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1 Introduction

In this lecture we will cover extensive-form games (EFGs). Extensive-form games are a richer game
description that explicitly models sequential interaction. EFGs are played on a game tree. Each
node in the game tree belongs to some player, whom gets to choose the branch to traverse.

2 Perfect-Information EFGs

We start by considering perfect-information EFGs. The term perfect information refers to the fact
that in these games, every player always knows the exact state of the game. A perfect-information
EFG is a game played on a tree, where each internal node belongs to some player. The actions for
the player at a given node is the set of branches, and by selecting a branch the game proceeds to
the following node. An example is shown in Figure 1 on the left. That game has four nodes where
players take actions, two belong to player 1 (labelled P1) and two belonging to player 2 (labelled
P2). Additionally, the game tree has 6 leaf nodes. At each leaf node, each player receives some
payoff. In this particular game, it is a zero-sum game, and the value at a leaf denotes the value
that player 1 receives.
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Figure 1: A simple perfect-information EFG. Three versions of the game are shown, where each
stage corresponds to removing one layer of the game via backward induction.

Perfect-information EFGs are trivially solvable (at least if we are able to traverse the whole
game tree at least once). The way to solve them is via backward induction. Backward induction
works by starting at some bottom decision node of the game tree, which only leads to leaf nodes
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after each action is taken (such a node always exists). Then, the optimal action for the player at
the node is selected, and the node is replaced with the corresponding leaf node. Now we get a
new perfect-information EFG with one less internal node. Backward induction then repeats this
process until there’s no internal nodes left, at which point we have computed a Nash equilibrium.
Thus perfect-information EFGs always have pure-strategy Nash equilibria.

While backward induction yields a linear-time algorithm for solving perfect-information games,
in practice, many games of interest are way too large to solve with it nonetheless. For example, chess
and go both have enormous game trees, with estimates of ∼ 1045 and ∼ 10172 nodes respectively.

Next let us see how converting to normal form works. The way converting to normal form
works is that for each player, we create an action corresponding to every possible way of assigning
an action at every decision point. So, if a player has d decision points with A actions each, then
there Ad actions will be created in the normal form representation of the EFG. This reduction to
normal form works for both perfect and imperfect-information games.

Let’s consider an instructive example. Here we will model the Cuban Missile Crisis. The USSR
has moved a bunch of nuclear weapons to Cuba, and the US has to decide how to respond. If they
do nothing, then the USSR wins a political victory, and gets to keep nuclear missiles within firing
distance of major US cities. If the US responds, then it could results in a series of escalations that
would eventually lead to nuclear war, or the USSR will eventually compromise and remove the
missiles.

USA

USSR 0,2

2,1−1000,−1000

respond do nothing

compromisenuclear war

Figure 2: A perfect-information EFG modeling the Cuban missile crisis.

If we convert this game to normal form, we get the following game:

USSR
Nuclear war Compromise

Respond −1000,−1000 2,1

U
S

A

Do Nothing 0,2 0,2

It is straightforward to see from this representation that the Cuban Missile Crisis game has
two PNE: (do nothing, nuclear war) and (respond, compromise). However, the first PNE is in a
sense not compelling: what if the USA just responded? The USSR probably would not be willing
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to follow through on taking the action “nuclear war” since it has such low utility for them as well.
This leads to the notion of subgame-perfect equilibria, which are equlibria that remain equilibria if
we take any subgame consisting of picking some node in the tree and starting the game there.

3 Imperfect-Information EFGs

An example is shown in Figure 3.

C
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Figure 3: A (rather weird) poker game where P1 is dealt Ace or King with equal probability. “r,”
“f,” and “c” stands for raise, fold, and check respectively. Leaf values denote P1 payoffs. The
shaded area denotes an information set: P2 does not know which of these nodes they are at, and
must thus use the same strategy in both. Note that in the case where they are dealt an ace, P1
does not observe the action taken by P2.

An EFG has the following:

• Information sets: for each player, the nodes belonging to that player are partitioned into
information sets I ∈ Ii. information sets represent imperfect information: a player does not
know which node in an information set they are at, and thus they muse utilize the same
strategy at each node in that information set. In Figure 3 P2 has only 1 information set,
which contains both their nodes, whereas P1 has four information sets, each one a singleton
node. For player i we will also let Ji be an index set of information sets with generic element
j.

• Each information set I with index j has a set of actions that they corresponding player may
take, which is denoted by Aj .

• Leaf nodes Z: the set of terminal states. Player i gains utility ui(z) if leaf node z is reached.
Z is the set of all leaf nodes.

• Chance nodes where Chance or Nature moves with a fixed probability distribution. In Figure 3
chance deals A or K with equal probability.
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We will assume throughout that the game has perfect recall, which means that no player ever forgets
something they knew in the past. More formally, it means that for every information set I ∈ Ii,
there is a single last information-set action pair I ′, a′ belonging to i that was the last information
set and action taken by that player for every node in I.

The last action taken by player i before reaching an information set with index j is denoted pj .
This is well-defined due to perfect recall.

We spent a lot of time learning how one may compute a Nash equilibrium in a two-player zero-
sum game by finding a saddle point of a min-max problem over convex compact polytopes. This
model looked as follows (we also learned how to handle convex-concave objectives, here we restrict
our attention to bilinear saddle-point problems)

min
x∈X

max
y∈Y
〈x,Ay〉. (1)

Now we would like to find a way to represent EFG zero-sum Nash equilibrium this way. This turns
out to be possible, and the key is to find the right way to represent strategies such that we get a
bilinear objective. The next section will describe this representation.

First, let us see why the most natural formulation of the strategy spaces won’t work. The
natural formulation would be to have a player specify a probability distribution over actions at
each of their information sets. Let σ be a strategy profile, where σa is the probability of taking
action a (from now on we assume that every action is distinct so that for any a there is only one
corresponding I where the action can be played). The expected value over leaf nodes is∑

z∈Z
u2(z)P(z|σ)

The problem with this formulation is that if a player has more than one action on the path to any
leaf, then the probability P(z|σ) of reaching z is non-convex in that player’s own strategy, since
we have to multiply each of the probabilities belonging to that player on the path to z. Thus we
cannot get the bilinear form in (1).

4 Sequence Form

In this section we will describe how we can derive a bilinear representation X of the strategy space
for player 1. Everything is analogous for Y .

In order to get a bilinear formulation of the expected value we do not write our strategy in
terms of the probability σa of playing an action a. Instead, we associate to each information-set-
action pair I, a a variable xa denoting the probability of playing the sequence of actions belonging
to player 1 on the path to I, including the probability of a at I. For example, in the poker game
in Figure 3, there would be a variable xĉ denoting the product of probabilities player 1 puts on
playing actions r and then ĉ. To be concrete, say that we have a behavioral strategy σ1 for player 1,
then the corresponding sequence-form probability on the action ĉ would be xĉ = σ1

r · σ1
ĉ . Similarly

there would be a variable xf̂ = σ1
r · σ1

f̂
denoting the product of probabilities on r and f̂ . Clearly,

for this to define a valid strategy we must have xĉ + xf̂ = xr.
More generally, X is defined as the set of all x ∈ Rn, x ≥ 0 such that

xpj =
∑
a∈Aj

xa, ∀j ∈ J1, (2)

where n =
∑

I∈Ii |A|, and p(I) is the parent sequence leading to I.

4



∆1

q2 ·∆4

q7 q8

q1 ·∆3

q6 ·∆8

q16 q17

q6 ·∆7

q13
q14

q15

q5 q6

q1 q2
∆2

q4 ·∆6

q11 q12

q3 ·∆5

q9 q10

q3 q4

×

×

Figure 4: An example treeplex constructed from 9 simplices.

One way to visually think of the set of sequence-form strategies is given in Figure 4. This
representation is called a treeplex. Each information set is represented as a simplex, which is scaled
by the parent sequence leading to that information set (by perfect recall there is a unique parent
sequence). After taking a particular action it is possible that a player may arrive at several next
possible simplexes depending on what the other player or nature does. This is represented by the
× symbol.

It’s important to understand that the sequence form specifies probabilities on sequences of
actions for a single player. Thus they are not the same as paths in the game tree; indeed, the
sequence r∗ for player 2 appears in two separate paths of the game tree, as player 2 has two nodes
in the corresponding information set.

Say we have a set of probability distributions over actions at each information set, with σa
denoting the probability of playing action a. We may construct a corresponding sequence-form
strategy by applying the following equation in top-down fashion (so that xpj is always assigned
before xa):

xa = xpjσa,∀j ∈ J , a ∈ Aj . (3)

The payoff matrix A associated with the sequence-form setup is a sparse matrix, with each row
corresponding to a sequence of the x player and each column corresponding to a sequence of the
y player. Each leaf has a cell in A at the pair of sequences that are last visited by each player
before reaching that leaf, and the value in the cell is the payoff to the maximizing player in the
bilinear min-max formulation. Cells corresponding to pairs of sequences that are never the last pair
of sequences visited before a leaf have a zero.

With this setup we now have an algorithm for computing a Nash equilibrium in a zero-sum
EFG: Run online mirror descent (OMD) for each player, using either of our folk-theorem setups
from the previous lecture. However, this has one issue, recall the update for OMD (also known as
a prox mapping):

xt+1 = argmin
x∈X

〈γgt, x〉+D(x‖xt),

where D(x‖xt) = d(x)− d(xt)− 〈∇d(xt), x− xt〉 is the Bregman divergence from xt to x. In order
to run OMD, we need to be able to compute this prox mapping. The question of whether the prox
mapping is easy to compute is easily answered when X is a simplex, where updates for the entropy
DGF are closed-form, and updates for the Euclidean DGF can be computed in n log n time, where
n is the number of actions. For treeplexes this question becomes more complicated.
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In principle we could use the standard Euclidean distance for d. In that case the update can
be rewritten as

xt+1 = argmin
x∈X

‖x− (xt − γgt)‖22,

which means that the update requires us to project onto a treeplex. This can be done in n log n
time, where n is the number of sequences. While this is acceptable, it turns out there are smarter
ways to compute these updates which take linear time in n.

5 Dilated Distance-Generating Functions

We will see two ways to construct regret minimizers for treeplexes. The first is based on choosing
an appropriate distance-generating function (DGF) for the treeplex, such that prox mappings are
easy to compute. To that end, we now introduce what are called dilated DGFs. In dilated DGFs we
assume that we have a DGF dj for each information set j ∈ J . For the polytope X we construct
the DGF

d(x) =
∑
j∈J1

βjxpjdj

(
xj

xpj

)
,

where βj > 0 is the weight on information set j.
Dilated DGFs have the nice property that the proximal update can be computed recursively as

long as we know how to compute the simplex update for each j. Let xj , gjt etc denote the slice of
a given vector corresponding to sequences belonging to information set j. The update is

argmin
x∈X

〈gt, x〉+D(x‖xt)

= argmin
x∈X

〈gt, x〉+ d(x)− d(xt)− 〈∇d(xt), x− xt〉

= argmin
x∈X

〈gt −∇d(xt), x〉+ d(x)

= argmin
x∈X

∑
j∈J

(
〈gjt −∇d(xt)

j , xj〉+ βjxpjdj(x
j/xpj )

)
= argmin

x∈X

∑
j∈J

xpj

(
〈gjt −∇d(xt)

j , xj/xpj 〉+ βjdj(x
j/xpj )

)
Now we may consider some information set j with no descendant information sets. Since xpj is

on the outside of the parentheses, we can compute the update at j as if it were a simplex update,
and the value at the information set can be added to the coefficient on xpj . That logic can then be
applied recursively. Thus we can traverse the treeplex in bottom-up order, and at each information
set we can compute the value for xjt+1 in however long it takes to compute an update for a simplex
with DGF dj .

If we use the entropy DGF for each j ∈ J and set the weight βj = 2 + maxa∈Aj

∑
j′∈Caj

2βj′ ,

then we get a DGF for X that is strongly convex modulus 1
M where M = maxx∈X ‖x‖1. If we

scale this DGF by M we get that it is strongly convex modulus 1. If we instantiate the mirror prox
algorithm with this DGF for X and Y we get an algorithm that converges at a rate of

O

maxij Aij maxI∈I log(|AI |)
√
M2
x2d +M2

y 2d

T

 ,
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where Mx,My are the maximum `1 norms on X and Y , and d is an upper bound on the depth
of both treeplexes. This gives the fastest theoretical rate of convergence among gradient-based
methods. However, this only works for OMD. All our other algorithms (RM, RM+) were for
simplex domains exclusively. Next we derive a way to use these locally at each information set. It
turns out that faster practical performance can be obtained this way.

6 Counterfactual Regret Minimization

The framework we will cover is the counterfactual regret minimization (CFR) framework for con-
structing regret minimizers for EFGs.

CFR is based on deriving an upper bound on regret, which allows decomposition into local
regret minimization at each information set.

We are interested in minimizing the standard regret notion over the sequence form:

RT =

T∑
t=1

〈gt, xt〉 −min
x∈X

T∑
t=1

〈gt, x〉.

To get the decomposition, we will define a local notion of regret which is defined with respect
to behavioral strategies σ ∈ ×j∆j =: Σ (here we just derive the decomposition for a single player,
say player 1. Everything is analogous for player 2).

We saw in the previous lecture note that it is always possible to go from behavioral form to
sequence form using the following recurrence, where assignment is performed in top-down order.

xa = xpjσa,∀j ∈ J , a ∈ Aj . (4)

It is also possible to go the other direction (though this direction is not a unique mapping, as one
has a choice of how to assign behavioral probabilities at information sets j such that xpj = 0).
These procedures produce payoff-equivalent strategies for EFGs.

For a behavioral strategy vector σ (or loss vector gt) we say that σj is the slice of σ corresponding
to information set j. σj↓ is the slice corresponding to j, and every information set below j. Similarly,
Σj↓ is the set of all behavioral strategy assignments for the subset of simplexes that are in the tree
of simplexes rooted at j.

We let Cj,a be the set of next information sets belonging to player 1 that can be reached from
j when taking action a. In other words, the set of information sets whose parent sequence is a.

Now, let the value function at time t for an information set j belonging to player 1 be defined
as

V j
t (σ) = 〈gjt , σj〉+

∑
a∈Aj

∑
j′∈Cj,a

σaV
j′

t (σj
′↓).

where σ ∈ Σj↓. Intuitively, this value function represents the value that player 1 derives from
information set j, assuming that i played to reach it, i.e. if we counterfactually set xpj = 1.

The subtree regret at a given information set j is

Rj↓T =

T∑
t=1

V j
t (σj↓t )− min

σ∈Σj↓

T∑
t=1

V j
t (σ),

Note that this regret is with respect to the behavioral form.
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The local loss that we will eventually minimize is defined as

ĝt,a = gt,a +
∑
j′∈Cj,a

V j′

t (σj
′↓
t ).

Note that for each j, the loss depends linearly on σj ; σj does not affect information sets below j,
since we use σt in the value function for child information sets j′.

Now we show that the subtree regret decomposes in terms of local losses and subtree regrets.

Theorem 1. For any j ∈ J , the subtree regret at time T satisfies

Rj↓T =

T∑
t=1

〈ĝjt , σjt 〉 − min
σ∈∆j

 T∑
t=1

〈ĝjt , σ〉 −
∑

a∈Aj ,j′∈Cj,a

σaR
j′↓
T

 .

Proof. Using the definition of subtree regret we get

Rj↓t =
T∑
t=1

V j
t (σj↓t )− min

σ∈Σj↓

 T∑
t=1

〈gjt , σj〉+
∑

a∈Aj ,j′∈Cj,a

σaV
j′

t (σj
′↓)

 by expanding V j
t (σj↓)

=
T∑
t=1

V j
t (σj↓t )− min

σ∈∆j

 T∑
t=1

〈gjt , σ〉+
∑

a∈Aj ,j′∈Cj,a

σa min
σ̂∈Σj′↓

V j′

t (σ̂j
′↓)

 by sequential min

=
T∑
t=1

V j
t (σj↓t )− min

σ∈∆j

 T∑
t=1

〈ĝjt , σ〉 −
∑

a∈Aj ,j′∈Cj,a

σaR
j′↓
T

 by definition of ĝt and Rj
′↓
T .

The theorem follows, since V j
t (σj↓t ) = 〈ĝjt , σjt 〉.

The local regret that we will be minimizing is the following

R̂jT :=
T∑
t=1

〈ĝjt , σjt 〉 − min
σ∈∆j

T∑
t=1

〈ĝjt , σ〉.

Note that this regret is in the behavioral form, and it corresponds exactly to the regret associated
to locally minimizing ĝjt at each simplex j.

The CFR framework is based on the following theorem, which says that the sequence-form
regret can be upper-bounded by the behavioral-form local regrets.

Theorem 2. The regret at time T satisfies

RT = Rroot↓T ≤ max
x∈X

∑
j∈J

xpj R̂
j
T ,

where root is the root information set.

Proof. For the equality, consider the regret RT over the sequence form polytope X. Since each
sequence-form strategy has a payoff equivalent behavioral strategy in Σ and vice versa, we get that
the regret RT is equal to Rroot↓T for the root information set root (we may assume WLOG. that
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there is a root information set since if not then we can add a dummy root information set with a
single action).

By Theorem 1 we have for any j ∈ J

Rj↓T =
T∑
t=1

〈ĝjt , σjt 〉 − min
σ∈∆j

 T∑
t=1

〈ĝjt , σ〉 −
∑

a∈Aj ,j′∈Cj,a

σaR
j′↓
T


≤

T∑
t=1

〈ĝjt , σjt 〉 − min
σ∈∆j

T∑
t=1

〈ĝjt , σ〉+ max
σ∈∆j

∑
a∈Aj ,j′∈Cj,a

σaR
j′↓
T , (5)

where the inequality is by the fact that independently minimizing the terms
∑T

t=1〈ĝ
j
t , σ〉 and

−∑a∈Aj ,j′∈Cj,a σaR
j′↓
T is smaller than jointly minimizing them.

Now we may apply (5) recursively in top-down fashion starting at root to get the theorem.

A direct corollary of Theorem 2 is that if the counterfactual regret at each information set grows
sublinearly then overall regret grows sublinearly. This is the foundation of the counterfactual regret
minimization (CFR) framework for minimizing regret over treeplexes. The CFR framework can
succinctly be described as

1. Instantiate a local regret minimizer for each information set simplex ∆j .

2. At iteration t, for each j ∈ J , feed the local regret minimizer the counterfactual regret ĝjt .

3. Generate xt+1 as follows: ask for the next recommendation from each local regret minimizer.
This yields a set of simplex strategies, one for each information set. Construct xt+1 via (4).

Thus we get an algorithm for minimizing regret on treeplexes based on minimizing counterfactual
regrets. In order to construct an algorithm for computing a Nash equilibrium based on a CFR setup,
we may invoke the folk theorems from the previous lectures using the sequence-form strategies
generated by CFR. Doing this yields an algorithm that converges to a Nash equilibrium of an EFG

at a rate on the order of O
(

1√
T

)
While CFR is technically a framework for constructing local regret minimizers, the term “CFR”

is often overloaded to mean the algorithm that comes from using the folk theorem with uniform
averages, and using regret matching as the local regret minimizer at each information set. CFR+

is the algorithm resulting from using the alternation setup, taking linear averages of strategies, and
using RM+ as the local regret minimizer at each information set.

We now show pseudocode for implementing the CFR algorithm with the RM+ regret minimizer.
In order to compute Nash equilibria with this method one would use CFR as the regret minimizer
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in one of the folk-theorem setups from the previous lecture.

Algorithm 1: CFR(RM+)(J , X)

Data: J set of infosets
X sequence-form strategy space

1 function Setup()
2 Q← 0-initialized vector over sequences
3 t← 1

4 function NextStrategy()
5 x← 0 ∈ R|X|

6 x∅ ← 1
7 for j ∈ J in top-down order do
8 s←∑

a∈Aj
Qa

9 if s = 0 then
10 for a ∈ Aj do
11 xa ← xpj

/ |Aj |
12 else
13 for a ∈ Aj do
14 xa ← xpj ×Qa / s

15 return x

16 function ObserveLoss(gt ∈ R|X|)
17 for j ∈ J in bottom-up order do
18 s←∑

a∈Aj
Qa

19 v ← 0 // the value of information set j

20 if s = 0 then
21 v ←∑

a∈Aj
gt,a/|Aj |

22 else
23 v ←∑

a∈Aj
〈gt,a,Qa / s〉

24 gt,pj
← gt,pj

+ v // construct local loss ĝt

25 for a ∈ Aj do

26 Qa ← [Qa + (v − gt,a)]
+

// gt,a = ĝt,a since all j′ ∈ Cj,a were already traversed

27 t← t+ 1

NextStrategy simply implements the top-down recursion (4) while computing the update
corresponding to RM+ at each j. ObserveLoss uses bottom-up recursion to keep track of the
regret-like sequence Qa, which is based on ĝt,a in CFR.

A technical note here is that we assume that there is some dummy sequence ∅ at the root of
the treeplex with no corresponding j (this corresponds to a single-action dummy information set at
the root, but leaving out that dummy information set in the index set J ). This makes code much
cleaner because there is no need to worry about the special case where a given j has no parent
sequence, at the low cost of increasing the length of the sequence-form vectors by 1.

7 Numerical Comparison of CFR methods and OMD-like meth-
ods

Figure 5 shows the performance of three different variations of CFR, as well as the excessive gap
technique (EGT), a first-order method that converges at a rate of O(1/T ) using the dilated entropy
DGF from last lecture (EGT is equivalent to the mirror prox algorithm that was shown previously,
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Figure 5: Solution accuracy as a function of the number of tree traversals in three different variants
of Leduc hold’em and a pursuit evasion game. Results are shown for CFR with regret mathing,
CFR with regret mathing+, CFR+, and EGT. Both axes are shown on a log scale.

in terms of theoretical convergence rate). The plots show performance on four EFGs: Leduc poker,
a simplified poker game that is standard in EFG solving (three different deck sizes are shown), and
search, a game played on a graph where an attacker attempts to reach a particular set of nodes,
and the defender tries to capture them (full descriptions can be found in Kroer et al. [10]).

8 Stochastic Gradient Estimates

So far we have operated under the assumption that we can easily compute the matrix-vector product
gt = Ayt, where A is the payoff matrix of the EFG that we are trying to solve. While gt can indeed
be computed in time linear in the size of the game tree, we may be in a case where the game tree is
so large that even one traversal is too much. In that case, we are interested in developing methods
that can work with some stochastic gradient estimator g̃t of the gradient. Typically, one would
consider unbiased gradient estimators, i.e. E[g̃t] = gt.

Assuming that we have a gradient estimator g̃t for each time t, a natural approach for attempting
to compute a solution would be to apply our previous approach of running a regret minimizer for
each player and using the folk theorem, but now using g̃t at each iteration, rather than gt. If our
unbiased gradient estimator g̃t is reasonably accurate then we might expect that this approach
should still yield an algorithm for computing a Nash equilibrium. This turns out to be the case.

Theorem 3. Assume that each player uses a bounded unbiased gradient estimator for their loss at

11



each iteration. Then for all p ∈ (0, 1), with probability at least 1− 2p

ξ(x̄, ȳ) ≤ R̃1
T + R̃2

T

T
+
(

2∆ + M̃1 + M̃2

)√ 2

T
log

1

p
,

where R̃iT is the regret incurred under the losses g̃it for player i, ∆ = maxz,z′∈Z u2(z) − u2(z′) is
the payoff range of the game, and M̃1 ≥ maxx,x′∈X〈g̃t, x − x′〉,∀g̃t is a bound on the “size” of the
gradient estimate, with M2 defined analogously.

We will not show the proof here, but it follows from introducing the discrete-time stochastic
process

dt := gt(xt − x))− g̃t(xt − x),

observing that it is a martingale difference sequence, and applying the Azuma-Hoeffding concen-
tration inequality.

With Theorem 3 in hand, we just need a good way to construct gradient estimates g̃t ≈ Ayt.
Generally, one can construct a wide array of gradient estimators by using the fact that Ayt can be
computed by traversing the EFG game tree: at each leaf node z in the tree, we add −u1(z)ya to
gt,a′ , where a is the last sequence taken by the y player, and a′ is the last sequence taken by the
x player. To construct an estimator, we may choose to sample actions at some subset of nodes in
the game tree, and then only traverse the sampled branches, while taking care to normalize the
eventual payoff so that we maintain an unbiased estimator. One of the most successful estimators
construct this way is the external sampling estimator. In external sampling when computing the
gradient Ayt, we sample a single action at every node belonging to the y player or chance, while
traversing all branches at nodes belonging to the x player.

Figure 6 shows the performance when using external sampling in CFR (CFR with sampling is
usually called Monte-Carlo CFR or MCCFR), FTRL, and OMD. Performance is shown on Leduc
with a 13-card deck, Goofspiel (another card game), search, and battleship. In the deterministic
case we saw that CFR+ was much faster than the theoretically-superior EGT algorithm (and
OMD/FTRL would perform much worse than EGT). Here we see that in the stochastic case it
varies which algorithm is better.

9 Historical Notes

The sequence form was discovered in the USSR in the 60s [13] and later rediscovered indepen-
dently [15, 9]. Dilated DGFs for EFGs were introduced by Hoda et al. [8] where they proved that
any such DGF constructed from simplex DGFs which are strongly convex must also be strongly
convex. Kroer et al. [10] showed the strong convexity modulus of the dilated entropy DGF shown
here. An explicit bound for the dilated Euclidean DGF can be found in Farina et al. [6], which also
explores regret minimization algorithms with dilated DGFs in depth.

CFR-based algorithms were used as the algorithm for computing Nash equilibrium in all the
recent milestones where AIs beat human players at various poker games [1, 12, 2, 4].

CFR was introduced by Zinkevich et al. [16]. Many later variations have been developed, for
example the stochastic method MCCFR [11], and variations on which local regret minimizer to use
in order to speed up practical performance [14, 3]. The proof of CFR given here is a simplified
version of the more general theorem developed in [5]. The plots on CFR vs EGT are from Kroer
et al. [10].

The bound on error from using a stochastic method in Theorem 3 is from Farina et al. [7], and
the plots on stochastic methods are from that same paper. External sampling and several other
EFG gradient estimators were introduced by Lanctot et al. [11].
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Figure 6: Performance of CFR, FTRL, and OMD when using the external sampling gradient
estimator.
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