James Anderson, Columbia University, E6602

10: Dynamic Controllers: Basics

® minimal realizations (D&P 2.5)
® bounded-input bounded-output stability

® well-posed systems (D&P 5.1)



Realizations

consider £(0) = 0 and the sysem

& = Ax + Bu
y = Cz + Du,

the map from input u to output y(t) is

t
y(t) = /0 Ce*t=7) Bu(r)dr + Du(t)

® take the view point that the map u — y(y) is the object of interest
® the state space system (A, B,C, D) is just a realization of this map

® the same u — y(y) can be “realized” from many different choices of (A, B, C, D)

(A,B,C,D) — (TAT~ Y, TB,CT~1,D)
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Equivalent realizations

if for all w and ¢t >0
¢ t
/ Ce*t=7) Bu(r)dr + Du(t) = / C1e41¢=7) Bru(r)dr + Dyu(t) (1)
0 0

then the realizations (A, B, C, D) and (A1, B1,C1, D1) are said to be equivalent

® clearly it must hold that D = D; because we require Du(0) = Diu(0)
® note that Ce(t=7) B hides the state dimension

® among all equivalent realizations, it is convenient to work with realization with
smallest state dimension
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Equivalence tests

Lemma
The realizations (A, B, C, D) and (A1, B1,C1, D1) are equivalent, if and only if
D = D; and

CeAtB = Cre1tBy  forallt > 0.
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Equivalence tests

Lemma
The realizations (A, B, C, D) and (A1, B1,C1, D1) are equivalent, if and only if
D = D; and

CeAtB = Cre1tBy  forallt > 0.

an alternative characterization:

Lemma
The realizations (A, B, C, D) and (A1, B1,C1, D1) are equivalent, if and only if
D = D; and

CA*B = C1A¥B;  for all k > 0.
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Lemma
The realizations (A, B, C, D) and (A1, B1,C1, D1) are equivalent, if and only if
D = Dj and

CeAtB = Cref1tBy forallt > 0.

Proof [scalar case]
® sufficiency is clear, focus on necessity
® instead of (}) consider
t
/ {CeA“—T)B - CleA1<t_T)Bl}u(T)dT =0,
0
need to show that the term in blue is identically zero
® assume the contrapositive; for some ty > 0, no equality, define
u(t) := CeAltotl=p _ reAtlotl-Op,  — (1) #£0

® thus at t = to + 1, apply u(t) above

t

to+1 o+1
/ {CeA(t0+lfT)B — CleA1<t°+177)B1} dr = / lu(7))2dr > 0.
0 0
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Controllability and observability

Theorem
Suppose (A, B,C, D) is a system realization. Then, if (A, B) is not controllable, or,
(A, C) is not observable, then there exists a lower-order realization for the system.
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Controllability and observability

Theorem
Suppose (A, B,C, D) is a system realization. Then, if (A, B) is not controllable, or,
(A, C) is not observable, then there exists a lower-order realization for the system.

Proof

® focus on controllability, analogous result for observability

® put system into controllable canonical form

TATAZ[ASI g;z } TB:[%l ] and CT=1 = [y G,

then _ _
- - Ayt - i~
Ce'B = [0y 02][ e 011 Z ] { 1%1 } — CreAntp,

® apply lemma with A; = Au,Bl = Bl,Cl =C
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Minimal realizations

Definition
A realization with the with the smallest possible state dimension is called a minimal
realization.

Theorem
If (A, B) is controllable and (A, C) is observable, then (A, B,C, D) is a minimal

realization.
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L.-norm recap

recall the definition of the Lo [0, c0) norm of a signal w with u(t) € C™:

= t = i (L
llell £ oo 0,00) SUEO) llu(®)]leo tesggo) | ax [ui(t)]
signal norm —_—

[lu(t)|oo: vector norm

® important to draw a distinction between vectors, u(t) and signals u as we will
often refer to ||ull L [0,00) a5 |[©lloo

® we only consider the interval [0, c0), so we omit from notation

® we could use any £,-norm, on u(t) because of equivalence of norms:
[zlloe < [lzllz < flzlli < Vmllzllz < milzfloo

finite in one norm implies finite in all others
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BIBO stability

Definition
The system

z(t) = Az(t) + Bu(t), z(0)= zo,
y(t) = Cz(t) + Du(t),

is said to be bounded-input, bounded-output stable if there exists a n > 0 such that

[ylloo < nllulloc forall u,y.

Note: Some textbooks us the definition: ||y|lco < 00 When [Jullo < o0

® for linear systems, the two are equivalent

BIBO Stability



BIBO stability theorem

a linear dynamical system is full characterized by its impulse response matrix H

y(t) = /000 H(t — 7)u(r)dr.

the (i, )™ entry of H, h;;(-) is the impulse response from the j input to the ith
output.

Theorem

A continuous-time LTI system with m inputs and p outputs, and impulse response
matrix H(t) is BIBO stable iff

m

oo
hi;(t)|dt < oo.
2,2 ), o<
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BIBO proof sketch

(sufficiency)
Let w be an input signal such that ||u]|sc < co and we have that

(t) = /0 = H(t — ryu(r)dr.

then

max |y;(¢)| = max / Z hij(t — T)uj(T)dr

1<i<p

max/ Zlhlﬂ (t —7)|d7 | max sup\uj( )|
J

Thus, taking supremum over ¢

m
Jollee = supmax yi(0)] < |max > [ Ihss0lat]| o
=1

BIBO Stability
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Notes

® for state-space systems (A, B, C, D) the impulse response matrix is

H(t) = Ce B + Dé(t).
® the quantity n = maxi<;<p 3704 Jo 7 |hgj(t)|dt is the smallest 7 that satisfies

[9lloo < mllufloc forall  u,y.

Question

how does BIBO stability relate to internal stability?

BIBO Stability
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Internal Stability Implies BIBO Stability

the impulse response of (A, B,C, D) is

H(t) = Ce**B + D§(t)

taking a Laplace transform L{H(t)} gives

H(s)=C(sI—A)~'B+D

the system is BIBO stable iff the poles of H(s) are in the open left half plane

equivalently A is Hurwitz

BIBO Stability 13



Relationship Between BIBO and Internal Stability

Theorem
® internal stability = BIBO stability.

® |f (A, B,C, D) is controllable and observable, then

internal stability <= BIBO stability.

we won't formally prove this, instead we focus on intuition

BIBO Stability 14



lllustrative Example

consider the system

(l)}x(t)Jr[ _11 ]u(t)
1].

eigenvalues A = £1 so not internally stable

the transfer function H(s) = C(sI — A)~'B is:

H(s)=1[0 1}{_? ’iyl[’i

s—1
s—D+1)
1
s+1

unstable pole-zero cancellation, but stable transfer function

BIBO Stability
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Change of coordinates...

useT:[

BIBO Stability

1
1

-1

! } and apply (A, B,C, D) — (TAT—1,TB,CT~1) to get

() = [ Y }z(t)—i—[ Y ]u(t)
wt)y=[1 —=1]z@)
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Change of coordinates...

useT:[1 1

Lot } and apply (A, B,C, D) — (TAT—1,TB,CT~1) to get

At = [ Y :|z(t)+[ Y ]u(t)

wt)y=[1 —=1]z@)

the state z; is unstable and uncontrollable!

BIBO Stability
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Observer-based controllers

recall, that for the linear system

z(t) = Az(t) + Bu(t), z(0) = zo
y(t) = Cx(t) + Du(t)

the controller

#(t) = (A+ LC + BF + LDF)&(t) — Ly(t)
u(t) = Fi(t)

produces a closed-loop system with eigenvalues determined by A + BF and A + LC

it was assumed that the interconnection between system and controller “makes sense”

a well-posed system is one where the plant-controller interconnection is well defined

Well-Posedness
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General feedback arrangement

K

the plant G is described by the state-space system:

#(t) = Ae(t) + [ B1 Ba | [ ‘u”((lf)) }

[0 1=[8 o[ B B2 ][40)]
and controller K by

tr(t) = Az (t) + Bry(t)
u(t) = Crzk(t) + Dry(t)

Well-Posedness
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Well-posedness

it will be assumed that:
® (A,B,C) and (Ak, Bg,Ck) are stabilizable, i.e.,
A+ BK and Ak + BgF can be made stable
® (A,B,C) and (Ak, Bg,Ck) are detectable, i.e.,

A+ LC and Ak + HCg can be made stable

Definition
The feedback interconnection G, K is said to be well-posed if solutions exist for

Q?(t)7 Q:K(t)7 y(t)v u(t)v

for all initial conditions z(0), z (0) and inputs w(t).

Note: all “physical” systems are well-posed

Well-Posedness
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Matrix inversion lemma

let A be the square matrix A1 Ay with A1, A4 square
Az Ay

® assume A; nonsingular and define A := Ay — A3A1_1A2. Then,

Ay Ay 17N [ AT AT A AT AZATY —AT ARAY
As Ay - —A~1AzAT! AL

® if A4 is nonsingular, define A=A — AQAZIA;;. Then,

A Ay 1TH A-t —A-1A,A71
Az Ay Tl AT ASATY AT 4 ATTAZAT A ALY

Well-Posedness

)

)
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Theorem
The feedback interconnection

K

is well posed if (I — Daa D)™ 1 exists.

Proof (sketch)

Express u and y as

1 —Dg u(t) 0 Cg x(t) 0
= t
“Dyy I } [ y(t) } [ s 0 ] [ o | T| Doy | ¥
The L.H.S. matrix is invertible iff (I — Do D)~ is invertible (c.f., MIL)

Well-posedness 21



Theorem
The feedback interconnection

K

is well posed if (I — Daa D)™ 1 exists.

Note: if Das = 0 or D = 0 then the closed-loop system is always well-posed

Well-posedness

22



Closed-loop stability

Definition

The closed-loop system G, K is internally stable if it is well posed, and for all initial

conditions z(0) and zx (0), the limits

z(t),zx (t) = 0 as t — oo hold

when w = 0.

internal stability requires:

® (I — D22Dg )~ ! to be invertible

B 0
]Jr{ 0 Bg

to have negative real parts

@® the eigenvalues of

A 0
0 Ag

I[ -

Well-posedness
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Assumptions

for the remainder of the course, unless otherwise stated, we will assume that

® all state space descriptions are minimal realizations

® 3|l feedback connections are well-posed

Well-posedness

24



	Minimal Realizations
	BIBO Stability
	Well-Posedness
	Well-posedness

