF, 41

dual norm, 42
set width, 42

Euler’s formula, 216
exchange economy, 114

complexity, 20
extensive-form game, 6, 76

saddle-point formulation, 6
solution methods, 7

externality, 31
fair allocation, 119, 141
fair division, 119
fair share,
see proportionality120
first welfare theorem, 121
first-order methods, 7
first-price auction, 24, 26, 30, 183
first-price pacing equilibrium, 183

computation, 186
existence, 184
sensitivity, 185
with fairness constraints, 212

Fisher market, 11, 120, 122
complexity, 20

equilibrium computation, 124, 126, 131,
132, 136

equilibrium existence, 124, 126
fixed point, 109
FIXP, 20
follow the leader, 37, 39
follow the regularized leader, 45, 92
forceable set, 50
general-sum game, 13
generalized Cauchy-Schwarz, 41
generalized second-price auction, 175
geometric mean, 123
go, 77
hedge,
see multiplicative weights update37
imperfect-information game, 78
impression, 173
incentive compatible,
see strategyproof25
increasing iterate averaging, 64
independent system operator, 154
individual rationality, 162
inspection game, 103
ISO,
see independent system operator154
iterative methods, 7
Kakutani’s fixed-point theorem, 111
KKT conditions, 124, 126, 186, 216
Kullback-Leibler divergence, 41, 133
Lagrangian dual, 130
Lagrangian variables, 124, 130, 132, 159, 192
Leontief utilities, 126
Leontief utility, 20
linear averaging, 64
linear program, 7, 106, 159, 164
locational marginal price, 159
logarithm function, 129
loss vector, 35
LP,
see linear program7
market equilibrium, 11, 113, 120, 121, 159,

165, 182, 189
existence, 114

martingale, 197, 221
matrix norm, 70
max Nash welfare, 143
maximin share, 141, 144, 152
mechanism design, 29
minimax theorem, 17, 46, 48
mixed strategy, 15

Index 237

mixed-integer linear program, 107, 164, 183
mixed-strategy Nash equilibrium, 5
MOSEK, 127
multiplicative pacing, 179
multiplicative weights update, 37
MWU,
see multiplicative weights update37

Nash equilibrium, 4, 15, 102, 110, 112
computation, 61–64, 71, 84, 89, 90, 92, 97
computational complexity, 20
existence, 5, 110, 112

Nash welfare, 123
Nash’s theorem, 5
news feed, 172
no-regret algorithm, 36
no-regret learning, 35
nonsatiating utility, 121
normal-form game, 13, 104
normal-form reduction, 77
NP-hard, 145

online convex optimization, 35, 39
online gradient descent, 131
online learning, 35, 53

best sequence of actions, 36
external regret, 36
on a simplex, 41, 53, 55, 59
on a treeplex, 84, 89
pacing, 194
randomization is necessary, 37
setup, 36
stability, 39, 72

online mirror descent, 43, 83, 90, 92, 131–133,
139, 194

relative Lipschitzness, 136
single-step optimistic, 67
two-step, optimistic, 69
with optimism, 67
with predictions, 67

online resource allocation, 193
optimal power flow, 155
optimism, 61, 69
optimistic online mirror descent, 66
optional stopping theorem, 197, 222
Overture, 27

PACE dynamics, 132
pacing, 179, 180, 205

adversarial inputs, 199
machine learning advice, 202
no regret impossibility with adversarial

inputs, 199

online learning, 194
optimality in second-price auctions, 180,

192
spend plan, 202
stochastic inputs, 195

pacing equilibrium
first price, 183
second price, 181

Pareto optimal, 119, 151
pay per click, 173
pay your bid auction, 26
payoff matrix, 4
perfect recall, 80
perfect-information game, 76
Peter-Paul inequality, 216
poker, 6

solved, 18
position auction, 171, 174
PPAD complete, 19, 22, 151, 182
predictive online learning, 66
prisoner’s dilemma, 14
probabilistic pacing, 179
probability simplex, 41, 53
projected gradient descent, 139
proportional fairness, 141
proportional response dynamics, 133, 139
proportionality, 120
prox mapping, 83, 217
pure-strategy equilibrium, 5, 14, 112

quasi-concave function, 215
quasilinear utilities, 30

regret bounded by variation in utilities, 69
regret matching, 53, 55, 90
regret matching+, 55, 90
regret minimization, 35
relative Lipschitzness, 134
representative market, 137
return on investment, 204
return on spend, 204
revenue equivalence, 29
Rock, Paper, Scissors, 4
RVU,
see regret bounded by variation in utilities69

saddle-point problem, 6, 16, 59, 74, 83
saddle-point residual, 60
sealed bid auction, 23
search in games, 94
second-price auction, 24, 26, 29, 179, 191
second-price pacing equilibrium, 181

computational complexity, 182

238 Index

equilibrium selection, 182
existence, 181
market equilibrium interpretation, 182

security games, 8, 104
self play, 46, 59, 70, 83
sequence form, 6, 81
set width, 40
Shmyrev convex program, 132
similar treatment, 211
singular-value decomposition, 137
Slater’s condition, 216
social welfare, 16
social welfare maximization, 25, 29, 30, 119,

162
spatial arbitrage, 161
spend plan, 202
sponsored search, 171
Stackelberg equilibrium, 8, 101
statistical parity, 211, 213
stochastic gradient estimator, 91
stochastic matrix, 106
stopping time, 197, 222
strategyproof, 25, 26, 31, 162, 175, 176
strong convexity, 40, 215

second-order sufficient condition, 40
strong duality, 216
strong Stackelberg equilibrium, 102, 105
subgame perfect equilibria, 78

tâtonnement, 131, 139
targeted advertising, 172, 210
three-point lemma, 43
transmission payments, 161
treeplex, 81

DGF, 83
norm, 84

truthful (mechanism),
see strategyproof25
truthfulness, 176
two-player zero-sum game, 6, 16

exchangeable equilibria, 18

unit commitment, 163, 164
uplift payments, 166
upper hemicontinuity, 111, 219

value per click, 174
VCG, 30, 176
vector-valued games, 49
Vickrey-Clarke-Groves,
see VCG30

Walras’ law, 114
weak Stackelberg equilibrium, 102

Yahoo, 27
Young’s inequality, 42
zero-sum game,
see two-player zero-sum game6

	Notation
	Part ONE Introductory Material
	Introduction and Examples
	Nash Equilibrium Introduction
	Auctions and Mechanism Design Introduction

	Part TWO Game Solving and Regret Minimization
	Regret Minimization and the Minimax Theorem
	Blackwell Approachability and Regret Matching
	Self-Play via Regret Minimization
	Optimism and Fast Convergence of Self Play
	Extensive-Form Games
	Stackelberg equilibrium and Security Games
	Fixed-Point Theorems and Equilibrium Existence

	Part THREE Fair Allocation and Market Equilibrium
	Fair Division and Market Equilibrium
	Computing Fisher Market Equilibrium
	Fair Allocation with Indivisible Goods
	Power Flows and Equilibrium Pricing

	Part FOUR Auctions and Internet Advertising Markets
	Internet Advertising Auctions: Position Auctions
	Auctions with Budgets and Pacing Equilibria
	Pacing Algorithms for Budget Management
	Demographic Fairness
	to 1.15Appendix AOptimization Background
	to 1.15Appendix BProbability Background
	Bibliography
	Index

