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10: Dynamic Controllers: Basics

• minimal realizations (D&P 2.5)

• bounded-input bounded-output stability

• well-posed systems (D&P 5.1)
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Realizations

consider x(0) = 0 and the sysem

ẋ = Ax+Bu

y = Cx+Du,

the map from input u to output y(t) is

y(t) =

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

• take the view point that the map u 7→ y(y) is the object of interest

• the state space system (A,B,C,D) is just a realization of this map

• the same u 7→ y(y) can be “realized” from many different choices of (A,B,C,D)

(A,B,C,D) → (TAT−1, TB,CT−1, D)
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Equivalent realizations

if for all u and t ≥ 0∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t) =

∫ t

0
C1e

A1(t−τ)B1u(τ)dτ +D1u(t) (†)

then the realizations (A,B,C,D) and (A1, B1, C1, D1) are said to be equivalent

• clearly it must hold that D = D1 because we require Du(0) = D1u(0)

• note that CeA(t−τ)B hides the state dimension

• among all equivalent realizations, it is convenient to work with realization with
smallest state dimension
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Equivalence tests

Lemma
The realizations (A,B,C,D) and (A1, B1, C1, D1) are equivalent, if and only if
D = D1 and

CeAtB = C1e
A1tB1 for all t ≥ 0.

an alternative characterization:

Lemma
The realizations (A,B,C,D) and (A1, B1, C1, D1) are equivalent, if and only if
D = D1 and

CAkB = C1A
k
1B1 for all k ≥ 0.
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Lemma
The realizations (A,B,C,D) and (A1, B1, C1, D1) are equivalent, if and only if
D = D1 and

CeAtB = C1e
A1tB1 for all t ≥ 0.

Proof[scalar case]

• sufficiency is clear, focus on necessity

• instead of (†) consider∫ t

0

{
CeA(t−τ)B − C1e

A1(t−τ)B1

}
u(τ)dτ = 0,

need to show that the term in blue is identically zero

• assume the contrapositive; for some t0 ≥ 0, no equality, define

u(t) := CeA(t0+1−t)B − C1e
A1(t0+1−t)B1 =⇒ u(1) ̸= 0

• thus at t = t0 + 1, apply u(t) above∫ t0+1

0

{
CeA(t0+1−τ)B − C1e

A1(t0+1−τ)B1

}
dτ =

∫ t0+1

0
|u(τ)|2dτ > 0.
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Controllability and observability

Theorem
Suppose (A,B,C,D) is a system realization. Then, if (A,B) is not controllable, or,
(A,C) is not observable, then there exists a lower-order realization for the system.

Proof

• focus on controllability, analogous result for observability

• put system into controllable canonical form

TAT−1 =

[
Ã11 Ã12

0 Ã22

]
, TB =

[
B̃1

0

]
, and CT−1 = [C̃1 C̃2],

then

CeAtB = [C̃1 C̃2]

[
eÃ11t ?
0 ?

] [
B̃1

0

]
= C̃1e

Ã11tB̃t

• apply lemma with A1 = Ã11, B1 = B̃1, C1 = C̃1
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Minimal realizations

Definition
A realization with the with the smallest possible state dimension is called a minimal
realization.

Theorem
If (A,B) is controllable and (A,C) is observable, then (A,B,C,D) is a minimal
realization.
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L∞-norm recap

recall the definition of the L∞[0,∞) norm of a signal u with u(t) ∈ Cm:

∥u∥L∞[0,∞)︸ ︷︷ ︸
signal norm

:= sup
t∈[0,∞)

∥u(t)∥∞ = sup
t∈[0,∞)

max
1≤i≤m

|ui(t)|︸ ︷︷ ︸
∥u(t)∥∞: vector norm

• important to draw a distinction between vectors, u(t) and signals u as we will
often refer to ∥u∥L∞[0,∞) as ∥u∥∞

• we only consider the interval [0,∞), so we omit from notation

• we could use any ℓp-norm, on u(t) because of equivalence of norms:

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤
√
m∥x∥2 ≤ m∥x∥∞

finite in one norm implies finite in all others
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BIBO stability

Definition

The system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t),

is said to be bounded-input, bounded-output stable if there exists a η > 0 such that

∥y∥∞ ≤ η∥u∥∞ for all u, y.

Note: Some textbooks us the definition: ∥y∥∞ < ∞ when ∥u∥∞ < ∞

• for linear systems, the two are equivalent
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BIBO stability theorem

a linear dynamical system is full characterized by its impulse response matrix H

y(t) =

∫ ∞

0
H(t− τ)u(τ)dτ.

the (i, j)th entry of H, hij(·) is the impulse response from the jth input to the ith

output.

Theorem
A continuous-time LTI system with m inputs and p outputs, and impulse response
matrix H(t) is BIBO stable iff

max
1≤i≤p

m∑
j=1

∫ ∞

0
|hij(t)|dt < ∞.
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BIBO proof sketch

(sufficiency)
Let u be an input signal such that ∥u∥∞ < ∞ and we have that

y(t) =

∫ ∞

0
H(t− τ)u(τ)dτ.

then

max
1≤i≤p

|yi(t)| = max
i

∣∣∣∣∣∣
∫ ∞

0

m∑
j=1

hij(t− τ)uj(τ)dτ

∣∣∣∣∣∣
≤

max
i

∫ ∞

0

m∑
j=1

|hij(t− τ)|dτ

max
j

sup
t

|uj(t)|.

Thus, taking supremum over t

∥y∥∞ = sup
t

max
i

|yi(t)| ≤

max
i

m∑
j=1

∫
|hij(t)|dt

 ∥u∥∞.
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Notes

• for state-space systems (A,B,C,D) the impulse response matrix is

H(t) = CeAtB +Dδ(t).

• the quantity η = max1≤i≤p
∑m

j=1

∫∞
0 |hij(t)|dt is the smallest η that satisfies

∥y∥∞ ≤ η∥u∥∞ for all u, y.

Question

how does BIBO stability relate to internal stability?
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Internal Stability Implies BIBO Stability

the impulse response of (A,B,C,D) is

H(t) = CeAtB +Dδ(t)

taking a Laplace transform L{H(t)} gives

H(s) = C(sI −A)−1B +D

the system is BIBO stable iff the poles of H(s) are in the open left half plane

equivalently A is Hurwitz
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Relationship Between BIBO and Internal Stability

Theorem
• internal stability ⇒ BIBO stability.

• If (A,B,C,D) is controllable and observable, then

internal stability ⇐⇒ BIBO stability.

we won’t formally prove this, instead we focus on intuition
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Illustrative Example

consider the system

ẋ(t) =

[
0 1
1 0

]
x(t) +

[
−1
1

]
u(t)

y(t) =
[

0 1
]
.

eigenvalues λ = ±1 so not internally stable

the transfer function H(s) = C(sI −A)−1B is:

H(s) =
[

0 1
] [ s −1

−1 s

]−1 [ −1
1

]
=

s− 1

(s− 1)(s+ 1)

=
1

s+ 1

unstable pole-zero cancellation, but stable transfer function
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Change of coordinates...

use T =

[
1 1
1 −1

]
and apply (A,B,C,D) 7→ (TAT−1, TB,CT−1) to get

ż(t) =

[
1 0
0 −1

]
z(t) +

[
0

−1

]
u(t)

w(t) =
[

1 −1
]
z(t)

the state z1 is unstable and uncontrollable!
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Observer-based controllers

recall, that for the linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t) +Du(t)

the controller

˙̂x(t) = (A+ LC +BF + LDF )x̂(t)− Ly(t)

u(t) = F x̂(t)

produces a closed-loop system with eigenvalues determined by A+BF and A+ LC

it was assumed that the interconnection between system and controller “makes sense”

a well-posed system is one where the plant-controller interconnection is well defined
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General feedback arrangement

the plant G is described by the state-space system:

ẋ(t) = Ax(t) +
[

B1 B2
] [ w(t)

u(t)

]
[

z(t)
y(t)

]
=

[
C1

C2

]
x(t) +

[
D11 D12

D21 D22

] [
w(t)
u(t)

]
and controller K by

ẋK(t) = AKxK(t) +BKy(t)

u(t) = CKxK(t) +DKy(t)
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Well-posedness

it will be assumed that:

• (A,B,C) and (AK , BK , CK) are stabilizable, i.e.,

A+BK and AK +BKF can be made stable

• (A,B,C) and (AK , BK , CK) are detectable, i.e.,

A+ LC and AK +HCK can be made stable

Definition
The feedback interconnection G,K is said to be well-posed if solutions exist for

x(t), xK(t), y(t), u(t),

for all initial conditions x(0), xK(0) and inputs w(t).

Note: all “physical” systems are well-posed
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Matrix inversion lemma

let A be the square matrix

[
A1 A2

A3 A4

]
with A1, A4 square

• assume A1 nonsingular and define ∆ := A4 −A3A
−1
1 A2. Then,[

A1 A2

A3 A4

]−1

=

[
A−1

1 +A−1
1 A2∆−1A3A

−1
1 −A−1

1 A2∆−1

−∆−1A3A
−1
1 ∆−1

]

• if A4 is nonsingular, define ∆̂ := A1 −A2A
−1
4 A3. Then,[

A1 A2

A3 A4

]−1

=

[
∆̂−1 −∆̂−1A2A

−1
4

−A−1
4 A3∆̂−1 A−1

4 +A−1
4 A3∆̂−1A2A

−1
4

]
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Theorem
The feedback interconnection

is well posed if (I −D22DK)−1 exists.

Proof (sketch)

Express u and y as[
I −DK

−D22 I

] [
u(t)
y(t)

]
=

[
0 CK

C2 0

] [
x(t)
xK(t)

]
+

[
0

D21

]
w(t)

The L.H.S. matrix is invertible iff (I −D22DK)−1 is invertible (c.f., MIL)
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Theorem
The feedback interconnection

is well posed if (I −D22DK)−1 exists.

Note: if D22 = 0 or DK = 0 then the closed-loop system is always well-posed
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Closed-loop stability

Definition

The closed-loop system G,K is internally stable if it is well posed, and for all initial
conditions x(0) and xK(0), the limits

x(t), xK(t) → 0 as t → ∞ hold

when w = 0.

internal stability requires:

1 (I −D22DK)−1 to be invertible

2 the eigenvalues of[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 C2

CK 0

]
to have negative real parts

Well-posedness 23



Assumptions

for the remainder of the course, unless otherwise stated, we will assume that

• all state space descriptions are minimal realizations

• all feedback connections are well-posed
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