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1 Throughput, Work-in-Process, and Cycle Time

The purpose of this section is to obtain a basic understanding of the relationship that exists between
throughput, work-in process, and cycle times. We will assume a production system where parts go
through a specific routing. The throughput, denoted by TH , is the average output per unit time, e.g.,
number of widgets per hour. The inventory between the start and the end points of a production
system (not counting crib inventory or finished goods inventory) is called work-in-process (WIP).
The cycle time (CT) of a given production system is the average time parts spend as WIP.

The bottleneck rate rb is the rate of the process center having least long-term capacity. The raw
processing time To is the sum of the long-run average processing times of each workstation in the
routing. Critical WIP is defined to be Wo = rbTo.
Example 1: Consider a production line with four stations, and assume that the processing time at
each workstation is two hours. Since the processing rate at each of the workstations is 0.5 parts per
hour, it follows that rb = 0.5. Since producing the part takes 2 hours in each workstation it follows
that To = 8 so the bottleneck rate is half a unit per hour and the raw processing time is eight hours.
Finally, critical WIP is Wo = rbTo = 0.5 ∗ 8 = 4.

Let us find the cycle time and the throughput rate for different WIP values w assuming the
machines are perfectly reliable and the processing times are deterministic. What is the average
cycle time when w ≤ Wo? When w ≤ Wo parts do not have to wait so CT = To for w ≤ Wo. What
happens if w > Wo. In this case units have to wait so CT = w/rb for w > Wo. For throughput we
have TH = w/To for w ≤ Wo, and TH = rb for w > Wo.
Example 2: For the data of example 1 we see that CT = 8 for w ≤ 4 and CT = 2w for w > 4. As
for throughput we have TH = .125w for w ≤ 4 and TH = 0.5 for w > 4.

Observations: For any level of WIP w, we have TH = w/CT . This relationship actually holds
quite generally, and it is know as Little’s Law. A balance deterministic line is the best we can hope
for, so in effect we have

CT ≥ CTbest =
{

To if w ≤ Wo
w
rb

if w > Wo

and

TH ≤ THbest =
{

w
To

if w ≤ Wo

rb if w > Wo

Increasing the bottleneck rate rb improves both CT and TH on WIP levels above Wo. Reducing
To improves CT and TH only for WIP levels below Wo. In general, increasing the processing rate
of bottleneck workstations, to the point that all workstations are balanced results in a system that
is more congested, compared to another one with the same bottleneck rate.

To find the cycle time and the throughput under the worst case, imagine that we transports jobs
through the line on pallets. Whenever a job is finished, it is removed from its pallet and the pallet
immediately returns to the front of the line to carry a new job. In this way, the WIP is kept constant,
but now parts queue in front of each workstation. To see this, consider what happens for our balance
line example with w = 4. When the pallet arrives at a workstation it finds the workstation idle. The
pallet stays at this workstation until all the units in the pallet are processed. This takes 8 hours.
Since there are 4 workstations, the cycle time will be 32 hours and the throughput will be 1/8. More
generally, with a WIP equal to w we have CTworst = wTo and THworst = 1/To for all w ≥ 1.

CT ≤ CTworst = wTo

and
TH ≥ THworst =

1
To

Virtually no real-world line behaves according to either the best or the worst case and it is
instructive to consider intermediate cases. We now consider a case where processing times are
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random. We will assume that the processing times are exponentially distributed. We say that
a random variable T is exponentially distributed with parameter λ if P (T > t) = e−λt. The
exponential distribution is the only continuous time distribution with the memoryless property.
This property states that if s units have already elapsed and the processing has not been completed,
the distribution of the additional time until completion is the same as if we were starting again.
Mathematically, this can be written as

P (T > s + t|T > s) = P (T > t).

It is because of this property that some people say that the exponential distribution represents the
maximum randomness although this is technically debatable.

It can be shown that under the exponential distribution,

CT = To +
w − 1

rb

and
TH =

w

Wo + w − 1
rb.

We will not go over the detailed derivation of these formulas. However, it is possible to give an
intuitive justification of the formulas as follows. Suppose that you want to determine the cycle time
for a particular job. Suppose that when you arrive at a station you expect the other w − 1 jobs to
be equally distributed among N workstations. In this case, you expect to see w−1

N jobs ahead of
you. If the processing time at each station is To/N then the time you spend at each station is equal
to To

N (1 + w−1
N ). Multiplying by N we obtain the cycle time

CT = To(1 +
w − 1

N
).

Using Little’s Law we can find the throughput

TH =
w

CT
=

w

Wo + w − 1
rb,

where we have used the fact that Wo = rbTo. The last two formulas define the practical worst case. If
the performance of a system is between the best case and the practical worst case then the system is
been managed effectively. On the other hand, if the performance of a system is between the practical
worst case and the worst case, then there may be significant opportunities for improvements.

2 Push and Pull Systems

A push system schedules the release of work based on demand forecasts, while a pull system autho-
rizes the release of work based on system status. In a push system we control the release of work
also known as the daily going rate and observe WIP. In a pull system we control WIP and observe
throughput.

Example: Five machines in tandem, each station processes jobs at a rate of one per hour, and
processing times are exponentially distributed. Suppose we release jobs so that WIP stays at level
w. Then, the throughput is given by

TH =
w

4 + w
.

Now suppose we release jobs into the same system at rate TH . It can be shown that the WIP
level will be

WIP = 5
TH

1 − TH
.

Thus, for example, to achieve TH = w/(4+w), a push system would require WIP = 1.25w, or 25%
more WIP than a pull system with constant WIP.
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Suppose our profit function is of the form pTH − hw. In a push system we need to determine
TH to maximize the profit function. In a pull system we would control w to maximize the system.
For the above problem, the PUSH profit function becomes

pTH − h
5TH

1 − TH
,

while for a pull system the profit function becomes

p
w

4 + w
− hw.

Drawing this functions reveal that we can make more profit under a pull system, and that it is more
robust to errors in the optimal quantities.


