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Preface

These are the lecture notes from the Spring 2018 PhD course offered at
Columbia University IEOR on mean field games and interacting particle
systems. Be warned that the notes are not very polished, nor are they
mathematically completely rigorous. The goal was to provide a crash course
on stochastic differential mean field games and interacting SDE systems of
McKean-Vlasov type, along with many of the pre-requisites a first-year PhD
student may not yet have encountered. In particular, the notes include brief
treatments of weak convergence, Wasserstein metrics, stochastic optimal
control theory, and stochastic differential games.

The course is oriented more toward breadth than depth. While many
fairly complete proofs are given, many details are left out as well (e.g., check-
ing that a local martingale is a true martingale, or even spelling out complete
assumptions on the coefficients). Notably, our coverage of stochastic control
and games is limited to the analytic approach; that is, we emphasize how to
derive and apply verification theorems, and we completely omit the popular
“probabilistic approach” based on the maximum principle and BSDEs. The
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course may not prepare theoretically-oriented students to prove new theo-
rems about mean field games, but hopefully they will take away a strong
big-picture understanding of the flexibility of the modeling framework and
how to build and analyze various models.

Many thanks to the students who transcribed and typed up the ma-
jority of these notes: Yaarit Even, Miguel Garrido Garci, Camilo Hernan-
dez, Kleanthis Karakolios, Nikhil Kotecha, Enrique Lelo de Larrea Andrade,
Agathe Soret, and Florian Stebegg.

1 Introduction

This course is about the analysis of certain kinds of interacting particle
systems, though the scope of application of the models we study has reached
far beyond its origin in statistical mechanics. So, while we often stick with
the term “particle,” it should not be interpreted too literally.

More specifically, this course is primarily about mean field models in
which each particle is represented by a stochastic differential equation. The
term mean field refers to the highly symmetric form of interaction between
the particles. The first half of the course focuses on zero-intelligence models,
in which particles follow prescribed laws of motion. In the second half of the
course, we study mean field games, in which the particles follow controlled
dynamics and each tries to optimize some objective. In both cases, the
emphasis will be on formulating and analyzing a suitable infinite-particle
(or continuum) limit.

The general theme of the analysis is to see how to efficiently move from
a microscopic description of a model (i.e., individual-level laws of motion or
incentives) to a macroscopic one.

1.1 Part 1: Interacting diffusion models

The main family of models studied in the first half of the course take the
following form: Particles X1, . . . , Xn are Itô processes, evolving according
to the stochastic differential equation (SDE) system

dXi
t = b(Xi

t , µ̂t)dt+ σ(Xi
t , µ̂t)dW

i
t , (1.1)

where

µ̂t =
1

n

n∑
k=1

δXk
t
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is the empirical measure of the particles. The coefficients b and σ are the
same for each particle, and the driving Brownian motions W i are indepen-
dent. Typically, the initial positions Xi

0 are i.i.d. The particles would be
i.i.d. if not for the interaction coming through the empirical measure, and
this is the only source of interaction between the particles.

For a concrete example, consider the toy model

dXi
t = a(Xt −Xi

t)dt+ σdW i
t ,

where a, σ > 0 and Xt = 1
n

∑n
k=1X

k
t is the empirical average. Each particle

faces an independent noise, and the drift term pushes each particle toward
the empirical average. Notice that the entire system is symmetric, in the
sense that if we permute the “names” i = 1, . . . , n, we end up with the same
particle system. In other words, (X1, . . . , Xn) is exchangeable. To get a first
vague sense of how a mean field limit works in a model of this form, simply
average the n particles to find the dynamics for the empirical mean:

dXt =
σ

n

n∑
k=1

dW k
t .

In integrated form, we have

Xt =
1

n

n∑
k=1

Xk
0 +

σ

n

n∑
k=1

W k
t .

If (Xk
0 ) are i.i.d. with mean m, then the law of large numbers tells us that

Xt → m almost surely as n → ∞, since of course Brownian motion has
mean zero. If we focus now on a fixed particle i in the n-particle system we
find that as n→∞ the behavior of particle i should look like

dXi
t = a(m−Xi

t)dt+ σdW i
t .

Since m is constant, this “limiting” evolution consists of i.i.d. particles. In
summary, as n → ∞, the particles become asymptotically i.i.d., and the
behavior of each one is described by an Ornstein-Uhlenbeck process.

The n→∞ limit in this toy model can be studied quite easily by taking
advantage of the special form of the model. The goal of the first part of
the course is to see how to identify and analyze an n → ∞ limit for the
more general kind of interacting diffusion model like (1.1), when explicit
calculations are unavailable.
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1.2 Part 2: (Stochastic differential) Mean field games

One we understand the interacting diffusion models of the previous section,
we will study the controlled version: Particles X1, . . . , Xn are Itô processes,
evolving according to the stochastic differential equation (SDE) system

dXi
t = b(Xi

t , µ̂t, α
i
t)dt+ σ(Xi

t , µ̂t, α
i
t)dW

i
t ,

where again

µ̂t =
1

n

n∑
k=1

δXk
t

is the empirical measure of the particles. The coefficients b and σ are the
same for each particle, and the driving Brownian motions W i are indepen-
dent. But now each particle i gets to choose a control process αi. For
instance, Xi could the the velocity and αi the acceleration, or Xi could be
the wealth of an investor with αi describing the allocation of wealth between
various assets or investment vehicles. We typically call them agents instead
of particles with the processes are controlled.

Each agent i endeavors to maximize some objective criterion, typically
of the form

Ji(α1, . . . , αn) = E
[∫ T

0
f(Xi

t , µ̂t, α
i
t)dt+ g(Xi

T , µ̂T )

]
,

where T > 0 is a finite time horizon, though there are many other natural
forms of objective criterion (infinite time horizon, etc.). Again, the cost
functions f and g are the same for each agent.

Unlike the particle systems of the previous section, these controlled sys-
tems do not yet specify the dynamics, as we must first resolve the opti-
mization problems faced by each particle. These optimization problems are
of course interdependent, owing to the dependence on the empirical mea-
sure. To do this, we use the canonical notion of Nash equilibrium from game
theory, which means that (α1, . . . , αn) are an equilibrium if they satisfy

Ji(α1, . . . , αn) ≥ Ji(α1, . . . , α
i−1, β, αi+1, . . . , αn),

for every alternative control β and every i = 1, . . . , n. That is, each agent is
acting optimally, given the behavior of the other agents–no single agent has
any incentive to switch strategies, given that the other agents strategies are
fixed. We are for now ignoring some important modeling decisions pertaining
to what an “admissible control” really is, and what information is available
to each agent.
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To analyze the in-equilibrium behavior of this system for large n is typ-
ically quite difficult, and for this reason we again study a large n limit. We
will see how to identify and analyze these continuum limits, leading us to a
fascinating extension of the more classical models of the previous section.

1.3 Organization of the notes

We begin in Section 2 with a review of the basics of weak convergence of
probability measures, along with some discussion of Wasserstein metrics
and convergence of empirical measures of i.i.d. samples. Section 3 covers
interacting diffusions and the McKean-Vlasov limit, as described in Section
1.1 above. Before turning to (dynamic) mean field games, we devote Section
4 to the analysis of a very simple yet instructive model of a large static game,
in which each of n agents chooses a single action deterministically. Finally
Section 8 is devoted to mean field games, as introduced in Section 1.2 above.

2 Weak convergence and Wasserstein metrics

Many of the main results of this course will be stated in terms of convergence
in distribution, of random variables, vectors, processes, and measures. This
section covers the very basics of the theory weak convergence of probability
measures on metric spaces. In order to get to the meat of the course, we
will cover this material far too quickly. For more details, refer to the classic
textbook of Billingsley [11], and a more quick and concise treatments can
be found in Kallenberg’s tome [75, Chapter 14].

Throughout the section, let (X , d) denote a metric space. We always
equip X with the Borel σ-field, meaning the σ-field generated by the open
sets of X . We will write P(X ) for the set of (Borel) probability measures on
X. Let Cb(X ) denote the set of bounded continuous real-valued functions
on X. The fundamental definition is the following, which we state in two
equivalent forms, one measure-theoretic and one probabilistic:

Definition 2.1. Given a probability measure µ ∈ P(X ) and a sequence
(µn) ⊂ P(X ), we say that µn converges weakly to µ, or µn → µ, if

lim
n→∞

∫
X
f dµn =

∫
X
f dµ, for every f ∈ Cb(X ).

Definition 2.2. Given a sequence of X -valued random variables (Xn), we
say that Xn converges weakly (or in distribution) to another X -valued ran-
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dom variable X (often denoted Xn ⇒ X) if

lim
n→∞

E[f(Xn)] = E[f(X)], for every f ∈ Cb(X ).

Throughout the course, when we say X is a X -valued random vari-
able, we mean the following: Behind the scenes, there is a probability space
(Ω,F ,P) and a function X : Ω → X , measurable with respect to the Borel
σ-field on X . We will rarely need to be explicit about the choice of proba-
bility space. Unlike other modes of convergence of random variables, such
as convergence in probability or almost-sure convergence, weak convergence
does not require the random variable Xn to be defined on the same prob-
ability space! That is, we could have Xn defined on its own probability
space (Ωn,Fn,Pn) for each n, and X defined on its own (Ω,F ,P), and the
Definition 2.2 still makes sense. Note then that Xn ⇒ X if and only if
Pn ◦X−1

n → P ◦X−1 weakly.1

As a first trivial case, suppose we are given a deterministic sequence
(xn) ⊂ X converging to a point x ∈ X . Write δx ∈ P(X ) for the Dirac
probability measure at x, meaning δx(A) = 1 if x ∈ A and δx(A) = 0
otherwise, for a set A ⊂ X . Then δxn → δx weakly, simply because f(xn)→
f(x) for every f ∈ Cb(X ).

Another fact to notice is that if Xn converges in probability to X in the
sense that

lim
n→∞

P(d(Xn, X) > ε) = 0, for all ε > 0,

then Xn ⇒ X. This follows from the dominated convergence theorem. Of
course, almost sure convergence implies convergence in probability, and so
almost sure convergence implies convergence in distribution.

One’s first genuine encounter with weak convergence is the central limit
theorem: If (Xn) is a sequence of real-valued random variables with mean
µ and variance σ2 > 0 then

1√
n

n∑
k=1

Xn − µ
σ

= Z,

where Z is a standard Gaussian. This is often stated in a different but
equivalent form,

lim
n→∞

P

(
1√
n

n∑
k=1

Xn − µ
σ

≤ x

)
= P(Z ≤ x), for all x ∈ R.

1We use the standard notation for image measures: P ◦X−1(A) := P(X ∈ A).
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The equivalence between these two forms will follow from Theorem 2.3 be-
low. One early motivation for studying weak convergence on metric spaces,
as opposed to simply Euclidean spaces, was the study of weak convergence
of random walks to Brownian motion, leading to Donsker’s theorem.

It is important to notice that the weak convergence µn → µ does not
imply the stronger convergence

∫
X f dµn →

∫
X f µ for every bounded mea-

surable function f . Stronger still is convergence in total variation, which
requires that

∫
X f dµn →

∫
X f dµ uniformly over measurable functions f

with |f | ≤ 1. It is worth noting, however, that if the metric space X is
finite, then P(X ) can be identified with a compact subset of Rn, where
n = |X |. In this case, the three aforementioned modes of convergence all
coincide. Nonetheless, the following famous theorem clarifies what weak
convergence does tell us about setwise convergence:

Theorem 2.3 (Portmaneau theorem). Let µ, µn ∈ P(X ). The following
are equivalent:

(i) µn → µ.

(ii) lim infn→∞ µn(U) ≥ µ(U) for every open set U ⊂ X .

(iii) lim supn→∞ µn(C) ≥ µ(C) for every closed set C ⊂ X .

(iv) limn→∞ µn(A) = µ(A) for every Borel set A ⊂ X with µ(A◦) = µ(A).2

(v)
∫
f dµn →

∫
f dµ for every bounded uniformly continuous function f

on X .

We omit the proof of Theorem 2.3, as it is entirely classical (see [11,
Theorem 2.1] or [75, Theorem 3.25]. We do prove an easy but important
theorem we will make good use:

Theorem 2.4 (Continuous mapping theorem). Suppose X and Y are metric
spaces, and (Xn) is a sequence of X -valued random variables converging in
distribution to another X -valued random variable X. Suppose g : X → Y is
a continuous function. Then g(Xn)⇒ g(X).

Proof. For any f ∈ Cb(Y), the function f ◦g belongs to Cb(X ). Hence, since
Xn ⇒ X,

lim
n→∞

E[f(g(Xn))] = E[f(g(X))].

2Here A◦ denotes the interior of the set A and A the closure.
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We will not make too much use of this, but an extremely important
theorem of Prokhorov characterizes pre-compact sets in P(X ). Given a set
S ⊂ P(X ), we say that the family S of probability measures is tight if for
all ε there exists a compact set K ⊂ X such that

sup
µ∈K

µ(Kc) ≤ ε.

The importance of this definition lies in the following theorem, the proof of
which can be found in [11, Theorem 6.1, 6.2] [75, Theorem 14.3]

Theorem 2.5 (Prokhorov’s theorem). Suppose (µn) ⊂ P(X ). If (µn) is
tight, then it is pre-compact in the sense that every subsequence admits a
further subsequence which converges weakly to some µ ∈ P(X ). Conversely,
if (µn) is pre-compact, and if the metric space (X , d) is separable and com-
plete, then (µn) is tight.

We state one more theorem without giving the proof, which can be found
in [75, Theorem 3.30]:

Theorem 2.6 (Skorokhod’s representation theorem). Suppose (X , d) is sep-
arable. Suppose µn converges weakly to µ in P(X ). Then there exists a
probability space (Ω, F,P) supporting X -valued random variables Xn and X,
with Xn ∼ µn and X ∼ µ, such that Xn → X almost surely.

Theorem 2.6 is quite useful in that it lets us “cheat” by proving things
about weak convergence using what we already know about almost sure con-
vergence. For example, we will give a simple proof of the following important
theorem, which tells us when we can extend the convergence of Definition
2.1 to cover unbounded functions:

Theorem 2.7. Suppose µn converges weakly to µ in P(X ). If f : X → R
is continuous and uniformly integrable in the sense that

lim
r→∞

sup
n

∫
{|f |≥r}

|f | dµn = 0,

then we have limn→∞
∫
X f dµn =

∫
X f dµ.

Proof. By the continuous mapping Theorem 2.4, we know that µn ◦ f−1 →
µ ◦ f−1 weakly in P(R). By Theorem 2.6, we may find a probability space
(Ω, F,P) supporting X -valued random variables Xn and X, with Xn ∼ µn ◦
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f−1 and X ∼ µ◦f−1, such that Xn → X almost surely. Changing variables,
our assumption reads

lim
r→∞

sup
n

E[|Xn|1{|Xn|≥r}] = 0,

where expectation is now on the space (Ω,F ,P). This means that |Xn| are
uniformly integrable. Since Xn → X almost surely, we conclude from the
dominated convergence theorem that

lim
n→∞

∫
X
f dµn = lim

n→∞
E[Xn] = E[X]

=

∫
X
f dµ.

Remark 2.8. One should be careful in applying Skorokhod’s Represen-
tation Theorem 2.6, which is a bit prone to misapplication. We can say
nothing at all about the joint distribution of the resulting Xn’s. If we are
given a sequence of random variables (Xn) defined on a common probably
space, then Xn ⇒ X certainly does not imply Xn → X a.s.! Skorokhod’s
theorem simply says we can find, on some other probability space, random
variables Yn ∼ Xn and Y ∼ X such that Yn → Y a.s. While Skorokhod’s
theorem is a convenient shortcut in some of the proofs we will see, it is good
practice to find alternative proofs, from first principles.

2.1 Weak convergence of empirical measures

As a first exercise on weak convergence, we study the convergence of empir-
ical measures. Suppose (Xi) are i.i.d. X -valued random variables. Define
the P(X )-valued random variable

µn =
1

n

n∑
i=1

δXi .

This random probability measure is called an empirical measure, and it is
worth emphasizing that the integral of a test function takes the following
form: ∫

X
f dµn =

1

n

n∑
i=1

f(Xi).

11



The law of large numbers implies that

P
(

lim
n→∞

∫
X
f dµn = E[f(X1)]

)
= 1, for every f ∈ Cb(X ). (2.1)

In fact, we can prove the

P
(

lim
n→∞

∫
X
f dµn = E[f(X1)] for every f ∈ Cb(X )

)
= 1, (2.2)

which is equivalent to saying that µn → µ weakly with probability 1. Of
course, the difference between (2.1) and (2.2) is that we have exchanged
the order of the quantifiers “for every f” and “with probability 1.” To be
completely clear, if we define an Nf ⊂ Ω by

Nf =

{
lim
n→∞

∫
X
f dµn = E[f(X1)]

}
,

for f ∈ Cb(X ), then (2.1) says that P(Nf ) = 1 for all f ∈ Cb(X ), whereas
(2.2) says that P(∪f∈Cb(X )Nf ) = 1. It is not obvious that these are equiv-
alent statements because the set Cb(X ) is uncountable, and, in general,
uncountable union of probability-one events need not have probability one.

The complete proof of the following theorem would use somewhat heavy
machinery from metric space theory, a bit out of character with the rest of
the course. Instead, note that, in light of the above discussion, the proof
is immediate if we take for granted one essential fact: For any separable
metric space (X , d), there exists a countable family (fn) ⊂ Cb(X ) such that
µn → µ weakly if and only if

∫
fk dµn →

∫
fk dµ for every k. This is clear

when X is compact, because then Cb(X ) = C(X ) is a separable Banach
space when equipped with the supremum norm, but the general case takes
some work; see [103, Theorem 6.6] for a proof. In any case, once we know
this, the exchange of quantifiers above is straightforward.

Theorem 2.9. If (X , d) is separable, then it holds with probability 1 that
µn → µ weakly.

2.2 Wasserstein metrics

We next want to study how to place a metric on P(X ) which is compatible
with weak convergence, so that we can view P(X ) itself as a metric space.
There are many choices, the most common of which are known as the Lévy-
Prokhorov metric, the bounded-Lipschitz metric, or the Wasserstein metrics.
We will work mostly with the latter.
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For technical reasons, we will henceforth assume the metric space (X , d)
is separable. The main reason for this is as follows. Unless X is separable,
the Borel σ-field of the product space X × X (equipped with the usual
product topology) is different from the product σ-field generated by X .
More precisely, if BY denotes the Borel σ-field of a metric space Y, then it
is well known that BX×X = BX ⊗ BX holds if X is separable, but this may
fail otherwise. It particular, the metric d (viewed as a function from X ×X
to R) may not be measurable with respect to the product σ-field BX ⊗ BX
if X is not separable! As all of the spaces we encounter in this course will
be separable, we impose this assumption throughout.

The definition of the Wasserstein metric is based on the idea of a cou-
pling. For µ, ν ∈ P(X ), we write Π(µ, ν) to denote the set of Borel proba-
bility measures π on X × X with first marginal µ and second marginal ν.
Precisely, π(A×X ) = µ(A) and π(X ×A) = ν(A) for every Borel set A ⊂ X .

The Wasserstein metric also requires integrating unbounded functions,
so we must restrict the space on which it is defined. For p ≥ 1, define Pp(X )
to be the set of probability measures µ ∈ P(X ) satisfying∫

X
d(x, x0)pµ(dx) <∞,

where x0 ∈ X is an arbitrary reference point. (By the triangle inequality,
the choice of x0 is inconsequential.)

Definition 2.10. The p-Wasserstein metric on Pp(X ) is defined by

WX ,p(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

d(x, y)p π(dx, dy)

)1/p

.

If the space X is understood, we write simply Wp instead of WX ,p.

An equivalent and more probabilistic definition reads

Wp(µ, ν) =

(
inf

X∼µ, Y∼ν
E[d(X,Y )p]

)1/p

,

where the infimum is over all pairs of X -valued random variables X and Y
with given marginals µ and ν. The Wasserstein metric is very convenient
in that it involves an infimum, which makes it quite easy to bound. That
is, for any choice of coupling, we have an upper bound on the Wasserstein
metric. We will see this much more clearly when we begin to study particle
systems.

We will not prove that Wp is a metric; refer to Villani [115, Theorem
7.3] and Bolley [14] for proof of the following:
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Theorem 2.11. If (X , d) is complete and separable, then Wp defines a
metric on Pp(X ). Moreover, (Pp(X ),Wp) is itself a complete and separable
metric space.

It is worth noting that the minimization problem appearing in the def-
inition of the Wasserstein distance is an example of an optimal transport
problem. The theory of optimal transport is rich and beyond the scope of
this course, but the interested reader is referred to the excellent book of
Villani for [115] for a careful introduction.

Remark 2.12. It is important to note that Jensen’s inequality impliesWp ≤
Wq whenever q ≥ p, and of course Pp(X ) ⊂ Pq(X ) as well. This means
that the metric Wq generates a finer topology. If Wq(µn, µ) → 0, then
Wp(µn, µ)→ 0, but the converse is not necessarily true. (Exercise: Find an
example.) On the other hand, if a function F : Pq(X ) → R is continuous
with respect to the metricWp, then it is also continuous with respect toWq.

We summarize one important fact about Wasserstein convergence in the
following theorem. Essentially, it shows that convergence in p-Wasserstein
distance is the same as weak convergence plus convergence of pth order
moments. Alternatively, we can characterize p-Wasserstein convergence in
terms of the convergence of integrals

∫
f dµn →

∫
f dµ, but for a larger class

of test functions than simply Cb(X ).

Theorem 2.13. Let µ, µn ∈ Pp(X ) for some p ≥ 1. The following are
equivalent:

(i) Wp(µn, µ)→ 0.

(ii) For every continuous function f : X → R with the property that there
exist x0 ∈ X and c > 0 such that |f(x)| ≤ c(1 + d(x, x0)p) for all
x ∈ X , we have ∫

X
f dµn →

∫
X
f dµ.

(iii) µn → µ weakly and
∫
X d(x, x0)p µn(dx) →

∫
X d(x, x0)pµ(dx) for some

x0 ∈ X .

(iv) µn → µ weakly and

lim
r→∞

sup
n

∫
{d(·,x0)≥r}

d(x, x0)p µn(dx) = 0.

14



See [115, Theorem 7.12] for a proof. These various characterizations are
often more convenient to work with than Wasserstein-convergence itself. For
instance, we can quickly prove the following general fact, which we will use
in our study of particle systems:

Corollary 2.14. Suppose X is separable. Suppose (Xi) are i.i.d. X -valued
random variables with law µ, and let µn = 1

n

∑n
i=1 δXi denote the empirical

measure. Let p ≥ 1. If µ ∈ Pp(X ), then Wp(µn, µ) → 0 almost surely, and
also

E[Wp
p (µn, µ)]→ 0.

Proof. We know from Theorem 2.9 that µn → µ weakly, with probability
1. On the other hand, since µ ∈ Pp(X ), we have E[d(X1, x0)p] <∞ for any
x0 ∈ X , and the law of large numbers implies that

lim
n→∞

∫
X
d(x, x0)p µn(dx) = lim

n→∞

1

n

n∑
i=1

d(Xi, x0)p

= E[d(X1, x0)p]

=

∫
X
d(x, x0)p µ(dx), a.s.

The claimed almost sure convergence now follows from the implication (iii)⇒
(i) of Theorem 2.13.

To prove the second claim, we will apply dominated convergence. To
do this, we fix x0 ∈ X and use the triangle inequality and the elementary
inequality (a+ b)p ≤ 2p−1(ap + bp) to estimate

Wp
p (µn, µ) ≤ 2p−1Wp

p (µn, δx0) + 2p−1Wp
p (δx0 , µ)

=
2p−1

n

n∑
i=1

d(Xi, x0)p + 2p−1

∫
X
d(x, x0)p µ(dx).

The second term is finite by assumption, so we need only to show the first
term is uniformly integrable. This follows immediately from the general fact
that if Zi are i.i.d. nonnegative real-valued random variables with E[Z1] <∞
then the partial averages Sn = 1

n

∑n
i=1 Zi are uniformly integrable. This is

perhaps most efficiently argued using the criterion of de la Vallée Poussin:
Integrability of Z1 implies that there exists a convex increasing function
ψ : R+ → R+ with limt→∞ ψ(t)/t = ∞ such that E[ψ(Z1)] < ∞. Then,
convexity implies

sup
n

E[ψ(Sn)] ≤ sup
n

1

n

n∑
i=1

E[ψ(Zi)] = E[ψ(Z1)] <∞,
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which yields the uniform integrability of Sn again by the criterion of de la
Vallée Poussin.

While Wasserstein metrics do not precisely metrize weak convergence,
it is occasionally useful to note that they can be forced to by replacing the
metric on X with an equivalent bounded metric. That is, if (X , d) is a
separable metric space, then we can define a new metric

d(x, y) := 1 ∧ d(x, y) = min{1, d(x, y)}, for x, y ∈ X .

Then d is also a metric on X generating the same topology. Notice that
weak convergence of probability measures on X depends on the topology of
X but not the particular metric! On the other hand, the Wasserstein metric
explicitly involves the choice of metric on X . Regardless, we may define the
p-Wasserstein metric on P(X ) relative to d instead of d:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

[1 ∧ d(x, y)]p π(dx, dy)

)1/p

.

Now notice that x 7→ d(x, x0) is a bounded continuous function on X . Hence,
using the equivalence (i) ⇔ (iii), we conclude that Wp(µn, µ) → 0 if and
only if µn → µ weakly. In summary, if we work with a bounded metric on
X , then the Wasserstein distance (of any order p) provides a metric on P(X )
which is compatible with weak convergence.

2.3 Kantorovich duality

One cannot in good faith discuss Wasserstein metrics without discussing the
fundamental duality theorem, originally due to Kantorovich. We will not
make much use for this in the course, but nonetheless is very often useful
when working with Wasserstein metrics or optimal transport problems more
generally. It takes its simplest form for the 1-Wasserstein metric, worth
singling out. The proof ultimately boils down to the Fenchel-Rockafellar
theorem, but we will not go into this; see [115, Theorems 1.3 and 1.14].

Theorem 2.15. Suppose (X , d) is a complete and separable metric space,
and define Wp for p ≥ 1 as in Definition 2.10. Then, for any µ, ν ∈ Pp(X ),

Wp
p (µ, ν) = sup

{∫
f dµ+

∫
g dν : f, g ∈ Cb(E), f(x) + g(y) ≤ d(x, y)p ∀x, y ∈ X

}
.
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Moreover, for p = 1 and µ, ν ∈ P1(X ), we have

W1(µ, ν) = sup
f

(∫
f dµ−

∫
f dν

)
, (2.3)

where the supremum is over all functions f : X → R which are 1-Lipschitz
in the sense that |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ X .

As is typical in duality theory, one inequality (known as weak duality) is
easy to prove. For instance, in the p = 1 case, if π ∈ Π(µ, ν) is any coupling
and f : X → R is any 1-Lipschitz function, then∫

X
f dµ−

∫
X
f dν =

∫
X×X

(f(x)− f(y))π(dx, dy)

≤
∫
X×X

d(x, y)π(dx, dy).

Take the supremum over f on the left-hand side and the infimum over π ∈
Π(µ, ν) on the right-hand side to get the inequality (≥) in (2.3).

2.4 Interaction functions

When we turn to our study of mean field games and interacting particle
systems, our models will involve functions defined on X × Pp(X ). We will
think of such a function F = F (x, µ) as determining an interaction of a par-
ticle x with a distribution of particles µ. It will be important to understand
examples and continuity properties of such functions. This section catalogs
some examples. Throughout, we assume (X , d) is a complete and separable
metric space.

Example 2.16. Suppose f : X × X → R is jointly continuous. Suppose
there exist c > 0, x0 ∈ X , y0 ∈ X , and a continuous function ω : R+ → R+

such that
|f(x, y)| ≤ c(1 + ω(d(x, x0)) + d(y, y0)p)

Define F : X × Pp(X )→ R by

F (x, µ) =

∫
X
f(x, y)µ(dy).

Then F is well-defined and jointly continuous. To see this, first note as-
sumption (2.16) ensures that∫

X
|f(x, y)|µ(dy) ≤ c

(
1 + ω(d(x, x0)) +

∫
X
d(y, y0)p µ(dy)

)
<∞,
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for every µ ∈ Pp(X ), which shows that F is indeed well-defined for µ ∈
Pp(X ). To prove continuity, suppose µn → µ in Pp(X ). Since µn → µ
weakly, the Skorokhod representation Theorem 2.6 implies that there exists
a probability space (Ω,F ,P) supporting X -valued random variables Yn ∼ µn
and Y ∼ µ such that Yn → Y a.s. Now, for each n, we have

f(xn, Yn) ≤ c
(

1 + sup
k
ω(d(xk, x0)) + d(Yn, y0)p

)
=: Zn.

Thanks to Theorem 2.13(iv), we know that

lim
r→∞

sup
n

E[1{d(Yn,y0)≥r}d(Yn, y0)p] = 0,

and thus

lim
r→∞

sup
n

E[1{Zn≥r}Zn] = 0.

In other words, (Zn) are uniformly integrable, and thus so are f(xn, Yn).
Since f(xn, Yn) converges a.s. to f(x, Y ), we conclude from dominated con-
vergence that

lim
n→∞

∫
X
f(xn, y)µn(dy) = lim

n→∞
E[f(xn, Yn)] = E[f(x, Y )]

=

∫
X
f(x, y)µ(dy).

Example 2.17 (Convolution). A common special case of Example 2.16 is
when the function f is of the form f(x, y) = h(d(x, y)), for some continuous
function h : R+ → R+ with |h(t)| ≤ c(1 + tp) for all t ≥ 0, for some
c > 0. Even more specifically, if X = Rd is a Euclidean space we often take
f(x, y) = h(x− y). In this case,

F (x, µ) =

∫
X
h(x− y)µ(dy)

is precisely the convolution of the function h with the probability measure
µ, often written as F (x, µ) = h ∗ µ(x).

Example 2.18 (Rank-based interaction). Suppose X = R, and define F on
R× P(R) by

F (x, µ) = G(µ(−∞, x]),
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for some function G : [0, 1] → R. In other words, F (x, µ) = G(P(X ≤ x))
if X is a random variable with law µ. This kind of function models a rank-
based interaction, in the following sense: The value µ(−∞, x] gives the mass
assigned below x by the distribution µ, which can be seen as the “rank”
of x in the distribution µ. This is most clear when evaluated at empirical
measures. If x1, . . . , xn ∈ R then, for k = 1, . . . , n, we have

F

(
xk,

1

n

n∑
i=1

δxi

)
= G

(
1

n

n∑
i=1

1{xi≤xk}

)

= G

(
1

n
# {i ∈ {1, . . . , n} : xi ≤ xk}

)
,

where #A denotes the cardinality of a set A. In other words, inside of G we
see 1/n times the number of xi’s below xk, which is naturally interpreted as
the “rank” of xk among the vector (x1, . . . , xn). Unfortunately, rank-based
interactions of this form are not continuous on all of R× P(R), as we have
already seen that typically functions of the form µ 7→ µ(A) are not weakly
continuous for sets A (see the Portmanteau theorem 2.3).

Example 2.19 (Local interactions). Suppose X = Rd, and let Ad ⊂ P(Rd)
denote the set of probability measures on Rd which are absolutely continuous
with respect to Lebesgue measure. In particular, for µ ∈ Ad, we may write
µ(dx) = fµ(x)dx for some measurable nonnegative function fµ on Rd with∫
Rd fµ(x)dx = 1. A local interaction is a function F : Rd × Ad → R of the

form

F (x, µ) = G(fµ(x)),

for some function G on R. The term “local” comes from the fact that the
value F (x, µ) depends on the measure µ only through its infinitesimal mass
around the point x, as captured by the density. These kinds of functions
fail miserably to be continuous, and one needs to be careful even in the
definition, since the density fµ(x) is only defined uniquely up to almost-
everywhere equality.

Example 2.20 (Geometric mean). The following example appears in a
model of competitive optimal investment from [85], which we will study
later in the course as time permits. Given a family of positive real numbers
x1, . . . , xn, the geometric mean is defined as(

n∏
i=1

xi

)1/n

= exp

(
1

n
log

n∑
i=1

xi

)
.
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This extends naturally to a general probability measure µ ∈ P((0,∞)) by
setting

G(µ) = exp

(∫
(0,∞)

log xµ(dx)

)
,

provided the integral is well-defined in the sense that
∫
| log x|µ(dx) < ∞.

This function G is not continuous with respect to any Wasserstein metric,
unless we restrict to a subset of measures for which | log x| is uniformly
integrable. This kind of example motivates the study of more general kinds
of topologies on subsets of P(X ), induced by gauge functions. To wit, if
ψ : X → R+ is a continuous function, we may let Pψ(X ) denote the set
of µ ∈ P(X ) for which

∫
ψ dµ < ∞, and the relevant topology on Pψ(X )

is the coarsest one for which the map µ 7→
∫
f dµ is continuous for every

continuous function f : X → R satisfying |f(x)| ≤ 1+ψ(x) for all x ∈ X . In
light of Theorem 2.13(ii), we know that if ψ(x) = d(x, x0)p for some x0 ∈ X
and some p ≥ 1, then Pψ(X ) = Pp(X ), and this topology is precisely the
one induced by the p-Wasserstein metric. We will not make use of these
ideas, but see [52, Appendix A.6] for a systematic study.

Example 2.21 (Quantile interactions). Define the quantile function of a
measure µ ∈ P(Rd) at a point x ∈ Rd by

R(µ, x, u) = inf{r > 0 : µ(B(x, r)) ≥ u},

where B(x, r) is the closed ball of radius r centered at x. Think of x as the
location of a bird in a flock and µ as a distribution of bird locations. The
value R(µ, x, u) represents the minimal radius r for which a fraction of at
least u of the birds (distributed according to µ) lies within r of the point x.
Fix a number α ∈ (0, 1), and define a function F on Rd × P(Rd) by

F (x, µ) =
1

µ(B(x,R(µ, x, α)))

∫
B(x,R(µ,x,α))

f(x, y)µ(dy),

for some bounded continuous function f on Rd × Rd. This is a very similar
interaction to what we saw in Example 2.16, but now the bird at position
x only interacts with the α percent of birds which are closest to it. In
dimension d = 1, note that the function R is closely related to the quantile
function. In turns out that R (and thus, with some work, F ) is continuous
in µ when restricted to the subset of probability measures Ad defined in
Example 2.19. This can be proven (exercise) using a remarkable result of R.
Rao [105, Theorem 4.2]: If µn → µ weakly, and if µ is absolutely continuous
with respect to Lebesgue measure, then µn(B) → µ(B) for every convex
Borel set B ⊂ Rd, and the convergence is uniform over all such B.
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3 Interacting diffusions and McKean-Vlasov equa-
tions

Now that we understand the fundamentals of weak convergence and Wasser-
stein metrics, we begin our study of interacting particle systems. For a
review of stochastic calculus, the reader is referred to the classic book of
Karatzas and Shreve [76], or even the first chapter of Pham’s book [104]
which we will refer to later when we discuss stochastic control theory. Behind
the scenes throughout this section is a filtered probability space (Ω,F ,F,P),
with F = (Ft)t≥0 satisfying the usual conditions. This space should support
(at the very least) an i.i.d. sequence (ξi) of Rd-valued F0-measurable random
variables as well as a sequence (W i) of independent F-Brownian motions.

The main object of study will be a system of n interacting particles
(Xn,1

t , . . . , Xn,n
t ), driven by stochastic differential equations (SDEs) of the

form

dXn,i
t = b(Xn,i

t , µnt )dt+ σ(Xn,i
t , µnt )dW i

t , Xn,i
0 = ξi,

µnt =
1

n

n∑
k=1

δ
Xn,k
t
.

(3.1)

Driving this SDE system are n independent Brownian motions, W 1, . . . ,Wn,
and we typically assume the initial states ξ1, . . . , ξn are i.i.d. We think of
Xn,i
t as the position of particle i at time t, in a Euclidean space Rd.

We think of the number n of particles as very large, and ultimately we
will send it to infinity. There is a key structural feature that makes this
system amenable to mean field analysis: The coefficients b and σ are the
same for each particle, and the only dependence of particle i on the rest of
the particles k 6= i is through the empirical measure µnt . Let us build some
intuition with a simple example:

3.1 A first example

In this section we study in more detail a warm-up model mentioned in
the introduction. Consider the SDE system (3.1), with d = 1-dimensional
particles, with the coefficients

b(x, µ) = a

(
x−

∫
R
y µ(dy)

)
, σ ≡ 1.
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Here a > 0, and we can write more explicitly

dXn,i
t = a

(
X
n
t −X

n,i
t

)
dt+ dW i

t , i = 1, 2, . . . , n,

X
n
t =

1

n

n∑
k=1

Xn,k
t .

(3.2)

The drift pushes each particle toward the empirical average X
n
t . This is

like an Ornstein-Uhlenbeck equation, but the target of mean-reversion is
dynamic. To understand how the system behaves for large n, a good way
to start is by noticing that if we average the n particles we get very simple
dynamics for X

n
t :

dX
n
t =

1

n

n∑
i=1

dW i
t .

In particular,

X
n
t = X

n
0 +

1

n

n∑
i=1

W i
t .

Sending n→∞, the average of the n Brownian motions vanishes thanks to
the law of large numbers. Moreover, if the initial states Xn,i

0 = ξi are i.i.d.,
the empirical average X

n
0 converges to the true mean E[ξ1]. Hence, when

n → ∞, the empirical average becomes limnX
n
t = E[ξ1] for all t, almost

surely. Plugging this back in to the original equation (3.2), we find that
limnX

n,i = Y i a.s., where

dY i
t = a

(
E[ξi]− Y i

t

)
dt+ dW i

t , Y i
0 = ξi. (3.3)

We can solve this equation pretty easily. First, writing it in integral form,
we have

Y i
t = ξi + a

∫ t

0

(
E[ξi]− Y i

s

)
ds+W i

t .

Take expectations to get

E[Y i
t ] = E[ξi] + a

∫ t

0

(
E[ξi]− E[Y i

s ]
)
ds.

Differentiate in t to get

d

dt
E[Y i

t ] = a
(
E[ξi]− E[Y i

t ]
)
, E[Y i

0 ] = E[ξi].
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This shows that the function t 7→ E[Y i
t ] solves a very simple ordinary differ-

ential equation, the solution of which is constant, E[Y i
t ] = E[ξi]. Hence, we

may rewrite (3.3) as

dY i
t = a

(
E[Y i

t ]− Y i
t

)
dt+ dW i

t , Y i
0 = ξi. (3.4)

This is our first example of a McKean-Vlasov equation, an SDE in which
the coefficients depend on the law of the solution.

It important to observe that the resulting limiting processes (Y i)i∈N are
i.i.d. They solve the same SDEs, driven by i.i.d. Brownian motions and i.i.d.
initial states. This is a general phenomenon with McKean-Vlasov limits; the
particles become asymptotically i.i.d. as n→∞, in a sense we will later make
precise.

3.2 Deriving the McKean-Vlasov limit

While the example of Section 3.1 was simple enough to allow explicit com-
putation, we now set to work on a general understanding of the n → ∞
behavior of systems of the form (3.1). First, we should specify assumptions
on the coefficients to let us ensure at the very least that the n-particle SDE
system (3.1) is well-posed. In this section, we work with the following set of
nice assumptions, recalling from Definition 2.10 the notation for Wasserstein
metrics:

Assumption 3.1. Assume the initial states (ξi)i∈N are i.i.d. with E[|ξ1|2] <
∞. The Brownian motions (W i)i∈N are independent and m-dimensional.
Assume b : Rd × P2(Rd)→ Rd and σ : Rd × P2(Rd)→ Rd×m are Lipschitz,
in the sense that there exists a constant L > 0 such that

|b(x,m)− b(x′,m′)|+ |σ(x,m)− σ(x′,m′)| ≤ L(|x− x′|+W2(m,m′)).
(3.5)

Note that we always write | · | for the Euclidean norm on Rd and | · | for the
Frobenius norm on Rd×m.

This assumption immediately lets us check that the SDE system (3.1) is
well-posed. We make heavy use of the following well-known well-posedness
result:

Lemma 3.2. Under Assumption 3.1, the n-particle SDE system (3.1) ad-
mits a unique strong solution, for each n.
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Proof. We will fall back on Itô’s classical existence and uniqueness result for
Lipschitz SDEs. Define the Rnd-valued process Xt = (Xn,1

t , . . . , Xn,n
t ), and

similar define the nm-dimensional Brownian motion Wt = (W 1
t , . . . ,W

n
t ).

We may write

dXt = B(Xt)dt+ Σ(Xt)dWt, (3.6)

if we make the following definitions: Ln : (Rd)n → P(Rd) denotes the
empirical measure map,

Ln(x1, . . . , xn) =
1

n

n∑
k=1

δxk ,

where we notice that the range of Ln actually lies in Pp(Rd) for any ex-
ponent p. Define also B : Rnd → Rnd and Σ : Rnd → Rnd × Rnm, for
x = (x1, . . . , xn) ∈ Rnd, by

B(x) =


b(x1, Ln(x))
b(x2, Ln(x))

...
b(xn, Ln(x))

 ,

Σ(x) =


σ(x1, Ln(x))

σ(x2, Ln(x))
. . .

σ(xn, Ln(x))

 ,

where Σ contains all zeros except for d × m blocks on the main diagonal.
Then, for x,y ∈ Rnd, we have

|B(x)−B(y)|2 =

n∑
i=1

|b(xi, Ln(x))− b(yi, Ln(y))|2

≤ 2L2
n∑
i=1

(
|xi − yi|2 +W2

2 (Ln(x), Ln(y))
)

= 2L2|x− y|2 + 2L2nW2
2 (Ln(x), Ln(y)),

where the second line used the elementary inequality (a + b)2 ≤ 2a2 + 2b2.
Next, to bound the Wasserstein distance between empirical measures, we
use the most natural coupling; namely, the empirical measure

π =
1

n

n∑
i=1

δ(xi,yi)
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is a coupling of Ln(x) and Ln(y). Hence,

W2
2 (Ln(x), Ln(y)) ≤

∫
Rd×Rd

|x− y|2π(dx, dy)

=
1

n

n∑
i=1

|xi − yi|2

=
1

n
|x− y|2.

We conclude that |B(x) − B(y)|2 ≤ 4L2|x − y|2, which means that B is
2L-Lipschitz. A similar estimate is available for Σ. Conclude that the SDE
(3.6), which was simply a rewriting of our original SDE system, has a unique
strong solution.

Now, to send n→∞ in our particle system, we start by “guessing” what
the limit should look like. As n → ∞, the interaction becomes weaker and
weaker in the sense that the contribution of a given particle i is of order 1/n,
intuitively. Hence, as n → ∞, we expect the interaction to vanish, in the
sense that a given particle i does not appear in the measure term anymore.
If particles do not affect the measure flow, then the particles should be i.i.d.,
as they have the same coefficients b and σ and are driven by independent
Brownian motions. For a better, more mathematical derivation, see Section
3.4.

For now, the above guess leads us to expect that if µnt → µt in some
sense, where µt is a deterministic measure flow (i.e., a function R+ 3 t 7→
µt ∈ P2(Rd)), then the dynamics of any particle particle will look like

dY i
t = b(Y i

t , µt)dt+ σ(Y i
t , µt)dW

i
t .

These particles are i.i.d., but µt should still somehow represent their distri-
bution. We know that the empirical measure of i.i.d. samples converges to
the true distribution (see Theorem 2.9), so we should expect that µt is ac-
tually the law of Y i

t , for any i. In other words, the law of the solution shows
up in the coefficients of the SDE! We call this a McKean-Vlasov equation,
after the seminal work of McKean [94, 95].

To formulate the McKean-Vlasov equation more precisely, it is conve-
nient and often more general to lift the discussion to the path space, in the
following sense. For convenience, we will fix a time horizon T > 0, but it
is straightforward to extend much of the discussion to follow to the infinite
time interval. Let Cd = C([0, T ];Rd) denote the set of continuous Rd-valued
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functions of time, equipped with the supremum norm

‖x‖ = sup
t∈[0,T ]

|xt|

and the corresponding Borel σ-field. Rather than work with measure flows,
as elements of C([0, T ];P2(Rd)), we will work with probability measures on
Cd. There is a natural surjection

P2(Cd) 3 µ→ (µt)t∈[0,T ] ∈ C([0, T ];P2(Rd)),

where µt is defined as the image of the measure µ through the map Cd 3
x 7→ xt ∈ Rd. In other words, if µ = L(X) is the law of a Cd-valued random
variable, then µt = L(Xt) is the time-t marginal. Note that this surjection
is continuous and, in fact, 1-Lipschitz, if C([0, T ];P2(Rd)) is endowed with
the supremum distance induced by the metricW2 on Rd; explicitly, we have

sup
t∈[0,T ]

WRd,2(µt, νt) ≤ WCd,2(µ, ν) (3.7)

for every µ, ν ∈ P2(Cd).
The McKean-Vlasov equation is defined precisely as follows:

dYt = b(Yt, µt)dt+ σ(Yt, µt)dWt, t ∈ [0, T ], Y0 = ξ,

µ = L(Y ), ∀t ≥ 0.
(3.8)

Here we write L(Z) for the law or distribution of a random variable Z. Here
W is a Brownian motion, ξ is an Rd-valued random variable with the same
law as ξi, and both are (say) supported on the same filtered probability space
(Ω,F ,F,P). Of course, ξ should be F0-measurable, and W should be an F-
Brownian motion. A strong solution of the McKean-Vlasov equation is a pair
(Y, µ), where Y is a continuous F-adapted Rd-valued process (alternatively,
a C([0, T ];Rd)-valued random variable), and µ is a probability measure on
C([0, T ];Rd), such that both equations (3.8) hold simultaneously. More
compactly, one could simply write

dYt = b(Yt,L(Yt))dt+ σ(Yt,L(Yt))dWt, t ∈ [0, T ], Y0 = ξ.

Under the Lipschitz assumption, we can always uniquely solve for Y if we
know µ, and so we sometimes refer to µ itself (instead of the pair (Y, µ)) as
the solution of the McKean-Vlasov equation.
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We formalize all of this in the following theorem. We will make use of
the 2-Wasserstein distance W2 =WCd,2, which we recall is defined by

W2
2 (m,m′) = inf

π∈Π(m,m′)

∫
Cd×Cd

‖x− y‖2 π(dx, dy).

In the n-particle system (3.1), let

µn =
1

n

n∑
i=1

δXn,i

denote the lifted empirical measure, i.e., the random probability measure on
Cd obtained as the empirical measure of the n particle trajectories.

Theorem 3.3. Suppose Assumption 3.1 holds. There exists a unique strong
solution of the McKean-Vlasov equation (3.8). Moreover, the n-particle sys-
tem converges in the following two senses. First,

lim
n→∞

E
[
W2
Cd,2(µn, µ)

]
= 0. (3.9)

Second, for a fixed k ∈ N, we have the weak convergence

(Xn,1, . . . , Xn,k)⇒ (Y 1, . . . , Y k), (3.10)

where Y 1, . . . , Y k are independent copies of the solution of the McKean-
Vlasov equation.

We interpret the second form of the limit (3.10) as saying that the par-
ticles Xn,i become asymptotically i.i.d. as n→∞. Indeed, for any fixed k,
the first k particles converge in distribution to i.i.d. random variables. The
choice of the “first k” particles here is inconsequential, in light of the fact
that the n-particle system (3.1) is exchangeable, in the sense that

(Xn,π(1), . . . , Xn,π(n))
d
= (Xn,1, . . . , Xn,n)

for any permutation π of {1, . . . , n}. (Here
d
= means equal in distribution.)

It is left as an exercise for the reader to prove this claimed exchangeability,
using the uniqueness of the solution of the SDE system (3.1).

Remark 3.4. The two kinds of limits described in Theorem 3.3 are some-
times referred to as propagation of chaos, though this terminology has some-
what lost its original meaning. One would say that propagation of chaos
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holds for the interacting particle system (3.1) if the following holds: For any
m0 ∈ P(Rd) and any choice of deterministic initial states (Xn,i

0 ) satisfying

1

n

n∑
i=1

δ
Xn,i

0
→ m0, (3.11)

we have the weak limit 1
n

∑n
i=1 δXn,i

t
→ µt in probability in P(Rd), where

(Y, µ) is the solution of the McKean-Vlasov equation (3.8) with initial state
ξ ∼ m0. Initial states which converge weakly as in (3.11) are called “m0-
chaotic,” and the term propagation of chaos means that the “chaoticity” of
the initial distributions “propagates” to later times t > 0.

We break up the proof of Theorem 3.3 into a two major steps. First, we
show existence and uniqueness:

Proof of existence and uniqueness

Define the truncated supremum norm

‖x‖t := sup
0≤s≤t

|xs|

for x ∈ Cd and t ∈ [0, T ]. Using this, define the truncated Wasserstein
distance on P2(Cd) by

d2
t (µ, ν) = inf

π∈Π(µ,ν)

∫
Cd×Cd

‖x− y‖2t π(dx, dy). (3.12)

Notice that for any fixed µ ∈ P2(Cd) we have the Lipschitz condition

|b(x, µt)− b(y, µt)|+ |σ(x, µt)− σ(y, µt)| ≤ L|x− y|,

and thus classical theory ensures that there exists a unique (square-integrable)
solution Y µ of the SDE

dY µ
t = b(Y µ

t , µt)dt+ σ(Y µ
t , µt)dWt, Y µ

0 = ξ.

Define a map Φ : P2(Cd)→ P2(Cd) by setting Φ(µ) = L(Y µ). That is, for a
fixed µ, we solve the above SDE, and set Φ(µ) to be the law of the solution.
Note that (Y, µ) is a solution of the McKean-Vlasov equation if and only if
Y = Y µ and µ = Φ(µ). That is, fixed points of Φ are precisely solutions of
the McKean-Vlasov equation.
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Let µ, ν ∈ P2(Cd), and use Jensen’s inequality to get, for t ∈ [0, T ],

|Y µ
t − Y ν

t |2 ≤ 2t

∫ t

0
|b(Y µ

r , µr)− b(Y ν
r , νr)|

2 dr

+ 2

∣∣∣∣∫ t

0
(σ(Y µ

r , µr)− σ(Y ν
r , νr)) dWr

∣∣∣∣2 .
Take the supremum and use Doob’s inequality followed by the Lipschitz
assumption to find

E
[
‖Y µ − Y ν‖2t

]
≤ 2tE

[∫ t

0
|b(Y µ

r , µr)− b(Y ν
r , νr)|

2 dr

]
+ 2E

[
sup

0≤s≤t

∣∣∣∣∫ s

0
(σ(Y µ

r , µr)− σ(Y ν
r , νr)) dWr

∣∣∣∣2
]

≤ 2tE
[∫ t

0
|b(Y µ

r , µr)− b(Y ν
r , νr)|

2 dr

]
+ 8E

[∫ t

0
|σ(Y µ

r , µr)− σ(Y ν
r , νr)|

2 dr

]
≤ 2(8 + 2t)L2E

[∫ t

0

(
|Y µ
r − Y ν

r |2 +W2
2 (µr, νr)

)
dr

]
≤ 2(8 + 2t)L2E

[∫ t

0

(
‖Y µ − Y ν‖2r +W2

2 (µr, νr)
)
dr

]
.

Use Fubini’s theorem and Gronwall’s inequality3 to conclude that

E
[
‖Y µ − Y ν‖2t

]
≤ C

∫ t

0
W2

2 (µr, νr)dr,

for t ∈ [0, T ], where C = 2(8 + 2T )L2 exp(2(8 + 2T )L2). Use the inequality
(3.7) to get

E
[
‖Y µ − Y ν‖2t

]
≤ C

∫ t

0
d2
r(µ, ν)dr.

3The form of Gronwall’s inequality we use is as follows: If we are given a constant
c > 0 and continuous nonnegative functions f and g such that

f(t) ≤ g(t) + c

∫ t

0

f(r)dr, ∀t ∈ [0, T ],

then f(t) ≤ ectg(t) for all t ∈ [0, T ].
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Finally, recall the definition of d2
t , and notice that the joint distribution of

(Y µ, Y ν) is a coupling of (Φ(µ),Φ(ν)). Hence,

d2
t (Φ(µ),Φ(ν)) ≤ E

[
‖Y µ − Y ν‖2t

]
≤ C

∫ t

0
d2
r(µ, ν)dr.

The proof of existence and uniqueness now follows from the usual Picard
iteration argument. In particular, uniqueness follows from the above in-
equality and another application of Gronwall’s inequality, whereas existence
is derived by choosing arbitrarily µ0 ∈ P2(Cd), setting µk+1 = Φ(µk) for
k ≥ 0, and showing using the above inequality that (µk) forms a Cauchy
sequence whose limit must be a fixed point of Φ.

Proof of McKean-Vlasov limit

We now move to the second part of Theorem 3.3, proving the claimed limit
theorem. The idea is what is by a coupling argument, where we construct
i.i.d. copies of the unique solution of the McKean-Vlasov equation which has
desirable joint-distributional properties with the original particle system.
To do this, let µ denote the unique solution of the McKean-Vlasov equation
(3.8). Using the same Brownian motions (W i) and initial states (ξi) as our
original particle system (3.1), define Y i as the solution of the SDE

dY i
t = b(Y i

t , µt)dt+ σ(Y i
t , µt)dW

i
t , Y i

0 = ξi.

Because the initial states and Brownian motions are i.i.d., so are (Y i). We
now want to estimate the difference |Xn,i

t − Y i
t |. To do this, we proceed as

in the previous step, starting with a fixed i and n:

|Xn,i
t − Y i

t |2 ≤ 2t

∫ t

0

∣∣b(Xn,i
r , µnr )− b(Y i

r , µr)
∣∣2 dr

+ 2

∣∣∣∣∫ t

0

(
σ(Xn,i

r , µnr )− σ(Y i
r , µr)

)
dW i

r

∣∣∣∣2 .
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Take the supremum and use Doob’s inequality followed by the Lipschitz
assumption to find

E
[
‖Xn,i − Y i‖2t

]
≤ 2tE

[∫ t

0

∣∣b(Xn,i
r , µnr )− b(Y i

r , µr)
∣∣2 dr]

+ 2E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

(
σ(Xn,i

r , µnr )− σ(Y i
r , µr)

)
dW i

r

∣∣∣∣2
]

≤ 2tE
[∫ t

0

∣∣b(Xn,i
r , µnr )− b(Y i

r , µr)
∣∣2 dr]

+ 8E
[∫ t

0

∣∣σ(Xn,i
r , µnr )− σ(Y i

r , µr)
∣∣2 dr]

≤ 2(8 + 2t)L2E
[∫ t

0

(
‖Xn,i − Y i‖2r +W2

2 (µnr , µr)
)
dr

]
.

Use Fubini’s theorem, Gronwall’s inequality, and the inequality (3.7) to get

E
[
‖Xn,i − Y i‖2t

]
≤ CE

[∫ t

0
W2

2 (µnr , µr)dr

]
≤ CE

[∫ t

0
d2
r(µ

n, µ)dr

]
, (3.13)

for t ∈ [0, T ], where C = 2(8 + 2T )L2 exp(2(8 + 2T )L2), and where we recall
the definition of the truncated Wasserstein distance from (3.12).

Define now the empirical measure of the Y i’s,

νn =
1

n

n∑
i=1

δY i .

The empirical measure 1
n

∑n
i=1 δ(Xn,i,Y i) is a coupling of the (random) em-

pirical measures µn and νn, and so

d2
t (µ

n, νn) ≤ 1

n

n∑
i=1

‖Xn,i − Y i‖2t , a.s.

Combine this with (3.13) to get

E[d2
t (µ

n, νn)] ≤ CE
[∫ t

0
d2
r(µ

n, µ)dr

]
.
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Use the triangle inequality and the previous inequality to get

E[d2
t (µ

n, µ)] ≤ 2E[d2
t (µ

n, νn)] + 2E[d2
t (ν

n, µ)]

≤ 2CE
[∫ t

0
d2
r(µ

n, µ)dr

]
+ 2E[d2

t (ν
n, µ)].

Apply Gronwall’s inequality once again to get

E[d2
t (µ

n, µ)] ≤ 2e2CTE
[
d2
t (ν

n, µ)
]
.

In particular, setting t = T , we have

E[W2
2 (µn, µ)] ≤ 2e2CTE[W2

2 (νn, µ)].

But νn are the empirical measures of i.i.d. samples from the law µ, and
the claimed limit (3.9) follows from the law of large numbers in the form of
Corollary 2.14.

Finally, to prove the second claimed limit (3.10), we use (3.13) to find

E
[

max
i=1,...,k

‖Xn,i − Y i‖2t
]
≤

k∑
i=1

E
[
‖Xn,i − Y i‖2t

]
≤ CkE

[∫ t

0
d2
r(µ

n, µ)dr

]
≤ CkTE[W2

2 (µn, µ)].

We just showed that this converges to zero, and the claimed convergence in
distribution follows.

3.3 The PDE form of the McKean-Vlasov equation

In a first course on stochastic calculus, one encounters the Kolmogorov for-
ward and backward equations, which describe the behavior of the distribu-
tion of the solution of an SDE. Both of these PDEs are linear in the un-
known. A McKean-Vlasov equation like (3.8) admits a similar Kolmogorov
forward-equation, but it is markedly different in that it is both nonlinear
and nonlocal, in a sense we will soon make clear.

Suppose (Y, µ) solves the McKean-Vlasov equation (3.8). Apply Itô’s
formula to ϕ(Yt), where ϕ is a smooth function with compact support, to
get

dϕ(Yt) =

(
b(Yt, µt) · ∇ϕ(Yt) +

1

2
Tr[σσ>(Yt, µt)∇2(Yt)]

)
dt

+∇ϕ(Yt) · σ(Yt, µt)dWt,
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where∇ and∇2 denote the gradient and Hessian operators, respectively, and
σσ>(x,m) = σ(x,m)σ(x,m)>, where > denotes the transpose of a matrix.
Integrating this equation, taking expectations to kill the martingale term,
and then differentiating, we find

d

dt
E[ϕ(Yt)] = E

[
b(Yt, µt) · ∇ϕ(Yt) +

1

2
Tr[σσ>(Yt, µt)∇2(Yt)]

]
.

Now, we know that Yt ∼ µt. Suppose in addition that µt has a density
(with respect to Lebesgue measure), which we write as µ(t, x). Assume in
addition that it admits one continuous derivative in t and two in x. We may
then rewrite the above equation as

d

dt

∫
Rd
ϕ(x)µ(t, x)dx

=

∫
Rd

(
b(x, µt) · ∇ϕ(x) +

1

2
Tr[σσ>(x, µt)∇2ϕ(x)]

)
µ(t, x)dx (3.14)

=

∫
Rd

(
−divx(b(x, µt)µ(t, x)) +

1

2
Tr
[
∇2
(
σσ>(x, µt)µ(t, x)

)])
ϕ(x)dx.

Because this must hold for every test function ϕ, we conclude (formally)
that µ(t, x) solves the PDE

∂tµ(t, x) = −divx(b(x, µt)µ(t, x)) +
1

2
Tr
[
∇2
(
σσ>(x, µt)µ(t, x)

)]
. (3.15)

Notice that if b and σ did not depend on µ, this would be a usual (linear) Kol-
mogorov forward equation, also known as a Fokker-Planck equation. Note
in addition that the nonlinear dependence on µt is also typically nonlocal,
in the sense that b = b(x, µt) is a function not of the value µ(t, x) but of the
entire distribution (µ(t, x))x∈Rd ; for instance, if b(x, µt) involves the mean of
the measure µt, then the interaction is nonlocal. In fact, assuming that b is
continuous with respect to weak convergence or a Wasserstein metric already
prohibits local interactions; we briefly discussed local interactions in Exam-
ple 2.19, and these can (and often are) incorporated into McKean-Vlasov
equations, though it takes more care to represent a local McKean-Vlasov
equation as a meaningful n-particle system which converges to it.

Even if the density of µt does not exist or is not sufficiently smooth,
is it still clear that (µt) is a weak solution of the PDE (3.15), in the sense
that it holds integrated against test functions. That is, the first equation of
(3.14) is always valid, for every smooth test function ϕ of compact support.
What we have shown with the above argument is that if µ is a solution of
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the McKean-Vlasov equation (3.8), then it is also a weak solution of the
PDE (3.15) in a suitable sense. The converse can often be shown as well.
In particular, it suffices to show that the PDE (3.15) has a unique weak
solution. This can be done in many cases, and for this reason the PDE
(3.15) is often itself the main object of study, instead of the McKean-Vlasov
SDE (3.8).

3.4 An alternative derivation of the McKean-Vlasov limit

The PDE (3.15) can be used as the basis for studying the n → ∞ limit of
the n-particle system. This approach requires some more machinery from
weak convergence theory for stochastic processes, which we will not develop.
Instead, the argument is merely sketched, with some warnings when the
arguments become hand-wavy.

A good place to start is to study this behavior of the P(Rd)-valued
stochastic process (µnt )t≥0 through the integrals of test functions. Let us
make use of the shorthand notation

〈ν, ϕ〉 :=

∫
Rd
ϕdν,

for a measure ν on Rd and a ν-integrable function ϕ.
Fix a smooth function ϕ on Rd with compact support. To identify the

behavior of

〈µnt , ϕ〉 =
1

n

n∑
i=1

ϕ(Xn,i
t ),

we first use Itô’s formula to write, for each i = 1, . . . , n,

dϕ(Xn,i
t ) =

(
b(Xn,i

t , µnt ) · ∇ϕ(Xn,i
t ) +

1

2
Tr[σσ>(Xn,i

t , µnt )∇2ϕ(Xn,i
t ]

)
dt

+∇ϕ(Xn,i
t ) · σ(Xn,i

t , µnt )dW i
t .

It is convenient now to define the infinitesimal generator by setting

Lmϕ(x) = b(x,m) · ∇ϕ(x) +
1

2
Tr[σσ>(x,m)∇2ϕ(x)],

for each m ∈ P(Rd) and x ∈ Rd. We may then write

dϕ(Xn,i
t ) = Lµnt ϕ(Xn,i

t )dt+∇ϕ(Xn,i
t ) · σ(Xn,i

t , µnt )dW i
t .
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Average over i = 1, . . . , n to get

d〈µnt , ϕ〉 =
1

n

n∑
i=1

dϕ(Xn,i
t )

=
〈
µnt , Lµnt ϕ

〉
dt+

1

n

n∑
i=1

∇ϕ(Xn,i
t ) · σ(Xn,i

t , µnt )dW i
t

=:
〈
µnt , Lµnt ϕ

〉
dt+ dMn

t ,

where the last line defines the local martingale Mn. In the simplest case, the
function σ is uniformly bounded, and so there exists a constant C such that
|σ>∇ϕ| ≤ C uniformly. Then, Mn is a martingale with quadratic variation

[Mn]t =
1

n2

n∑
i=1

∫ t

0
|σ>(Xn,i

s , µns )∇ϕ(Xn,i
s )|2ds ≤ tC2

n
.

In particular, this implies E[(Mn
t )2] ≤ tC2/n.

At this point we begin skipping some crucial steps. One should show next
that (µnt )t≥0 is tight as a sequence of random elements of C(R+;P2(Rd)),
endowed with an appropriate topology. Then, by Prokhorov’s theorem, it
admits a subsequential limit point, and we would like to describe all such
limit points. So suppose the process (µnt )t≥0 converges (along a subsequence
is enough) to another (measure-valued) process (µt)t≥0. Then, since the
martingale term Mn vanishes as n→∞, we should have

d〈µt, ϕ〉 = 〈µt, Lµtϕ〉 dt. (3.16)

The identity (3.16) holds a.s. for all smooth ϕ of compact support, and with
some work one can switch the order of quantifiers to show that in fact, with
probability 1, the equation holds (3.16) for all ϕ and all t ≥ 0. (That is, the
null set does not depend on t or ϕ.) This shows that the limit point µ is
almost surely a weak solution of the PDE (3.15).

If we knew, via different arguments, that the weak solution of the PDE
(3.15) is unique, then we would be in good shape. Let us write ν for the
unique solution. Every subsequential limit in distribution µ of µn is almost
surely a weak solution, and thus µ = ν a.s. This implies that the full
sequence µn converges in distribution to the deterministic ν.

In fact, this line of argument reveals, interestingly, that even if the PDE
(3.15) is not unique, we can still say that every subsequential limit point of
the µn is supported on the set of solutions of PDE (3.15).
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Remark 3.5. A variation of this same argument uses the theory of mar-
tingale problems [112] to show essentially the same thing, but replacing the
PDE (3.15) with the martingale problem form of the McKean-Vlasov equa-
tion. Alternatively, a similar argument can work directly with the SDEs,
without resorting to PDEs or martingale problems, using the result of Kurtz
and Protter [77] on weak convergence of stochastic integrals. These kinds
of arguments are more advanced but tend to be much more versatile than
those presented in the previous sections (in Theorem 3.3 and its proof),
which required the coefficients to be Lipschitz.

3.5 Loss of the Markov property

This short section highlights how the Markov properties ties in with McKean-
Vlasov SDEs, which in fact are sometimes called nonlinear Markov processes,
essentially because (as we saw in Section 3.3) the corresponding Fokker-
Planck equation is nonlinear. Let us start by briefly reviewing the situation
for standard SDEs.

Suppose we are given coefficients b and σ, and suppose the SDE

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x,

has a unique solution for any initial state x. (Existence of a weak solution
and uniqueness in law is enough here.) Then the resulting process (Xt)t≥0

is a Markov process, meaning that E[f(Xt)|Fs] = E[f(Xt)|Xs] a.s. for every
s < t, where Fs = σ(Xr : r ≤ s) is the natural filtration of X.

In fact, the SDE above has the even stronger property of defining what
is often called a Markov family. letting Cd = C([0,∞);Rd) denote the path
space, suppose we define Px ∈ P(Cd) as the law of the solution starting from
x ∈ Rd. Now suppose we randomize the initial state. Consider an initial
distribution m ∈ P(Rd). Then the SDE

dXt = b(Xt)dt+ σ(Xt)dBt, X0 ∼ m,

has a unique (in law) solution, and we may write Pm ∈ P(Cd) for the law of
the solution. An instance of the “Markov family” property is the statement
that for any Borel set A ⊂ Cd we have

Pm(A) =

∫
Rd
Px(A)m(dx). (3.17)

In other words, if we solve the SDE from every deterministic initial state,
this is enough to determine the behavior of the SDE started from a random
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initial state, simply by integrating over the distribution of the initial state.
Another way to say this: under Pm, the conditional law of the process X
given X0 = x is equal to Px.

With McKean-Vlasov equations, the situation is different. Consider the
McKean-Vlasov SDE

dXt = b(Xt,L(Xt))dt+ σ(Xt,L(Xt))dBt, X0 = x. (3.18)

Suppose b and σ satisfy the Lipschitz condition of 3.1. First notice that if
we let µt = L(Xt), and we let Y denote the unique (strong) solution of the
SDE

dYt = b(Yt, µt)dt+ σ(Yt, µt)dBt, Y0 = x,

then we must have Y ≡ X. In the latter equation, we simply treat (µt)
as a time-dependence of the coefficients, and well-posedness follows from
standard SDE theory. We also conclude that Y (and thus X) is a Markov
process, though this time-inhomogeneous, because the coefficients of the
latter equation only depend on (t, Yt).

However, the “Markov family” property described above is lost. Suppose
Px ∈ P(Cd) denotes the law of the solution of (3.18) started from x ∈ Rd.
For m ∈ P(Rd) let Pm ∈ P(Cd) denote the law of the unique solution of the
same SDE but started with initial distribution X0 ∼ m. Then, in general,
the equation (3.17) does not hold! If we solve the McKean-Vlasov SDE with
a random initial state, and then condition on X0 = x for some x ∈ Rd, the
resulting distribution is NOT the same as the law Px obtained by solving
the McKean-Vlasov SDE with deterministic initial state X0 = x.

3.6 Common noise

In this section we discuss briefly, without proof, an important extension of
the main model to allow some correlations between the driving Brownian
motions. The way this is typically done is as follows: In the n-particle sys-
tem, there are now n+1 independent Brownian motions, B and W 1, . . . ,Wn.
As before, W i is of dimension m, while now B is of dimension m0. We are
given a volaility coefficient σ0 : Rd×P2(Rd)→ Rd×m0 for the common noise
term. The particles (Xn,1

t , . . . , Xn,n
t ) evolve according to the SDE system

dXn,i
t = b(Xn,i

t , µnt )dt+ σ(Xn,i
t , µnt )dW i

t + σ0(Xn,i
t , µnt )dBt, Xn,i

0 = ξi,

(3.19)

where as usual we write

µn =
1

n

n∑
k=1

δXn,k
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for the empirical measure of the particles, viewed as a random element of
P(Cd), and µnt = 1

n

∑n
k=1 δXn,k

t
denotes the time-t marginal.

The key difference between (3.1) and (3.19) is that in the latter case
the particles are not driven by their own independent Brownian motions.
The “common noise” B can model what economists might call “aggregate
shocks,” which effect the system as a whole as opposed to a single particle.

We saw in Theorem 3.3 that in models without common noise the parti-
cles become asymptotically i.i.d., and this is no longer the case when there
is common noise. The correlations induced by the common noise persist in
the limit, and the limiting µ is stochastic.

3.6.1 The limit theorem

The conditional (or stochastic) McKean-Vlasov equation is defined precisely
as follows:

dYt = b(Yt, µt)dt+ σ(Yt, µt)dWt + σ0(Yt, µt)dBt, t ∈ [0, T ], Y0 = ξ,

µ = L(Y |B), ∀t ≥ 0. (3.20)

Here W and B are independent Brownian motions, ξ is an Rd-valued random
variable with the same law as ξi, and both are (say) supported on the same
filtered probability space (Ω,F ,F,P). Again, ξ should be F0-measurable,
and W and B are F-Brownian motions. We write also L(Z|Z̃) for the law or
distribution of a random variable Z given another random variable Z̃, and
we stress that L(Z|B) means we are conditioning on the entire Cm0-valued
random variable B, or equivalently the entire trajectory (Bt)t∈[0,T ].

4

The last equality µ = L(Y |B) in (3.20) is meant to be understood in the
almost sure sense. That is, µ is a P2(Cd)-valued random variable, and µ is
a version of the regular conditional law of Y given B. Equivalently,∫

ϕdµ = E[ϕ(Y ) |B], a.s.,

for every bounded measurable function ϕ on Cd. It is important to note here
that if Y is F-adapted and B is an F-Brownian motion, and if µ = L(Y |B),
then it holds automatically that

L(Yt|B) = L(Yt|FBt ), a.s., ∀t ∈ [0, T ],

4We may say “equivalently” here because it is well known (and a good exercise to
show) that the Borel σ-field on Ck = C([0, T ];Rk) is precisely the σ-field generated by the
family of coordinate maps Ck 3 x 7→ xt ∈ Rk, for t ∈ [0, T ].
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where FBt = σ(Bs : s ≤ t) is the filtration generated by B. To see this,
fix any bounded measurable function ϕ on Rd. Because Yt is Ft-measurable
and the future increments (Bs −Bt)s∈[t,T ] are independent of Ft, we have

E[f(Yt) |B] = E[f(Yt) | FBt ∨ σ(Bs −Bt : s ∈ [t, T ])]

= E[f(Yt) | FBt ], a.s.,

where G ∨ H := σ(G ∪ H) denotes the “join” of two σ-fields G and H.
The discussion of the previous paragraph tells us that, if Y is F-adapted

and B is an F-Brownian motion, and if µ = L(Y |B), then µt is FBt -
measurable, at least almost surely. That is, µt agrees a.s. with an FBt -
measurable random variable. Hence, if we are careful to assume our filtra-
tion F is complete, we may safely conclude that the P2(Rd)-valued process
(µt)t∈[0,T ] is adapted to the filtration FB = (FBt )t∈[0,T ] generated by the
common noise.

A strong solution of the conditional McKean-Vlasov equation is a pair
(Y, µ), where Y is a continuous F-adapted Rd-valued process (alternatively,
a C([0, T ];Rd)-valued random variable), and µ is a probability measure on
C([0, T ];Rd), such that both equations (3.8) hold.

Note that for a fixed FB-adapted process (µt)t∈[0,T ], the SDE for Y in
the first line of (3.20) is just an SDE with random coefficients. If b and σ
are uniformly Lipschitz in the Yt variable, then there is no problem with
existence and uniqueness.

Theorem 3.6. Suppose Assumption 3.1 holds, with the new coefficient σ0

satisfying the same Lipschitz assumption. There exists a unique strong so-
lution of the conditional McKean-Vlasov equation (3.8). Moreover, the n-
particle system converges in the following two senses. First,

lim
n→∞

E
[
W2
Cd,2(µn, µ)

]
= 0. (3.21)

Second, for a fixed k ∈ N, we have the weak convergence

L
(

(Xn,1, . . . , Xn,k) |B
)
→ µ⊗k, weakly in probability, (3.22)

where µ⊗k denotes the k-fold product measure of µ with itself.

We will not write out the proof of Theorem 3.6, which follows very
closely the proof of Theorem 3.3. The key idea of the limit theorem is now
to construct not i.i.d. but rather conditionally i.i.d. copies of the solution of
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the McKean-Vlasov equation, driven by the same Brownian motions as the
n-particle systems. That is, let

dY i
t = b(Y i

t , µt)dt+ σ(Y i
t , µt)dW

i
t + σ0(Y i

t , µt)dBt, t ∈ [0, T ], Y0 = ξi,

where µ solves the McKean-Vlasov equation. Then Y i = L(Y i|B) a.s., for
each i, and in fact (Y i) are conditionally i.i.d. with common conditional law
µ. The strategy is again to estimate ‖Xn,i − Y i‖.

The two most pertinent details to check are as follows. First, to estimate
the distance between two conditional measure of the form L(Y 1|B) and
L(Y 2|B), where Y 1 and Y 2 are Cd-valued random variables, simply note
that L((Y 1, Y 2)|B) defines a coupling of the two, almost surely. Hence,

W2
2 (L(Y 1|B), L(Y 2|B)) ≤ E

[
‖Y 1 − Y 2‖2

∣∣B] , a.s.

The second point to be careful about is that we invoked the law of large
numbers for an i.i.d. sequence, and now we need to invoke a conditional law
of large numbers. But this is a straightforward extension of Theorem 2.9,
so we will not go into the details.

3.6.2 An alternative derivation of the common noise limit

Returning now to the n-particle system, let us next sketch a direct deriva-
tion of the McKean-Vlasov limit in the common noise setting, analogous to
Section 3.4. Let us assume that we have shown the sequence of processes
(µnt )t∈[0,T ] is tight in C([0, T ];P(Rd)), with P(Rd) equipped with some met-

ric of weak convergence. Fix a smooth function ϕ on Rd with compact
support. As before, define the infinitesimal generator by setting

Lmϕ(x) = b(x,m) · ∇ϕ(x) +
1

2
Tr[(σσ> + σ0σ

>
0 )(x,m)∇2ϕ(x)],

for each m ∈ P(Rd) and x ∈ Rd. Use Itô’s formula to write, for each
i = 1, . . . , n,

dϕ(Xn,i
t ) = Lµnt ϕ(Xn,i

t )dt+∇ϕ(Xn,i
t ) · σ(Xn,i

t , µnt )dW i
t

+∇ϕ(Xn,i
t ) · σ0(Xn,i

t , µnt )dBt.
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Average over i = 1, . . . , n to get

d〈µnt , ϕ〉 =
1

n

n∑
i=1

dϕ(Xn,i
t )

=
〈
µnt , Lµnt ϕ

〉
dt+

1

n

n∑
i=1

∇ϕ(Xn,i
t ) · σ(Xn,i

t , µnt )dW i
t

+ 〈µnt ,∇ϕ(·)>σ(·, µnt )〉dBt.

Consider the martingale

Mn
s =

∫ s

0

1

n

n∑
i=1

∇ϕ(Xn,i
t ) · σ(Xn,i

t , µnt )dW i
t .

If σ is uniformly bounded, then there exists a constant C such that |σ>∇ϕ| ≤
C uniformly. Then, Mn is a martingale with quadratic variation

[Mn]t ≤
tC2

n
.

Now, if (µt)t∈[0,T ] is the weak limit of a convergent subsequence of (µnt )t∈[0,T ]

in C([0, T ];P(Rd)), then we expect to be able to pass to the limit in the above
equation to get

d〈µt, ϕ〉 = 〈µt, Lµtϕ〉 dt+ 〈µt,∇ϕ(·)>σ(·, µt)〉dBt. (3.23)

Technically, one should consider joint weak limits of (µn, B). If Lmϕ(x)
and σ(x,m) are continuous and uniformly bounded as functions of (x.m),
then this passage to the limit can be justified by writing the equation in
integral form and taking advantage of weak convergence results for stochastic
integrals of Kurtz-Protter [78].

Details aside, we now expect that any limit of µn solves the above
stochastic PDE in weak form. Indeed, suppose for the moment that (3.23)
holds for every nice test function ϕ with probability 1, and suppose that
µt(dx) = µ(t, x)dx for some smooth (random!) function µ = µ(t, x). Then
just as we derived (3.15) we may deduce from (3.23) the stochastic PDE

∂tµ(t, x) =− divx(b(x, µt)µ(t, x)) +
1

2
Tr
[
∇2
(
(σσ> + σ0σ

>
0 )(x, µt)µ(t, x)

)]
−

m0∑
j=1

divx(µ(t, x)σj0(t, x) · dBj
t , (3.24)

where σj0 denotes the jth row of σ0 and Bj denotes the jth component of the
m0-dimensional Brownian motion B.
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3.7 Long-time behavior

We now understand the n→∞ limit theory for interacting diffusion models,
and the goal of this section is to give an informal discussion of some of the
interesting features of the t → ∞ limit theory. The analysis of this section
will be quite far from self-contained or complete but is meant to give a brief
view of an important topic, interesting both theoretically and in applications
of McKean-Vlasov equations.

To keep things concrete, we focus on the following specific model of n
one-dimensional (d = 1) particles:

dXn,i
t =

[
a(X

n
t −X

n,i
t ) + (Xn,i

t − |X
n,i
t |3)

]
dt+ σdW i

t , (3.25)

X
n
t =

1

n

n∑
k=1

Xn,k
t .

This model has been studied in a wide range of applications, perhaps most
recently in a model of systemic risk [57], and perhaps originally as a model
of dynamic phase transitions in statistical physics; see [41] for references and
the details of the analysis that we will omit.

3.7.1 A brief discussion of ergodicity for SDEs

Consider a smooth function V on Rk, and consider the k-dimensional SDE

dXt = ∇V (Xt)dt+ σdWt,

where σ > 0 is scalar and W a k-dimensional Brownian motion. Under
suitable conditions on V , it is well known that X ergodic with invariant
distribution

ρ(dx) =
1

Z
e

2
σ2
V (x)dx,

where Z > 0 is a normalizing constant rendering ρ a probability measure.
That is, no matter the distribution of X0, the law of Xt converges weakly
to ρ.

Let us argue at least that ρ is stationary. Using Itô’s formula, one quickly
derives the Fokker-Planck equation associated to the SDE, which says that
for any smooth function ϕ of compact support we have

d

dt

∫
Rk
ϕdµt =

∫
Rk

(
∇V (x) · ∇ϕ(x) +

σ2

2
∆ϕ(x)

)
µt(dx),
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where µt is the law of Xt. Assuming V decays quickly enough at infinity,
we may show that µt = ρ provides a constant solution of the Fokker-Planck
equation. Indeed, plugging in µt = ρ, the right-hand side of this equation
becomes

1

Z

∫
Rk

(
∇V (x) · ∇ϕ(x) +

σ2

2
∆ϕ(x)

)
e

2
σ2
V (x)dx

=
1

Z

∫
Rk

(
∇V (x) · ∇ϕ(x)− σ2

2
∇ϕ(x) · 2

σ2
∇V (x)

)
e

2
σ2
V (x)dx

= 0,

where the first step is simply integration by parts, justified if V decays
quickly enough at infinity. Hence d

dtE[ϕ(Xt)] = 0, which means that the
distribution ρ is stationary. There is more work in proving ergodicity, but
we will not go into the details; let us take for granted that for reasonable
V it holds not only that ρ is stationary but that no matter what the initial
distribution of X0 is the law of the solution Xt converges weakly to ρ.

An important intuition falls out of this result regarding the effect of the
noise parameter σ. As it decreases toward zero, the exponent blows up, but
of course the normalizing constant Z adapts to keep ρ a probability measure.
The result is that, for small σ (the low-temperature regime), the measure ρ
puts much more mass in the regions where V is the smallest. In other words,
as σ decreases, we expect ρ to concentrate around the minimizers of V . For
example, if V is a double-well potential like V (x) = 1

4x
4− 1

2x
2 with multiple

minimizers (namely, ±1), then for small σ the particle overwhelmingly likely
to be near one of these two minimizers. Notice that the function V ′(x) =
x3 − x appears in the drift of (3.25).

3.7.2 Long-time behavior of (3.25)

Applying standard ergodicity results as in the previous paragraph to our
particle system (3.25), it can be shown for a fixed n that (Xn,1, . . . , Xn,n)
is ergodic, with invariant measure

ρn(dx1, . . . , dxn) =
1

Zn
exp

 a

σ2n

n∑
i,j=1

xixj +
1

σ2

n∑
i=1

(
(1− a)x2

i −
1

2
x4
i

) dx1 · · · dxn.

For large n, these measures are quite hard to analyze, as the normalizing
constant Zn is quite hard to estimate. However, we can learn quite a bit
about ρn by studying the McKean-Vlasov limit!
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Now, the model (3.25) does not fit the assumptions of Theorem 3.3, but
it can be shown nonetheless (see [41, 58]) that the law of large numbers holds
here. That is, there is a unique solution of the McKean-Vlasov equation,

dXt =
[
a (E[Xt]−Xt) + (Xt −X3

t )
]
dt+ σdWt.

Moreover, letting µ = L(X) denote the law of the solution, the empirical
µn = 1

n

∑n
k=1 δXn,k converges weakly in probability to µ. In other words,

L(µn) converges weakly to δµ. However, this does NOT imply anything
about convergence of stationary distributions! To be clear, notice that er-
godicity of the n-particle system lets us can identify the weak limit

lim
t→∞
L(µnt ) = ρn ◦ L−1

n ,

where Ln : Rn → P(R) is the empirical measure map, defined by Ln(x1, . . . , xn) =
1
n

∑n
i=1 δxi . One is tempted to conclude that

lim
t→∞

δµt = lim
t→∞

lim
n→∞

L(µnt ) = lim
n→∞

lim
t→∞
L(µnt ) = lim

t→∞
ρn ◦ L−1

n ,

but in general these two limits cannot be interchanged.
For some models, this is possible; the way to prove it is by showing that

the limit limn→∞ µ
n
t = µt holds uniformly in time in a suitable sense. But

in the model (3.25), this only works if σ is sufficiently large. For small σ,
there are multiple stationary distributions for the McKean-Vlasov equation,
and the two limits do not commute.

3.7.3 Stationary measures for the McKean-Vlasov equation

To dig into this, let us try to find stationary solutions of the McKean-Vlasov
equation. In PDE form, µt satisfies

d

dt
〈µt, ϕ〉 =

∫
R

[
a(mt − x)ϕ′(x) + (x− x3)ϕ′(x) +

σ2

2
ϕ′′(x)

]
µt(dx),

with mt =

∫
R
y µt(dy).

As before, if we set

µt(dx) =
1

Z
exp

(
2

σ2

(
amtx−

a

2
x2 +

1

2
x2 − 1

4
x4

))
,
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then integration by parts shows that µt is a solution. But for this to truly
be a stationary distribution, the mean path mt should be constant. Define
ρm ∈ P(R) for m ∈ R by

ρm(dx) =
1

Zm
exp

(
2

σ2

(
amx− a

2
x2 +

1

2
x2 − 1

4
x4

))
,

where as usual Zm > 0 is a normalizing constant. The goal then is to
find m ∈ R such that m =

∫
R y ρ(dy), i.e., m is the mean of ρm. Notice

that if m = 0 then ρ0 is symmetric about the origin and thus has mean
zero. So m = 0 is always a solution. It is shown in [41] that there exists a
critical value σc > 0 such that, if σ ≥ σc, then the only solution is m = 0,
whereas if σ < σc then there exists m1 > 0 such that ±m1 are solutions.
In other words, for small σ, there are three stationary distributions for the
McKean-Vlasov equation.

An intuitive explanation for this phase transition is as follows, and it
might help at this point to review the last paragraph of Section 3.7.1. We
might expect to see most of the particles near the minimizers ±1 of the
potential function V (x) = x4/4 − x2/2. When σ is large, the noise σdW i

t

dominates the attractive drift term a(X
n
t − X

n,i
t )dt, and we see about an

even split of particles at these two energy-minimizing locations, for a mean
location of 0. When σ is small, the interaction through the drift is much
stronger, and the particles tend to cluster together at one of these two
locations, and the mean-zero equilibrium is no longer stable. This is an
example of metastability.

These ideas lead to a mathematical model of a phenomenon sometimes
referred to as (quantum) tunneling. The idea is that, in the n-particle sys-
tem for σ < σc, we expect to see the particles moving around one of the
points, say −1. If one of the n noises takes an extreme value and kicks
the corresponding particle to the other stable state +1, then it should not
take long for the dominant attractive force in the drift to pull this particle
back to the average particle location, near −1. However, there is a small
probability (decaying to zero in n) that the noises conspire to kick many of
the particles to +1, after which the attractive force in the drift will pull the
rest of the particles over to +1. The probabilities of rare transitions of this
form can be studied quantitatively by means of a large deviation analysis
for the limit µn → µ.

This notion of tunneling has a natural physical interpretation, but it
was also applied in a model of systemic risk in [57]. There, the process
Xn,i
t represents the “state of risk” of agent i, and the two stable states ±1
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represent a good state and a bad or failed state. The system as a whole is
in trouble if “most” of the agents are around the failed state.

3.8 Bibliographic notes and related models

There is by now a rich literature on McKean-Vlasov systems of the kind
studied in this section, and to truly do the subject justice would require
an entire course of its own. This class of models was originally introduced
by McKean [95], building on ideas of Kac [73],in an effort to rigorously
derive certain reduced equations (e.g., Burger’s or Boltzmann’s) from finite-
particle systems. The particularly nice Lipschitz models we studied in detail
originate in Sznitman’s monograph [113], but this is really just the tip of
the iceberg. The toy model of Section 3.1 was borrowed from the systemic
risk model of [32].

The more powerful martingale method for studying the n → ∞ limit
was developed in [101, 58, 96] for models with continuous coefficients (b, σ).
Models based on jump-diffusions have been studied a good deal as well,
for instance in [61]. In the context of stochastic portfolio theory, Shkol-
nikov [109] analyzed an interesting family of rank-based interactions, push-
ing through the martingale method in spite of the inherent discontinuities
(recall the discussion of Example 2.18).

An important direction of generalization of the models studied in this
section would allow correlations between the driving Brownian motions.
This is most easily accomplished by introducing a common noise. Given
a Brownian motion B, independent of (W i), consider the n-particle system
of the form

dXn,i
t = b(Xn,i

t , µnt )dt+ σ(Xn,i
t , µnt )dW i

t + σ0(Xn,i
t , µnt )dBt.

The best way to think about these systems intuitively (though bearing in
mind that this is horribly non-rigorous) is to imagine “conditioning on” or
“freezing” a realization of the common noise B. With this trajectory of B
fixed, think of the dBt term as part of the drift, and pass to the limit n→∞
for the resulting interacting diffusion model without common noise. Once in
the limit, recall that everything is happening inside of this conditioning on
B. Hence, the McKean-Vlasov equation (3.8) should now read

dYt = b(Yt, µt)dt+ σ(Yt, µt)dWt + σ0(Yt, µt)dBt,

µ = L(Y |B),

where µ = L(Y |B) means that µ is now a random probability measure, and
it represents a version of the conditional law of Y given B. The PDE form
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of the McKean-Vlasov equation (3.15) now becomes a stochastic PDE (or
SPDE), driven by the Brownian motion B. See [40, 79, 80]. The analysis of
common noise models tends to be much more delicate, but these models are
increasingly relevant in many areas of application, for instance in capturing
aggregate shocks in economics.

Another natural modification of our setup would permit local interac-
tions, as discussed in Example 2.19, in which, for instance, the drift b may
take the form b(x,m) = b̃(dmdx (x)), defined only for those measures m for

which the (Lebesgue) density dm
dx exists. Given that an empirical measure

of n points can never be absolutely continuous with respect to Lebesgue
measure, the natural n-particle model (say, with constant volatility σ and
particles taking values in Rd) would look like

dXn,i
t = b̃

(
ρn ∗ µnt (Xn,i

t )
)
dt+ σdW i

t ,

where

ρn ∗ µnt (x) =

∫
ρn(x− y)µnt (dy) =

1

n

n∑
i=1

ρn(x−Xn,i
t )

is the convolution of ρn with the empirical measure, and ρn is a smooth
approximation of the identity. For instance, take ρn(x) = ndρ(nx) for
some nonnegative continuous function ρ on Rd with compact support and∫
Rd ρ(x)dx = 1. This is sometimes called a particle system with moderate

interactions, and the n→∞ was studied in [102, 97].
The n → ∞ limit for the empirical measure should be seen as a law of

large numbers, and it can be complemented with different limit probabilistic
theorems. Several authors have studied central limit theorems, showing that
the recentered measure flow

√
n(µnt −µt) converges in a sense to the solution

of a linear stochastic partial differential equation [68, 96]. For a large devia-
tions principle, refer to the seminal paper of Dawson-Gärtner [42] where the
study of process-level large deviations led to their discovery of the impor-
tant projective limit method; see also the more recent [17] for a powerful and
completely different approach. Lastly, concentration of measure techniques
have been used to derive non-asymptotic estimates on the distance between
µn and µ; see [15].

The long-time behavior and phase transitions discussed in Section 3.7
has been studied by now by a number of authors [41, 43, 33, 67, 114], though
this is not a direction that we will develop (or has really been explored) in
the controlled (mean field game( models we study later.

Beyond our brief discussion of models from statistical physics and sys-
temic risk mentioned above, there are many more areas of application, and
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we mention only two particular areas which have seen recent activity, namely
models of neuron networks [19, 44, 45] and animal flocking [39, 63].

4 Static mean field games

In this section we warm up by studying static games, in which there is no
time component. This serves in large part as a warm up, but in the last
two Sections 4.4 and 4.5 we will discuss some more modern topics. We
work with a somewhat abstract setup, yet we will still make strong enough
assumptions to render the analysis fairly straightforward. The discussion of
this section is borrowed in part from the lecture notes of Cardaliaguet [20,
Section 2].

There are n agents, and each agent chooses an action at the same time.
An action is an element of a given set A, called the action space. We will
assume throughout that A is a compact metric space (in fact, it is often
finite in applications). A strategy profile is a vector (a1, . . . , an) ∈ An. In
the n-player game, player i has an objective function Jni : An → R, which
assigns a “reward” to every possible strategy profile.

The goal of player i is to choose ai ∈ A to maximize the reward Jni .
But Jni depends on all of the other agents’ actions; the optimal choice of
player i depends on the actions of the other players, and vice versa. To
resolve inter-dependent optimization problems, we use the concept of Nash
equilibrium.

Definition 4.1. A Nash equilibrium (for the n-player game) is a strategy
profile (a1, . . . , an) ∈ An such that, for every i = 1, . . . , n and every ã ∈ A,
we have

Jni (a1, . . . , an) ≥ Jni (a1, . . . , ai−1, ã, ai+1, . . . , an).

Similarly, given ε ≥ 0, an ε-Nash equilibrium is a strategy profile (a1, . . . , an) ∈
An such that, for every i = 1, . . . , n and every ã ∈ A, we have

Jni (a1, . . . , an) ≥ Jni (a1, . . . , ai−1, ã, ai+1, . . . , an)− ε.

Note that a 0-Nash equilibrium and a Nash equilibrium are the same thing.

Intuitively, in Nash equilibrium, each player i is choosing ai optimally,
given the other agents’ choices. In an ε-Nash equilibrium, each player could
improve their reward, but by no more than ε.

Nash equilibria can be difficult to compute when n is large, and there
is in fact a rich literature (which we will not discuss) on the computational
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complexity of Nash equilibria. It is often simpler to work with the n → ∞
limit and study a game with a continuum of players. Such a limiting analysis
is possible for a certain class of games, namely those in which the objective
functions are suitably symmetric.

We assume henceforth that there is a single common payoff function of
the form F : A×P(A)→ R, and in the n-player game the objective function
for player i is given by

Jni (a1, . . . , an) = F

(
ai,

1

n

n∑
k=1

δak

)
. (4.1)

Intuitively, F (a,m) represents the reward to a player choosing the action
a when the distribution of actions chosen by other players is m. This cost
structure renders the game symmetric, in the sense that for any (a1, . . . , an)
and any permutation π of {1, . . . , n}, we have

Jni (a1, . . . , an) = Jnπ(i)(aπ(1), . . . , aπ(n)).

The objective of player i depends on the actions of the other agents only
through their empirical distribution. In particular, the “names” or “labels”
assigned to the players are irrelevant: player 1 does not care what player
2 is doing any more than what player 3 is doing. All that matters is the
distribution of actions. For this reason, a game of this form is sometimes
called anonymous.

Remark 4.2. In the specification (4.1) of Jni , it is arguably more natural to
use the empirical measure 1

n−1

∑
k 6=i δak of the other agents, not including

agent i. This leads to the same n → ∞ limit, the sense that Theorem 4.3
holds with no change (exercise).

The intuition behind the n → ∞ limit is as follows: When n is very
large, agent does not contribute much to the empirical measure, since δai
is multiplied by a factor of 1/n. Hence, when n → ∞, we expect the
optimization problems to decouple in some sense. The Nash equilibrium
property will be reflected in a consistency between the limiting distribution
obtained from the empirical measure and the action of a typical player.
Throughout this section we will assume the following:

Standing assumption: A is a compact metric space, and F : A×P(A)→
R is jointly continuous, using the weak convergence topology on P(A).
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Theorem 4.3. Assume F is jointly continuous, using the weak convergence
topology on P(A). Suppose that for each n we are given εn ≥ 0 and an
εn-Nash equilibrium (an1 , . . . , a

n
n). Suppose limn εn = 0, and let

µn =
1

n

n∑
i=1

δani .

Then (µn) ⊂ P(A) is tight, and, for every weak limit point µ ∈ P(A), we
have that µ is supported on the set {a ∈ A : F (a, µ) = supb∈A F (b, µ)}.5

Proof. Because A is compact, tightness of (µn) is automatic. Prokhorov’s
theorem 2.5 ensures that (µn) therefore admits a weak limit, along a sub-
sequence. That is, there exist (nk) and µ ∈ P(A) such that limk µnk = µ
weakly. Fix any alternative action b ∈ A. Because (an1 , . . . , a

n
n) is εn-Nash,

we have for each i = 1, . . . , n

F (ani , µn) ≥ F (b, µin[b])− εn,

where we define

µin[b] =
1

n

δb +
∑
k 6=i

δank

 = µn +
1

n

(
δb − δani

)
.

This is the empirical measure with the ith player’s action swapped out for
b. Averaging over i = 1, . . . , n, we find∫

A
F (a, µn)µn(da) =

1

n

n∑
i=1

F (ani , µn) ≥ 1

n

n∑
i=1

F (b, µin[b])− εn.

The goal now is to take limits on both sides of this inequality. On the
left-hand side, we use joint continuity of F to find

lim
k

∫
A
F (a, µnk)µnk(da) =

∫
A
F (a, µ)µ(da).

See Example 2.16 for a justification of this step. To take limits on the right-
hand side, we estimate the difference between µn and µin[b] as follows. First
notice that the (A, d) is a compact metric space and thus bounded in the
sense that there exists C > 0 such that d(x, y) ≤ C for all x, y ∈ A. Noting
that the joint empirical measure

1

n

∑
k 6=i

δ(ank ,a
n
k ) +

1

n
δ(ani ,b)

5We say a probability measure m is supported on a set B if m(B) = 1.
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is a coupling of µn and µin[b]. Hence, we may use it to bound the 1-
Wasserstein distance:

W1(µn, µ
i
n[b]) ≤ 1

n
d(ani , b) ≤

C

n
.

Because A is compact, so is P(A), and so the continuous function F is in
fact uniformly continuous. Thus

lim
n→∞

sup
b∈A

max
i=1,...,n

|F (b, µin[b])− F (b, µn)| = 0.

Since εn → 0, we find

lim
k

1

nk

nk∑
i=1

F (b, µink [b])− εnk = lim
k
F (b, µnk) = F (b, µ).

We conclude that ∫
A
F (a, µ)µ(da) ≥ F (b, µ).

This is valid for every choice of b ∈ A, so we may take the supremum to get∫
A
F (a, µ)µ(da) ≥ sup

b∈A
F (b, µ).

Since trivially F (a, µ) ≤ supb∈A F (b, µ) for all a ∈ A, the above inequality
can only happen if

µ

{
a ∈ A : F (a, µ) = sup

b∈A
F (b, µ)

}
= 1.

Remark 4.4. We are taking for granted the existence of (ε-) Nash equilibria
for the n-player games. This is not necessarily possible, though the famous
work of Nash [99] ensures that it is possible if we work with mixed strategies.
We will not go down this road, but refer to [20, Section 2] for a discussion
of what happens to the n→∞ limit when we used mixed strategies.

Theorem 4.3 leads naturally to the following definition:
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Definition 4.5. A probability measure µ ∈ P(A) is called a mean field
equilibrium (MFE) if

µ

{
a ∈ A : F (a, µ) = sup

b∈A
F (b, µ)

}
= 1.

In other words, µ is an MFE if it is supported on the set of maximizers of
the function F (·, µ).

Intuitively, in the definition of an MFE, a point a ∈ A in the support of
µ represents one agent among a continuum, with µ representing the distribu-
tion of the continuum of agents’ actions. In the presence of infinitely many
agents, no single agent can influence µ by changing actions. Hence, the op-
timality of a typical agent a is expressed by the inequality F (a, µ) ≥ F (b, µ)
for all b ∈ A.

4.1 Uniqueness

Theorem 4.3 shows that, in the sense of empirical measure convergence,
the limit points of n-player Nash equilibria are always MFE. If it happens
that we can prove by other means that there is at most one mean field
equilibrium µ, then it would follow that (in the notation of Theorem 4.3)
every subsequence of (µn) has a further subsequence that converges to µ,
which means that in fact the full sequence µn converges to µ. This is an
extremely common line of argument in applications of weak convergence
theory: First prove tightness, then characterize (i.e., find a set of properties
satisfied by) the subsequential limit points, and then finally (via separate
arguments) prove uniqueness of this characterization.

Regarding uniqueness, one should first observe that it is not enough just
to know that the function a 7→ F (a,m) has a unique maximizer for each a.
If this were true, we could conclude that every mean field equilibrium must
be a delta. That is, if â(m) is the unique maximizer of F (·,m) for each
m ∈ P(A), then any MFE µ must satisfy µ = δâ(µ). But this does not mean
the MFE is unique. The following theorem gives an example of a checkable
assumption for uniqueness, due to Lasry-Lions [89]:

Theorem 4.6. Suppose the objective function F satisfies the monotonicity
condition, ∫

A
(F (a,m1)− F (a,m2)) (m1 −m2)(da) < 0, (4.2)

for all m1,m2 ∈ P(A) with m1 6= m2. Then there is at most one MFE.
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Proof. Suppose m1,m2 ∈ P(A) are both MFE, and suppose they are dis-
tinct. Then ∫

A
F (a,m1)m1(da)−

∫
A
F (a,m1)m2(da) ≥ 0,∫

A
F (a,m2)m2(da)−

∫
A
F (a,m2)m1(da) ≥ 0.

Add these inequalities to get∫
A

(F (a,m1)− F (a,m2)) (m1 −m2)(da) ≥ 0,

which, in light of (4.2), contradicts the assumption that m1 6= m2.

For an example of a function F satisfying (4.2), suppose the space A
is finite, with cardinality |A| = d. Then P(A) can be identified with the
simplex in Rd, namely, the set ∆d of (m1, . . . ,mn) ∈ Rd with mi ≥ 0 and∑d

i=1mi = 1. For i ∈ A, write Fi(m) = F (i,m). We call the game a
potential game if there exists a function G : ∆d → R, such that ∇G =
(F1, . . . , Fd), and we call G the potential function. Suppose that we have
a strictly concave potential G. One of the many characterizations of strict
concavity reads as

(∇G(m)−∇G(m′)) · (m−m′) < 0, for all m1,m2 ∈ ∆d, m1 6= m2.

This inequality may be written as

d∑
i=1

(Fi(m)− Fi(m′))(mi −m′i) < 0,

which is exactly the assumption (4.2).
We can go a bit further with this idea. Suppose our game admits a po-

tential function G, not necessarily concave. Then the directional derivative
of G at m ∈ ∆d in the direction of m′ ∈ ∆d is given by

Dm′G(m) :=
d

dε
G(m+ ε(m′ −m)) = ∇G(m) · (m′ −m)

=
d∑
i=1

Fi(m)(m′i −mi)

=

∫
A
F (a,m)m′(da)−

∫
A
F (a,m)m(da).
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Now, m ∈ ∆d is a mean field equilibrium if and only if∫
A
F (a,m)m′(da) ≤

∫
A
F (a,m)m(da),

if and only if Dm′G(m) ≤ 0 for every m′ ∈ ∆d. In other words, m is a mean
field equilibrium if and only if it locally maximizes the potential function G.
If G is assumed concave, we conclude that m is a mean field equilibrium if
and only if it maximizes G globally. This shows the true power of potential
games: The competitive equilibrium is equivalent to the maximization of a
function, and maximizing a function is typically much easier than computing
a Nash equilibrium.

The classic reference for potential games is the treatise of Monderer and
Shapley [98]. This idea can be generalized to the situation where A is not
finite but requires a concept of the derivative of a function of a probability
measure; we may return to this later in the course as time permits.

4.2 A converse to the limit theorem

We saw in Theorem 4.3 that limit points of n-player equilibria are always
mean field equilibria (granted a continuous objective function). But to con-
vince ourselves we have truly identified the limiting behavior of n-player
equilibria, we must answer the natural followup question: Does every MFE
arise as the limit of some sequence of n-player Nash equilibria? The following
theorem and example provide answers.

Theorem 4.7. Suppose µ ∈ P(A) is an MFE. Then there exist εn ≥ 0 a
sequence of strategy profiles (ai)i∈N such that

lim
n

1

n

n∑
i=1

δai = µ, lim
n
εn = 0.

Proof. Let (Xi)i∈N be i.i.d. A-valued random variables, defined on some
probability space (Ω,F ,P). Define the (random) empirical measure

µn =
1

n

n∑
k=1

δXk .

For a ∈ A and i = 1, . . . , n, define

µ(i)
n [a] =

1

n

δa +
∑
k 6=i

δXk

 = µn +
1

n
(δa − δXk) .
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We know from Theorem 2.9 that µn → µ weakly a.s. Now, define

εn = max
i=1,...,n

(
sup
a∈A

F (a, µ(i)
n [a])− F (Xi, µn)

)
.

Clearly εn ≥ 0, and by construction (X1, . . . , Xn) is an εn-Nash equilibrium
for each n, almost surely (noting that εn is random). The proof will be com-
plete if we show that εn → 0 a.s. Indeed, we can then select any realization
ω for which both εn(ω)→ 0 and µn(ω)→ µ weakly, and set ai = Xi(ω).

To show that εn → 0 a.s., we proceed as follows, making repeated use of
uniform continuity of F and the convergence of µn to µ. We first swap out

µ
(i)
n [a] for µn, noting that

lim
n→∞

|εn − ε̃n| = 0, a.s.,

where

ε̃n = max
i=1,...,n

(
sup
a∈A

F (a, µn)− F (Xi, µn)

)
.

Again use uniform continuity of F to deduce that

lim
n→∞

max
i=1,...,n

∣∣∣∣(sup
a∈A

F (a, µn)− F (Xi, µn)

)
−
(

sup
a∈A

F (a, µ)− F (Xi, µ)

)∣∣∣∣ = 0.

The key observation now is that, because µ is an MFE and Xi is a sample
from µ, we have

sup
a∈A

F (a, µ) = F (Xi, µ), a.s.

Hence, limn εn = limn ε̃n = 0 a.s., and the proof is complete.

A simple example shows that Theorem 4.7 is false if we require εn = 0 for
all n. In other words, there can exist MFE µ for which there is no sequence
of Nash equilibria converging to µ.

Example 4.8. Suppose A = [0, 1] and

F (a,m) = am, where m :=

∫
[0,1]

xm(dx).

There are exactly two MFE, namely m = δ0 and m = δ1. To see that δ0 is
a MFE, note simply that F (a, δ0) = 0 for all a, so δ0 is certainly supported
on the set {a ∈ [0, 1] : F (a, δ0) ≥ F (b, δ0) ∀b ∈ [0, 1]} = 1. To see that δ1 is
a MFE, note that F (a, δ1) = a is maximized when a = 1. To see that there
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are no other MFE, notice that if 0 < m < 1, then m cannot be supported
on {1}, whereas the only maximizer of F (a,m) = am is a = 1.

We claim that only the m = δ1 equilibrium arises as the limit of n-player
equilibria. To see this, notice that the only strategy profile (a1, . . . , an) which
is a Nash equilibrium for the n-player game is a1 = a2 = . . . = an = 1. It
is clear that if any single agent deviates from this choice, the reward will
decrease. Moreover, for any other choice of strategy profile, and agent i
with ai < 1 can improve his reward by switching to ai = 1. Notably,
a1 = . . . = an = 0 is not a Nash equilibrium for the n-player game (though
it is a (1/n)-Nash equilibrium!), because when a single agent i switches to
ai = 1, the mean of the empirical measure increases from 0 to 1/n, and thus
the reward to agent i increases from 0 to 1/n.

The astute reader might be dissatisfied with this counterexample on the
grounds that it is no longer a counterexample if the n-player game reward
functions are defined as

Jni (a1, . . . , an) = F

ai, 1

n− 1

∑
k 6=i

δak

 ,

with the ith player excluded from the empirical measure. Indeed, with this
alternative definition, which we stated in Remark 4.2 to have little conse-
quence, the n-player strategy profile a1 = . . . = an = 0 is in fact a Nash
equilibrium. However, this example can be modified to produce one which is
not sensitive to this difference in objective function. It is left as an exercise
for the reader to analyze the related example in which

F (a,m) = a(m− r),

for a given r ∈ (0, 1), with the action set constrained now to A = {0, 1}.
One should also ask how the answer changes if we allow mixed strategies in
our n-player equilibrium, but this is taking us too far off-topic.

4.3 Existence

We have seen in Theorem 4.3 that any convergent subsequence of n-player
approximate equilibria converges to a MFE, and we have seen in Theorem 4.7
that, conversely, every MFE is the limit of some sequence of approximate
equilibria. In each theorem we take existence for granted, we have said
nothing so far about the existence of n-player equilibria or MFE. Existence
of n-player is a classical topic which we will not discuss any further than
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Remark 4.4. Existence of MFE, however, holds automatically under our
standing assumptions (see just before Theorem 4.3):

Theorem 4.9. There exists a MFE.

Like Nash’s proof of existence of mixed strategy equilibria for n-player
games, the proof of Theorem 4.9 makes use of a famous fixed point theorem
of Kakutani, which we state without proof:

Theorem 4.10. Suppose K is a convex compact subset of a locally convex
topological vector space. Suppose Γ : K → 2K is a set-valued function (where
2K is the set of subsets of K) satisfying the following conditions:

(i) Γ(x) is nonempty and convex for every x ∈ K.

(ii) The graph Gr(Γ) = {(x, y) ∈ K ×K : y ∈ Γ(x)} is closed.

Then there exists a fixed point, i.e., a point x ∈ K such that x ∈ Γ(x).

Proof of Theorem 4.9. Define a map Γ : P(A) → P(A) by letting Γ(µ)
denote the set of probability measures which are supported on the set of
maximizers of F (·, µ). That is,

Γ(µ) =

{
m ∈ P(A) : m({a ∈ A : F (a, µ) = sup

b∈A
F (b, µ)}) = 1

}
.

We see from the definition that µ ∈ P(A) is an MFE if and only if it is a
fixed point of Γ, i.e., µ ∈ Γ(µ). Note that we may also write

Γ(µ) =

{
m ∈ P(A) :

∫
A
F (a, µ)m(da) ≥ F (b, µ), ∀b ∈ A

}
.

We now check the conditions of Kakutani’s theorem. Recall from the Riesz
representation that the topological dual of the space C(A) of continuous
functions on A is precisely the set M(A) of signed measures on A of bounded
variation. The corresponding weak∗ topology is precisely the weak conver-
gence topology, and P(A) is a convex compact subset of M(A) with this
topology. So we can take K = P(A) in Kakutani’s theorem. Let us check
the two required properties of the map Γ:

(i) Fix µ ∈ P(A). Let S ⊂ A denote the set of maximizers of F (·, µ),
defined by {

a ∈ A : F (a, µ) = sup
b∈A

F (b, µ)

}
.
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We can then write Γ(µ) = {m ∈ P(A) : m(S) = 1}. Because F is
continuous, the set S is nonempty, and we conclude that Γ(µ) is also
nonempty. Moreover, Γ(µ) is clearly convex: If m1,m2 ∈ Γ(µ) and
t ∈ (0, 1), then setting m = tm1 + (1− t)m2 we have

m(S) = tm1(S) + (1− t)m2(S) = t+ (1− t) = 1,

so m ∈ Γ(µ).

(ii) The graph of Γ can be written as

Gr(Γ) =
⋂
b∈A

Kb,

where we define, for b ∈ A,

Kb =

{
(µ,m) ∈ P(A)× P(A) :

∫
A
F (a, µ)m(da) ≥ F (b, µ)

}
.

If we show that Kb is closed for each b ∈ A, then it will follow that
Gr(Γ) is closed. To this end, fix b ∈ A, and let (µn,mn) ∈ Kb for
each n. Suppose (µn,mn) → (µ,m) for some (µ,m) ∈ P(A) × P(A).
We must prove that (µ,m) ∈ Kb. To do this, note that because F is
jointly continuous we have∫
A
F (a, µ)m(da) = lim

n

∫
A
F (a, µn)mn(da) ≥ lim

n
F (b, µn) = F (b, µ).

Indeed, the first limit holds in light of Example 2.16.

In summary, we may apply Kakutani’s theorem to Γ to obtain the existence
of a fixed point.

Interestingly, our n-player game may fail to have a Nash equilibrium (in
pure strategies), but Theorem 4.9 ensures that there still exists an MFE.
Using Theorem 4.7, we conclude that there exist εn → 0 such that for each n
there exists an εn-Nash equilibrium for the n-player game! So, even though
there are not necessarily Nash equilibria, the mean field structure lets us
construct approximate equilibria for large n.
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4.4 Multiple types of agents

The model studied in this section is admittedly unrealistic in the sense that
the agents are extremely homogeneous. A much more versatile framework
is obtained by introducing different types of agents, with the essential ideas
behind the analysis being the same. This section will only briefly state the
setup and an extension of the main limit Theorem 4.3, but analogues of
Theorems 4.7 and 4.6 are possible; see [84] for details.

In addition to our action space A, let T be a complete, separable metric
space, which we will call the type space. (In practice, both A and T are
often finite.) The payoff function is now F : T ×A×P(T ×A)→ R, acting
on a type, an action, and a type-action distribution. If each agent i in the
n-player game is assigned a type ti, then the reward for agent i is

F

(
ti, ai,

1

n

n∑
k=1

δ(tk,ak)

)
,

when agents choose actions a1, . . . , an.
An important additional feature we can incorporate is a dependence of

the set of allowable actions on the type parameter. That is, as another
input to the model, suppose C : T → 2A is a set-valued map, with the
interpretation that C(t) is the set of admissible actions available to an agent
of type t. We call C the constraint map. In the following, let

Gr(C) = {(t, a) ∈ T ×A : a ∈ C(t)}

denote the graph of C.
We now define an ε-Nash equilibrium associated with types (t1, . . . , tn)

as a vector (a1, . . . , an) ∈ A, with ai ∈ C(ti) for each i, such that

F

(
ti, ai,

1

n

n∑
k=1

δ(tk,ak)

)
≥ F

ti, b, 1

n

∑
k 6=i

δ(tk,ak) +
1

n
δ(ti,b)

− ε,
for each b ∈ C(ti), for each i = 1, . . . , n.

This more general setup retains the essential symmetric features of the
previous setup, the idea being that in a large-n limit we can still obtain
distributional limits if we know something about the distribution of types.
This is captured by the following extension of Theorem 4.3.

Theorem 4.11. Assume that F and C satisfy the following assumptions:
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• F is jointly continuous on Gr(C) × P(Gr(C)), where P(Gr(C)) is
shorthand for the set of µ ∈ P(T ×A) with µ(Gr(C)) = 1.

• C(t) is nonempty for each t ∈ T .

• The graph Gr(C) is closed.

• C is lower hemicontinuous, which means: If tk → t in T and a ∈ C(t),
then there exist a subsequence (kj) and some aj ∈ C(tkj ) such that
aj → a.

Suppose for each n we are given (tn1 , . . . , t
n
n) ∈ T n, as well as an εn-Nash

equilibrium (an1 , . . . , a
n
n) ∈ An for the corresponding game, where εn → 0. Let

µn =
1

n

n∑
k=1

δ(tnk ,a
n
k )

denote the empirical type-action distribution. Suppose finally that the em-
pirical type distribution converges weakly to some λ ∈ P(T ), i.e.,

1

n

n∑
k=1

δtnk → λ.

Then (µn) is tight, and every weak limit point µ ∈ P(T × A) is supported
on the set {

(t, a) ∈ T ×A : F (t, a, µ) = sup
b∈A

F (t, a, µ)

}
.

The proofs of Theorem 4.11 and of the existence of mean field equilibria
are very similar to those of Theorems 4.3 and 4.9. The key missing ingredient
is (a special case of) Berge’s theorem:

Theorem 4.12. Suppose C satisfies the assumptions of Theorem 4.11. For
each m ∈ P(Gr(C)) and t ∈ T , define C∗(t,m) to be the set of admissible
maximizers of F (t, ·,m), i.e.,

C∗(t,m) =

{
a ∈ C(t) : F (t, a,m) = sup

b∈C(t)
F (t, b,m)

}
.

Define also the maximum value

F ∗(t,m) = sup
b∈C(t)

F (t, b,m).
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Then F ∗ is (jointly) continuous, and the graph

Gr(C∗) = {(t, a,m) ∈ T ×A× P(Gr(C)) : a ∈ C∗(t,m)}

is closed.

The proof of both of these theorems is left as an exercise. A great
reference for analysis of set-valued functions, which come up quite a bit in
game theory, is Chapter 17 of the textbook of Aliprantis and Border [3]. A
general form of Berge’s theorem can be found therein as Theorem 17.31.

4.5 Congestion games

Congestion games particularly important class of models fitting into the
framework of Section 4.4, in fact with finite action and type spaces. These
are standard models of network traffic, which we will think of in terms of
their original application in road networks for the sake of intuition, though
recent applications focus on different kinds of networks (e.g., the internet).

A finite directed graph G = (V,E) is given, meaning V is some finite
set of vertices and E is an arbitrary subset of V ×V . The vertices represent
locations in the network, and a directed edge (u, v) is a road from u to v.
Each edge is assigned an increasing cost function ce : [0, 1]→ R+, with ce(u)
representing the speed or efficiency of the road e when the load on the road
is u, which means that the road is utilized by a fraction u of the population.

The type space T is a subset of V × V , with an element (u, v) ∈ T
representing a source-destination pair. An agent of type (u, v) starts from
the location u and must get to v.

The action space A is the set of all Hamiltonian paths in the graph G.
A Hamiltonian path is simply a subset of E which can be arranged into a
path connecting two vertices. We will not bother to spell this out in more
mathematical detail, but simply note that A is a subset of 2E . Finally, the
admissible actions to an agent of type t = (u, v) is the set C(t) consisting of
all paths connecting u to v.

Finally, the cost function F : T ×A×P(T ×A)→ R is defined by setting

F (t, a,m) =
∑
e∈a

ce(`e(m)), where `e(m) = m{(t′, a′) ∈ T ×A : e ∈ a′}.

Given a distribution of type-action pairs m, the value `e(m) is the fraction
of agents who use the road e in their path, and thus it is called the load
of e. The travel time faced by an agent of type t choosing path a is then
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calculated by adding, over every road used (e ∈ a), the cost incurred on that
road, which is a function (ce) of the load.

Note that agents are now seeking to minimize travel time. We have been
maximizers in previous sections, not minimizers, but this can be accounted
for of course by taking −F to be our reward function.

One nice feature of congestion games is that they are always potential
games. Indeed, the function

U(m) :=
∑
e∈E

∫ `e(m)

0
ce(s)ds

can be shown to be a convex potential function. This means that minimizers
of U correspond to mean field equilibria. In fact, U is sometimes even strictly
convex.

An important question studied in this context pertains to the effect of
network topology on the efficiency of Nash equilibria. A common measure
of efficiency is the so-called price of anarchy, defined as the worst-case ratio
of average travel time in equilibrium to the minimal possible travel time
achievable by a central planner. To be somewhat more: The average travel
times over a continuum of agents with type-action distribution m is given
by

A(m) =

∫
T ×A

F (t, a,m)m(dt, da).

If we let M denote the set of mean field equilibria with a given type distri-
bution, then the price of anarchy is defines as

PoA =
supm∈MA(m)

infm∈P(Gr(C))A(m)
.

Of course, the price of anarchy is always at least 1 (and we should be careful
to avoid dividing by zero). Various upper bounds are known for different
kinds of networks and different restrictions on the cost functions ce.

We will not go any deeper into the analysis of congestion games, but
some references are provided in the next section.

4.6 Bibliographic notes

The idea of a game with a continuum of agents essentially originated in the
work of Aumann [4] and [108]. The framework of Mas-Colell [93] is close to
the one studied here, although extended to cover different types of agents,
and focused solely on proving existence of equilibrium. See also the recent
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Blanchet and Carlier [12, 13] for a reparametrization and some extensions
of the framework of Mas-Colell, some discussion of potential games in the
setting of an infinite action space, and an interesting connection with the
theory of optimal transport.

The limit theory from n players to the continuum is not terribly well-
studied in the literature, but some references include [62, 69, 24, 74, 12,
84]. The last of these references [84] also studies large deviation principles
associated to this limit.

While dynamic games tend to be more popular in modern applications
than the static games studied in this section, the literature on algorithmic
game theory [100] makes heavy use of the model studied in the previous
section. This class of congestion games, introduced by Rosenthal [107], have
found widespread application in modeling traffic routing, in both physical
and communications networks. There are far too many references to begin
cover here, but for further references and a discussion in the context of our
n→∞ limits theorems see [84].

5 Stochastic optimal control

This section is a fast-paced and not remotely comprehensive introduction
to stochastic optimal control. We focus on the analytic approach, in which
one identifies a PDE, known as the Hamilton-Jacobi-Bellman equation, that
the value function should solve. For a more thorough and careful study of
stochastic optimal control, refer to the classic texts of Fleming-Soner [50]
and Yong-Zhou [118], or the more recent books of Pham [104] or Carmona
[25]. The first three of these references go into some detail on the theory of
viscosity solutions, and the last three include also the so-called probabilis-
tic approach, via the (Pontryagin) maximum principle. Another important
but less popular techniques include various weak formulations, in which the
probability space is not specified ahead of time; see [118, 104, 25] for an ap-
proach based on backward SDEs (BSDEs). Lastly, it is worth mentioning a
powerful abstract method based on compactification [48, 66], which is useful
for proving existence of (but not explicitly constructing) optimal Markovian
controls.

5.1 Setup

We work on finite time horizon, T > 0, and with a given a filtered proba-
bility space (Ω,F ,F,P) that supports a d-dimensional Brownian motion W ,
and F = (Ft)t∈[0,T ] where Ft = σ(Ws : 0 ≤ s ≤ t). Agents choose actions
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from a closed set A ⊂ Rk. We make the following assumptions throughout:

Standing assumptions

1. The drift and volatility functions, b : Rd ×A→ Rd and σ : Rd ×A→
Rd×m, are measurable and satisfy a uniform Liptschitz condition in x.
That is, there exists K > 0 such that, for all x, y ∈ Rd and a ∈ A, we
have

|b(x, a)− b(y, a)|+ |σ(x, a)− σ(y, a)| ≤ K|x− y|.

Here, | · | denotes absolute value, Euclidean norm, or Frobenius norm,
depending on whether it is applied to a scalar, vector, or matrix..

2. The objective functions f : Rd×A→ R and g : Rd → R are continuous
and bounded from above.

The state process X is a d-dimensional stochastic process controlled by
the A valued process α and whose dynamics are given by

dXt = b(Xt, αt)dt+ σ(Xt, αt)dWt

X0 = x
(5.1)

The controller steers the process X by choosing the control α, which is a
process taking values in A. The goal of the controller is to choose α to
maximize

E

[∫ T

0
f(Xt, αt)dr + g(XT )

]
.

Here, f is called the running reward/objective function, and g is the terminal
reward/objective function. In the rest of the section, we will be more precise
about what a control α is exactly, and we will find a recipe for solving such a
control problem, in the sense of computing the value and an optimal control.

Remark 5.1. These assumptions are far from necessary and mostly given
for convenience, and it is worth stressing that the analysis of this section
(namely, the verification theorem) hold in much broader contexts. It is is
somewhat of a nuisance, in stochastic optimal control theory, that compre-
hensive general theorems are hard to prove and tend not to cover many
natural models in practice. That said, the theorems we develop under the
above restrictive assumptions are, in a sense, typical. Many models encoun-
tered in practice obey the same principles, and case-by-case proofs almost
always follow essentially the same strategies outlined below.
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We will consider the following two natural families of controls:

1. Open loop: We denote by A the set of F-progressively measurable
processes α = (αt)t≥0 such that

E
[∫ T

0
[|b(0, αt)|2 + |σ(0, αt)|2]dt

]
<∞

Under the above assumptions, classical theory ensures that the state
equation (5.1) has a unique strong solution.

2. Markovian controls: AM ⊂ A consist of the set of Markovian con-
trols. That is, α ∈ AM if α ∈ A and there exists a measurable function
α̂ : [0, T ]× Rd → A such that αt = α̂(t,Xt).

One uncommon but natural alternative would be to work with path-dependent
controls, of the form αt = α̂(t, (Xs)s∈[0,t]). The terms closed-loop control and
feedback control are variously used by different authors as synonymous with
Markovian control or even sometimes the latter notion of path-dependent
control.

5.2 Dynamic programming

The reader familiar with discrete-time optimal control has likely encountered
the notion of dynamic programming or backward induction. This section
develops the continuous-time version of this recursive approach to solving
a dynamic optimization problem. The idea is as follows. Suppose that we
know how to solve the control problem when it “starts” at a time t ∈ (0, T )
and from any initial state x ∈ Rd, and we denote the resulting optimal value
by v(t, x). Then, to solve the control problem starting from an earlier time
s ∈ (0, t) and starting from another state y ∈ Rd, we may equivalently solve
a control problem on the time horizon (s, t), using the function x 7→ v(t, x)
as our terminal reward function.

To make this precise, we need to explain what it means to solve the
control problem starting from (t, x) ∈ [0, T ] × Rd. To this end, define the
state process Xt,x = (Xt,x

s )s∈[t,T ] for any (t, x) by the SDE

dXt,x
s = b(Xt,x,α

s , αs)ds+ σ(Xt,x
s , αs)dWs, s ∈ [t, T ]

Xt,x
t = x

(5.2)

To be more clear we should write Xt,x,α, but it will be clear from context
which control we are using.
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For α ∈ A and (t, x) ∈ [0, T ]× Rd, define the reward functional

J(t, x, α) := E

[∫ T

t
f(Xt,x

r , αr)dr + g(Xt,x
T )

]
, (5.3)

where Xt,x is defined as in (5.2), following the control α. Under the standing
assumptions, the SDE (5.2) admits a unique strong solution. Moreover, since
f and g are bounded from above, the integral and expectation in (5.3) are
well-defined, and J(t, x, α) <∞, though it is possible that J(t, x, α) = −∞.

Finally, define the value function

V (t, x) = sup
α∈A

J(t, x, α). (5.4)

This gives the optimal expected reward achievable starting at time t from
the state x.

Theorem 5.2 (Dynamic Programming Principle). Fix 0 ≤ t < s ≤ T and
x ∈ Rd. Then

V (t, x) = sup
α∈A

E

[∫ s

t
f(Xt,x

r , αr)dr + V (s,Xt,x
s )

]
(5.5)

Proof. We first show the inequality (≤). Fix α ∈ A, and define the state
process accordingly. The proof exploits the Markov or flow property,

Xt,x
u = Xs,Xt,x

s
u , t ≤ s ≤ u.

To make technically precises is somewhat annoying, but the intuition is clear:
If we start at time t and solve the equation up to time u, this is the same
as if we first solve from time t to time s and then, “starting over” at s from
whatever position Xt,x

s we reached by starting from t, we solve forward from
time s to u. Using this, we find

J(t, x, α) = E

[∫ s

t
f(Xt,x

r , αr)dr

]
+ E

[∫ T

s
f(Xt,x

r , αr)dr + g(Xt,x
T )

]

= E

[∫ s

t
f(Xt,x,α

r , αr)dr + J(s,Xt,x
s , α)

]

≤ E

[∫ s

t
f(Xt,x

r , αr)dr + V (s,Xt,x
s )

]
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where the second equality follows from the tower property and the flow prop-
erty. The last inequality follows simply from the definition of V .

To prove the reverse inequality (≥) is a bit trickier. Fix α ∈ A and ε > 0.
From the definition of V we can find, for each ω ∈ Ω, a control αε,ω ∈ A
such that

V (s,Xt,x
s (ω))− ε ≤ J(s,Xt,x

s (ω), αε,ω).

That is, for every realization of Xt,x
s (ω), we choose αε,ω to be an ε-optimal

control for the problem starting from time s at the position Xt,x
s (ω). Now,

define a new control α̂ε by

α̂εr(ω) =

{
αr(ω) r ≤ s
αε,ωr (ω) r > s.

There is delicate measurability issue here, but it can be shown using a mea-
surable selection theorem that the process α̂ε is progressively measurable (or,
more precisely, a modification is), and so lies in A. Then, use the control α̂ε

to define the state process Xt,x, and use the definition of the value function
to find

V (t, x) ≥ J(t, x, α̂ε) = E

[∫ T

t
f(Xt,x

r , α̂εr)dr + g(Xt,x
T )

]

= E

[∫ s

t
f(Xt,x

r , αr)dr +

∫ T

s
f(Xt,x

r , α̂εr)dr + g(Xt,x
T )

]

= E

[∫ s

t
f(Xt,x

r , αr)dr + J(s,Xt,x
s , αε)

]

≥− ε+ E

[∫ s

t
f(Xt,x

r , αr)dr + V (s,Xt,x
s )

]
.

Indeed, the third equality followed from the flow property, and the last
inequality comes from the particular choice of αε. Because ε was arbitrary,
this completes the proof.

The dynamic programming principle (DPP) is an extremely important
tool when it comes to the rigorous and general analysis of stochastic control
problems. See, for example, [104, Section 3.4] for a heuristic derivation of
the HJB equation from the DPP, which is made rigorous using viscosity
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solution theory in [104, Section 4.3]. We will focus more on verification
theorems, which means we will make almost no use of the DPP, but even
the most brief of overviews of stochastic control theory would be glaringly
incomplete without a discussion of the DPP.

5.3 The verification theorem

Our point of view will be to identify a PDE which, if solvable in the classical
sense, must coincide with the value function. We begin by reviewing the
uncontrolled analogue, in which the “verification theorem” is nothing but
the celebrated Feynman-Kac formula. As this can be found in any text
on stochastic differential equations, we will be quite loose about precise
assumptions and about dealing carefully with local martingale terms, which
we will assume are true martingales.

Theorem 5.3 (Feyman-Kac). Let b and σ be “nice” coefficients. Let Xt,x

solve the SDE

dXt,x
r =b(Xt,x

r )dr + σ(Xt,x
r ) · dWr r ∈ (t, T ]

Xt,x
t =x.

(5.6)

Suppose v is a smooth, i.e. C1,2([0, T ],R), solution of the PDE

∂tv(t, x) + b(x) · ∇v(t, x) +
1

2
Tr[σσ>(x)∇2v(t, x)] + f(t, x) = 0

v(T, x) = g(x)
(5.7)

Then v admits the representation

v(t, x) = E

[∫ T

t
f(r,Xt,x

r )dr + g(Xt,x
T )

]
. (5.8)

Proof. Apply Itô’s formula to v(r,Xt,x
r ) and then use the PDE to get

g(Xt,x
T ) =v(T,Xt,x

T )

= v(t,Xt,x
t ) +

∫ T

t
∇v(r,Xt,x,ν̂

r ) · σ(Xt,x
r )dWr

+

∫ T

t

(
vt(r,X

t,x
r ) + b(t,Xt,x

r )∇v(r,Xt,x
r ) +

1

2
Tr[σσᵀ(Xt,x

r )∇2v(r,Xt,x
r )]

)
dr

=v(t, x)−
∫ T

t
f(r,Xt,x

r )dr +

∫ T

t
σ(Xt,x

r )∇v(r,Xt,x,ν̂
r )dWr
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Where we made use v fulfills (5.7) in the last step. Taking expectations, the
last term vanishes assuming the coefficients are nice enough that the last
term in the above equation is a genuine martingale.

With the Feynman-Kac formula in hand, we now see how to adapt it to
the controlled setting. Essentially, the PDE in (5.7) becomes an inequality,
with equality holding only along the optimal control. Or, in other words,
the PDE involves a pointwise optimization over the control variable. This
leads to what is known as the Hamilton-Jacobi-Bellman (HJB) equation.
To ease notation, we introduce the infinitesimal generator of the controlled
process.

Definition 5.4 (Infinitesimal generator). For a smooth function ψ : Rd →
R, and for (x, a) ∈ Rd ×A, define

Laψ(x) = b(x, a) · ∇xψ(x) +
1

2
Tr[σσt(x, a)∇2ψ(x)].

Recall in the following that the value function V = V (t, x) was defined
in (5.4). The following theorem is absolutely crucial for the developments
to come, as it provides a powerful recipe for finding an optimal control.

Theorem 5.5 (Verification theorem). Suppose v = v(t, x) is C1,2([0, T ] ×
Rd) and satisfies v(T, x) = g(x) along with the Hamilton-Jacobi-Bellman
equation

∂tv(t, x) + sup
a∈A
{Lav(t, x) + f(x, a)} = 0, (5.9)

where the operator La acts on the x variable of v. Assume also that there
exists a measurable function α̂ : [0, T ]× Rd → A such that

α̂(t, x) ∈ arg max
a∈A

[Lav(t, x) + f(x, a)]

and the SDE

dXt = b(Xt, α̂(t,Xt))dt+ σ(Xt, α̂(t,Xt))dWt

has a solution from any starting time and state. Then v(t, x) = V (t, x) for
all (t, x), and α̂(t,Xt) is an optimal control.
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Proof. Fix α ∈ A. Apply Itô to v(r,Xt,x
r ) we get

g(Xt,x
T ) =v(T,Xt,x

T )

= v(t,Xt,x
t ) +

∫ T

t
∇v(r,Xt,x

r ) · σ(Xt,x
r )dWr

+

∫ T

t

(
∂tv(r,Xt,x

r ) + Lαrv(r,Xt,x
r )
)
dr.

Take expectations to find

E[g(Xt,x
T )] =w(t, x) + E

[∫ T

t

(
∂tv(r,Xt,x

r ) + Lαsv(r,Xt,x
r ) + f(Xt,x

r , αr)

)
dr

]

− E

[∫ T

t
f(Xt,x

r , αr)dr

]
Using the PDE, we have

E

[∫ T

t

(
∂tv(r,Xt,x

r ) + Lαsv(r,Xt,x
r ) + f(Xt,x

r , αr)

)
dr

]
≤ 0, (5.10)

which implies

E[g(Xt,x
T )] ≤ v(t, x)− E

[∫ T

t
f(Xt,x

r , αr)dr

]
.

As this holds for any α ∈ A, we conclude that V ≤ v. On the other hand, if
we use the particular control α∗r = α̂(r,Xt,x

r ), then (5.10) holds with equality,
and thus

E[g(Xt,x
T )] = v(t, x)− E

[∫ T

t
f(Xt,x

r , α∗r)dr

]
.

This shows that v(t, x) = J(t, x, α∗) ≤ V (t, x), and we conclude that v ≡ V .
Moreover, since the chain of inequalities V (t, x) ≤ v(t, x) ≤ J(t, x, α∗) ≤
V (t, x) collapses to equalities, we conclude that α∗ is an optimal control.

The main technical gap in the above proof is in checking that the stochas-
tic integral is a true martingale, which in fact it may not be even if the
coefficients b and σ are nice. Indeed, we only assume that v is C1,2, so we
know at best that ∇v(t, x) is Lipschitz in x, uniformly in t. A proper proof
is possible using a localization argument, and the curious reader is referred
to [104] for details.
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Remark 5.6. There is a vast literature on both the theory and implementa-
tion of nonlinear PDEs of the form appearing in Theorem 5.5. An important
feature of these PDEs is that classical solutions are not to be expected, and
a major breakthrough in the ’80s was the discovery of a natural solution
concept known as a viscosity solution, which gives meaning to how a non-
differentiable function can be considered a “solution” to a PDE like (5.9).
The viscosity solution concept is “natural” in the sense that it often permits
existence and uniqueness results and, more importantly, enjoys strong sta-
bility properties which ensure that reasonably structured numerical methods
(e.g., finite difference schemes) tend to converge [111]. Often, one can di-
rectly show that the value function as defined in (5.4) is the unique viscosity
solution of the HJB equation, with no need to even check that V has any
derivatives. The classic reference for the theory of viscosity solutions is the
“user’s guide” [38]. For an introduction more focused on applications in
control theory, refer to [50, 104].

5.4 Analyzing the HJB equation

We begin with a definition, ubiquitous in the theory of stochastic control:

Definition 5.7. Let Sd denote the set of symmetric d × d matrices. The
Hamiltonian of the control problem is the function H : Rd × Rd × Sd →
R ∪ {∞} defined by

H(x, y, z) = sup
a∈A

(
b(x, a) · y +

1

2
Tr[σσᵀ(x, a)z] + f(x, a)

)
. (5.11)

The dummy variables y and z are called the adjoint variables.

The Hamiltonian encapsulates the nonlinearity of the HJB equation,
which we may now write as

∂tv(t, x) +H(x,∇v(t, x),∇2v(t, x)) = 0.

Suppose we can find a maximizer α̂(x, y, z) ∈ A in the supremum in (5.11),
for each choice of (x, y, z). Then, once we solve the HJB equation, our
optimal control (assuming solvability of the SDE) is

α(t, x) = α̂(x,∇v(t, x),∇2v(t, x)).

The HJB equation is a parabolic PDE. While we will not make use of
this, a crucial structural feature in the PDE theory, particularly the theory
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of viscosity solutions, is that H(x, y, z) is monotone in z in the sense that
H(x, y, z) ≤ H(x, y, z̃) whenever the matrix z̃ − z is positive semidefinite.
Notice also that H is always convex in (y, z), as it is a supremum of affine
functions.

The astute reader should notice that the Hamiltonian may take the
value +∞ in general, at least if the control space A is unbounded. There
are two ways this is typically dealt with. First, suppose dom(H) denotes
the (convex) set of (x, y, z) for which H(x, y, z) <∞. Suppose we can find a
(smooth) solution v of the HJB equation such that (x,∇v(t, x),∇2v(t, x)) ∈
dom(H) for every (t, x). That is, we find a solution that “avoids” the bad
points at which H = ∞. Then the verification theorem 5.5 can still be
applied. A second and more robust approach to this issue is to introduce an
auxiliary real-valued continuous function G such that H <∞ ⇐⇒ G ≥ 0,
and then turn the HJB equation into a variational inequality; see [104, pp.
45-46].

Let us now focus on a few particular cases in which the HJB equation
simplifies.

5.4.1 Uncontrolled volatility

Suppose that σ = σ(x) is not controlled. Then one often omits the z argu-
ment and its corresponding term from the definition (5.11) of the Hamilto-
nian, instead defining

H(x, y) = sup
a∈A

(
b(x, a) · y + f(x, a)

)
,

which is sometimes called the reduced Hamiltonian. This is justified by the
fact that the omitted term 1

2σσ
ᵀ(x)z would not influence the optimization.

Of course, this removed term must be added back to get the correct HJB
equation:

∂tv(t, x) +H(x,∇v(t, x)) +
1

2
Tr[σσt(x)∇2v(t, x)] = 0.

In this case, the PDE is linear in its highest-order derivative ∇2v, and the
PDE is said to be semi-linear. This is in contrast with the general case of
controlled volatility problems, for which the HJB equation is fully nonlinear.

5.4.2 Linear-convex control

Suppose b(x, α) = α and σ ≡ I, where I denotes the d× d identity matrix;
here d = m, meaning the state process and Brownian motion have the same
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dimension. The second order derivative term in the HJB equation now
becomes simply

1

2
Tr[σσt(x)∇2v(t, x)] =

1

2
∆v(t, x),

where ∆ =
∑d

i=1 ∂xixi denotes the Laplacian operator.
Suppose also that the action space A = Rd is the whole space, and let us

denote f = −L for convenience. Then the (reduced) Hamiltonian becomes

H(x, y) = sup
a∈Rd

(
a · y − L(x, a)

)
.

In other words, for fixed x, the function y 7→ H(x, y) is the Legendre trans-
form or convex conjugate of the function y 7→ L(x, y). If L is differentiable in
a, then the optimal a ∈ Rd satisfies y = ∇aL(x, a). We can say even more if
a 7→ L(x, a) is assumed to be strictly convex and continuously differentiable.
Indeed, then the function a 7→ ∇aL(x, a) is one-to-one, and its inverse func-
tion is precisely y 7→ ∇yH(x, y) (see Corollaries 23.5.1 and 26.3.1 of [106]).
Hence, the optimizer in the Hamiltonian is α̂(x, y) = ∇yH(x, y).

For an even more special case, assume now that

f(x, a) = −1

2
|a|2 − F (x)

for some function F . Then

H(x, y) = sup
a∈Rd

(
a · y − 1

2
|a|2
)
− F (x)

=
1

2
|y|2 − F (x),

and the optimizer is α̂(x, y) = y. The HJB equation becomes

∂tv(t, x) +
1

2
|∇v(t, x)|2 +

1

2
∆2v(t, x) =F (x)

v(t, x) =g(x).

5.5 Solving a linear quadratic control problem

This section and the next work through explicit solutions of some con-
trol problems, starting with a linear-quadratic model. In a linear-quadratic
model, the state and control variables appear in a linear fashion in the coeffi-
cients b and σ for the state process and in a quadratic fashion in the objective
functions f and g. We will not address the most general linear-quadratic
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model, but a simple special case to illustrate some of the machinery devel-
oped above.

Our controlled state process is

dXt = αtdt+ dWt,

where α takes values in the action space A = Rd. The objective function is

E
[∫ T

0
−1

2
|αt|2dt−

λ

2
|XT − z|2

]
,

where λ > 0 is a cost parameter and z ∈ Rd is a (deterministic) target. The
goal of the controller is to steer X to be as close as possible to z at the final
time but also to do so using as little “energy” or “fuel” as possible. The
parameter λ controls the relative importance of hitting the target versus
conserving energy.

Here, our coefficients are of course

b(x, a) = a, f(x, a) = −1

2
|a|2, g(x) = −λ

2
|x− z|2.

To solve this control problem, we first write the (reduced) Hamiltonian,

H(x, y) = sup
a∈Rd

(
a · y − 1

2
|a|2
)

=
1

2
|y|2.

The maximizer, as we saw in Section 5.4.2, is α̂(x, y) = y. The HJB equation
becomes

∂tv(t, x) +
1

2
|∇v(t, x)|2 +

1

2
∆v(t, x) = 0

v(T, x) = −λ
2
|x− z|2.

Once we solve this equation, the optimal control is nothing but α̂(x,∇v(t, x)) =
∇v(t, x).

We look for a separable solution, of the form v(t, x) = f(t)ψ(x) + g(t),
for some functions f , g, and ψ to be determined. Of course, the terminal
condition then implies ϕ(T )ψ(x) + ϕ̃(T ) = −λ

2 |x− z|
2 for all x, so we might

as well take

v(t, x) =
1

2
f(t)|x− z|2 + g(t).
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To make use of this ansatz, we differentiate v and plug it into the HJB
equation. The relevant derivatives are

vt(t, x) =
1

2
f ′(t)|x− z|2 + g′(t)

∇v(t, x) = f(t)(x− z)
∆v(t, x) = df(t),

where we recall that d is the dimension of the state process. We also impose
the boundary conditions F (T ) = −λ and g(T ) = 0, to match the HJB
boundary condition. Plugging in these derivatives to the PDE, we find

1

2
f ′(t)|x− z|2 + g′(t) + f(t)2|x− z|2 +

1

2
df(t) = 0.

Combining the coefficients multiplied by |x− z|2 and, separately, those with
no factor of |x− z|2, we find that f and g must satisfy the following ODEs:

f ′(t) + f2(t) = 0, f(T ) = −λ

g′(t) +
d

2
f(t) = 0, g(T ) = 0

(5.12)

The first one is straightforward to solve:

T − t =

∫ T

t
1ds =

∫ T

t
− f

′(t)

f2(t)
ds =

1

f(T )
− 1

f(t)
= − 1

λ
− 1

f(t)
.

Rearrange to find

f(t) = − 1
1
λ + T − t

, t ∈ [0, T ].

Plugging this in for g one gets

g(t) = g(T ) +
d

2

∫ T

t
f(s)ds =

d

2
log(1 + λ(T − t)).

Finally, we conclude that the HJB admits the smooth solution

v(t, x) = − |x− z|2

2( 1
λ + T − t)

+
d

2
log(1 + λ(T − t)).

As remarked above, the optimal control is

∇v(t, x) = − |x− z|
1
λ + T − t)

,
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and we may write the optimally controlled state process as

dXt =
z −Xt

1
λ + T − t

dt+ dWt.

This drift coefficient is Lipschitz in Xt, uniformly in the other variables,
and so this SDE has a unique solution. Finally, the verification theorem 5.5
ensures that we have truly solved the control problem.

The solution makes intuitive sense; the optimal control is mean-reverting,
with the control pushing us always toward the target z. As we approach the
time horizon T , the speed of mean-reversion becomes stronger.

It is interesting to note what happens in the λ → ∞ case. Intuitively,
this corresponds to a “hard constraint,” in the sense that the controller must
hit exactly the target z at the final time. The resulting state process is

dXt =
z −Xt

T − t
dt+ dWt.

There is a singularity as t ↑ T , with an “infinitely strong” push toward z.
Indeed, this process is nothing but a Brownian bridge ending at XT = z.

Remark 5.8. Much more general forms of linear-quadratic models are
tractable. Indeed, a similar strategy applies to consider control problems
of the form

dXt = (b1t + b2tXT + b3tαt)dt+ (σ1
t + σ2

tXt + σ3
tαt)dWt,

sup
α

E
[∫ T

0

(
Xᵀ
t f

1
t Xt + αᵀ

t f
2
t α)t +Xᵀ

t f
3
t αt
)
dt+Xᵀ

T g
1XT + g2 ·XT

]
,

for constant or time-dependent coefficients of the appropriate dimension.
These models are approached with a similar quadratic ansatz for the value
function. The resulting ODEs (5.12) become significantly more compli-
cated, in general becoming a Riccati equation. These do not always ad-
mit completely explicit solutions, but the solution theory is nonetheless
well-understood. Morally speaking, solvability of a linear-quadratic control
problem is equivalent to solvability of a Riccati equation.

5.6 The Hopf-Cole transform

We may semi-explicitly solve a more general class of models than what
appeared in the previous section, and this is an important class of models
for which the HJB is solvable by means of the so-called Hopf-Cole transform.

76



With the action space A = Rd, consider the problem{
supα E

[
g(XT )− 1

2

∫ T
0 |αt|

2dt
]

dXt = αtdt+ dWt.

Note that the specification g(x) = −λ
2 |x− z|

2 recovers the linear-quadratic
model of the previous section. First, we identify the Hamiltonian again as

H(x, y) = sup
a∈Rd

(
a · y − 1

2
|a|2
)

=
1

2
|y|2,

with maximizer α̂(x, y) = y. Then, the HJB equation is

∂tv(t, x) +
1

2
|∇v(t, x)|2 +

1

2
∆v(t, x) = 0, (5.13)

with boundary condition v(T, x) = g(x). This is a nonlinear pde for v(t, x),
but it can be solved with a change of variable. We set u(t, x) = ev(t,x) and
identify the partial derivatives

∂tu(t, x) = ev(t,x)∂tv(t, x)

∂xiu(t, x) = ev(t,x)∂xiv(t, x)

∂xixiu(t, x) = ev(t,x)
(
(∂xiv(t, x))2 + ∂xixiv(t, x)

)
,

where the last two can be aggregated into vector form as

∇u(t, x) = ev(t,x)∇v(t, x)

∆u(t, x) = ev(t,x)
(
|∇v(t, x)|2 + ∆v(t, x)

)
.

We multiply (5.13) by ev(t,x) to obtain

∂tu(t, x) +
1

2
∆u(t, x) = 0, (5.14)

with terminal condition u(T, x) = eg(x). Equation 5.14 is nothing but the
heat equation which has solution equal to

u(t, x) = E
[
eg(WT ) |Wt = x

]
=

∫
Rd
eg(y)p(T − t, y − x)dy,

where we recall that Wt is a d-dimensional Brownian motion, we define its
transition density (the heat kernel) by

p(s, z) = (2πs)−d/2e−
|z|2
2s .

In other words, the solution of (5.13) is

v(t, x) = log

∫
Rd
eg(y)p(T − t, y − x)dy.

77



5.7 The Merton problem

Given a risky asset with price St and a risk-free asset with price Bt with
dynamics

dSt
St

= µdt+ σdWt

dBt
Bt

= rdt,

suppose that we can allocate a fraction αt of our wealth at time t to the
risky asset and the remaining fraction 1 − αt to to the risk-free asset. In
this setting, we allow short sales and borrowing, that is, A = R. Assuming

E
[∫ T

0 |αt|
2dt
]
<∞, the wealth process Xt with initial wealth X(0) = x0 > 0

evolves according to

dXt

Xt
= (αtµ+ (1− αt)r) dt+ αtσdWt. (5.15)

Given a utility function U(x), the objective of the Merton problem is

sup
α

E [U(XT )] .

For exponential, logarithmic and power utilities the Merton problem can be
solved explicitly. Here, we focus on the power utility, U(x) = 1

px
p, with

p < 1 and p 6= 0.
We identify the Hamiltonian as

H(x, y, z) = sup
a∈R

[
(r + (µ− r)a)xy +

1

2
σ2x2za2

]
.

The function we want to maximize is a quadratic function on a whose shape
depends on the sign of z. First order conditions quickly imply that

H(x, y, z) =

{
rxy − (µ−r)2y

2σ2z
if z < 0

∞ if z ≥ 0,

with maximizer α̂(x, y, z) = − (µ−r)y
σ2xz

when z < 0. Observe that this is the
first example in which we encounter a Hamiltonian which is not always finite.
To avoid this inconvenience, we will proceed assuming that z < 0 and check
in the end that ∂xxv(t, x) < 0.
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The HJB equation is then

∂tv(t, x) + rx∂xv(t, x)− (µ− r)2(∂xv(t, x))2

2σ2∂xxv(t, x)
= 0. (5.16)

To solve this equation we use as ansatz a separable solution v(t, x) =
f(t)h(x). In light of the boundary condition v(T, x) = U(x) = 1

px
p, we

try h(x) = 1
px

p. That is, our ansatz is v(t, x) = 1
pf(t)xp, for a function

f = f(t) to be determined but satisfying the boundary condition f(T ) = 1.
The partial derivatives of v become

∂tv(t, x) =
1

p
f ′(t)xp

∂xv(t, x) = f(t)xp−1

∂xxv(t, x) = (p− 1)f(t)xp−2.

Plugging these into the HJB equation (5.16), we find (miraculously) that
every term has a factor of xp:

xp
[

1

p
f ′(t) + rf(t)− (µ− r)2f(t)

2σ2(p− 1)

]
= 0.

Cancelling xp and multiplying by p, this implies

f ′(t) + γf(t) = 0,

where γ = rp − p(µ−r)2
2σ2(p−1)

. It follows that f(t) = eγ(T−t), since f(T ) =

1. Therefore v(t, x) = 1
px

peγ(T−t) solves the HJB equation (5.16). Taking
derivatives with respect to x, we obtain

∂xv(t, x) = xp−1eγ(T−t)

∂xxv(t, x) = (p− 1)xp−2eγ(T−t),

and we confirm that indeed ∂xxv(t, x) < 0 since p < 1. We conclude by
computing the optimal control

α∗(t, x) = α̂ (x, ∂xv(t, x), ∂xxv(t, x))

=
µ− r

(1− p)σ2
,

which turns out to be constant. This means that the proportion of our
wealth invested in the risky asset should always be the same during the
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entire investment horizon. To implement this trading strategy would of
course require continuous rebalancing at each point in time, as the stock
price fluctuates.

It is a good exercise to check that the same solution arises in the limiting
case p = 0, using the utility function U(x) = log x. On the other hand, with
an exponential utility U(x) = − exp(−px), the solution is quite different,
and one should work with the absolute amount of wealth αt invested in
the stock at each time, as opposed to the fraction of wealth. This makes
removes the denominator of Xt on the left-hand side of the state equation
(5.15), and it is a good exercise to find the optimal control for this model.
It turns out again to be constant, but now with the interpretation that a
constant amount (not proportion) of wealth is invested in the risky asset at
any given time.

5.8 The infinite horizon problem

While we focus most of the course on models with a finite time horizon
T > 0, it is worth explaining what happens in infinite horizon problems.
These are popular because the HJB equation loses its dependence on the
time variable t, which happens intuitively because at any fixed time t the
remaining optimization problem after t “looks the same.”

To warm up, let us consider the uncontrolled case. For x ∈ Rd, consider
the SDE

dXx
t = b(Xx

t )dt+ σ(Xx
t )dWt,

for some nice coefficients b and σ. Define

v(x) = E

[∫ ∞
0

e−βtf(Xx
t )dt

]
,

for some β > 0 and some nice function f . Let L denote the infinitesimal
generator of the SDE, which acts on smooth functions ϕ by

Lϕ(x) = b(x) · ∇ϕ(x) +
1

2
Tr[σσᵀ(x)∇2ϕ(x)].

We claim that if w is a smooth solution of

−βw(x) + Lw(x) + f(x) = 0,

satisfying the growth assumption

lim
T→∞

e−βTE [w(Xx
t )] = 0,
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for all x ∈ Rd, then we have w(x) = v(x). To see this, apply Itô’s formula
to e−βtw(Xx

t ) to get

d(e−βtw(Xx
t )) =

[
−βe−βtw(Xx

t ) + e−βtLw(Xx
t

]
)dt

+ e−βt∇w(Xx
t ) · σ(Xx

t )dWt.

For each T > 0, we may integrate and take expectations (assuming the
stochastic integral is a true martingale) to get

E
[
e−βTw(Xx

T )
]

= w(x) + E
[∫ T

0
e−βt(−βw(Xx

t ) + Lw(Xx
t ))dt

]
= w(x)− E

[∫ T

0
e−βtF (Xx

t )dt

]
,

where the last line used the PDE. Send T →∞, using the growth assump-
tion, to find

w(x) = E
[∫ T

0
e−βtF (Xx

t )dt

]
= v(x).

In the controlled case, we end up with a similar PDE for the value
function, but with a supremum over the controls. Consider the infinite
horizon optimal control problem,

supα E
[∫∞

0 e−βtf(Xx
t , αt)dt

]
dXx

t = b(Xx
t , αt)dt+ σ(Xx

t , αt)dWt

Xx
0 = x,

where β > 0 is a constant. Let J(x, α) = E
[∫∞

0 e−βtf(Xx
t , αt)dt

]
and define

the value function
v(x) = sup

α
J(x, α).

Now, suppose that w is a smooth solution of the HJB equation

−βw(x) + sup
a∈A

{
b(x, a) · ∇φ(x) +

1

2
Tr
[
σσ>(x, a)∇2φ(x)

]
+ f(x, a)

}
= 0,

for all x ∈ Rd and all a ∈ A. Furthermore, assume that

lim
T→∞

e−βTE [w(Xx
t )] = 0,

for all x ∈ Rd and all controls α. Then, we have w(x) = v(x). It is left as
an exercise to sketch the proof, analogous to that of Theorem 5.5.
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5.9 Bibliographic notes

TBD

6 Two-player zero-sum games

To warm up for our discussion of n-player stochastic games, we first focus on
the important special case of two-player zero-sum games. To fix some ideas,
we briefly review two-player zero-sum games in the static, deterministic case.

6.1 Static games

Suppose that we have two players with action sets A and B and an objective
function F : A × B → R. We say that the game is a zero-sum game if the
objective of player A is to maximize F and the one of player B is to maximize
−F (or equivalently minimize F ). In other words, the game is zero-sum if
the two players’ rewards sum to zero. In this setting, a Nash equilibrium is
a pair (a∗, b∗) ∈ A×B such that{

F (a∗, b∗) = supa∈A F (a, b∗)

−F (a∗, b∗) = supb∈B −F (a∗, b).

This condition is equivalent to

inf
b∈B

F (a∗, b) = F (a∗, b∗) = sup
a∈A

F (a, b∗).

Observe that we also have the inequalities

inf
b∈B

F (a∗, b) ≤ sup
a∈A

inf
b∈B

F (a, b)

sup
a∈A

F (a, b∗) ≥ inf
b∈B

sup
a∈A

F (a, b).

Since it is also true that supa∈A infb∈B F (a, b) ≤ infb∈B supa∈A F (a, b), we
conclude that (a∗, b∗) satisfies

F (a∗, b∗) = sup
a∈A

inf
b∈B

F (a, b) = inf
b∈B

sup
a∈A

F (a, b). (6.1)

This means that the Nash equilibrium is a saddle point of F . In this context,
there is an interesting interpretation of the Nash equilibrium for two players.
Since infb∈B F (a∗, b) = supa∈A infb∈B F (a, b), we have that a∗ maximizes the
function infb∈B F (a, b). This means that player A maximizes his/her worst
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case performance againt player B. There is an analogous interpretation for
player B.

When a Nash equilibrium exists, the common value in (6.1) is called the
value of the game. Note that there may be multiple Nash equilibria, but
there is only one value. On the contrary, the game does not have value if6

sup
a∈A

inf
b∈B

F (a, b) < inf
b∈B

sup
a∈A

F (a, b).

These quantities are sometimes called the lower and upper values, respec-
tively. The left-hand side represents the value when player B has the ad-
vantage, with player A choosing a first and then player B getting to react
to player A’s choice.

6.2 Stochastic differential games

Moving on to the stochastic setting, we suppose that two players each control
a common d-dimensional state process X, which evolves according to

dXt = b(Xt, αt, βt)dt+ σ(Xt, αt, βt)dWt,

where X0 = x and W is an m-dimensional Brownian motion. Similarly to
the stochastic control framework, the objective function takes the form

J(α, β) = E
[∫ T

0
f(Xt, αt, βt)dt+ g(XT )

]
.

Players A and B choose control processes α and β taking values in subsets A
and B of Euclidean spaces, respectively. As in the deterministic game, the
objective of player A is to maximize J(α, β), while the objective of player
B is to minimize J(α, β). We now define the value of a two-player game.

Definition 6.1. The game has value if

sup
α∈A

inf
β∈B

J(α, β) = inf
β∈B

sup
α∈A

J(α, β).

Intuitively, in a game with value, it does not matter which player “plays”
first and which one “plays” second.

It is an absolutely crucial point in stochastic differential games to define
carefully what one means by an admissible control. The three most common
choices are:

6Note that we always have sup inf ≤ inf sup here.
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1. Open loop: Let F = (Ft)t≥0 be the filtration generated by the
Brownian motion. Player A chooses an A-valued F-adapted process
α = (αt(ω)). Similarly for player B.

2. Closed loop (Markovian): Player A chooses a (measurable) func-
tion α : [0, T ]×Rd → A. In this case α(t,Xt(ω)) is the control process.
The function α(t, x) is called the feedback function. Similarly for player
B.

3. Closed loop (path dependent): Player A chooses a (measurable)
function α : [0, T ]× C([0, T ];Rd)→ A with the following adaptedness
property: For each t ∈ [0, T ] and each x, y ∈ C([0, T ];Rd) satisfying
xs = ys for all s ≤ t, we have α(t, x) = α(t, y). Intuitively, unlike the
Markovian case, the control may depend on the entire history of the
state process, and this adaptedness constraint simply means that one
cannot look into the future. Similarly for player B.

Note that a closed loop Markovian control (and similarly for a closed loop
path dependent control) always gives rise to an open loop control. Indeed,
if α : [0, T ] × Rd → A and β : [0, T ] × Rd → B are closed loop Markovian
controls, then the state process is determined by solving the SDE

dXt = b(Xt, α(t,Xt), β(t,Xt))dt+ σ(Xt, α(t,Xt), β(t,Xt))dWt, X0 = x,

and let us assume for this discussion that the SDE is well-posed. Then
α̃t(ω) := α(t,Xt(ω) and β̃t(ω) := β(t,Xt(ω) both define open loop controls.

With this in mind, in a one-player optimal control problem, it typically
does not make a difference whether we use open loop or (the smaller class
of) closed loop controls, as the optimizer among open loop controls is often
representable in closed loop form. However, in games, the choice of admissi-
bility class influences the equilibrium outcome. Intuitively, the key point is
that, in the notation of the previous paragraph, the control α̃ as a process
depends on the choice of the other player! If Player B switches to a differ-
ent closed loop control β′ : [0, T ] × Rd → B while player A keeps the same
control α : [0, T ]× Rd → A, then we must resolve the state equation

dX ′t = b(X ′t, α(t,X ′t), β
′(t,X ′t))dt+ σ(X ′t, α(t,X ′t), β

′(t,X ′t))dWt, X ′0 = x.

This gives rise a different state process, which is then fed into the function
α, and the control process of player A becomes α̃′t(ω) = α(t,X ′t(ω)). In the
open loop regime, this feedback is not present; if player B switches controls,
then the control process of player A does not react to this change, because
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it is the process and not the feedback function which is fixed. This extra
layer of feedback in closed loop controls gives rise to a different equilibrium
set, and we will see this more clearly in an example.

From now on, assume that we are in the setting of closed loop (Marko-
vian) controls. We will use an optimal-response argument to solve the two-
player game. First, suppose that player B chooses β(t, x). Then, player A
solves the following problem:{

supα E
[∫ T

0 f(Xt, αt, β(t,Xt))dt+ g(XT )
]

dXt = b(Xt, αt, β(t,Xt)) + σ(Xt, αt, β(t,Xt))dWt.

Given β, let vβ(t, x) be the value function of player A. In this case, the HJB
equation that vβ(t, x) should solve is

∂tv
β(t, x) + sup

α∈A
h(x,∇vβ(t, x),∇2vβ(t, x), α, β(t, x)) = 0,

with terminal vβ(T, x) = g(x) and where

h(x, y, z, α, β) = b(x, α, β) · y +
1

2
Tr
[
σσ>(x, α, β)z

]
+ f(x, α, β).

We can then find the optimal α(t, x) by maximizing h pointwise above.
Similarly, if player A chooses α(t, x), denote the value function of player B
as vα(t, x). The HJB equation for vα(t, x) is

∂tvα(t, x) + inf
β∈B

h(x,∇vα(t, x),∇2vα(t, x), α(t, x), β) = 0,

with vα(T, x) = g(x). Again, the optimal β(t, x) is the pointwise minimizer
of h. Now suppose that the pair (α, β) is Nash. In that case, both vβ(t, x)
and vα(t, x) satisfy the same PDE

∂tv(t, x) + h(x,∇v(t, x),∇2v(t, x), α(t, x), β(t, x)) = 0,

and thus, by the Feynman-Kac representation, we must have v ≡ vβ ≡ vα.
We must then have

sup
α∈A

h(x,∇v(t, x),∇2v(t, x), α, β(t, x)) = inf
β∈B

h(x,∇v(t, x),∇2v(t, x), α(t, x), β),

which in turn implies that (α(t, x), β(t, x)) is a saddle point for the function
(α, β)→ h(x,∇v(t, x),∇2v(t, x), α, β).
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Before stating the verification theorem, we introduce some notation.
Define the functions H+ and H− as

H+(x, y, z) = inf
β∈B

sup
a∈A

h(x, y, z, α, β)

H−(x, y, z) = sup
α∈A

inf
b∈B

h(x, y, z, α, β).

Suppose also that there are value functions v+ and v− that solve

∂tv
±(t, x) +H±(x,∇v±(t, x),∇2v±(t, x)) = 0.

The key condition that will ensure existence of value for the game is
Isaacs’ condition, which amounts to requiring that the static two-player
zero-sum game determined by the reward function (α, β) → h(x, y, z, α, β)
has value for each choice of (x, y, z).

Definition 6.2. We say Isaacs’ condition holds if H+ ≡ H−.

Theorem 6.3 (Verification theorem). Assume that Isaacs’ condition holds.
Assume also that there is a v which is a smooth solution of

∂tv(t, x) +H(x,∇v(t, x),∇2v(t, x)) = 0,

with terminal condition v(T, x) = g(x). Suppose α and β are measurable
functions from [0, T ]×Rd into A and B, respectively, and that (α(t, x), β(t, x))
is a saddle point for the function (α, β)→ h(x,∇v(t, x),∇2v(t, x), α, β), for
each (t, x) ∈ [0, T ]× Rd. If the state equation

dXt = b(Xt, α(t,Xt), β(t,Xt))dt+ σ(Xt, α(t,Xt), β(t,Xt))dWt,

is well-posed, then (α, β) is a closed loop Nash equilibrium.

6.3 Buckdahn’s example

This section describes a simple two-player zero-sum stochastic differential
game which does not have value in open loop controls, but it does have a
closed loop Nash equilibrium. Suppose our state process and Brownian mo-
tion are each two-dimensional, and write X = (X1, X2) and W = (W 1,W 2).
The states evolve according to

dX1
t = αtdt+ σdW 1

t , X1
0 = x, dX2

t = βdt+ σdW 2
t , X1

0 = x.
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Players each choose controls from the set A = B = [−1, 1]. The objective
function is

J(α, β) = E[|X1
T −X2

T |]

Intuitively, the maximizing player A wants to make the difference between
states as great as possible, whereas player B wants to keep the states close
together.

Let us begin by searching for closed loop equilibrium, following the
blueprint of Theorem 6.3. Since volatility is uncontrolled, we define the
reduced (unoptimized) Hamiltonian:

h(y1, y2, α, β) = αy1 + βy2

The upper and lower Hamiltonians are

H+(x, y, z) = inf
β∈[−1,1]

sup
α∈[−1,1]

h(y1, y2, α, β) = |y1| − |y2|,

H−(x, y, z) = sup
α∈[−1,1]

inf
β∈[−1,1]

h(y1, y2, α, β) = |y1| − |y2|.

Hence, Isaacs’ condition condition holds, and the game has value as long as
the HJB equation is solvable:

∂tv(t, x1, x2) + |∂x1v(t, x1, x2)| − |∂x2v(t, x1, x2)|

+
σ2

2

(
∂x1x1v(t, x1, x2) + ∂x2x2v(t, x1, x2)

)
= 0,

v(T, x1, x2) = |x1 − x2|.

It is worth noting that the presence of (non-differentiable) absolute value
terms suggests that this PDE will not have a classical solution. While we
will not go into it, viscosity solution theory will work well here, and this PDE
is indeed “solvable enough” that the game can be shown to have value over
closed loop controls. Moreover, the saddle point of the function (α, β) 7→
h(y1, y2, α, β) is clearly

α(y1) = sign(y1), β(y2) = sign(y2)

Controls of this form are often called bang-bang controls, as they jumps to
extreme end of control set whenever the sign flips. Bang-Bang controls arise
quite often when there is no running cost and there is a bounded action
space.

Next, we study the open loop case, and we show that there is no value.
This is stated precisely as follows:
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Theorem 6.4. Let

V 0 = sup
α

inf
β
J(α, β), V 0 = inf

β
sup
α
Jα, β.

in open-loop controls. If 0 ≤ σ < 1
2

√
πT , then V 0 < V 0

Proof. First we bound V 0 from above. To do this, fix α. Choose β = α.
Then

J(α, β) = E[|X1
T −X2

T |] = E
[∫ T

0
(αt − βt)dt+ σ(W 1

T −W 1
T )

]
= σE[|W 1

T −W 1
T |] = σE[|N(0, 2T |]

= 2σ
√
T/π,

where the last line is a straightforward calculation. We have shown that
for any α we can find β such that J(α, β) ≤ 2σ

√
T/π. This shows that

V 0 ≤ 2σ
√
T/π.

Next, we bound V 0 from below. Fix β. The crucial point is that, because
X2 depends on β but not on α (as we are dealing with open loop controls),
we may define α by

αt = −
E[X2

T ]

|E[X2
T ]|

1{E[X2
T ]6=0} + 1{E[X2

T ]=0}.

Note that α is admissible, as |αt| = 1. Moreover, αt = α0 is constant, and
by construction −E[X2

T ] = α0|E[X2
T ]|. Hence, by Jensen’s inequality,

J(α, β) = E[|X1
T −X2

T |] ≥ |E[X1
T −X2

T ]|

=

∣∣∣∣E [∫ T

0
αtdt+ σW 1

T −X2
T

]∣∣∣∣
=
∣∣E [α0T −X2

T

]∣∣
=
∣∣α0T + α0|E[X2

T ]|
∣∣

≥ T.

In summary, for any β we have chosen α such that J(α, β) ≥ T . Hence
V 0 ≥ T . Combining this with our upper bound V 0 ≤ 2σ

√
T/π, we find

V 0 < V 0 if σ < 1
2

√
πT .
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6.4 Bibliographic notes

The literature on two-player zero-sum stochastic differential games is vast.
Rufus Isaacs (see, e.g., [72]) kicked off the study of differential games in
the mid 1900s, with the seminal paper on stochastic differential games due
to Fleming and Souganidis [51]. Some research on this subject continuous
to this day, and we refer to [16, 110] for some recent work in this area
with more comprehensive bibliographies. Notably, the notion of closed loop
equilibrium we employed is not the most standard one (with so-called Elliot-
Kalton strategies being more common), but it is the one which most readily
generalizes to n-player games.

7 n-player stochastic differential games

Here we begin our study of n-player stochastic differential games. The gen-
eral setup is inevitably notationally cumbersome, but we will do our best.
The general setup is as follows. Each of the n-players i = 1, . . . , n chooses a
control αi = (αit)t∈[0,T ] with values in some set Ai (assumed to be a closed
subset of a Euclidean space) to influence the state process

dXt = b(Xt, ~αt)dt+ σ(Xt, ~αt)dWt,

where X is a d-dimensional state process, W is an m-dimensional Brownian
motion, and ~αt = (α1

t , . . . , α
n
t ). The given drift and volatility functions,

b : Rd ×
n∏
i=1

Ai → Rd, σ : Rd ×
n∏
i=1

Ai → Rd×m,

will be implicitly assumed to be nice enough so that our state SDE above
can be solved. For instance, assume they are Lipschitz in x, uniformly in ~α.

It is quite important here that we allow the generality of multidimen-
sional state and noise processes. Indeed, in many applications, we have
d = nk, where k is the dimension of the “private state process” of player
i, perhaps influenced only by player i’s own choice of control. The current
level of generality encompasses many possible frameworks of this nature.

We will work throughout with closed loop Markovian controls. Let Ai
denote the set of measurable functions αi : [0, T ] × Rd → Ai. Let A ⊂∏n
i=1Ai denote the set of ~α = (α1, . . . , αn), such that αi ∈ Ai for each i and

the state equation

dXt = b(Xt, ~α(t,Xt))dt+ σ(Xt, ~α(t,Xt))dWt
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has a unique strong solution starting from any initial point. The objective
of player i will be to maximize the functional

Ji(~α) = E
[∫ T

0
fi(Xt, ~α(t,Xt))dt+ gi(XT )

]
.

where we assume the functions fi and gi are continuous and bounded from
above.

Definition 7.1. A closed loop (Markovian) Nash equilibrium is defined to
be any ~α ∈ A such that, for each i = 1, . . . , n and each β ∈ Ai such that
(~α−i, β) ∈ A, we have Ji(~α) ≥ Ji((~α

−i, β)), where we use the standard
game-theoretic abbreviation

(~α−i, β) := (α1, . . . , αi−1, β, αi+1, . . . , αn).

To solve an n-player game, we will get a lot of mileage from thinking of
it as a coupled set of stochastic control problems. That is, player i solves a
stochastic control problem whose parameters depend on the actions of the
other players. Accordingly, define the (unoptimized) Hamiltonians,

hi(x, y, z, ~α) = b(x, ~α) · y +
1

2
Tr[σσᵀ(α, ~α)z] + fi(x, ~α).

Note hi is defined on Rd×Rd× Sd×
∏n
i=1Ai, where we recall that Sd is the

set of symmetric d× d matrices.
Following the intuition for two-player games developed the previous sec-

tion, the HJB equation(s) we find for n-player games will ultimately move
the Nash equilibrium problem to a static one, using these Hamiltonians hi
as reward functions. However, we must be careful here: Each player will
have her own value function vi = vi(t, x), and as usual the adjoint variables
y and z in hi(t, x, y, ~α) are merely placeholders into which we will eventually
substitute the derivatives ∇vi(t, x) and ∇2vi(t, x), respectively. The point is
that we must have a different pair of adjoint variables (y, z) for each agent.
This leads to the following:

Definition 7.2. We say that the generalized Isaacs’ condition holds if there
exist measurable functions αi : [0, T ]×Rd × (Rd)n × Snd → Ai such that, for
every (x, ~y, ~z) ∈ Rd × (Rd)n × Snd , the vector

~α(x, ~y, ~z) := (α1(x, ~y, ~z), . . . , αn(x, ~y, ~z)) ∈
n∏
i=1

Ai
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is a Nash equilibrium for the static n-player game with reward functions
given by

n∏
i=1

Ai 3 (a1, . . . , an) 7→ hi(x, yi, zi, a1, . . . , an).

Equivalently, for each (x, ~y, ~z) ∈ Rd × (Rd)n × Snd we have

hi(x, yi, zi, ~α(x, ~y, ~z)) = sup
ai∈Ai

hi

(
x, yi, zi, (~α(x, ~y, ~z)−i, ai)

)
. (7.1)

Finally, this lets us state and prove the verification theorem, by boot-
strapping on the verification Theorem 5.5 that we have already seen for
(one-player) stochastic control problems.

Theorem 7.3 (Verification theorem). Suppose the generalized Isaacs’ con-
dition holds. Suppose ~v = (v1, . . . , vn), with vi : [0, T ]× Rd → R for each i,
is a C1,2 solution of the PDE system

∂tvi(t, x) + hi

(
x,∇vi(t, x),∇2vi(t, x), ~α(x,∇~v(t, x),∇2~v(t, x))

)
= 0,

vi(T, x) = gi(x),

where we abbreviate ∇~v = (∇v1, . . . ,∇vn) and ∇2~v = (∇2v1, . . . ,∇2vn).
Finally, setting ~α∗(t, x) = ~α(x,∇~v(t, x),∇2~v(t, x)), suppose that the state
equation

dXt = b(Xt, ~α
∗(t,Xt))dt+ σ(Xt, ~α

∗(t,Xt))dWt

is well-posed. Then ~α∗ is a closed loop Nash equilibrium.

Proof. Fix i ∈ {1, . . . , n}. Using the notation of ~α∗(t, x), we may rewrite
the PDE as

∂tvi(t, x) + hi

(
x,∇vi(t, x),∇2vi(t, x), ~α∗(t, x)

)
= 0,

We may rewrite the PDE using Isaacs’ conditionin the form of (7.1) to get

∂tvi(t, x) + sup
ai∈Ai

hi

(
x,∇vi(t, x),∇2vi(t, x), (~α∗(t, x)−i, ai)

)
= 0.

Expand the definition of hi to find

∂tvi(t, x) + sup
ai∈Ai

(
b(x, (~α∗(t, x)−i, ai)) · ∇vi(t, x)

+
1

2
Tr[σσᵀ(x, (~α∗(t, x)−i, ai))∇2vi(t, x)] + fi(x, (~α

∗(t, x)−i, ai))
)

= 0.
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Treating the other functions (vk)k 6=i as fixed, we use the verification theorem
for (one-player) stochastic optimal control (Theorem 5.5) to find that vi can
be represented as the value function

vi(t, x) = sup
αi

E
[∫ T

t
fi(X

t,x
s , (~α∗(s,Xt,x

s )−i, αis))ds+ gi(X
t,x
T )

]
,

where given a control αi the state process Xt,x solves

dXt,x
s = b(Xt,x

s , (~α∗(s,Xt,x
s )−i, αis))ds+ σ(Xt,x

s , (~α∗(s,Xt,x
s )−i, αis))dWs, s ∈ (t, T ],

Xt,x
t = x.

By the Isaacs’ condition, α∗i (t, x) is the pointwise optimizer in the PDE
written above for vi, and so the verification theorem 5.5 tells us that α∗i (t, x)
is indeed the optimal control. In summary, we have shown that for a given
i, if all players k 6= i stick with the (closed loop) controls α∗k, then the
optimal choice for player i is the control α∗i . This shows that ~α∗ is a Nash
equilibrium.

7.1 Private state processes

The general form of Isaacs’ condition given in Definition 7.1 is rather cum-
bersome, and in this section we focus on an important special class of models
for which it simplifies. Assume now that the dimension is d = n = m+ 1.7

Now, the state process ~X = (X1, . . . , Xn) is thought of as a vector of private
state processes, with player i denoting the state (e.g., wealth, position, etc.)
of player i.

The dynamics of each player’s private state process are more specific,
taking the form

dXi
t = bi( ~Xt, α

i
t)dt+ σi( ~Xt, α

i
t)dW

i
t + σ̂i( ~Xt)dBt.

Here, B,W 1, . . . ,Wn are independent Brownian motions. Notice that bi
and σi are functions on Rn × Ai and depend only on the control of player
i, with no direct dependence on the other players’ controls. The Brownian
motions W 1, . . . ,Wn are interpreted as independent or idiosyncratic noises,
specific to each player, whereas the common noise B influences each player
equally.

7It should be clear from the discussion how we can generalize to d = nk and m = j0+nj
for some fixed k, j0, j ∈ N with little more than notational changes. This will simply
amount to making each of the private state processes Xi have dimension k, each private
noise W i have dimension j, and the common noise B have dimension j0.
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Similarly, the objective of player i is to maximize

Ji(~α) = E
[∫ T

0
fi( ~Xt, α

i
t)dt+ gi( ~XT )

]
,

where fi depends only on player i’s own control.
In this scenario, the Hamiltonians exhibit a striking simplification. Let

i ∈ {1, . . . , n}. For (x, y, z,~a) ∈ Rn×Rn×Sn×
∏n
k=1Ak, the above definition

of hi specializes to

hi(x, y, z,~a) =
n∑
k=1

bk(x, ak)yk +
1

2

n∑
k=1

σ2
k(x, ak)zkk

+
1

2

n∑
k,j=1

σ̂k(x)σ̂j(x)zkj + fi(x, ak).

When optimizing hi over ai, keeping (ak)k 6=i as fixed, we find that all of the
terms involving (ak)k 6=i come out of the supremum. To be clear, for a given
i and for (x, y, z, ai) ∈ Rn × Rn × Sn ×Ai let us define

h̃i(x, y, z, ai) =bi(x, ai)yi +
1

2
σ2
i (x, ai)zii + fi(x, ai).

Then, we may write

hi(x, y, z,~a) =h̃i(x, y, z, ai) +
n∑
k 6=i

bk(x, ak)yk +
1

2

n∑
k 6=i

σ2
k(x, ak)zkk (7.2)

+
1

2

n∑
k,j=1

σ̂k(x)σ̂j(x)zkj . (7.3)

The point is that all of the terms outside of h̃i(x, y, z, ai) are independent
of ai.

To resolve Isaacs’ condition, we need to fix (x, ~y, ~z) ∈ Rn × (Rn)n ×
Snn and find a Nash equilibrium of the static n-player game with reward
functions ~a 7→ hi(x, yi, zi,~a). But, in this case, (7.3) shows that this is
equivalent to finding a Nash equilibrium of the static n-player game with
reward functions ~a 7→ h̃i(x, yi, zi, ai). In particular, the action of player i
does not depend on the actions of the other players! This n-player game is
completely trivial, consisting of n decoupled optimization problems. This
observation is summarized in the following lemma:
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Lemma 7.4. In the class of models described above, suppose there exists for
each i a measurable function αi : [0, T ] × Rn × R × R → Ai such that, for
every (x, y, z) ∈ Rd × (Rd × Sd, we have

αi(x, y, z) ∈ arg max
ai∈Ai

h̃i(x, y, z, ai).

Then the Isaacs’ condition holds.

Let us check carefully how the PDE system of Theorem 7.3 looks in this
case. Define the optimized Hamiltonians for (x, y, z) ∈ Rn × R× R by

Hi(x, y, z) := sup
ai∈Ai

h̃i(x, y, z, ai). (7.4)

We have removed several terms from h̃i which we must add back in, and
the HJB system becomes the following: We must find functions v1, . . . , vn
on [0, T ]× Rn satisfying

0 = ∂tvi(t, x) +Hi(x, ∂xivi(t, x), ∂xixivi(t, x))

+
n∑
k 6=i

bk(x, αi(x, ∂xkvk(t, x), ∂xkxkvk(t, x)))∂xkvi(t, x)

+
1

2

n∑
k 6=i

σ2
k(x, αi(x, ∂xkvk(t, x), ∂xkxkvk(t, x)))∂xkxkvi(t, x)

+
1

2

n∑
k,j=1

σ̂k(x)σ̂j(x)∂xkxjvi(t, x),

with the boundary condition vi(T, x) = gi(x).
This may not look like much of an improvement. However, it is it quite

valuable that the Isaacs’ condition holds automatically for this class of mod-
els. Moreover, the PDE structure clearly shows where the optimization
happens for player i (inside the Hamiltonian Hi), with the other terms com-
ing from drifts and volatility parameters from the other players’ prive state
processes and from the uncontrolled common noise coefficients σ̂k. It is a
good exercise to see what goes wrong with this program if the common noise
coefficient σ̂k is allowed to depend on ak, and not just xk.

7.2 Linear-quadratic games

In this section, parallel to Section 5.5, we study a very simple n-player game,
to begin to make sense of the general notational mess of the previous section.
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We work in a model that fits the structure discussed in Section 7.1. The
private state processes X1, . . . , Xn evolve according to

dXi
t = αitdt+ dW i

t .

The objective of player i is to maximize

Ji(~α) = E
[∫ T

0
−1

2
|αit|2dt−

λ

2
|XT −Xi

T |2
]
, Xt =

1

n

n∑
k=1

Xk
t ,

where λ > 0 is constant. This is similar to the one-player control problem
of Section 5.5, except that the “target” that each player wants to reach at
the final time T is not a given deterministic value but rather the empirical
mean; the reward function encourages the players to “flock” together, but
using minimal energy or fuel to do so.

In the notation of Section 7.1, we have

bi(x, ai) = ai, σi(x, ai) = 1, σ̂ ≡ 0,

fi(x, ai) = −1

2
a2
i , gi(x) = −λ

2
|x̄− xi|2,

where we write x̄ = 1
n

∑n
k=1 xk for any vector x = (x1, . . . , xn) ∈ Rn. We

may define the optimized Hamiltonian H of (7.4) becomes

Hi(x, y, z) = sup
ai∈Ai

h̃i(x, y, z, ai) = sup
ai∈Ai

(aiy −
1

2
a2
i ) +

1

2
z

=
1

2
y2 +

1

2
z.

The optimizer is αi(x, y, z) = y. Hence, the HJB system becomes

0 = ∂tvi(t, x) +
1

2
|∂xivi(t, x)|2 +

n∑
k 6=i

∂xkvk(t, x)∂xkvi(t, x) +
1

2

n∑
k=1

∂xkxkvi(t, x),

with the boundary condition vi(T, x) = −λ
2 |x̄− xi|

2.
As in Section 5.5, we seek a separable solution by making the ansatz

vi(t, x) = g(t) +
1

2
f(t)(x̄− xi)2, (7.5)

for some functions g and f to be determined, satisfying the boundary con-
ditions g(T ) = 0 and f(T ) = −λ. Taking derivatives, we find

∂xivi(t, x) = −
(

1− 1

n

)
f(t)(x̄− xi), ∂xkvi(t, x) =

1

n
f(t)(x̄− xi), k 6= i

∂xixivi(t, x) =

(
1− 1

n

)2

f(t), ∂xkxkvi(t, x) =
1

n2
f(t), k 6= i.
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Plug these into the PDE to find

0 =g′(t) +
1

2
f ′(t)(x̄− xi)2 +

1

2

(
1− 1

n

)2

(x̄− xi)2f2(t) (7.6)

−
n∑
k 6=i

1

n

(
1− 1

n

)
(x̄− xi)(x̄− xk)f2(t) +

1

2

(
1− 1

n

)2

f(t) +
1

2

n∑
k 6=i

1

n2
f(t).

We make a couple of simplifications. First, combine the third and fourth
terms by writing

1

2

(
1− 1

n

)2

(x̄− xi)2f2(t)−
n∑
k 6=i

1

n

(
1− 1

n

)
(x̄− xi)(x̄− xk)f2(t)

=
1

2

(
1− 1

n

)2

(x̄− xi)2f2(t) +
1

n

(
1− 1

n

)
(x̄− xi)2f2(t)

=
1

2

(
1− 1

n2

)
(x̄− xi)2f2(t).

Indeed, the first equality here follows from the observation that the sum
would vanish if it included the k = i term, because 1

n

∑n
k=1(x̄− xk) = 0.

Now, combine the (x̄− xi)2 terms in (7.6) to find

f ′(t) +

(
1− 1

n2

)
f2(t) = 0.

The other terms in (7.6) become

g′(t) +
1

2

(
1− 1

n

)2

f(t) +
n− 1

2n2
f(t) = 0,

or equivalently

g′(t) +
1

2

(
1− 1

n

)
f(t) = 0.

Recalling the boundary condition f(T ) = −λ, we solve the first of these
ODEs by the usual method,∫ T

t

(
1− 1

n2

)
ds =

∫ T

t
− f

′(t)

f2(t)
ds =

1

f(T )
− 1

f(t)
= − 1

λ
− 1

f(t)
.

Rearrange to find

f(t) = − 1
1
λ +

(
1− 1

n2

)
(T − t)

.
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Plug this into the equation for g to find

g(t) = g(T ) +
1

2

(
1− 1

n

)∫ T

t
f(s)ds =

1

2

(
1− 1

n2

)
log

(
1 + λ

(
1− 1

n2

)
(T − t)

)
.

Plug this back into (7.5) to obtain an expression for the value function for
player i, and thus the solution of the HJB system.

To compute the optimal control, we recall that the maximizer of the
Hamiltonian was αi(x, y, z) = y. Plugging in ∂xivi(t, x) for y, we find that
the Nash equilibrium is

α∗i (t, x) = ∂xivi(t, x) = −
(

1− 1

n

)
f(t)(x̄− xi)

=

(
1− 1

n

)
(x̄− xi)

1
λ +

(
1− 1

n2

)
(T − t)

.

As in the one-player control problem of Section 5.5, the state process of each
player “mean-reverts” toward the target, which in this case is the current
empirical average:

dXi
t =

(
1− 1

n

)
(Xt −Xi

t)
1
λ +

(
1− 1

n2

)
(T − t)

dt+ dW i
t .

7.3 Competitive Merton problem

In this section we study a model in which n fund managers (players) aim to
maximize not only absolute wealth at the time horizon T > 0 but also relative
wealth. The precise setup will be essentially a multi-agent form of Merton’s
problem, which we studied in Section 5.7. As in Merton’s problem, we
assume that the risky asset’s price is a one-dimensional geometric Brownian
motion

dSt
St

= µdt+ σdWt.

For simplicity, we further assume r = 0, which means the risk free asset has
a constant price. The wealth of player i = 1, ..., n is given by

dXi
t = αitX

i
t (µdt+ σdWt)

Xi
0 = xi > 0

where αit is the fraction of wealth invested in the stock. We assume that
the controls are square integrable, so that the SDE is well defined, and note
that Xi

t > 0 for all t.
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Agent i uses the power utility

Ui(x) =
1

γi
xγi ,

where γi < 1, and γi 6= 0.8 The goal of player i is to maximize his expected
utility at time T

Ji(~α) = E
[
Ui

(
Xi
T |X

−i
T |−θi

)]
,

where θi ∈ [0, 1], and where X
−i
t =

(∏
k 6=iX

k
t

) 1
n−1

is the geometric mean

wealth of the n − 1 other agents. We can write this objective function
alternatively as

Ji(~α) = E

Ui
∣∣Xi

T

∣∣1−θi ∣∣∣∣∣ Xi
T

X
−i
T

∣∣∣∣∣
θi
 .

∣∣Xi
T

∣∣1−θi is the absolute wealth of player i, and the ratio Xi
T /X

−i
T is relative

wealth. The parameter θi controls the trade-off between absolute wealth and
relative wealth, and we might thus call it the competitiveness parameter. As
usual, the parameter γi captures the gent’s risk aversion.

A priori, to find an equilibrium, we should write down the system of
n HJB equation and try to solve it. However, this turns out to be rather
cumbersome, and we prefer to take an alternative but natural approach: We
fix each players’ strategies, we compute a single player’s best response, and
then we resolve the fixed point problem for a Nash equilibrium.

What makes this approach tractable here is that we will search search
for a Nash equilibrium in which the investment strategies αi are all constant
(i.e., deterministic and independent of the time parameter). We saw in
the one-player Merton problem that the optimal strategy was constant in
this sense, so this is a natural starting point in this problem. (Note in
particular that an agent with θi = 0 is not at all competitive and simply
solves Merton’s problem.) To find such an equilibrium, we first solve one
player’s optimization problem given an arbitrary choice of the other players’
constant strategies.

Fix (α1, ..., αn) ∈ Rn and i ∈ {1, ..., n}. We will now allow player i to
choose a control process αi as a best response to the fixed constant strategies
(αj)j 6=i of the other players, and it will turn out that this best response is
itself a constant. This will give us a map from Rn → Rn for which we find
a fixed point, giving us an equilibrium.

8One could treat the limit case γi = 0 by setting Ui(x) = log(x), and all of the final
formulas we find are valid in this case.
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7.3.1 Solution of one player’s best response

Define Xt = Xi
t

∣∣∣X−it ∣∣∣−θi . The idea is to write player i’s optimization prob-

lem as a stochastic control problem with one-dimensional state process X,
and to do this we must first compute the (controlled) dynamics of X. For
each k, Itô s formula yields

d logXk
t =

(
αkµ−

σ2α2
k

2

)
dt+ σαkdWt.

Thus

d logXt = d logXi
t −

θi
n− 1

∑
k 6=i

d logXk
t

=

αitµ− |αit|2σ2

2
− θi
n− 1

∑
k 6=i

(
αkµ−

σ2α2
k

2

) dt

+

σαit − θi
n− 1

∑
k 6=i

σαk

 dWt

=:

(
αitµ−

α2
i σ

2

2
− θiµα−i +

θiσ
2

2
α2
−i
)
dt+

(
σαit − θiσα−i

)
dWt

where we abbreviate α−i = 1
n−1

∑
k 6=i αk and α2

−i
= 1

n−1

∑
k 6=i α

2
k. Expo-

nentiating and applying Itô’s formula again, our state process is

dXt

Xt
=

(
αitµ−

|αit|2σ2

2
− θiµα−i +

θiσ
2

2
α2
−i

+
σ2

2

(
αit − θiα−i

)2)
dt

+ σ
(
αit − θiα−i

)
dWt

=:
[(
µ− σ2θiα

−i)αit + η
]
dt+ σ

(
αit − θiα−i

)
dWt,

where η = −θiµα−i+ θiσ
2

2 α2
−i

+
θ2i σ

2

2 (α−i)2. The goal of player i is to choose
αi to maximize

E
[

1

γi
Xγi
T

]
.
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This is a standard stochastic control problem, and we are well-versed in
solving such things by now. We identify the Hamiltonian H as

H(x, y, z) = sup
a∈R

[
xy
(
µ− σ2θiα

−i) a+
1

2
σ2x2z

(
a− θiα−i

)2]
+ xyη

= sup
a∈R

[
a
(
xy
(
µ− σ2θiα

−i)− σ2x2zθiα
−i)+

1

2
σ2x2za2

]
+

1

2
σ2x2zθ2

i

(
α−i
)2

+ xyη

As in the Merton problem, we assume z < 0 to avoid an infinite Hamiltonian,
and we will justify this later by checking that the solution v of our HJB
equation satisfies ∂xxv(t, x) < 0. Assuming z < 0, the optimizer of the
Hamiltonian is

α̂(x, y, z) = −xy(µ− σ2θiα
−i)− σ2x2zθiα

−i

σ2x2z
, (7.7)

and we can write

H(x, y, z) = −
(
xy(µ− σ2θiα

−i)− σ2x2zθiα
−i)2

2σ2x2z
+

1

2
σ2x2zθ2

i

(
α−i
)2

+ xyη.

The HJB equation is then

0 = ∂tv(t, x)−
(
x∂xv(t, x)(µ− σ2θiα

−i)− σ2x2∂xxv(t, x)θiα
−i)2

2σ2x2∂xxv(t, x)

+
1

2
σ2x2∂xxv(t, x)θ2

i

(
α−i
)2

+ x∂xv(t, x)η,

v(T, x) =
1

γi
xγi .

We look for a separable solution by making the ansatz v(t, x) = 1
γi
f(t)xγi ,

where f is a function to be determined and that satisfies the boundary
condition f(T ) = 1. The partial derivatives of v are then

∂tv(t, x) =
1

γi
f ′(t)xγi

∂xv(t, x) = f(t)xγi−1

∂xxv(t, x) = −(1− γi)f(t)xγi−2.

Now note that in the HJB equation, each time we have a partial derivative
of v, we either have ∂tv(t, x) or x∂xv(t, x) or x2∂xxv(t, x), which all give us
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xγi . In the fraction in the HJB equation, we get a factor of (xγi)2 in the
numerator and xγi in the denominator. Hence, the factor xγi cancels out of
the equation entirely, and the HJB equation becomes a first linear ODE of
f

1

γi
f ′(t)+

[
µ− σ2θiα

−i + σ2θiα
−i(1− γi)

2σ2(1− γi)
− 1

2
σ2(1− γi)θ2

i

(
α−i
)2

+ η

]
f(t) = 0.

This ODE is of course well-posed, and the terminal condition f(T ) = 1 gives
us

f(t) = eρ(T−t),

where ρ ∈ R is precisely γi times the long expression appearing in the bracket
above; we will not keep track of this value, as it will appear only in the value
function and not in the optimal control. We conclude that our ansatz was
valid, and v(t, x) = 1

γi
f(t)xγi indeed solves the HJB equation. Recalling

(7.7), the optimal control is then

α̂(x, ∂xv(t, x), ∂xxv(t, x)) =
µ− σ2θiα

−i + σ2θiα
−i(1− γi)

σ2(1− γi)
=: α∗i ,

which we notice does not depend on t or x because of the cancellation of xγi

and f(t).

7.3.2 Solution of equilibrium

We have now determined how one player responds optimally to other players’
strategies, and we find our desired Nash equilibrium as a fixed point of this
map (α1, . . . , αn) 7→ (α∗1, . . . , α

∗
n). That is, suppose now that αi = α∗i for

each i. Let

α =
1

n

n∑
k=1

αk,

and note that

α−i =
nα− αi
n− 1

.

Then

αi =
µ

σ2(1− γi)
−
( θi

1− γi
− θi

)
α−i =

µ

σ2(1− γi)
− θiγi

1− γi

(nα− αi
n− 1

)
⇔ αi =

µ
σ2(1−γi) −

θiγi
1−γi

n
n−1α

1− θiγi
1−γi

1
n−1

=:
µφi
σ2
− ψiα,
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where we define

φi =
1

1− γi
(

1 + θi
n−1

) , ψi =
θiγi

n
n−1

1− γi
(

1 + θi
n−1

) .
Note that we are in trouble here if 1 = γi

(
1 + θi

n−1

)
, and in this case there

is no equilibrium! We assume it is not the case to avoid diving by zero, and
it is worth noting that for sufficiently large n we can avoid this problem no
matter what the values of θi are. Assuming φi and ψi are well defined, we
may now average over i to get

α =
µφ

σ2
− ψα.

Thus

α =
µφ

σ2(1 + ψ)
.

Therefore

αi =
µ

σ2

(
φi −

ψiφ

1 + ψ

)
=

µ

σ2
(

1− γi
(

1 + θi
n−1

)) (1− n

n− 1

γiθiφ

1 + ψ

)
.

Note that µ
σ2(1−γi) corresponds to the Merton problem’s optimal strategy.

Thus, αi can be interpreted as the Merton’s portfolio plus a perturbation.
This perturbation tells us that if γi > 0 then the player will invest less in
the risky asset if he is competitive, but if γi < 0, on the contrary, the more
competitive is the player, the more he will invest in the risky asset. By
sending n→∞, this simplifies nicely to

αi =
µ

σ2(1− γi)

1− γiθi

(
1

1−γ

)
1 +

(
γθ

1−γ

)
 .

In fact, it is often convenient to work with the risk tolerance parameter
δ > 0, defined by γ = 1 − 1/δ. Then δ = 1/(1 − γ), and we may write the
above as

αi =
µ

σ2

(
δi −

θiδ(δi − 1)

1 + θ(δ − 1)

)
,

and we can think of the term inside the parentheses as the modified or
effective risk tolerance; player i uses the Merton portfolio µδi/σ

2, except
that the risk tolerance δi is adjusted due to competition.
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7.4 Bibliographic notes

The literature on n-player stochastic differential games is sparse, and it has
only recently begun to appear in book form. See the lecture notes [25,
Chapter 5] and the more recent tome [30]. Some of the key early (PDE-
focused) work was by Bensoussan-Frehse [7, 8, 9] and Friedman [53]. The
text of Ladyzhenskaia et al. [86] is a classic reference for the kinds of PDE
systems that arise, though there is no discussion of games here. For a
probabilistic approach based on the maximum principle, see [64, 65] or the
aforementioned books [25, 30].

The somewhat contrived linear quadratic game of Section 7.2 is inspired
by (and is a simplification of) the model of [32]. The competitive Merton
problem is shamelessly adapted from my own recent paper [85].

8 Stochastic differential mean field games

Here we turn to the final topic of the course, where we look at the mean field
or continuum limit of n-player stochastic differential games. This combines
essentially all of the material we have seen so far in the course. This might be
a good time to review the material of Section 3 on McKean-Vlasov equations.

8.1 Review: Linear-Quadratic Game

We will ease into things by reviewing the linear-quadratic model studied
in Section 7.2. In this n-player game, the ith agent’s objective and state
processes are given by{

Ji(~α) = E
[∫ T

0 −
1
2

∣∣αit∣∣2 dt− λ
2

∣∣XT −Xi
T

∣∣2]
dXi

t = αitdt+ dW i
t , X̄t = 1

n

∑n
k=1X

k
t

We proved that in this case, at the Nash equilibrium, the state process
evolves according to

dXi
t =

λ
(
1− 1

n

)
(Xt −Xi

t)

1 + λ
(
1− 1

n2

)
(T − t)

dt+ dW i
t , (8.1)

and that the value function is

vi(t, ~x) = − λ(x̄− xi)2

2(1 + λ(1− 1
n2 )(T − t))

+
1

2

(
1− 1

n2

)
log

(
1 + λ

(
1− 1

n2

)
(T − t)

)
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The SDE system (8.1) is not exactly of McKean-Vlasov type because of the
factors (1 − 1/n) and (1 − 1/n2). Nonetheless, it is not hard to adapt the
arguments of Section 3 (more specifically, Theorem 3.3) to show that, as
n → ∞, we have the weak convergence Xi ⇒ Y i, where Y 1, . . . , Y n are
independent copies of the McKean-Vlasov equation

dY i
t =

λ(E(Y i
t )− Y i

t )

1 + λ(T − t)
dt+ dW i

t , Y i
0 = Xi

0.

Moreover, the value functions converge in an “averaged” sense. Define
v : [0, T ]× R× R→ R by

v(t, x, y) = − λ(y − x)2

2(1 + λ(T − t))
+

1

2
log (1 + λ(T − t)) .

Then, for each t ∈ [0, T ] and x1, x2, . . . ∈ R, we have

lim
n

max
i=1,...,n

∣∣∣∣∣vni (t, x1, ..., xn)− v

(
t, xi,

1

n

n∑
k=1

xk

)∣∣∣∣∣ = 0.

This limiting value function v may look familiar. Indeed, recall the (one-
player) linear-quadratic control problem studied in Section 5.5:{

sup
α

E
[∫ T

0 −
1
2 |αt|

2 dt− λ
2

∣∣z − X̄T

∣∣2]
dXt = αtdt+ dWt, z ∈ R, λ > 0.

Here, z ∈ R is some given target the controller wants to reach at the final
time. We saw that the optimal state process is

dXt =
λ(z −Xt)

1 + λ(T − t)
dt+ dWt, (8.2)

and the value function is

u(t, x) =
λ(z − x)2

2(1 + λ(T − t)
+

1

2
log(1 + λ(T − t)),

or u(t, x) = v(t, x, z). In fact, we can define a fixed point problem using this
“target” z as a surrogate for our population average, and in doing so arrive
at the same limit of our n-player equilibria. Precisely, consider the following
fixed point problem:

1. Fix a target z ∈ R.
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2. Solve 1-player control problem to get (8.2).

3. Compute Φ(z) := E[XT ].

This defines a map Φ : R→ R. Let us find the fixed point. Note that

E[Xt] = E[X0] +

∫ t

0

λ(z − E[Xs])

1 + λ(T − s)
ds.

In other words, the function f(t) = E[Xt]− z solves the ODE

f ′(t) = − λf(t)

1 + λ(T − t)
, f(0) = E[X0]− z.

The solution is easily seen to be

f(t) = (E[X0]− z)1 + λ(T − t)
1 + λT

,

so that

Φ(z) = E[XT ] = z + f(T ) = z +
E[X0]− z

1 + λT
.

Then Φ(z) = z if and only if z = E[X0]. It is no coincidence that if one
starts with E[Xi

0] = z in the n-player game, the limiting McKean-Vlasov
equation can be solved with E[Y i

t ] = z.

8.2 Setting up a general mean field game

The mean field games we study are to be seen as continuum analogues of
n-player games of the following form. This is essentially a controlled version
of the n-particle SDE system associated to the McKean-Vlasov limit we
studied in Section 3. Consider the n-player stochastic differential game,
where each player i ∈ {1, ..., n} has a (private) state process Xi given by

dXi
t = b(Xi

t , µ
n
t , α

i
t)dt+ σ(Xi

t , µ
n
t , α

i
t)dW

i
t ,

where

µnt =
1

n

n∑
k=1

δXk
t
,

and αi is the control of player i. We typically assume the initial states (Xi
0)

are i.i.d. with some given distribution λ0 ∈ P(Rd). As usual, we will be fairly
loose about the precise assumptions on the coefficients b : Rd×P(Rd)×A→
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Rd and σ : Rd × P(Rd) × A → Rd×m. Here, the state Xi
t is d-dimensional,

and the driving Brownian motions W i
t is m-dimensional. The objectives are

Jni (~α) = E
[∫ T

0
f(Xi

t , µ
n
t , α

i
t)dt+ g(Xi

T , µ
n
T )

]
.

The crucial feature here is that the functions (b, σ, f, g) are the same for
each agent, and the Brownian motions W i are independent. We will see
later how to incorporate correlation in the noises and heterogeneity in the
coefficients (b, σ, f, g), but for now we stick to the simplest setup.

The goal is to describe the Nash equilibrium for large n, or the mean field
game (MFG) limit. We will first do this heuristically. Suppose (αn,1, . . . , αn,n)
is a Nash equilibrium for each n. Given the symmetry of the game, it is not
unreasonable to suspect that for each n we can find a single function α̂n
such that αn,it = α̂(t,Xi

t , µ
n
t ). It is less reasonable to expect that α̂n = α̂

does not depend on n, but let us make this assumption anyway, as we are
doing heuristics. Then, the state processes become

dXi
t = b(Xi

t , µ
n
t , α̂(t,Xi

t , µ
n
t ))dt+ σ(Xi

t , µ
n
t , α̂(t,Xi

t , µ
n
t ))dW i

t .

This is precisely an equation of McKean-Vlasov type. Recalling Theorem
3.3, it should hold (if the coefficients and, notably, α̂ are nice enough) that
(X1, µn) converges in law to (X,µ), where µ = (µt)t∈[0,T ] is a deterministic
measure flow and X∗ solves

dX∗t = b(X∗t , µt, α̂(t,X∗t , µt))dt+ σ(X∗t , µt, α̂(t,X∗t , µt))dWt,

with µt = L(X∗t ) for all t. On the other hand, because (αn,1, . . . , αn,n) is a
Nash equilibrium, for any other control β we have

E
[∫ T

0
f(X1

t , µ
n
t , α

n,1
t )dt+ g(X1

T , µ
n
T )

]
≥ E

[∫ T

0
f(X1

t , µ
n
t , βt)dt+ g(X1

T , µ
n
T )

]
. (8.3)

Here we mean that X1 on the right-hand side is controlled by β, not by αn,1.
When only player 1 changes strategy and the remaining n− 1 players stick
with the same αn,i, the empirical measure µn should not change much and
should thus converge to the same limit µ. Hence, the process X1 controlled
by β should converge to the solution Xβ of the SDE

dXβ
t = b(Xβ

t , µt, βt)dt+ σ(Xβ
t , µt, βt)dWt,
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with the same measure flow µ as before. Sending n → ∞ on both sides of
(8.3), we find

E
[∫ T

0
f(X∗t , µt, α̂(t,X∗t , µt))dt+ g(X∗T , µT )

]
≥ E

[∫ T

0
f(Xβ

t , µt, βt)dt+ g(Xβ
T , µT )

]
.

This should hold for every choice of β, and we conclude that the control α̂
is optimal for the control problem

supα E
[∫ T

0 f(Xt, µt, αt)dt+ g(XT , µT )
]

dXt = b(Xt, µt, αt)dt+ σ(Xt, µt, αt)dWt.

Moreover, µ is precisely the law of the optimally controlled state process X∗

above!
In summary the above heuristic leads us to the following fixed point

problem:

Definition 8.1. Define a map Φ : C([0, T ],P(Rd)) → C([0, T ],P(Rd)) as
follows:

1. Fix a (deterministic) measure flow µ = (µt)t∈[0,T ] ∈ C([0, T ],P(Rd)),
to represent a continuum of agents’ state processes.

2. Solve the control problem faced by a typical or representative agent :

(Pµ)

{
supα E

[∫ T
0 f(Xµ,α

t , µt, αt)dt+ g(Xµ,α
T , µT )

]
dXµ,α

t = b(Xµ,α
t , µt, αt)dt+ σ(Xµ,α

t , µt, αt)dWt.

Here the law of the initial state Xµ,α
0 is the given λ0.

3. Let α∗ be the optimally controlled state process, which we assume is
unique, and define Φ(µ) = (L(Xµ,α∗

t ))t∈[0,T ].

We say that µ ∈ C([0, T ],P(Rd)) is a mean field equilibrium (MFE) if it is
a fixed point of Φ, or µ = Φ(µ).

Remark 8.2. Definition 8.1 is central to the rest of the course, so we take
the time to clarify it with some comments:

1. While our definition, strictly speaking, refers only to the measure flow
µ, it is often useful to include the optimal control. That is, we may
refer more descriptively to the pair (µ, α∗) as an MFE, where α∗ is
optimal for the control problem (Pµ).
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2. In general, the optimal control α∗ for (Pµ) need not be unique. We
could then could define

Φ(µ) =
{

(L(X∗t ))t∈[0,T ] : X∗ is optimal for (Pµ)
}
,

and then try to find a fixed point for this set-valued map, or µ ∈ Φ(µ).
In this case, it becomes even more appropriate to include the control
α∗ in the definition of an MFE, as in remark (1) above.

3. It cannot be stressed enough that the measure flow µ = (µt)t∈[0,T ] must
be seen as fixed when solving the control problem (Pµ). The control
problem (Pµ) is a completely standard stochastic optimal control prob-
lem, as the measure flow should be seen just as a time-dependence in
the coefficient.

4. The fixed point can instead be formulated on the control process itself.
That is, suppose we start with a control α, and then solve the McKean-
Vlasov equation

dYt = b(Yt, µt, αt)dt+ σ(Yt, µt, αt)dWt, µt = L(Yt), t ∈ [0, T ].

Note that Y = Xµ,α. Using this measure flow, we then find an optimal
control α∗ for the control problem (Pµ) relative to this measure flow
µ. If α∗ agrees with the α we started with, then µ is a mean field
equilibrium.

Theorem 8.3. Assume the coefficients (b, σ, f, g) are bounded and con-
tinuous, the control space A is a closed subset of a Euclidean space, and
b = b(x,m, a) is Lipschitz in all variables, using W1 for the measure argu-
ment. Assume for simplicity that σ is constant. Assume the initial states
(Xi

0) are i.i.d. and square integrable. Let µ be a Mean Field Equilibrium
with corresponding optimal control α∗, which we assume is given in feed-
back form by a Lipschitz function α∗ : [0, T ] × Rd → A. Let player i use
control αn,it = α∗(t,Xi

t). Then there exists (εn)n ↘ 0 such that the con-
trols ~αn = (αn,1, . . . , αn,n) form an open-loop εn-Nash equilibrium for the
n-player game, for each n.

Remark 8.4. In Theorem 8.3, under suitable assumptions, it can be shown
that the same controls ~αn = (αn,1, . . . , αn,n) form a closed-loop (Markovian)
εn-Nash equilibrium for the n-player game, for each n. However, the closed-
loop case is remarkably much more difficult to prove!
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Proof. We provide a sketch of the proof in the n-player equilibrium is in-
terpreted in the open loop sense, as this is much easier to handle. If each
player uses α∗, then

dXi
t = b(Xi

t , µ
n
t , α

∗(t,Xi
t))dt+ σ(Xi

t , µ
n
t , α

∗(t,Xi
t))dW

i
t

Because the coefficients are Lipschiz, we know from Theorem 3.3 on McKean-
Vlasov equations that

lim
n→∞

E

[
sup
t∈[0,T ]

|X1
t −Xt|2 + sup

t∈[0,T ]
W2

1 (µnt , µt)

]
,

where µ = (µt)t∈[0,T ] and X solve the McKean-Vlasov equation{
dXt = b(Xt, µt, α

∗(t,Xt))dt+ σdW 1
t

µt = L(Xt), ∀t ∈ [0, T ].

It follows from dominated convergence that the objective of player 1 has the
following limit:

lim
n→∞

Jn1 (~αn) = E
[∫ T

0
f(Xt, µt, α

∗(t,Xt))dt+ g(XT , µT )

]
=: J∞(α∗).

We then need to show that player 1 cannot earn much more by deviating
his strategy. Define

εn := sup
β

Jn1 ((~α−1
n , β))− Jn1 (~αn) ≥ 0,

where (~α−1
n , β) means that player 1 switches to β. Of course, εn ≥ 0, and

trivially ~αn is an εn-Nash equilibrim for each n. It remains to show that
εn → 0.

To do this, fix β. We may then write

Jn1 ((~α−1
n , β)) = E

[∫ T

0
f(Y 1

t , ν
n
t , βt)dt+ g(Y 1

T , ν
n
T )

]
,

where αit = α∗(t,Xi
t) (we are working with open loop here) and
dY i

t = b(Y i
t , ν

n
t , α

i
t)dt+ σdW i

t ∀i 6= 1
dY 1

t = b(Y 1
t , ν

n
t , βt)dt+ σdW 1

t

νnt = 1
n

∑n
k=1 δY kt

.
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From the Mean Field Equilibrium property, J∞(α∗) ≥ J∞(β) for all β,
where

J∞(β) := E
[∫ T

0
f(Y β

t , µt, βt)dt+ g(Y β
T , µT )

]
,

dY β
t = b(Y β

t , µt, βt)dt+ σdW 1
t , Y β

0 = X1
0 .

To prove that εn → 0, it suffices to show that

Jn1 ((~α−1
n , β)) →

n→∞
J∞(β), (8.4)

uniformly in β. To do this, we first show (Y 1, νn) → (Y β, µ), uniformly in
β. To do this, we first show that νn → µ uniformly in β. To see this, define

µn,−1
t =

1

n− 1

n∑
k=2

δXk
t
.

A standard estimate we have seen before shows that

E

[
sup
t∈[0,T ]

W1(µn,−1
t , µnt )

]
≤ C

n
, (8.5)

where C depends on the Lipschitz constants of the coefficients and on the
second moment of the initial state. On the other hand,

E

[
sup
s∈[0,t]

W2
1 (µn,−1

s , νns )

]

≤ E

[
sup
s∈[0,t]

1

n− 1

n∑
k=2

|Xk
s − Y k

s |2
]

≤ 1

n− 1

n∑
k=2

E

[
sup
s∈[0,t]

∫ s

0

∣∣∣b(Xk
r , µ

n
r , α

i
r)− b(Y k

r , ν
n
r , α

i
r)
∣∣∣2]

≤ C

n− 1

n∑
k=2

E

[∫ t

0

(
sup
r∈[0,s]

|Xk
r − Y k

r |2 + sup
r∈[0,s]

W1(µnr , ν
n
r )

)
ds

]

≤ C

n
+

C

n− 1

n∑
k=2

E

[∫ t

0

(
sup
r∈[0,s]

|Xk
r − Y k

r |2 + sup
r∈[0,s]

W1(µn,−1
r , νnr )

)
ds

]
.
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Here, the constant C > 0 may change from line to line but never depends
on n. By Gronwall’s inequality,

E

[
sup
s∈[0,t]

1

n− 1

n∑
k=2

|Xk
s − Y k

s |2
]

≤ C

n
+ CE

[∫ t

0
sup
r∈[0,s]

W1(µn,−1
r , νnr )ds

]
.

Apply Gronwall’s inequality again to get

E

[
sup
s∈[0,t]

W2
1 (µn,−1

s , νns )

]
≤ C

n
.

Combine this with (8.5) to get

E

[
sup
t∈[0,T ]

W1(νnt , µ
n
t )

]
≤ C

n
.

Finally, we compare Y β and Y 1,

|Y 1
t − Y

β
t | ≤

∫ t

0

∣∣∣b(Y 1
r , ν

n
r , βr)− b(Y β

r , µr, βr)
∣∣∣ dr

≤ C
∫ t

0

(
|Y 1
r − Y β

r |+W1(νnr , µr)
)
dr.

Apply Gronwall’s inequality and the triangle inequality to get

E

[
sup
t∈[0,T ]

|Y 1
t − Y

β
t |

]
≤ CE

[
sup
t∈[0,T ]

W1(νnt , µ
n
t )

]

≤ C

n
+ CE

[
sup
t∈[0,T ]

W1(µt, µ
n
t )

]
.

Now, because µn → µ, we conclude that

lim
n→∞

E

[
sup
t∈[0,T ]

|Y 1
t − Y

β
t |+ sup

t∈[0,T ]
W1(µt, µ

n
t )

]
= 0.

Notably, this convergence is uniform in β, as none of our estimates depended
on the choice of β. Using dominated convergence, this proves that the limit
(8.4) holds, uniformly in β.
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8.3 Controlled Mckean-Vlasov dynamics

This short section serves to highlight the related but crucially distinct prob-
lem of optimal control of McKean-Vlasov equations, also known as mean
field control. Now is a good time to recall the precise statement of Defini-
tion 8.1.

Definition 8.5. The general mean field control problem is described as
follows:

1. For each control α, let µα denote the law of the McKean-Vlasov equa-
tion,

dXα
t = b(Xα

t , µ
α
t , αt)dt+ σ(Xα

t , µ
α
t , αt)dWt, µαt = L(Xα

t ), t ∈ [0, T ].
(8.6)

2. Solve the following optimization problem:

sup
α

E
[∫ T

0
f(Xα

t , µ
α
t , αt)dt+ g(Xα

T , µ
α
T )

]
.

The key difference between the mean field control problem of Definition
8.5 and the MFG problem of Definition 8.1 is that the former requires that
the law µ be matched to the controlled state process before the optimiza-
tion. In other words, in the MFG problem, the measure parameter is not
controlled or influenced in any way by the control during the resolution of
the optimization problem (Pµ).

Intuitively, the mean field control problem represents a cooperative game
with a continuum of agents. The setup is the same as the MFG problem,
but the notion of equilibrium is different, and it is natural to ask how these
two notions relate. In general, they are completely different, and to see this
more clearly it helps to think about what the n-player analogue of the mean
field control problem should be. For a fixed α, we know the McKean-Vlasov
equation (8.6) arises as the limit of n-particle systems. So, for a vector
of controls ~α = (α1, . . . , αn), say in closed-loop form, define the n-particle
system

dXi
t = b(Xi

t , µ
n
t , α

i(t, ~Xt))dt+ σ(Xi
t , µ

n
t , α

i(t, ~Xt))dW
i
t , µnt =

1

n

n∑
k=1

δXk
t
.

We have studied competitive (Nash) equilibria in this context, but consider
now the following cooperative problem: We now play the role of a central
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planner, and we simultaneously choose all of the controls for all of the players
to optimize the average payoff received by the players. That is, we solve the
optimal control problem

sup
~α

1

n

n∑
i=1

E
[∫ T

0
f(Xi

t , µ
n
t , α

i(t, ~Xt))dt+ g(Xi
T , µ

n
T )

]
.

We will not justify this here or study it any further, but reference will be
provided in Section 8.9.

8.4 Analysis of a semi-linear-quadratic mean field game

Going back to our original MFG problem, we will analyze a relatively simple
setup to illustrate how a typical uniqueness proof goes. We will see that
Banach’s fixed point theorem typically does not apply, but for small enough
time horizon T one can indeed show the fixed point map to be a contraction.
The typical existence proof, with no constraint on the time horizon, boils
down to an application of Schauder’s fixed point theorem, which we state
without proof:

Theorem 8.6 (Schauder’s Fixed Point Theorem). Let K be a convex com-
pact subset of a topological vector space. Suppose Ψ : K → K is continuous.
Then Ψ has a fixed point.

We will apply Schauder’s theorem with a convex compact setK ⊂ P(Cd),
where Cd = C([0, T ];Rd). Note that P(Cd) equipped with weak convergence
is not itself a topological vector space, but it is a subspace of one, namely
the space of bounded signed measures on Cd.

Let us restate our setup from Definition 8.1 in our specific context. We
are given functions

f, g : Rd × P1(Rd)→ Rd.

Controls αt will take values in Rd. Let λ0 ∈ P2(Rd) denote a square-
integrable initial law.

We define a map Φ : P1(Cd)→ P(Cd) as follows:

1. Fix µ ∈ P(Cd).

2. Solve the representative agent’s optimal control problem:

(Pµ)

{
supα E

[∫ T
0

(
f(Xα

t , µt)− 1
2 |αt|

2
)
dt+ g(Xµ,α

T , µT )
]

dXα
t = αtdt+ dWt, Xα

0 ∼ λ0.
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The control α can be any adapted process (relative to the filtration

generated by the Brownian motion) with E
∫ T

0 |αt|
2dt <∞.

3. Let α∗ be an optimally controlled state process (which will be unique
in this case), and define Φ(µ) = L(Xα∗).

A mean field equilibrium (MFE) is now a fixed point µ ∈ P(Cd) of this map,
µ = Φ(µ).

Theorem 8.7. Assume f = f(x,m) and g = g(x,m) have first and second
derivatives in x which are jointly continuous functions of (x,m), using the
metricW1 for the variable m ∈ P1(Rd). Assume also that f and g and these
derivatives are all uniformly bounded. Then there exists a MFE. Moreover,
if the time horizon T > 0 is sufficiently small, and if f(x,m) and g(x,m)
are W1-Lipschitz in m, uniformly in x, then the MFE is unique.

Proof.
Step 1: We first fix µ ∈ P1(Cd) and solve the control problem using the
Hopf-Cole transformation. The Hamiltonian is

H(x, y) = sup
α∈Rd

(
a · y − 1

2
|a|2
)

+ f(x, µt) =
1

2
|y|2 + f(x, µt),

and the optimizer is α̂(x, y) = y. The HJB equation is then

∂tv(t, x) +
1

2
|∇v(t, x)|2 + f(x, µt) +

1

2
∆v(t, x) = 0

v(T, x) = g(x, µT )

We now apply the Hopf-Cole transformation: Let u(t, x) = ev(t,x). Then

∇u = u∇v, ∆u = u(∆v + |∇v|2).

Multiply the HJB equation on both sides by u(t, x) to get

dtu(t, x) +
1

2
∆u(t, x) + u(t, x)F (x, µt) = 0

u(T, x) = eg(x,µT )

From the Feynman-Kac formula we can express the solution in terms of a
standard d-dimensional Brownian motion W = (Wt)t∈[0,T ], as follows:

u(t, x) = E
[

exp

(
g(WT , µT ) +

∫ T

t
f(Ws, µs)ds

) ∣∣∣∣ Wt = x

]
= E

[
exp

(
g(WT −Wt + x, µT ) +

∫ T

t
f(Ws −Wt + x, µs)ds

)]
.
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Then, v(t, x) = log u(t, x), and the optimal feedback control is

αµ(t, x) = ∇v(t, x) =
∇u(t, x)

u(t, x)
.

Step 2: Now that we have identified the (candidate) optimal feedback con-
trol, we next establish useful continuity properties of αµ(t, x), as a function
of (t, x, µ) ∈ [0, T ]× Rd × P1(Cd). This step of finding enough regularity of
the optimal control, particularly as a function of the measure, is often the
crux of an MFG fixed point analysis. We will show the following:

(i) αµ(t, x) is bounded uniformly in (t, x, µ).

(ii) The map (t, x, µ) 7→ αµ(t, x) is jointly continuos on [0, T ]×Rd×P1(Cd).

(iii) |∂jαiµ(t, x)| is bounded uniformly in t, x, µ, i, j, where αiµ(t, x) is the
ith component of the vector αµ(t, x), and ∂j denotes the derivatives
with respect to the jth component of x ∈ Rd. In particular, αµ(t, ·) is
Lipshitz, uniformly in (t, µ).

(iv) If f(x,m) and g(x,m) are W1-Lipschitz in m, uniformly in x, then
there exists C > 0 such that |αµ(t, x) − αν(t, x)| ≤ W1(µ, ν) for all
t, x, µ, ν.

It will follow from these facts that the state process

dXµ
t = αµ(t,Xµ

t )dt+ dWt, Xµ
0 ∼ λ0, (8.7)

has a unique strong solution, which ensures that we can apply the verification
theorem to conclude thatXµ is indeed the optimally controlled state process.

To prove these facts, we first express αµ(t, x) and its first derivatives in
more convenient forms. First, using the expression for u(t, x) above, we may
write

αiµ(t, x) =
∂iu(t, x)

u(t, x)

=
E
[
Z(t, x, µ)

(
∂ig(WT −Wt + x, µt) +

∫ T
t ∂if(Ws −Wt + x, µs)ds

)]
E[Z(t, x, µ)]

,

where we define the random variable

Z(t, x, µ) = exp

(
g(WT −Wt + x, µT ) +

∫ T

t
f(Ws −Wt + x, µs)ds

)
.
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Because Z(t, x, µ) is strictly positive, we see easily that αiµ is uniformly
bounded. Indeed, if ∂ig and ∂if are uniformly bounded by C, then

|αiµ(t, x)| ≤ E [Z(t, x, µ) (C + (T − t)C)]

E[Z(t, x, µ)]
≤ (1 + T )C.

This proves (i). Moreover, by invoking the bounded convergence theorem,
we see that claim (ii) follows from this expression for αiµ(t, x) and the as-

sumed joint continuity of f and g. To prove (iv), notice that eh is Lipschitz
whenever h is bounded and Lipschitz, simply because the function x 7→ ex is
locally Lipschitz. It is straightforward to check that W1(µt, νt) ≤ W1(µ, ν)
for all µ, ν ∈ P(Cd), and (iv) follows.

Lastly, we prove (iii) by computing

∂jα
i
µ = ∂j(

∂iu

u
) =

∂iju

u
− ∂iu∂ju

u2
=
∂iju

u
− αiµαjµ.

The first term can be written as

∂iju(t, x)

u(t, x)
=
E [Z(t, x, µ) (Sij(t, x, µ) + Si(t, x, µ)Sj(t, x, µ))]

E[Z(t, x, µ)]
,

where we define the random variables

Sij(t, x, µ) = ∂ijg(WT −Wt + x, µT ) +

∫ T

t
∂ijf(Ws −Wt + x, µs)ds,

Si(t, x, µ) = ∂ig(WT −Wt + x, µT ) +

∫ T

t
∂if(Ws −Wt + x, µs)ds,

for each i, j = 1, . . . , d. Because the first and second derivatives of f and g
are uniformly bounded, we conclude that (iii) holds.

Step 3: Now that we have identified the optimal state process Xµ in (8.7),
we define Φ(µ) = L(Xµ). We show now that Φ is a continuous function
from P1(Cd) to itself. First, notice that for any µ ∈ P1(Cd) we use the
boundedness of αµ(t, x) from the previous step to find

|Xµ
t | ≤ Ct+ |Wt|+ |X0|,

where the constant C > 0 may change from line to line but does not depend
on the choice of µ. Recalling that E[|X0|2] <∞ and Φ(µ) = L(Xµ), we find

sup
µ∈P1(Cd)

∫
Cd
‖x‖2∞Φ(µ)(dx) ≤ CT + CE[|X0|2] + CE[‖W‖2∞] <∞, (8.8)
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where ‖x‖∞ = supt∈[0,T ] |xt| for x ∈ Cd. In particular, this shows that

Φ(P1(Cd)) ⊂ P1(Cd).
We next show that Φ is continuous. To this end, let µ, ν ∈ P1(Cd). Use

the Lipschitz continuity of αµ(t, ·) to get

|Xµ
t −Xν

t | ≤
∫ t

0
|αµ(s,Xµ

s )− αν(s,Xν
s )|ds

≤
∫ t

0
|αµ(s,Xµ

s )− αµ(s,Xν
s )|ds+

∫ t

0
|αµ(s,Xν

s )− αν(s,Xν
s )|ds

≤ C
∫ t

0
|Xµ

s −Xν
s |ds+

∫ t

0
|αµ(s,Xν

s )− αν(s,Xν
s )|ds.

Use Gronwall’s inequality to get

‖Xµ −Xν‖∞ ≤ C
∫ T

0
|αµ(s,Xν

s )− αν(s,Xν
s )|ds.

Hence,

W1(Φ(µ),Φ(ν)) ≤ E[‖Xµ −Xν‖]

≤ CE
∫ T

0
|αµ(s,Xν

s )− αν(s,Xν
s )|ds. (8.9)

Now, if µn → µ ∈ P1(Cd), then we use the continuity of α in µ and the
bounded convergence theorem to conclude thatW1(Φ(µn),Φ(ν))→ 0. That
is, Φ is continuous. If the additional assumption holds, that f(x,m) and
g(x,m) are W1-Lipschitz in m, uniformly in x, then using property (iv) of
Step 2 in (8.9) yields

W1(Φ(µ),Φ(ν)) ≤ CTW1(µ, ν).

If T < 1/C, we see that Φ is a contraction on the complete metric space
(P(Cd),W1), and Banach’s fixed point theorem proves the claimed existence
and uniqueness for small time horizon.
Step 4: Lastly, to apply Schauder’s theorem, we find a compact convex set
K ⊂ P(Cd) such that Φ maps K into itself. First, recall that we saw at the
beginning of Step 3 that

M := sup
µ∈P1(Cd)

∫
Cd
‖x‖2∞Φ(µ)(dx) <∞.

Next, we make use of Aldous’ criterion for tightness [75, Theorem 16.11]:
Suppose we can show that for any (µn) ⊂ P1(Cd), and stopping times τn is
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any sequence of stopping times taking values in [0, T ], and any δn → 0, we
have

lim
n→∞

E
[
|Xµn

T∧(τn+δn) −X
µn

τn | ∧ 1
]

= 0.

Then Φ(P1(Cd)) = {L(Xµ) : µ ∈ P1(Cd)} is tight. To check this, note
simply that because |αµ(t, x)| ≤ ‖α‖∞ <∞ is bounded, we have

E
[
|Xµn

T∧(τn+δn) −X
µn

τn |
]
≤ E

[∫ T∧(τn+δ)

τn

|αµn(t,Xµn

t )|dt+ |WT∧(τn+δ) −Wτn |

]
= δ‖α‖∞ +

√
δ.

Now, let X : C → C denote the coordinate map, defined by Xt(x) = xt for
x ∈ C. Define

K = {P ∈ P1(Cd) : EP [‖X‖2] ≤M, EP [|XT∧(τ+δ)−Xτ |] ≤ δ||α||∞+
√
δ, ∀τ, δ > 0},

where τ ranges over [0, T ]-valued stopping times. Clearly K is convex. It
is tight thanks to Aldous’ criterion. In light of Theorem 2.13, the second
moment bound built into the definition of K ensures that K is in fact com-
pact in P1(Cd). Hence, the closure K is convex and compact in both P1(Cd)
and P(Cd). Moreover, the topology generated by the metric W1 coincides
with the weak convergence topology on K. We saw that Φ isW1-continuous
on P1(Cd), and we conclude that it is weakly continuous on K. We can fi-
nally apply Schauder’s Fixed Point Theorem to deduce that an equilibrium
exists.

Remark 8.8. Theorem 8.7 is far from optimal, and it can be easily gener-
alized in many directions. The boundedness constraints on the coefficients
can be easily relaxed if one is more careful about integrability when ap-
plying the dominated convergence theorem. More importantly, there is no
need to restrict one’s attention to the semi-linear-quadratic structure; this
was merely convenient in obtaining a workable expression for the optimal
control using the Hopf-Cole transformation. That said, the structure of this
proof is standard: (1) For each measure flow, solve the optimal control prob-
lem using your favorite methodology (HJB analysis, probabilistic maximum
principle, etc.). (2) Find a way to establish continuity of the optimal control
as a function of the input measure flow. (3) Argue that the laws of optimal
state processes for various measure flows can be safely confined into a single
compact set. (4) Apply Schauder’s (or Kakutani’s) fixed point theorem.
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8.5 MFG PDE System

In this section we derive a PDE formulation for the MFG model studied in
the previous section. In short, this will be a forward-backward PDE system
consisting of an HJB equation for the value function of the control problem
and a Fokker-Planck equation for the measure flow associated with the SDE.
These two PDEs are coupled: the measure flow depends on the choice of
control, which is obtained by maximizing the Hamiltonian along the solution
of the HJB equation, and in turn the HJB equation depends on the choice
of measure flow.

First, we recall how to derive the Fokker-Planck (a.k.a. Kolmogorov
forward) equation associated with the SDE

dXt = α(t,Xt)dt+ dWt, X0 ∼ µ0(dx) = m0(x)dx,

where α is bounded and measurable, and the initial distribution µ0 has a
density m0. Apply Itô’s formula for a smooth function ϕ to get

ϕ(Xt) = X0 +

∫ t

0

(
α(s,Xs) · ∇ϕ(Xs) +

1

2
∆ϕ(Xs)

)
ds+

∫ t

0
∇ϕ(Xs) · dWs.

As α is bounded, Girsanov’s theorem shows that the law of X is equivalent
to the law of Brownian motion started from initial law µ0. Since the latter
process has a density at each time t, so does Xt. That is, the law of Xt

admits a probability density function, which we denotes µ(t, x). Taking
expectations in the above equation yields∫
Rd
ϕ(x)µ(t, x)dx =

∫
Rd
ϕ(x)m0(x)dx+

∫ t

0

∫
Rd

(
α(s, x) · ∇ϕ(x) +

1

2
∆ϕ(x)

)
µ(s, x)dxds.

If µ ∈ C1,2
(
[0, T ]× Rd

)
, then we may differentiate the above to find∫

ϕ(x)∂tµ(t, x)dx =
d

dt

∫
Rd
ϕ(x)µ(t, x)dx

=

∫
Rd

(
α(t, x) · ∇ϕ(x) +

1

2
∆ϕ(x)

)
µ(t, x)dx

=

∫ [
−div(µ(t, x)α(t, x)) +

1

2
∆µ(t, x)

]
ϕ(x)dx,

where div acts on the x variable, and the last step follows from integration
by parts. As this holds for all smooth ϕ, we find that µ solves the PDE

∂tµ(t, x) + div(µ(t, x)α(t, x))− 1

2
∆µ(t, x) = 0

µ(0, x) = m0(x)
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With this in mind, we next write down the HJB equation. For a fixed
measure flow (µt)t∈[0,T ], the HJB equation should encode the following con-
trol problem:

sup
α

E
[∫ t

0
(f(Xα

t , µt)−
1

2
|αt|2)dt+ g(Xα

T , µT )

]
dXα

t = αtdt+ dWt.

This HJB equation, as we saw in the previous section, is simply

∂tv(t, x) +
1

2
|∇v(t, x)|2 +

1

2
∆v(t, x) + f(x, µt) = 0

v(T, x) = g(x, µT )

The optimal control is α(t, x) = ∇v(t, x), so we now plug this into the
Fokker-Planck equation above to attain our coupled MFG PDE system:

∂tv(t, x) +
1

2
|∇v(t, x)|2 +

1

2
∆v(t, x) + f(x, µt) = 0

∂tµ(t, x) + div(µ(t, x)∇v(t, x))− 1

2
∆µ(t, x) = 0

v(T, x) = g(x, µT ), µ(0, x) = m0(x).

This is a forward-backward PDE system because one equation has a terminal
condition (time T ) while the other has an initial condition (time zero).

Forward-backward systems in general, whether ODEs, SDEs, or PDEs,
tend to be quite hard to analyze, and the example below sheds some light
on why. Mean field games are inherently forward-backward systems, and
our existence Theorem 8.7 is somehow typical for forward-backward sys-
tems: Existence and uniqueness by contraction arguments only work on
small time horizons, because the forward-backward structure impedes the
usual Picard iteration argument. On the other hand, existence can be es-
tablished more easily on arbitrary time horizon using a compactness-based
fixed point theorem (like Schauder’s) rather than a contraction-based fixed
point theorem (Banach’s).

Example 8.9. To understand the difficulty of forward-backward systems,
consider the following ODE system. Let T > 0 and a ∈ R, and consider:

x′(t) = y(t), x(0) = 0

y′(t) = −x(t), y(T ) = a.
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This implies x′′(t) = y′(t) = −x(t). Solve this to get x(t) = c1 sin(t) +
c2 cos(t) for some c1, c2 ∈ R. The initial condition implies 0 = x(0) = c2.
Thus x(t) = c1 sin(t) and y(t) = x′(t) = c1 cos(t). The terminal condition
entails a = y(T ) = c1 cos(T ). Now, there are two possibilities:

1. Suppose cos(T ) = 0. If a = 0, there are infinitely many solutions (one
for each choice of c1 ∈ R). If instead a 6= 0, then there are no solutions.

2. Suppose cos(T ) 6= 0. Then there exists a unique solution, with c1 =
a/ cos(T ).

As we can see, if we are flexible about the value of T , we can guarantee
uniqueness.

8.6 Uniqueness

As we know, we cannot expect mean field equilibria to be unique in general.
However, there is a well known monotonicity assumption, often called the
Lasry-Lions monotonicity condition, which does ensure uniqueness. This is
very similar in spirit to Theorem 4.6 of Section 4.1.

Suppose the following hold, in addition to the usually omitted potpourri
of technical assumptions:

(1) There is no mean field interaction in the state dynamics: b = b(x, a)
and σ = σ(x, a).

(2) The running objective function is separable, in the sense that f(x,m, a) =
f1(x, a) + f2(x,m) for some functions f1 and f2.

(3) For each measure flow µ, there is a unique optimal control for the prob-
lem

(Pµ)

{
supα E

[∫ T
0 (f1(Xα

t , αt) + f2(Xα
t , µt)) dt+ g(Xα

T , µT )
]

dXα
t = b(Xα

t , αt)dt+ σ(Xα
t , αt)dWt.

(4) Monotonicity: For each m1,m2 ∈ P(Rd), we have∫
Rd

(g(x,m1)− g(x,m2)) (m1 −m2)(dx) ≤ 0, (8.10)∫
Rd

(f2(x,m1)− f2(x,m2)) (m1 −m2)(dx) ≤ 0.
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Again, the most important of these assumptions is the monotonicity
condition (4). Another way of writing it is

(4’) For any Rd-valued random variables X and Y , we have

E [g(X,L(X)) + g(X,L(X))− g(X,L(Y ))− g(Y,L(X))] ≤ 0,

E [f2(X,L(X)) + f2(X,L(X))− f2(X,L(Y ))− f2(Y,L(X))] ≤ 0.

Some examples will follow the uniqueness theorem:

Theorem 8.10. Under the above conditions, there is at most one mean field
equilibrium.

Proof. Suppose µ = (µt)t∈[0,T ] and ν = (νt)t∈[0,T ] are two MFE, and suppose
they are distinct. Let α and β be the optimal controls for (Pµ) and (Pν),
respectively. Note that α and β must be distinct, because if αt = βt a.s.
for each t then we would have µt = L(Xα

t ) = L(Xβ
t ) = νt for each t,

contradicting the assumption that µ and ν are distinct. Now, because α is
optimal for (Pµ), it certainly outperforms β, and we have

E
[∫ T

0
(f1(Xα

t , αt) + f2(Xα
t , µt)) dt+ g(Xα

T , µT )

]
> E

[∫ T

0

(
f1(Xβ

t , αt) + f2(Xβ
t , µt)

)
dt+ g(Xβ

T , µT )

]
,

with strict equality thanks to assumption (3). Similarly, β is optimal for
(Pν), and so

E
[∫ T

0

(
f1(Xβ

t , βt) + f2(Xβ
t , νt)

)
dt+ g(Xβ

T , µT )

]
> E

[∫ T

0
(f1(Xα

t , αt) + f2(Xα
t , νt)) dt+ g(Xα

T , νT )

]
.

Adding these two inequalities, we see that the f1 terms cancel out, leaving

0 <E
[∫ T

0

(
f2(Xα

t , µt) + f2(Xβ
t , νt)− f2(Xα

t , νt)− f2(Xβ
t , µt)

)
dt

]
+ E

[
g(Xα

T , µT ) + g(Xβ
T , νT )− g(Xα

T , νT )− g(Xβ
T , µT )

]
.

From assumption (4) above, or rather (4’), the right-hand side is ≤ 0, which
is a contradiction.
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A few examples illustrate the kinds of objective functions covered by the
monotonicity assumption.

Example 8.11. If g(x,m) = g(x) or g(x,m) = g(m) depends on only one
of the variables, then the inequality (8.10) holds.

Example 8.12. Suppose g(x,m) = (ϕ(x)− 〈m,ϕ〉)2, for some function ϕ,
where we abbreviate 〈m,ϕ〉 =

∫
Rd ϕdm. This objective function encourages

agents to make ϕ(Xi
t) as distant as possible from the average 1

n

∑n
k=1 ϕ(Xk

t ).
For example, if ϕ(x) = x, then this encourages agents to spread out their
state processes. Then

g(x,m) = ϕ2(x)− 2ϕ(x)〈m,ϕ〉+ 〈m,ϕ〉2.

With the previous example in mind, we compute∫
Rd

(g(x,m1)− g(x,m2)) (m1 −m2)(dx)

= −2

∫
Rd
ϕ(x) (〈m1, ϕ〉 − 〈m2, ϕ〉) (m1 −m2)(dx)

= −2 (〈m1, ϕ〉 − 〈m2, ϕ〉)2

≤ 0.

Example 8.13. Suppose g(x,m) =
∫
Rd ϕ(x, y)m(dy) for some bounded

continuous function ϕ, which we assume for simplicity is symmetric in the
sense that ϕ(x, y) = ϕ(y, x). Then∫

Rd
(g(x,m1)− g(x,m2)) (m1 −m2)(dx)

=

∫
Rd

∫
Rd
ϕ(x, y)(m1 −m2)(dy)(m1 −m2)(dx).

This can be shown to be nonnegative for all m1,m2 if and only if −ϕ is
a positive definite kernel. This means that for each n ∈ N the n × n
matrix (−ϕ(xi, xk))i,k=1,...,n is positive semidefinite. To see why this is
equivalent to the inequality (8.10), suppose that we choose two discrete
measures supported on the same n points, namely m1 =

∑n
k=1 pkδxk and

m2 =
∑n

k=1 qkδxk for some n ∈ N x1, . . . , xn ∈ Rd. Then we get∫
Rd

(g(x,m1)− g(x,m2)) (m1 −m2)(dx) =

n∑
i=1

n∑
k=1

(pi − qi)(pk − qk)ϕ(xi, xk).

This must be nonpositive, for every choice of the pk’s, qk’s, and xk’s. Any
measure can be approximated by discrete measures of this form.
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Example 8.14. To make the above example more concrete, suppose g(x,m) =∫
Rd h(|x − y|)m(dy) for some bounded continuous function h on R+. This

is a special case of the previous example, with ϕ(x, y) = h(|x − y|). To
mention the requisite jargon, to say that ϕ is a positive definite kernel is
equivalent to saying that positive definite function, and this is a somewhat
better understood class of functions. Bochner’s theorem characterizes such
functions, but let us just mention a sufficient condition: h is positive definite
if it is continuous, nonincreasing, and convex.

8.7 Mean field games with different types of agents

We will not spend much time on this, but in applications it is useful to know
that there is a fairly straightforward way to adapt the MFG paradigm to
model more heterogeneous agents. The idea is to introduce a type parameter,
similar to what we did for static games in Section 4.4.

In the n-player game, we suppose that each agent i = 1, . . . , n is assigned
a type parameter θi ∈ Θ, where Θ is some Polish space. The state process
of agent i is then

dXi
t = b(Xi

t , µ
n
t , α

i
t, θi)dt+ σ(Xi

t , µ
n
t , α

i
t, θi)dW

i
t , Xi

0 = xi0,

where the initial states xi0 ∈ Rd are given and where now

µnt =
1

n

n∑
k=1

δ(Xk
t ,θk)

is the empirical joint distribution of states and types. To be clear, b and σ
are now functions on the space Rd×P(Rd×Θ)×A×Θ, where A is as usual
the action space. Similarly, the type parameter enters into the objective
functions, and agent i seeks to maximize

Ji(~α) = E
[∫ T

0
f(Xi

t , µ
n
t , α

i
t, θi)dt+ g(Xi

T , µ
n
T , θi)

]
.

We can expect to have a meaningful mean field limit if the empirical type
distribution converges, in the sense that we have the weak convergence

1

n

n∑
k=1

δ(xk0 ,θk) →M = M0(dx, dθ) ∈ P(Rd ×Θ).

(Of course, the xk0 and θk can depend on n, but we suppress this from the
notation.) To adapt mean field game problem of Definition 8.1, the idea
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is to assign initial states and type parameters independently to each of the
continuum of agents, according to the distribution M0, at the beginning of
the game. In other words, at time zero each agent is independently given a
type, and then the game is played. Agents now interact not only through
the state distribution but also through the state-type distribution, and it is
this distribution that should solve a fixed point problem.

Definition 8.15. As usual, let Cd = C([0, T ];Rd) denote the path space.
Let (Ω,F ,F = (Ft)t∈[0,T ],P) be a filtered probability space, supporting an
F-Brownian motion W as well as F0-measurable random variables ξ and θ,
with values in Rd and Θ, respectively, and with (ξ, θ) ∼ M0, where M0 ∈
P(Rd×Θ) is a given distribution. Define a map Φ : P(Cd×Θ)→ P(Cd×Θ)
as follows:

1. Fix a (deterministic) measure µ ∈ P(Cd × Θ), to represent the state-
type distribution of a continuum of agents.

2. Solve the control problem faced by a typical agent:

(Pµ)

{
supα E

[∫ T
0 f(Xµ,α

t , µt, αt, θ)dt+ g(Xµ,α
T , µT , θ)

]
dXµ,α

t = b(Xµ,α
t , µt, αt, θ)dt+ σ(Xµ,α

t , µt, αt, θ)dWt, Xµ,α
0 = ξ.

3. Let α∗ be the optimal control, which we assume is unique, and define
Φ(µ) = L(Xµ,α∗ , θ).

We say that µ is a mean field equilibrium (MFE) if it is a fixed point of Φ,
or µ = Φ(µ).

There is an alternative, equivalent formulation that can be more intu-
itive.

Definition 8.16. As usual, let Cd = C([0, T ];Rd) denote the path space.
Let (Ω,F ,F = (Ft)t∈[0,T ],P) be a filtered probability space, supporting an F-

Brownian motion W . We are given also a type distribution M0 ∈ P(Rd×Θ)
is a given distribution. Define a map Φ : P(Cd×Θ)→ P(Cd×Θ) as follows:

1. Fix a (deterministic) measure µ ∈ P(Cd), to represent the state-type
distribution of a continuum of agents.

2. Fix a type parameter (x0, θ) ∈ Rd ×Θ.
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3. Solve the control problem faced by a typical agent:

(Pµ)

{
supα E

[∫ T
0 f(Xµ,α

t , µt, αt, θ)dt+ g(Xµ,α
T , µT , θ)

]
dXµ,α

t = b(Xµ,α
t , µt, αt, θ)dt+ σ(Xµ,α

t , µt, αt, θ)dWt, Xµ,α
0 = x0.

Note that here we use the deterministic initial state x0 and type pa-
rameter θ.

4. Let α∗ be the optimal control, which we assume is unique, and define
a new probability measure νx0,θ = L(Xµ,α∗).

5. Define a new measure ν ∈ P(Cd) by ν =
∫
Rd×Θ νx0,θM0(dx0, dθ). More

explicitly, this is the (mean) measure defined by

ν(S) =

∫
Rd×Θ

νx0,θ(S)M0(dx0, dθ), for Borel sets S ⊂ Cd,

which is a well defined probability measure as long as the map (x0, θ) 7→
νx0,θ is measurable.

6. Let Φ(µ) = ν.

We say that µ is a mean field equilibrium (MFE) if it is a fixed point of Φ,
or µ = Φ(µ).

In the second definition, we solve the control problem (Pµ) of a typi-
cal agent for each possible type parameter (x0, θ) that the agent may be
assigned. The idea is that the agent arrives at time zero and is randomly
assigned a type parameter from the distribution M0, and once this assign-
ment is made they solve a control problem. The measures νx0,θ represent
the law of the optimal state process given the assignment of the type param-
eter. Since these type parameters are assigned independently to all agents,
we aggregate these conditional measures into the unconditional one ν, and
this is what should agree with the starting measure µ which was assumed
to represent the (unconditional) state-type distribution of the population.

Example 8.17. One natural specification of the above setup is when there
finitely many types, or Θ = {θ1, . . . , θK}. Intuitively, we think of the pop-
ulation as consisting of K different types of agents, with type-k agents all
having type parameter θk. For any mean field term µ ∈ P(Rd×Θ), one may
define the mean field of subpopulation k as the conditional law µk ∈ P(Rd),
defined by

µk(·) =
µ(· ∩ {θk})
µ(Rd × {θk})

.
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This is well defined as long as µ(Rd × {θk}) > 0. One can then allow the
coefficients and objective functions to explicitly depend in different ways on
the mean field of each subpopulation. That is, we could work with a running
objective function of the form

f(x, µ1, . . . , µK , α).

In the analysis of an MFG system with different types, one will typically
need to assume the coefficients in Definition 8.15 or 8.16 are continuous in
the P(Rd × Θ) variable. In this finite-types example, it can be shown that
the ma P(Rd × Θ) 3 µ 7→ (µ1, . . . , µK) ∈ P(Rd)K is (weakly) continuous,
as long as we restrict to the set of µ satisfying µ(Rd × {θk}) > 0 for all
k = 1, . . . ,K. This useful continuity property fails miserably when the type
space Θ is uncountable; the operation of conditioning a measure is not very
well-behaved topologically.

8.7.1 A linear-quadratic mean field game with different types of
agents

In this section we revisit the simple linear-quadratic n-player game of Section
7.2, and we now allow each agent to have a different parameter λi ≥ 0. The
n-player game consists of state processes X1, . . . , Xn given by

n− player : dXi
t = αitdt+ dW i

t , Xi
0 = xi0

with each agent i choosing αi to try to maximize

E
[
−
∫ T

0

1

2
|ait|2dt−

λi
2
|XT −Xi

T |2
]
, Xt :=

1

n

n∑
k=1

Xk
t .

To formulate the corresponding mean field game, we imagine that the em-
pirical measure of initial states and types is approximately some M ∈
P(Rd × R+). That is, 1

n

∑n
k=1 δ(x

k
0, λk) ≈M .

We proceed as in Definition 8.16, defining a map Φ : P(Cd × Θ) →
P(Cd × R+) as follows:

1. Fix a target z ∈ Rd and a type parameter (x0, λ) ∈ Rd × R+.

2. Solve the control problem faced by a typical agent:

(P [z, x0, λ])

{
supα E

[∫ T
0 −

1
2 |αt|

2dt− λ
2 |z −X

α
T |2
]

dXα
t = αtdt+ dWt, Xα

0 = x0.
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3. Let α∗ be the optimal control, which we will show is unique, and calcu-
late the resulting expected final value of the state process, ẑ[z, x0, λ] =
E[Xα∗

T ]

4. A mean field equilibrium is now any z ∈ Rd satisfying the fixed point
equation

z =

∫
Rd×R+

ẑ[z, x0, λ]M(dx0, dλ). (8.11)

For fixed (z, x0, λ) we have already seen how to solve the control problem
(P [z, x0, λ]). Specifically, from Section 5.5, the optimal control in step 3
above is

α∗(t, x) =
z − x

1
λ + T − t

.

Note that the optimal control does not depend on the initial state x0. The
optimal state process is then

dXα∗
t =

z −Xα∗
t

1
λ + T − t

dt+ dWt , Xα∗
0 = x0

Taking expectations, we find

E[Xα∗
t ] =

∫ t

0

z − E[Xα∗
s ]

1
λ + T − s

ds+ x0.

We can compute this as follows. Define f(t) = E[Xα∗
t ]− z. Then f(·) solves

the ODE

f ′(t) = − f(t)
1
λ + T − t

, f(0) = x0 − z.

The unique solution is quickly found to be

f(t) = (x0 − z) exp

(
−
∫ t

0

1
1
λ + T − s

ds

)

= (x0 − z)
1
λ + T − t

1
λ + T

Hence

ẑ[z, x0, λ] = E[Xα∗
T ] = f(T ) + z = z +

x0 − z
1 + λT
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To resolve the fixed point equation in step 4 above, note that∫
ẑ[z, x0, λ]M(dx0, dλ) = z +

∫
x0 − z
1 + λT

M(dx0, dλ)

= z +

∫
x0

1 + λT
M(dx0, dλ)− z

∫
1

1 + λT
M(dx0, dλ).

Hence, z ∈ Rd solves the fixed point equation (8.11) if and only if

z =

∫
x0

1+λT M(dx0, dλ)∫
1

1+λT M(dx0, dλ)
.

This is precisely the mean of the terminal position XT , which is exactly the
target toward which each player tries to steer.

This formalism enables a streamlined “extreme case” analysis. Imagine,
for example, that c � 0 is very large, and suppose M = L(X0, λ) where λ
is the random variable

λ =

{
0 , with probability p

c , with probability 1− p.

Define the condition mean starting positions:

y0 = E[X0|λ = 0], y∞ = E[X0|λ = c].

Intuitively, this distribution M means that a fraction of p of the population
has no need to steer toward anything (and thus will choose control α ≡ 0),
whereas the other 1−p of the population have a very large penalty for missing
the target. We will take c→∞ soon, to enforce the binding constraint that
this 1 − p fraction of the population must reach the target. The values y0

is the average initial state of the agents with no penalty, while y∞ is the
average initial state of the agents with the high penalty. Using the above
formula, the equilibrium is

z =
p · y0 + y∞

1+c·T · (1− p)
p+ 1

1+c·T · (1− p)
.

As c → ∞, this converges exactly to y0. In other words, equilibrium the
agents with the high penalty all steer toward the average initial state of the
sub-population of agents that has no terminal cost.
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8.8 Mean Field Games with common noise

This section explains how to adapt the mean field game problem to allow
for common noise, or what economists may call aggregate shocks. It may be
helpful to review Section 3.6, which explains how the McKean-Vlasov limit
reacts to a common noise term.

On the level of the n-player game, the idea is now to model the state
processes by

dXi
t = b(Xi

t , µ
n
t , α

i
t)dt+ σ(Xi

t , µ
n
t , α

i
t)dW

i
t + γ(Xi

t , µ
n
t , α

i
t)dBt,

µntt =
1

n

n∑
k=1

δXk
t
,

with B and W 1, . . . ,Wn independent Brownian motions. Again, the objec-
tive of agent i is to choose αi to try to maximize

E
[∫ T

0
f(Xi

t , µ
n
t , α

i
t)dt+ g(Xi

T , µ
n
T )

]
.

Notably, the Brownian motionB influences all of the state processes, whereas
W i is specific to agent i.

We learned in our study of McKean-Vlasov equations that, unlike the
independent noises, the influence of the common noise on the empirical
measure should not average out as n → ∞. As a result, an equilibrium
measure flow (µt)t∈[0,T ] in the MFG should be stochastic, but adapted just
to the filtration generated by the common noise.

These considerations lead to the following fixed point problem, which we
formulate on some given filtered probability space (Ω,F ,F = (Ft)t∈[0,T ],P).
This space must support two independent F-Brownian motions W and B,
along with an F0-measurable initial state ξ. Let FB = (FBt )t∈[0,T ] denote

the filtration generated by the common noise, i.e., FBt = σ(Bs : s ≤ t).
Consider the following procedure:

1. Fix an FB-adapted P(Rd)-valued process µ = (µt)t∈[0,T ].

2. Solve the control problem :

(Pµ) :

{
supα E[

∫ T
0 f(Xt, µt, αt)dt+ g(XT , µT )]

dXt = b(Xt, µt, αt)dt+ σ(Xt, µt, αt)dWt + γ(Xt, µt, αt)dBt
With the process µ fixed, this is a stochastic optimal control problem
with random coefficients.

3. Find optimal state process X∗, and set Φ(µ)=L(X∗t |FBt ) .
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This defines a map Φ from the set FB-adapted P(Rd)-valued processes into
itself. A fixed point µ = Φ(µ) is a mean field equilibrium.

Remark 8.18. Stochastic control problems with random coefficients are
notably more difficult than their nonrandom counterpart; by “random coef-
ficients” we mean that the functions (b, σ, γ, f, g) may depend rather gener-
ically on the underlying ω ∈ Ω. In this course we have not studied such
problems. PDE methods become more difficult, as the HJB equation be-
comes a (typically much less tractable) backward stochastic PDE. However,
probabilistic methods based on Pontryagin’s maximum principle and FBS-
DEs is still just as feasible here.

8.8.1 Optimal investment revisited

We next illustrate an example of a MFG with common noise which we
can solve explicitly. This is the continuum analogue of the n-player game
of optimal investment studied in Section 7.3, and in addition it features
different types of agents.

Recall that there is a single stock following the dynamics

dSt
St

= µdt+ σdBt.

When the typical agent invests a fraction αt of his wealth in the stock, his
wealth process becomes

dXt = αtXt(µdt+ σdBt), X0 = ξ,

where ξ > 0. The objective is to maximize

sup
α

E
[

1

γ
(XTX

−θ
)γ
]

= sup
α

E
[

1

γ
(X1−θ

T (
XT

X
)θ)γ

]
.

where γ < 1 , γ 6= 0 , θ ∈ [0, 1] , and X captures the geometric mean wealth.
More precisely, we define a mean field equilibrium as follows. Let (Ω,F ,F,P)

be a probability space that supports an F-Brownian motion B and a ran-
dom variable (ξ, γ, θ) with a given distribution M ∈ P(R+ × R × [0, 1]).
The filtrationF = (Ft)t∈[0,T ] we take to be minimal in the sense that Ft =
σ(ξ, γ, θ, Bs : s ≤ t), and in particular B and (ξ, γ, θ) are independent. We
define a fixed point problem as follows:

1. Fix a random variable X > 0, to represent the geometric mean wealth.
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2. Solve the problem :


supα E

[
1
γ (XTX

−θ
)γ
]

dXt = αtXt(µdt+ σdBt, X0 = ξ.)

3. Find optimal state process X∗. Compute the conditional geometric
mean terminal wealth, Φ(X) = expE[logX∗T |FBT ].9

To solve this problem, we follow a similar strategy to Section 7.3. We
look for a solution in which the optimal control is constant as a function
of time, i.e., αt = α is F0-measurable. For a given F0-measurable random
variable β, we write Xβ for the process given by

dXβ
t = βXβ

t (µdt+ σdBt, Xβ
0 = ξ.

The key point that makes this problem tractable is that we do not need to
solve for the player’s best response to every possible FBT -measurable ran-
dom variable X, but only those which arise from the terminal value of
a constant-in-time control. That is, we will only consider X of the form
X = expE[logXβ

T | FBT ], for F0-measurable random variables β.

To make this work, we compute the dynamics of expE[logXβ
t | FBt ]. To

do this, first use Itô’s formula to compute

d logXβ
t = (βµ− β2σ2

2
)dt+ βσdBt.

Taking conditional expectations, we find

dE[logXβ
t | FBt ] = (βµ− β2σ2

2
)dt+ βσdBt,

where we write Z := E[Z] for the expectation of an F0-measurable random

variable. Apply Itô’s formula once again to get, withXt := expE[logXβ
t | FBt ],

dXt = Xt

[(
βµ− σ2

2
(β

2 − β2)

)
dt+ βσdBt

]
, X0 = expE[log ξ].

For an alternative control α, setting Yt = Xα
t X
−θ
t , we find

dYt
Yt

= [(µ− σ2θβ̄)a+ η]dt+ σ(a− θβ̄)dBt,

9Note: For x1, . . . , xn > 0, the geometric mean can be written as (Πn
i=1xi)

1
n =

exp( 1
n

∑n
i=1 log xi). Hence, the natural extension of the geometric mean of a measure

m on R+ is exp
∫

log xm(dx).
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whereη = −µθβ̄+ σ2

2 (β2 + θ2β̄2). The goal is now to treat this process Y as
the state process, and optimize over controls α (which now do not need to
be constant in time). That is, optimize

sup
α

E[
1

γ
Y γ
T ].

In solving this (standard!) optimal control problem, we end up with a PDE
like that of Section 7.3. For a given β, the best response turns out to be

α =
µ− σ2γθβ̄

σ2(1− γ)
.

To have an equilibrium, we should have α = β. This requires

α = β =
µ

σ2
E
[

1

1− γ

]
− αE

[
γθ

1− γ

]
,

which we solve to get

α =
µ

σ2
E
[

1

1− γ

]/
E
[

1− γ(1− θ)
1− γ

]
,

and

α =
µ

σ(1− γ)

1− γθ
E
[

1
1−γ

]
E
[

1−γ(1−θ)
1−γ

]
 .

We leave it to the reader to fill in the details, following essentially the same
argument of Section 7.3.

8.9 Bibliographic notes

Stochastic differential mean field games originate from the simultaneous
works of Lasry-Lions [90, 91, 87, 88] and Huang-Malhamé-Caines [70, 92];
the former introduced the MFG PDE system of Section 8.5. The theory
grew rapidly since its inception. Applications are by now too many to enu-
merate, including but not limited to economics and finance [55, 2, 1, 36,
71, 22, 59, 32, 85], electrical engineering [70, 92, 117], and crowd dynamics
[81, 18].

The theoretical literature on mean field games can mostly be catego-
rized as PDE-based or probabilistic. For a PDE perspective, see [90, 20, 60],
and keep in mind that most PDE papers on the subject take the forward-
backward PDE system of Section 8.5 as the starting point. The most com-
mon probabilistic approach, due to Carmona-Delarue [27], is based on an
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application of the stochastic (Pontryagin) maximum principle, which ulti-
mately recasts the MFG problem as a McKean-Vlasov forward-backward
SDE [26]. It was in this stream of literature that the difference between
mean field games and the related but distinct problem of controlled McKean-
Vlasov dynamics (discussed in Section 8.3) was first clarified [31, 29]. Lastly,
a more abstract probabilistic approach based on compactification based on
weak or martingale solutions of SDEs has gained steam recently [82, 6, 54],
and this seems to be a promising way to prove rather general theorems about
existence and convergence of equilibria.

The above discussion mostly pertains to solvability theory (existence
and uniqueness) for MFGs, and it is safe to say that existence of equilibria
is well understood to hold quite generally. The n→∞ limit theory, on the
other hand, is still in its infancy and is much more challenging than that of
static mean field games. Half of the picture is well understood: The MFG
equilibrium can be used to build approximate equilibria for n-player games,
as was observed in the original work of Huang-Malhamé-Caines [92]. This
strategy has been extending in many contexts since then, particularly in the
probabilistic literature, and it serves as a good justification for the use of a
mean field approximation.

The other, less well-understood half of the picture pertains to the limits
of the true n-player equilibria. That is, if we are given for each n a Nash
equilibrium, what can be said of the limit(s) as n→∞, say of the empirical
measure? Early results [90] required agents to be rather naive in the sense
that agent i can only use a feedback control of the form α(t,Xi

t), based on
his own state process and no others. More recently the picture has become
clear when the n-player equilibria are taken to be open-loop [83, 49]; it can
be shown that limit points of n-player approximate equilibria are a kind
of “weak MFE.” For closed-loop n-player equilibria, a breakthrough came
in [23] with the discovery that the master equation, studied in the next
section, can be used to prove this convergence, at least when it admits a
smooth solution.

9 The master equation

This section develops an interesting analytic approach to mean field games,
based on what is known as the master equation for mean field games. In
some ways this plays the role of an HJB equation, describing how the value
function depends on the starting time and state (t, x). For mean field games,
the value function should depend on (t, x,m) ∈ [0, T ] × Rd × P(Rd). The
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value V (t, x,m) should be read as “the remaining value at time t for an agent
with current state x given that the distribution of the continuum of other
agents is m.” To write a PDE for such a function, we must first understand
how to take derivatives of functions on P(Rd).

9.1 Calculus on P(Rd)

Let us say that a function U : P(Rd) → R is C 1 if there exists a bounded
continuous function δU

δm : P(Rd) × Rd → R such that, for every m,m′ ∈
P(Rd),

U(m′)− U(m) =

∫ 1

0

∫
Rd

δU

δm
((1− t)m+ tm′, v) (m′ −m)(dv) dt. (9.1)

Equivalently,

d

dh

∣∣∣
h=0

U(m+ h(m′ −m)) =

∫
Rd

δU

δm
(m, v) (m′ −m)(dv). (9.2)

Only one function δU
δm can satisfy (9.1), up to a constant shift; that is, if

δU
δm satisfies (9.1) then so does (m, v) 7→ δU

δm(m, v) + c(m) for any function
c : P(Rd)→ R. For concreteness we always choose the shift c(m) to ensure∫

Rd

δU

δm
(m, v)m(dv) = 0. (9.3)

If δU
δm(m, v) is continuously differentiable in v, we define its intrinsic deriva-

tive DmU : P(Rd)× Rd → Rd by

DmU(m, v) = Dv

(
δU

δm
(m, v)

)
, (9.4)

where we use the notation Dv for the gradient in v.

Remark 9.1. One may develop a similar theory of differentiation for func-
tions on Pp(Rd), for any exponent p ≥ 1, as long as one is careful to require
that the derivative δU/δm, if unbounded, satisfies some kind of growth
conditions to ensure that the integral on the right-hand side of (9.1) is well-
defined.

Before developing any further theory, we mention a few examples:
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Example 9.2. Suppose U(m) = 〈m,ϕ〉 for ϕ : Rd → R bounded and
continuous, where 〈m,ϕ〉 =

∫
ϕdm. Then, for any m,m′ ∈ P(Rd),

d

dh

∣∣∣
h=0

U(m+ h(m′ −m)) =
d

dh

∣∣∣
h=0

(
〈m,ϕ〉+ h〈m′ −m,ϕ〉

)
=

∫
ϕd(m′ −m).

Using (9.2), this shows that

δU

δm
(m, v) = ϕ(v).

If ϕ is continuously differentiable, then

DmU(m, v) = Dvϕ(v).

Example 9.3. Suppose U(m) = F (〈m,ϕ〉) for smooth bounded functions
ϕ : Rd → R and F : R→ R. Using the chain rule and the calculation of the
previous example, we find

δU

δm
(m, v) = F (m)ϕ(v), DmU(m, v) = F (m)Dvϕ(v).

Example 9.4. Suppose U(m) =
∫∫

φ(x, y)m(dx)m(dy) for some smooth
bounded function φ on Rd × Rd. First observe

U(m+ h(m̃−m)) = h2

∫∫
φd(m̃−m)2 + h

∫∫
φ(x, y)m(dx)(m̃−m)(dx, dy)

+ h

∫∫
φ(x, y)(m̃−m)(dx)m(dy) +

∫∫
φdm2

and therefore

d

dh
|h=0U(m+ h(m̃−m)) =

∫∫
Rd×Rd

[φ(x, y) + φ(y, x)]m(dy)(m̃−m)(dx).

From this we conclude

δU

δm
(m, v) =

∫
[φ(x, v) + φ(v, x)]m(dx).

We also make use of second derivatives of functions on P(Rd). If, for
each v ∈ Rd, the map m 7→ δU

δm(m, v) is C 1, then we say that U is C 2 and

let δ2U
δm2 denote its derivative, or more explicitly,

δ2U

δm2
(m, v, v′) =

δ

δm

(
δU

δm
(·, v)

)
(m, v′).

136



We will also make some use of the derivative

DvDmU(m, v) = Dv[DmU(m, v)],

when it exists, and we note that DvDmU takes values in Rd×d. Finally, if
U is C 2 and if δ2U

δm2 (m, v, v′) is twice continuously differentiable in (v, v′), we
let

D2
mU(m, v, v′) = D2

v,v′
δ2U

δm2
(m, v, v′)

denote the d× d matrix of partial derivatives (∂vi∂v′j [δ
2U/δm2](m, v, v′))i,j .

We have the following lemma, whose proof we leave as an exercise:

Lemma 9.5. If U is C 2, then we have

D2
mU(m, v, v′) = D2

mU(m, v′, v).

Moreover, we may write

D2
mU(m, v, v′) = Dm[DmU(·, v)](m, v′).

That is, if we fix v and apply the operator Dm to the function m 7→ DmU(m, v),
then the resulting function is D2

mU .

The most important result for our purposes is the following, which shows
how these derivatives interact with empirical measures.

Proposition 9.6. Given U : P(Rd)→ R, define un : (Rd)n → R by un(x) =
U(mn

x) for some fixed n ≥ 1.

(i) If U is C 1 and if DmU exists and is bounded and jointly continuous,
then un is continuously differentiable, and

Dxjun(x) =
1

n
DmU(mn

x, xj), for j = 1, . . . , n. (9.5)

(ii) If U is C 2 and if D2
mU exists and is bounded and jointly continuous,

then u is twice continuously differentiable, and

DxkDxjun(x) =
1

n2
D2
mU(mn

x, xj , xk) + δj,k
1

n
DvDmU(mn

x, xj),

where δj,k = 1 if j = k and δj,k = 0 if j 6= k.
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Proof. Let m ∈ P(Rd) and x = (x1, . . . , xn) ∈ (Rd)n. By continuity, it
suffices to prove the claims assuming the points x1, . . . , xn ∈ Rd are distinct.
Fix an index j ∈ {1, . . . , n} and a bounded continuous function φ : Rd → Rd,
to be specified later. We claim that, under the assumptions of part (i),

lim
h↓0

U(m ◦ (Id + hφ)−1)− U(m)

h
=

∫
Rd
DmU(m, v) · φ(v)m(dv) (9.6)

holds, where Id denotes the identity map on Rd. Once (9.6) is proven, we
complete the proof as follows. For a fixed vector v ∈ Rd we may choose
φ such that φ(xj) = v while φ(xi) = 0 for i 6= j. Let v ∈ (Rd)n have jth

coordinate equal to v and ith coordinate zero for i 6= j. Then un(x) = U(mn
x)

satisfies

lim
h↓0

un(x + hv)− un(x)

h
= lim

h↓0

U(mn
x ◦ (Id + hφ)−1)− U(mn

x)

h

=
1

n

n∑
k=1

DmU(mn
x, xk) · φ(xk)

=
1

n
DmU(mn

x, xj) · v.

This proves (i). Under the additional assumptions, (ii) follows by applying
(i) again.

It remains to prove (9.6). For h > 0, t ∈ [0, 1], and m ∈ P(Rd), let
mh,t = tm◦(Id+hφ)−1 +(1− t)m. Then, using (9.1) and (9.4), respectively,
in the first and third equalities below, we obtain

U(m ◦ (Id + hφ)−1 − U(m) =

∫ 1

0

∫
Rd

δU

δm
(mh,t, v) (m ◦ (Id + hφ)−1 −m)(dv) dt

=

∫ 1

0

∫
Rd

(
δU

δm
(mh,t, v + hφ(v))− δU

δm
(mh,t, v)

)
m(dv) dt

= h

∫ 1

0

∫
Rd

∫ 1

0
DmU(mh,t, v + shφ(v)) · φ(v) dsm(dv) dt.

As h ↓ 0 we have mh,t → m and shφ(v)→ 0, and we deduce (9.6) from the
bounded convergence theorem and continuity of Dm.

Lastly, and in part for more practice working with this notion of deriva-
tive, we prove the following technical result, which will be used implicitly. It
simply says that, for a function U = U(x,m) on Rd×P(Rd), the derivatives
in x and in m commute.
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Lemma 9.7. For any function U = U(x,m) : Rd × P(Rd)→ R, we have

DxDmU(x,m, v) = DmDxU(x,m, v), for all v ∈ Rd,

as long as the derivatives on both sides exist and are bounded and jointly
continuous.

Proof. Fix x ∈ Rd, m,m′ ∈ P(Rd), and for t ∈ [0, 1] let mt = (1− t)m+ tm′.
Then by (9.1),

U(x,m′)− U(x,m) =

∫ 1

0

∫
Rd

δU

δm
(x,mt, v)(m′ −m)(dv)dt.

Apply Dx to both sides and use dominated convergence to interchange the
order of Dx and the integral to get

DxU(x,m′)−DxU(x,m) =

∫ 1

0

∫
Rd
Dx

δU

δm
(x,mt, v)(m′ −m)(dv)dt.

Another application of (9.1) shows that for every v ∈ Rd,

δDxU

δm
(x,m, v) = Dx

δU

δm
(x,m, v).

To conclude the proof, apply Dv to both sides, commute Dv and Dx on the
right-hand side, and use the definition of Dm from (9.4).

9.2 Ito’s formula for F (Xt, µt)

Using the calculus developed in the previous section, we will now see how
to derive an Itô’s formula for smooth functions of an Itô process and a
(conditional) measure flow associated to a potentially different Itô process:

Theorem 9.8. Consider processes X and X̄ that solve the SDE:

dXt = b(Xt, µt)dt+ σ(Xt, µt)dWt + γ(Xt, µt)dBt, X0 = ξ

dX̄t = b̄(X̄t, µt)dt+ σ̄(X̄t, µt)dWt + γ̄(X̄t, µt)dBt, X̄0 = ξ̄
(9.7)

where W,B are independent Brownian motions and µt = L(X̄t|FBt ), where
(FBt )t∈[0,T ] is the filtration generated by B. Assume for simplicity that the
coefficients are all bounded, uniformly Lipschitx in the x variable, and con-
tinuous in the measure variable.
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Then for F : Rd × P(Rd)→ R smooth we have

dF (Xt, µt) = [DxF (Xt, µt)b(Xt, µt) +
1

2
Tr[D2

xF (Xt, µt)(σσ
T + γγT )(Xt, µt)]]dt

+

∫
Rd
DmF (Xt, µt, v)b̄(v, µt)µt(dv)dt

+

∫
Rd

1

2
Tr[DvDmF (Xt, µt, v)(σ̄σ̄T + γ̄γ̄T )(v, µt)]µt(dv)dt

+

∫∫
Rd×Rd

1

2
Tr[D2

mF (Xt, µt, v, ṽ)γ̄(v, µt)γ̄
T (ṽ, µt)]µt(dv)µt(dṽ)dt

+

∫
Rd

Tr[DxDmF (Xt, µt, v)γ(Xt, µt)γ̄
T (v, µt)]µt(dv)dt

+ dMt,

where Mt is a martingale given by

dMt = DxF (Xt, µt)
(
σ(Xt, µt)dWt + γ(Xt, µt)dBt

)
+

∫
Rd
DmF (Xt, µt, v)γ̄(v, µt)µt(dv)dBt.

Remark 9.9. There are multiple ways to show that µt is well defined. One
is to set µ̃ = L(X̄|B) = L(X̄|FBT ) as the conditional measure on the path
space C([0, T ];Rd) and then notice that for its marginal µ̃t we have

µ̃t = L(X̄t|FBT ) = L(X̄t|FBt ∨ σ(Bs −Bt, s ≥ t)) = L(X̄t|FBt )

by independence of increments of Brownian motion.

Proof of Theorem 9.8. We want to approximate the above given formula
by empirical measures. To this end, we take (W i)i∈N to be iid Brownian
motions, independent of W and B. Also consider iid random variables

(ξ̄i)i∈N such that ξ̄i
d
= ξ̄.

Define X̄i as the solution to the system of SDE’s given by

dX̄i
t = b̄(X̄i

t , µt)dt+ σ̄(X̄i
t , µt)dW

i
t + γ̄(X̄i

t , µt)dBt, X̄i
0 = ξ̄i.

Let µnt = 1
n

∑n
k=1 δX̄k

t
denote the empirical measure. Because X̄i are condi-

tionally i.i.d. given B, it holds that µn → µ in probability as n→∞.
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We now apply the standard Itô’s formula to F (Xt, µ
n
t ), which is simply

a function of n+ 1 Itô processes:

dF (Xt, µ
n
t ) =[DxF (Xt, µ

n
t )b(Xt, µt) +

1

2
Tr[D2

xF (Xt, µ
n
t )(σσT + γγT )(Xt, µt)]]dt

+
1

n

n∑
k=1

DmF (Xt, µ
n
t , X̄

k
t )b̄(X̄k

t , µt)dt

+
1

n2

n∑
k=1

1

2
Tr[D2

mF (Xt, µ
n
t , X̄

k
t , X̄

k
t )σ̄σ̄T (X̄k

t , µt)]dt

+
1

n

n∑
k=1

1

2
Tr[DvDmF (Xt, µ

n
t , X̄

k
t )(σ̄σ̄T + γ̄γ̄T )(X̄k

t , µt)]dt

+
1

n2

n∑
j,k=1

1

2
Tr[D2

mF (Xt, µ
n
t , X̄

k
t , X̄

j
t )γ̄(X̄k

t , µt)γ̄
T (X̄j

t , µt)]dt

+
1

n

n∑
k=1

Tr[DxDmF (Xt, µ
n
t , X̄

k
t )γ(Xt, µt)γ̄

T (X̄k
t , µt)]dt+ dMn

t

and the martingale part is given by

dMn
t =dM̃n

t +DxF (Xt, µ
n
t )(σ(Xt, µt)dWt + γ(Xt, µt)dBt)

+
1

n

n∑
k=1

DmF (Xt, µ
n
t , X̄

k
t )γ̄(X̄k

t , µt)dBt

where we define the martingale M̃n
t by setting M̃n

0 = 0 and

dM̃n
t =

1

n

n∑
k=1

DmF (Xt, µ
n
t , X̄

k
t )σ̄(X̄k

t , µt)dW
k
t .

Note next that M̃n
t → 0 in the sense that E [sup |M̃n

t |2] → 0. Indeed, this
follows by Doob’s inequality after we notice that

|[M̃n
T ]| ≤ 1

n2

n∑
k=1

∫ T

0
|DmF (Xt, µ

n
t , X̄

k
t )σ̄(X̄k

t , µt)|2dt

≤ T

n
‖DmF‖2∞‖σ̄‖2∞ → 0.

The term in the third line of the expression for dF (Xt, µ
n
t ) is order O(n−1)

and thus converges to zero, as D2
m and σ̄ are bounded. All the other terms

141



converge to the corresponding terms because µnt → µt. Indeed, the term on
the second line in the expression for dF (Xt, µ

n
t ) can be written as∫

Rd
DmF (Xt, µ

n
t , v)b̄(v, µt)µ

n
t (dv),

which converges to ∫
Rd
DmF (Xt, µt, v)b̄(v, µt)µt(dv)

because DmF and b̄ are bounded and continuous in all variables.

Remark 9.10. The key example to keep in mind where b̄ = b, σ̄ = σ, γ̄ = γ,
and ξ = ξ̄. Then X = X̄, and our Itô’s formula describes the dynamics of
functions of the pair (Xt, µt) coming from a McKean-Vlasov equation.

To simplify notation, we denote the generator for X by L and the gen-
erator for µ by L̄. That is, for smooth functions F as above, we set

LF (x,m) := DxF (x,m)b(x,m) +
1

2
Tr[D2

xF (x,m)(σσT + γγT )(x,m)],

(9.8)

and and L̄F (x,m) is given by the other dt terms in Itô’s formula. Precisely,

L̄F (x,m) =

∫
Rd
DmF (x,m, v)b̄(v,m)m(dv)

+

∫
Rd

1

2
Tr[DvDmF (x,m, v)(σ̄σ̄T + γ̄γ̄T )(v,m)]m(dv)

+

∫∫
Rd×Rd

1

2
Tr[D2

mF (x,m, v, ṽ)γ̄(v,m)γ̄T (ṽ,m)]m(dv)m(dṽ)

+

∫
Rd

Tr[DxDmF (x,m, v)γ(x,m)γ̄T (v,m)]m(dv) (9.9)

Itô’s formula then reads

dF (Xt, µt) = (LF (Xt, µt) + L̄F (Xt, µt))dt+ martingale.

To be careful, we should not really think of L̄ itself as the generator for the
process (µt), as the final term in the definition of L̄ is really a cross-variation
term between (Xt) and (µt).
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9.3 Feynman-Kac formula

With an analogue of Itô’s formula in hand, we can next derive PDEs for
expectations of functionals of the pair (Xt, µt). Define the operators L and
L̄ as in (9.8) and (9.9), respectively.

Theorem 9.11. Let (t, x,m) ∈ [0, T ]×Rd×P(Rd), and consider processes
X and X̄ that solve the SDEs

dXt,x,m
s = b(Xt,x,m

s , µt,ms )ds+ σ(Xt,x,m
s , µt,ms )dWs + γ(Xt,x,m

s , µt,ms )dBs,

dX̄t,m
t = b̄(X̄t,m

s , µt,ms )ds+ σ̄(X̄t,m
s , µt,ms )dWs + γ̄(X̄t,m

s , µt,ms )dBs,

on s ∈ (t, T ], with initial conditions Xt,x,m
t = x and X̄t,m

t ∼ m, and with
µt,ms = L(X̄t,m

s | (Br −Bt)r∈[t,s]). Define the value function

V (t, x,m) = E
[
g(Xt,x,m

s , µt,ms ) +

∫ T

t
f(Xt,x,m

s , µt,ms )ds

]
,

for some given nice functions g and f . Suppose U : [0, T ]×Rd×P(Rd)→ R
is smooth and satisfies

∂tU(t, x,m) + LU(t, x,m) + L̄U(t, x,m) + f(x,m) = 0

U(T, x,m) = g(x,m).

Then U ≡ V .

Proof. Fix (t, x,m), and abuse notation by omitting the superscripts. That
is, write Xs = Xt,x,m

s and X̄s = X̄t,m
s . Apply Itô’s formula to get

dU(Xt, µt) = (∂tU(t,Xt, µt) + LU(t,Xt, µt) + L̄U(t,Xt, µt))dt+ dMt,

where M is a martingale. Imposing the terminal condition U(T, x,m) =
g(x,m) and the initial condition U(t,Xt, µt) = U(t, x,m), we may write the
above in integral form as

g(XT , µT )− U(t, x,m)

=

∫ T

t

(
∂tU(s,Xs, µs) + LU(s,Xs, µs) + L̄U(s,Xs, µs)

)
ds+MT −Mt.

Take expectations to get

E[g(XT , µT )]− U(t, x,m)

= E
∫ T

t

(
∂tU(s,Xs, µs) + LU(s,Xs, µs) + L̄U(s,Xs, µs)

)
ds

= −E
∫ T

t
f(s,Xs, µs)ds.
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9.4 Verification theorem

We now consider a version of Theorem 9.11 in which the first process is
controlled, but not in the common noise volatility coefficient γ.

Let (t, x,m) ∈ [0, T ]×Rd×P(Rd), and consider the controlled processes
X and X̄ that solve the SDEs

dXt,x,m
s = b(Xt,x,m

s , µt,ms , αs)ds+ σ(Xt,x,m
s , µt,ms , αs)dWs + γ(Xt,x,m

s , µt,ms )dBs,

dX̄t,m
t = b̄(X̄t,m

s , µt,ms )ds+ σ̄(X̄t,m
s , µt,ms )dWs + γ̄(X̄t,m

s , µt,ms )dBs,

on s ∈ (t, T ], with initial conditions Xt,x,m
t = x and X̄t,m

t ∼ m, and with
µt,ms = L(X̄t,m

s | (Br −Bt)r∈[t,s]). Define the value function

V (t, x,m) = sup
α

E
[
g(Xt,x,m

s , µt,ms ) +

∫ T

t
f(Xt,x,m

s , µt,ms , αs)ds

]
,

for some given nice functions g and f . Define the Hamiltonian

H(x,m, y, z) = sup
a∈A

[
y · b(x,m, a) +

1

2
Tr[z(σσ> + γγ>)(x,m, a)] + f(x,m, a)

]
.

Theorem 9.12. Suppose U : [0, T ]×Rd×P(Rd)→ R is smooth and satisfies

∂tU(t, x,m) +H(x,m,DxU(t, x,m), D2
xU(t, x,m)) + L̄U(t, x,m) = 0

U(T, x,m) = g(x,m).

Suppose also that there exists a measurable function α : [0, T ]×Rd×P(Rd)→
A such that α(t, x,m) attains the supremum in H(x,m,DxU(t, x,m), D2

xU(t, x,m))
for each (t, x,m) and also the SDE

dXt = b(Xt, µt, α(t,Xt, µt))dt+ σ(Xt, µt, α(t,Xt, µt))dWt + γ(Xt, µt)dBt

is well-posed. Then U ≡ V , and α(t,Xt, µt) is an optimal control.

Proof. Fix (t, x,m) ∈ [0, T ]×Rd×P(Rd), and for ease of notation omit the
superscript by writing X = Xt,x,m. Fix a control α, apply Itô’s formula to
U(s,Xs, µs), take expectations to get

Eg(XT , µT )− U(t, x,m)

= E
∫ T

t

(
∂tU(s,Xs, µs) + L̄U(s,Xs, µs)

+DxU(s,Xs, µs) · b(Xs, µs, αs)

+
1

2
Tr[D2

xU(s,Xs, µs)(σσ
> + γγ>)(Xs, µs, αs)]

)
ds.
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Using the PDE for U , we immediately find

Eg(XT , µT )− U(t, x,m) ≤ −E
∫ T

t
f(Xs, µs, αs)ds.

As this holds for each choice of α, we conclude that U ≥ V . On the other
hand, if we choose αs = α(s,Xs, µs), then the above inequality becomes
an equality, and we see that U(t, x,m) is the value corresponding to this
particular control; hence, U ≤ V .

9.5 The master equation for mean field games

As a corollary of the verification theorem of the previous section, we can
finally derive the master equation for mean field games. We now specialize
the previous discussion to the case where b̄ = b, σ̄ = σ, γ̄ = γ, so that the
dynamics of X and X̄ are the same.

In order to define the value function for the mean field game, we must
take care that the equilibrium is unique. We assume that for each (t,m) ∈
[0, T ]×P(Rd) there is a unique MFE (µt,ms )s∈[t,T ] starting from (t,m). More
precisely, suppose that for each (t,m), the following map µ 7→ µ∗ has a
unique fixed point:

1. Let (µs)s∈[t,T ] be a measure flow adapted to filtration generated by the
common noise (Br −Bt)r∈[t,T ].

2. Solve the optimal control problem

sup
α

E
[
g(X̄T , µT ) +

∫ T

t
f(X̄s, µs, αs)ds

]
,

dX̄s = b(X̄s, µs, αs)ds+ σ(X̄s, µs, αs)dWs + γ(X̄s, µs)dBs, s ∈ [t, T ]

with initial state X̄t ∼ m.

3. Let µ∗s = L(X̄∗s | (Br − Bt)r∈[t,s]) denote the conditional measure flow
of the optimal state process.

This unique fixed point (µt,ms )s∈[t,T ] is indeed best interpreted as a MFE
starting from (t,m). Intuitively, the distribution of players at time t is given
by m, and we optimize only our remaining reward after time t.

We can then define the value function as

V (t, x,m) = sup
α

E
[
g(XT , µ

t,m
T ) +

∫ T

t
f(Xs, µ

t,m
s , αs)ds

]
,
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where

dXs = b(Xs, µ
t,m
s , αs)ds+ σ(Xs, µ

t,m
s , αs)dWs + γ(Xs, µ

t,m
s )dBs, s ∈ [t, T ]

Xt = x

This quantity V (t, x,m) is the remaining in-equilibrium value, after time t,
to a player starting from state x at time t, given that the distribution of
other agents starts at m at time t.

Define the Hamiltonian

H(x,m, y, z) = sup
a∈A

[
y · b(x,m, a) +

1

2
Tr[z(σσ> + γγ>)(x,m, a)] + f(x,m, a)

]
.

Let α(x,m, y, z) denote a maximizer. Define

b̂(x,m, y, z) = b(x,m, α(x,m, y, z)),

σ̂(x,m, y, z) = σ(x,m, α(x,m, y, z)).

The master equation then takes the form

0 =∂tU(t, x,m) +H(x,m,DxU(t, x,m), D2
xU(t, x,m))

+

∫
Rd
DmU(t, x,m, v) · b̂(v,m,DxU(t, v,m), D2

xU(t, v,m))m(dv)

+

∫
Rd

1

2
Tr[DvDmU(t, x,m, v)(σ̂σ̂T + γγT )(v,m,DxU(t, v,m), D2

xU(t, v,m))]m(dv)

+

∫∫
Rd×Rd

1

2
Tr[D2

mU(t, x,m, v, ṽ)γ(v,m)γT (ṽ,m)]m(dv)m(dṽ)

+

∫
Rd

Tr[DxDmU(t, x,m, v)γ(x,m)γT (v,m)]m(dv), (9.10)

with terminal condition U(T, x,m) = g(x,m).

Theorem 9.13. Suppose U = U(t, x,m) is a smooth solution of the master
equation (9.10). Then U ≡ V . Moreover, the equilibrium control is given
by α(t, x,m) = α(x,m,DxU(t, x,m), D2

xU(t, x,m)), assuming this function
is nice enough for the McKean-Vlasov SDE

dXt = b(Xt, µt, α(t,Xt, µt))dt+ σ(Xt, µt, α(t,Xt, µt))dWt + γ(Xt, µt)dBt,

µt = L(Xt | FBt ),

to be well-posed. Finally, the unique solution µ = (µt)t∈[0,T ] of this McKean-
Vlasov equation is the unique mean field equilibrium.
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Proof. Apply Theorem 9.12 with γ̄ = γ and with the coefficients b̄ and σ̄
given by

b̄(x,m) = b̂(x,m,DxU(t, x,m), D2
xU(t, x,m)),

σ̄(x,m) = σ̂(x,m,DxU(t, x,m), D2
xU(t, x,m)).

The master equation is very challenging to analyze, for a number of
reasons. First, its state space is infinite-dimensional. Second, it is nonlinear
in the spatial derivatives DxU and D2

xU . Last but not least, it is nonlocal,
in the sense that the equation involves both U(t, x,m) at a given point as
well as the integral of functions of U(t, v,m) and its derivatives over m(dv).

9.6 Simplifications of the master equation

This section is devoted to describing some of the specializations that lead
to simpler, and occasionally solvable master equations. The first basic ob-
servation is that if there is no common noise, γ ≡ 0, then the two last terms
of the master equation (9.10) vanish.

9.6.1 Drift control and constant volatility

Let us assume that the MFG is as follows:

α∗ ∈ arg max
α

E
[
g(XT , µT ) +

∫ T

0
f1(Xt, µt)− f2(Xt, αt)dt

]
dXt =αtdt+ σdWt + γdBt, µt = L(Xt|FBt ), ∀t ∈ [0, T ]

In this example we have that A = Rd, and the Hamiltonian is

H(x, y) = sup
a∈Rd

(a · y − f2(x, a)).

Basic results of convex analysis ensure that a 7→ Daf2(x, a) and y 7→
DyH(x, y) are inverse functions. Hence, the optimizer in the Hamiltonian
is α(x, y) = DyH(x, y).
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Substituting the values just computed, the master equation becomes

∂tU(t, x,m) +H(x,DxU(t, x,m)) + f1(x,m)+

+
1

2
Tr[(σσT + γγT )D2

xU(t, x,m)]+

+

∫
Rd
DmU(t, x,m, v) ·DyH(v,DxU(t, v,m))m(dv)+

+
1

2

∫
Rd
Tr[DvDmU(t, x,m, v)(σσ> + γγ>)]m(dv)+

+
1

2

∫∫
Rd×Rd

Tr[D2
mU(t, x,m, v, v′)γγ>]m(dv)m(dv′)+

+

∫
Rd
Tr[DxDmU(t, x,m, v)γγ>]m(dv) = 0

U(T, x,m) = g(x,m)

The dynamics of the equilibrium state process becomes

dXt = DyH(Xt, DxU(t,Xt, µt))dt+ σdWt + γdBt

µt = L(Xt|FBt ), ∀t ∈ [0, T ]

If we specialize now to the case where σ = 1 and γ = 0, the master
equation reduces further to

∂tU(t, x,m) +H(x,DxU(t, x,m)) + f1(x,m)+

+
1

2
∆xU(t, x,m)]+

+

∫
Rd
DmU(t, x,m, v)DyH(v,DxU(t, v,m))m(dv)+

+
1

2

∫
Rd

divv(DmU(t, x,m, v))m(dv) = 0

U(T, x,m) = g(x,m)

and the dynamics of the equilibrium state process are

dXt = DyH(Xt, DxU(t,Xt, µt))dt+ dWt

µt = L(Xt), ∀t ∈ [0, T ]
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9.6.2 A linear quadratic model

We return now to our favorite solvable MFG, covered for example in Section
8.7.1:

α∗ ∈ arg max
α

E
[
−λ

2
|X̄T −XT | −

∫ T

0

1

2
|αt|2dt

]
dXt =αtdt+ dWt, X̄t = E[Xt]

In this example, we have that the Hamiltonian is H(x, y) = supa(a · y −
1
2 |a|

2) = 1
2 |y|

2 with optimizer α(x, y) = y. The master equation becomes

∂tU(t, x,m) +
1

2
|DxU(t, x,m)|2 +

1

2
∆xU(t, x,m)]+

+

∫
Rd
DmU(t, x,m, v)DxU(t, v,m)m(dv)+

+
1

2

∫
Rd
divv(DmU(t, x,m, v))m(dv) = 0

U(T, x,m) = −λ
2
|m̄− x|2, where m̄ =

∫
Rd
ym(dy).

In order to try to get a solution, we start making a first ansatz, which
consists of assuming that the solution depends only on the mean of the
distribution and not on the whole probability distribution, i.e. there exists
a function F : [0, T ]× (Rd)2 such that U(t, x,m) = F (t, x, m̄).

Then, using our new developed calculus, we have that

∂tU(t, x,m)) =∂tF (t, x, m̄)

DxU(t, x,m) =DxF (t, x, m̄)

D2
xU(t, x,m) =D2

xF (t, x, m̄)

DmU(t, x,m) = Dm̄F (t, x, m̄)·DmG(m, v) = Dm̄F (t, x, m̄)

where we have used that if we define G(m) = m̄, then

δG

δm
(m, v) = v

DmG(m, v) = 1.

For notational simplicity, in the future we will refer to the third variable
of F as y instead of m̄. Since DyF (t, x, y) does not depend on v, the PDE
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simplifies to

∂tF (t, x, y) +
1

2
|DxF (t, x, y)|2 +

1

2
∆xF (t, x, y)]+

+

∫
Rd
DyF (t, x, y)DxF (t, v, y)m(dv) = 0

F (T, x, y) = −λ
2
|y − x|2.

The second idea we postulate is that the derivative of the solution
with respect to the spatial variable is affine in that same variable, i.e.
DxF (t, x, y) = A(t, y)x+B(t, y). Then the PDE simplifies to

∂tF (t, x, y) +
1

2
|DxF (t, x, y)|2 +

1

2
∆xF (t, x, y)]+

+DyF (t, x, y)·DxF (t, y, y) = 0

F (T, x, y) = −λ
2
|y − x|2.

Our final Ansatz is to separate the spatial and temporal variables, i.e.
assume that F (t, x, y) = 1

2f(t)|y−x|2 +g(t). Then DxF (t, x, y) = f(t)|x−y|
(so affine in x and y) and ∆xF (t, x, y) = d·f(t). In particular, DxF (t, y, y) =
0. The PDE then becomes

1

2
f ′(t)|x− y|2 + g′(t)+

1

2
f2(t)|x− y|2 +

d

2
f(t) = 0

g(T ) = 0, f(T ) = −λ

The equations must hold for any x and y in Rd, and matching coefficients
shows that the PDE is equivalent to the following system of ODE’s

f ′(t)+f2(t) = 0

g′(t)+
d

2
f(t) = 0

g(T ) = 0, f(T ) = −λ

As in Section 5.5, we can explicitly solve these ODEs, yielding

U(t, x,m) = F (t, x, m̄) = − (x− m̄)2

2( 1
λ + T − t)

+
d

2
log(1 + λ(T − t))
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9.7 Bibliographic notes

The master equation was understood on some level in the lectures of Lions
[91], and the first reasonably general accounts of the master equation and its
verification theorem appeared in [10, 28]. Analysis of the master equation is
difficult, perhaps unsurprisingly. Some first well-posedness theory for clas-
sical solutions can be found in [37, 56, 21]. We know from classical control
theory that one should not expect classical solutions in general, and this
problem is resolved using the theory of viscosity solutions. It is not clear
yet if there is a satisfactory viscosity theory for the master equation, with a
key challenge posed by the the infinite-dimensional state space P(Rd). How-
ever, mean field games of potential type can be reformulated as controlled
McKean-Vlasov problems, and for such problems the master equation reads
as a Hamilton-Jacobi(-Bellman) equation on the space of probability mea-
sures; some progress on a viable viscosity theory for such equations appeared
already in [20] for first-order systems, and the recent developments of [116]
seem promising.

The seminal paper [23] showed not only the strongest well-posedness re-
sults to date but also explained how the master equation, when it admits a
smooth solution, can be used to prove the convergence of the n-player Nash
equilibria to the (unique, in this case) mean field equilibrium. This insight
was recently extended in [46, 47] to derive a central limit theorem, a large
deviations principle, and non-asymptotic concentration (rate) estimates as-
sociated to this law of large numbers-type limit. This kind of analysis is
extremely fruitful when it works, but it notably requires uniqueness for the
MFE and a quite regular solution of the master equation. See also [34, 35, 5]
for a similar analysis for MFGs with finite state space.

The notion of derivative for functions on P(Rd) was introduced by Lions
in [91], written also in [20] and in [30]. This calculus can be approached from
a number of angles, and the exposition of Section 9.1 follows more closely
the presentation of [21, Section 2.2].
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mean field theory, Journal de Mathématiques Pures et Appliquées 103
(2015), no. 6, 1441–1474.

[11] P. Billingsley, Convergence of probability measures, John Wiley &
Sons, 2013.

[12] A. Blanchet and G. Carlier, From Nash to Cournot-Nash equilibria via
the Monge-Kantorovich problem, Phil. Trans. R. Soc. A 372 (2014),
no. 2028, 20130398.

[13] , Optimal transport and Cournot-Nash equilibria, Mathematics
of Operations Research 41 (2015), no. 1, 125–145.

[14] F. Bolley, Separability and completeness for the Wasserstein distance,
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[58] J. Gärtner, On the McKean-Vlasov limit for interacting diffusions,
Mathematische Nachrichten 137 (1988), no. 1, 197–248.

[59] R. Gayduk and S. Nadtochiy, Endogenous formation of limit or-
der books: dynamics between trades, arXiv preprint arXiv:1605.09720
(2016).
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