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A (Hilbert type) deductive system is a sysem conssting of a language and of (1) a set of
wffs cdled axioms, and (I1) a set of inference rules. An inference rule congds of (i) alist
of wffs cdled the premises of the rule (ii) a wff cdled the rules conclusion. Usudly,
inference rules do not have more than two premises.

A proof in agiven deductive system is afinite sequence of wffs
al) a2) ey an

in which every a; is dther an axiom, or can be inferred from previous a;’'s by an
inference rule.  The proof is a proof of a, if a is the las member of the proof. A wff is
said to be provable (in the given sysem) if it has a proof in it. Obvioudy, every wiff
occurring in a proof is provable, snce the initid segment of the proof up to, and
including, the wif is itsdf a proof. Wffs tha are provable in the sysem are dso cdled
theorems (of the system).

Axioms of Sentential Logic:

0] a® (b®a)

(i) [a® (b®Q]® [(@a®b)® (a® g)]

@iii) (a® Gb)® (b® a)
(Additiond axioms ae included if other connectives are included as primitives. If, by
definition, other connectives are rewritten in terms of @ and ® , no additiona axioms are
required.)

a®b, a
Inference Rule:  Modus ponens. -
b

A theorem of (sentential) logic isany wff provablein the sysem just given. We use
-a
to say that a isatheorem.

Note: If a and Fa® b, then|-b. The (very easy) argument runs as follows:
Let bo by, ...bj,a®b and ao asi,...,.ax a be, respectively, proofsof a® b and of b.
Then
bo, b1,...,b;,@a®b,ao as....aa,b
isaproof of b.

Theorem 1. Fa® a
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Proof: Thefollowingisaproof of a® a

a®[(a®a)®a], {a®[@a®a)® a]}®{[a® (a®a)]|® (a® a)],
@®(@®a))®(a®a),a® (a®a), a®a

Thefirgt wif isan ingance of Axiom (i), the second—of Axiom (ii), the third isinferred
from the firgt two via modus ponens, the fourth is an ingance of Axiom (i) and thefifth is
inferred from the third and the fourth via modus ponens.

Note: Theorem 1 saystha every wif of acertain form is provable in the above deductive
gystem. It is atheorem about the deductive system, not atheorem iniit. A theoreminiit
would be any particular wff of the form a® a. We can cal theorems that are about the

deductive system metatheorems  Theorems proved in alogic course aeasarule
metatheorems.

Note: The proof of any wfif a® a uses only the first two axioms and modus ponens.
Proofsfrom Premises:

A proof from a set, G, of wifs is a sequence of wifs, in which every member is ether a
logicd axiom (in our case, ‘logic means sententid logic) , or a member of G, or inferred
from previous members by an inference rule—in our case: modus ponens. In this context,

the members of G are referred to as premises. The proof is a proof of the last member of
the sequence. A wif isprovable from Gif thereisaproof of it from G. We write

G| a
to say that a isprovable from G.
If Geonggsof thewffsa ay, ...,an, wewrite G=aj a, ..., an and rewritethe above
as
a; a, ...,an |-a.

Weuse‘G,a’ to denote the set of premises conssting of the membersof Gand of a.

Deduction Theorem:
G,alb U GlFa®b
Sketch of Proof: The implication U is trivid, because if from G we can derive a® b,
then, having dso a as a premise, we can get b by modus ponens. The main dam is in the
P direction.
Let bo, by, ..., bn_1 beaproof of b from G,a.

Show by induction, thet, for every i < n, a ® b; isprovablefrom G. There are severa
Cases.

(i) bjisalogica axiom or amember of G.




Inthat case b; canbeusadinproving a ® b; from G. Now, it isnot difficult to show
that, for every gand d:

gFd® g.
Hencefrom b; wecangeta ® b;.

() b; =a;inthiscasea ® bj =a ® a, and, by theorem 1,a ® a isprovableinthe
deductive system.

(i) b; isinferred via modus ponens from two previous wifs. Say they aaleg® b; and g.
By theinduction hypothess, Fa ® (g® bj)and |-a ® g. The argument can be now
brought to finish by showing:

a® (g® bj), a® g | a® b
(Thisisnot immediate, but eesier than (ii); use axiom (ii) and twice modus ponens.)

QED

Note: The proof of the deduction theorem carries through whenever the sysemiin
guestion has modus ponens as a single inference rule and includes the axioms (i) and (ii)
among its theorems. Hence the deduction theorem obtains for al such systems.

Theorem2. b, @b |-g.
Sketch of Proof: @b |H3g® @b, usng Axiom (iii), we get: @b |-b® g, and from b and
b® gwe get g, viamodus ponens.

Theorem 3. - @b ® b.

Sketch of Proof: Let a be any axiom. By Theorem 2, @b, @b |- Ja ; by the deduction
theorem @b |- @b ® Ja; usng Axiom (iii), wegel: @b |-a® b;sncea isan
axiom, we get: @b |- b. Now use the deduction theorem.

Theorem 4. b ® @D b
Sketch of Proof: By Theorem 3 |- @b ® @b; usng Axiom (iii), weget: Ho ® @D b.

Theorem5.a® b |- b ® Ga.
Sketch of proof: Using Theorems 3, 4, one showsthat a® b |- @ a® @db. Then use
Axiom (iii).

Theorem 6. If Ga |-b andG,a |- @b, then G|{Ja.

Sketch of Proof: From Theorem 2, the assumptionsimply: G,a |- g, where g isany wif.
Choose gto be @d, where d isan axiom, then Ga |- @d ; by the deduction theorem,
Gl-a® @d. Usng Theorem 3, weget: G |- @da® @d; from this (via Axiom (iii))
G|-d® Ja. Snced isanaxiom, G |- Ja.

Cdl apremise st from which both b and @ b are provable, contradictory. Then Theorem
2 impliesthat every wif is provable from contradictory premises, and Theorem 6 says
thet if Ga iscontradictory, then G|-Ja.

Theorem7.a® b, Ja®b |-b.




Sketch of Proof: Since, by Theorem5,a® b -@b® Ja and Ja® b |- Zb® Hda , it
issufficient to show that @bh® P a, Gb® OJa |-b. Now, Gb® D a, Fb® da, Db isa
contradictory premise set, since both @a and @Ja are provable from it. Hence,

Ih® Da,Db® Oa |-DDb. Since @b |-b, we get the desired conclusion.
Corollary: If Sa b andS@a |-b ,then S|-b.

(By the deduction theoremweget: S|-a® b S|-Ja® b; then goply Theorem 7.)

Theorem 8.(1) a,@b FP@®b ). (1) Aa®b) |-a (111)Fa® b)l-3b.

Proof: a,db, a® b are contradictory premises (both b and @b are provable from them);
hence (1) follows via Theorem 6. To get (I1), obsarvethat @a ,a |- b ; fromthis viathe
deduction theorem: @a |-a® b; gpplying Theorem 5, get: H(@a® b) |- @da; (1) now
follows via Theorem 3. (111) follows by applying Theorem5to: b -a® b.

Definition: A set S of wifsisinconsistent if, for someb, S|-b and SHZb. In view of
Theorem 2, thisis equivaent to saying that, for every g, S|-g. Itisaso equivaent to
saying that, for somelogicd axiom b, S| @b (becauseif b isalogicd axiom, then
trividly, S|-b.)

Sisconsistent if it is not incons stent.

Note: SE {a} isinconsigent iff S|- @a. The“only if” direction follows from Theorem
6. The“if” directionistrivid, becauseif S|HJa , then both a and Ja are provable from
SE {a}.

Note: If Sisconggent then, obvioudy, every subset of Sis consstent. On the other hand,
if Sisany infinite sat and dl itsfinite subsets are consgtent, then S is consigtent.

Because, if anegation, g, of alogicd axiom, were provable from S the proof would
contain afinite number of members of S, hence some finite subset of S would be
inconggent.

Basic Semantic Notions

A truth-value assignment isafunction, f, that assgnsto every atomic sentence, A, a
truth-vauef(A).

If a isany wif (of sententid logic), then:
val (f,a) =ps thetruth-vdueof a, under the assgnment f.

Note: va§(f,a) isdefined by inductionon a.

Obvioudy, val (f,a) depends only on the values assigned by f to the atoms occurringin a.

Definitions and Notations:
S|= b, if for every truth-value assgnment f :if va§(f,a) = T fordl al S, then
va§(f,b) =T.




If S={as,...,an}, werewrite ‘S|=b’ as as,...,a |= b.If S=A£ werewritethisas
|=a. Occasiondly we rewrite‘SE {a}’ as. Sa.

a and b are said to be logically equivalent, if a|=b and b|=a. Thissmply means
that a and b get the same truth-value under dl assgnments. We denote this as.

acb.

A set Sof wifsissatisfiable, if thereisan assgnment f, such that va§(f,a) =T for
dlal S

Obvioudy:

SEb U SE {@b} isnot satisfiable.

Sal=b U SFa® b.
The second clam, which pardlds the deduction theorem, isatrivia consequence of the
truth tableof ® .

Soundness Theorem (for onewff): If |-a, then|=a .
Completeness Theorem (for onewff): If Fa,then|-a .
Soundness Theorem (for many wifs): If S|-a,then S|=a .

Completeness Theorem (for many wffs, sometimes called Strong Completeness):
If SFa,then S|-a .

In the case where Sisfinite, the many-formulas case reduces to the single-formula case,
viathe following equivaences

ai,...anlFa U |a® (@a:®@® ...(an® a)...)

ai....anflFa U |F ai® @:®@@® ...(an® a)...).
Thefirg equivalenceis, viathe deduction theorem. The second follows by a
graightforward argument from the definitions and the truth table of. Instead of

a1® (a2® (® ...(an ® a)...), wecan usethelogicdly equivdenta;Ua,U ...a,® a
(thiswould involve a proof that each wff is provable from the other).

The soundness theorem is easly proved, by showing that if a1, ...,an isaproof of a
from S, then, for every truth-value assgnment, f: if va§(f,b) = T,fordl bl S then
va§(f,a;) = T, for i=1,...n. Thisis shown by (strong) induction on i, usng the following
easy dams
1. Evey logicd axiom of sententid logic getsthevadue T under any truth-vaue
assgnment.
2. Ifva§(f,a) = va§(f,a® b) =T, thenva§(f,b) = T.

Sketch of the proof of the completeness theorem:

Thedam
SlFab S}|a




is equivaent (via the observations above) to:
SE {@a} isnot satifisble b SE {@a} isinconsstent,

which is equivdent to:
SE {@a} is condsent b SE {@a} issdisficable.

Therefore the (strong) completeness theorem is equivaent to:
(*) For every set Sof wifs, Sisconsistent b Sis satisfiable.
The following proof isfor the case of a countable language.

Letag, a, as,...,an ... bean enumeration of dl the wffs. Given acondgent set S, define
by induction, on n, asequenceof s&ts S, S, ... Sy, -

S=S
S - SSE{a,, if S E {a, isconsgent

S = SE{a,, if S E {@a, isinconsigent.
Owvioudy: 1 Sii ...0 ST Suel ...

Claim: If aset X of wffsis consigtent, then éither X E {a}, or X E {@a} is consistent.
Otherwise, we have both: X HJa and X |-d@a , implying thet X isinconsstent.

Hencedl Sy'sare consistent. Let S = | | S, . Every finite subset of S isasubset of

some S, and thereforeis consistent. Therefore S is consistent. By the construction, for
eachwif a, exactly oneof a and @a isin S . Definef asfollows

For each atomic wff, A,

T ifA S
f(A) =
F ifoAl S
Main Claim: Forevaywff a ,ifal S thenva§(f,a)=T,andif a1l S then

vas(f,a)=F.
Thisisproved by induction on a. It holds for an atomic a, by the definition of f.

Assumeit holds for a ; show: that it holdsfor @a. If @a T S, then by theinduction
hypothesis, va§(f,a)=F, hence, va§(f,@a)=T.If @(Pa)i S, then, since by Theorem 3,
@Pa |-a,al S;henceva§(f,a)=T and va§(f,da)=F.

Assumeit holdsfor a and b; show: it holdsfor a® b.




Ifa®bl S,thendther@al S orbi S.Forotherwisebothal S and@bl S'; and,
by Theorem 8 (1) a,2b |- @(@a® b), implyingthat S’ isinconsistent. Hence, by the
hypothesisfor a and b, ether va§(f,a)=F or vas(f,b )=T, implying that va§(f,a® b)=T.

If @a®b)i S,then by Theorem8(Il)and (Ill),a, @b T S. Hence, va§(f,a)=T and
va§(f,b)=F, implying thet va§(f,a® b )=F.

Thisshowstha f stisfies S ; thereforeit satisfies S
QED

Finitary Version of the Proof, for a Finite S:

If S isfinite, the proof can be achieved without resort to an infinite S . Let Stconsist of
dl wffs that are components of membersof S Notethat SI S¢ Since every wif is, by
definition, acomponent of itsdf (aso-called improper component). Let S* be obtained
from Sthy adding to it dl negations of members of St that are not themselves negations.
Then S’ isafinite set of wifs such that:

si &

Ifal S, then every component of a isin S'.

Ifal S thenether @al S’ ora = @b, for omebl S'.
Letay, ...,an bean enumeration of al members of §. We now repest the construction of
S, going only through the membersof S . After n stepsweget aconsistentset S | S,
suchthatfordl a1 S',if @al S dtheral S, or @al S’ (notethaif Fal S
thena = @b, andin thiscase either a or b isin S'). We now define atruth-value
assgnment f for dl aomic wifsin S, exactly in the same way as before. For atoms not in
S’ f can be defined arbitrarily. We prove, by inductionon a, that, fordl a T &,

al S b vajfa)=Tand@a 1 S b va§(f,a)=F. The proof is exactly as before.

Effective Version for the One-Formula Case:

The completeness theorem implies that every tautology is provable. But it does not
provide an effective way of finding the proof, short of enumerating dl finite sequences
of wifs, checking each whether it isa proof of the given tautology, until we hit on a
proof. The following proof provides a consiruction of the proof.

Theorem 9: Given atruth-value assgnment, f, define for each atom A:

fo={

Then, for each wif, a, for every f, if dl theaomsin a areamong, Aj, ... An, then:

if f(A) = F

if f(A) = F

1. A, . A | a if va§(f,a)=T
2. A, A @a if vas(f,a)=F




Thisis proved by induction on a. Thedamistrivid if a isaomic. The induction steps
are exactly asin the proof of the main claim in the above proof of the completeness
theorem. Note that thisinduction yields, for each A1, ... Ay", an effective construction of
the proof of a, or of @a, from the premises A1, ... Ay’
Assume now that a isatautology whose atomsareamong As, ... An. We prove, by
induction on k, that for every k £ n:

Forevery f Ai, ... Ank' - a
For k=n thisyidds|-a.

For k=0, thisisfollowsimmediately from Theorem 9 and the assumption that a isa
tautology. Assumethat it istrue for k. Then, for every f the above holds. Therefore, for
every f, both of the following hold:

A, Anka’ Ank |- a

Al Anka’, DAL | a.
Using Theorem 7weget: A1, ... Ank1 | a.

Note that, since the proof of Theorem 7 yields a congtruction of the proof in question, we
get acongtruction of the proof of a.

QED

Compactness Theorem: If every finite subset of asat Sof wifsis sdtidfiable, then
Sissdidfigble.

Proof (for a countable set): If every finite subset of Sis satisfiable, then, by soundness,
every finite subset of S isconagent. Therefore S is consgtent. By the completeness
theorem Sis stisfiable.

Note: The one-formulaversgon of the completeness theorem, together with the
compactness theorem implies the many-formula verson of the completeness theorem.
For assume that Sis consistent. Then, every finite subset Sti - Sis consigtent, which is
equivaent to the consstency of {a}, where a isthe conjunction of the membersof St
By the one-formula completeness theorem a is stisfiable. Hence every finite subset of S
is stisfiable. By the compactness theorem, Sis satidfigble.

Note: The compactness theorem is stated in purely semantic terms, without any reference
to adeductive system. There is dso a purely semantic proof of it; cf. Enderton’ stext
book.

An Application of Sentential Compactness:

A (undirected) graph isastructure G = (V, E, g) whereV isanon-empty set (of objects

cdled ‘vertices), E isaset (of objects caled ‘edges’) and g isafunction that associates
withevery el E an unordered pair {x,y} of membersof V; we say that e connectsx and
y. (Inadirected graph the values of g are ordered pairs (x,y).)

Cdl two vertices neighbors if some edge connects them.




A coloring of the graph G isamapping, h, that associates with every vertex, x, an object
h(x) cdled the color of x, such that neighboring vertices dways have different colors. A
graph isk-colorable, if it hasacoloring that uses £ k colors.

A subgraph of G isany graph G¢= (V¢ E¢ g@ suchthat Vel v, E¢l E and g¢ isthe
redriction of gto EC

Theorem: For each k, if every finite subgraph of G isk-colorable, G isk-colorable.
Proof: Without loss of generdity, let the colorsbeO, ..., k—1. For every vertex, x, of G
andfor every i<k, let Ax;i bean atom of sententid logic. (Think of Ay; as saying that
vertex X is colored with color i.) Consder the set, S, of dl wifsthat fdl under one of the
following cases
1. Axo UA1U ... U Ay, fordl xi V (it saysthat the vertex is colored by some
color).
2. Ai ® DA, fordl xl V, i<j<k (it saysthat the vertex is not colored by more
than one color).
3. Axi ® GAy;, for dl x, ythat areneighborsand dl i<k (it says that the two
vertices have different colors).

It is not difficult to check that G has ak-coloring iff Sis satidfiable. If every finite
subgraph of G has a k-coloring, then every finite subset of S is satidfiable. By the
compactness theorem, Sis satisfiable. Hence G isk-colorable.
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