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11: H2 Optimal Control

• defining the closed-loop map (D&P §5.1–5.2)

• the H2 system norm (D&P §6)

• the H2 optimal control problem (D&P §6.4)

• the linear quadratic regulator

1



General feedback arrangement

the plant G is described by the state-space system:

ẋ(t) = Ax(t) +
[

B1 B2
] [ w(t)

u(t)

]
[

z(t)
y(t)

]
=

[
C1

C2

]
x(t) +

[
D11 D12

D21 D22

] [
w(t)
u(t)

]
and controller K by

ẋK(t) = AKxK(t) +BKy(t)

u(t) = CKxK(t) +DKy(t)
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State feedback

• G is described by

ẋ(t) = Ax(t) +
[

0 B2
] [ w(t)

u(t)

]
[

z(t)
y(t)

]
=

[
I
I

]
x(t) +

[
0 0
0 0

] [
w(t)
u(t)

]
• K is described by

ẋK(t) = 0xK(t) + 0y(t)

u(t) = 0xK(t) +DKy(t)

ẋ = Ax+B2u

DK

xu
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Luenberger-based controller

• G has an output map

ẋ(t) = Ax(t) +
[

0 B2
] [ w(t)

u(t)

]
[

z(t)
y(t)

]
=

[
I
C2

]
x(t) +

[
0 0
0 D22

] [
w(t)
u(t)

]

• K is dynamic[
AK BK

CK DK

]
=

[
A+ LC +BF + LDF −L

F 0

]
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Assumptions

it will be assumed that:

• (A,B) and (AK , BK) are stabilizable, i.e.,

A+BK and AK +BKF can be made stable

• (A,C) and (AK , CK) are detectable, i.e.,

A+ LC and AK +HCK can be made stable

Definition
The feedback interconnection G,K is said to be well-posed if solutions exist for

x(t), xK(t), y(t), u(t),

for all initial conditions x(0), xK(0) and inputs w(t).

Note: all “physical” systems are well-posed
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Theorem
The feedback interconnection

is well posed if (I −D22DK)−1 exists.

Note:

• if D22 = 0 or DK = 0 then the closed-loop system is always well-posed

• (I −D22DK)−1 exists iff (I −DKD22)−1 =: Q exists
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Closed-loop stability

Definition

The closed-loop system G,K is internally stable if it is well posed, and for all initial
conditions x(0) and xK(0), the limits

x(t), xK(t) → 0 as t → ∞ hold

when w = 0.

internal stability requires:

1 (I −D22DK)−1 to be invertible

2 the eigenvalues of[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 C2

CK 0

]
to have negative real parts
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Assumptions

for the remainder of the course, unless otherwise stated, we will assume that

• all state space descriptions are minimal realizations

• all feedback connections are well-posed

• the appropriate matrices are stabilizable and detectable
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Closed-loop dynamics

the closed-loop system defines the map from w to z with states xcl =

[
x
xK

]
the system has the form

ẋcl(t) = Axcl(t) + Bw(t)

z(t) = Cxcl(t) +Dw(t)

compactly we write the map as

z = Fl(G,K)w
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Closed-loop dynamics: A,B

eliminating u and y:[
I −DK

−D22 I

] [
u(t)
y(t)

]
=

[
0 CK

C2 0

] [
x(t)
xK(t)

]
+

[
0

D21

]
w(t)

substitute the above expression for u and y into[
ẋ
ẋK

]
=

[
A 0
0 AK

] [
x
xK

]
+

[
B2 0
0 BK

] [
u
y

]
+

[
B1

0

]
w

to get[
ẋ
ẋK

]
=

([
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

])
︸ ︷︷ ︸

[
x
xK

]

A

+

[
B1 + B2DKQD21

BKQD21

]
︸ ︷︷ ︸w

B
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Closed-loop dynamics: C,D

now we construct the output equation z(t) = Cxcl(t) +Dw(t):

z =
[

C1 0
] [ x

xK

]
+
[

D12 0
] [ u

y

]
+D11w.

Again, substitute[
I −DK

−D22 I

] [
u
y

]
=

[
0 CK

C2 0

] [
x
xK

]
+

[
0

D21

]
w,

to obtain

C

z =

︷ ︸︸ ︷([
C1 0

]
+
[

D12 0
] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

])[
x
xK

]
+ (D11 +D12DKQD21)︸ ︷︷ ︸w.

D

Closed-loop Map 11



Closed-loop dynamics: C,D

now we construct the output equation z(t) = Cxcl(t) +Dw(t):

z =
[

C1 0
] [ x

xK

]
+
[

D12 0
] [ u

y

]
+D11w.

Again, substitute[
I −DK

−D22 I

] [
u
y

]
=

[
0 CK

C2 0

] [
x
xK

]
+

[
0

D21

]
w,

to obtain

C

z =

︷ ︸︸ ︷([
C1 0

]
+
[

D12 0
] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

])[
x
xK

]
+ (D11 +D12DKQD21)︸ ︷︷ ︸w.

D

Closed-loop Map 11



Closed-loop dynamics: C,D

now we construct the output equation z(t) = Cxcl(t) +Dw(t):

z =
[

C1 0
] [ x

xK

]
+
[

D12 0
] [ u

y

]
+D11w.

Again, substitute[
I −DK

−D22 I

] [
u
y

]
=

[
0 CK

C2 0

] [
x
xK

]
+

[
0

D21

]
w,

to obtain

C

z =

︷ ︸︸ ︷([
C1 0

]
+
[

D12 0
] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

])[
x
xK

]
+ (D11 +D12DKQD21)︸ ︷︷ ︸w.

D

Closed-loop Map 11



Optimal control

Choose

[
AK BK

CK DK

]
in order to minimize ∥Fl(G,K)∥:

∥∥∥∥∥∥∥∥∥∥∥∥



[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

]
B1 + B2DKQD21

BKQD21

[
C1 0

]
+

[
D12 0

] [ I −DK
−D22 I

]−1 [
0 CK

C2 0

]
D11 + D12DKQD21



∥∥∥∥∥∥∥∥∥∥∥∥

where Q = (I −DKD22)−1

• clearly not convex in (AK , BK , CK , DK)

• which norm should we use?
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System norms

• in the context of BIBO stability, we looked at L∞ → L∞ norm
– clearly (!) this is called the L1-induced norm

• minimizing the closed-loop in this norm is called L1-optimal control

• L1 optimal control in general is difficult to solve

instead, we will look at two other systems norms:

• the H2-norm: average energy

• the H∞-norm: quantifies the peak energy of a stable system
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The H2-norm: Impulse response interpretation

consider the system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

which has a transfer matrix

Ĝ(s) = C(sI −A)−1B

and impulse response
H(t) = CeAtB

Definition
Assume G = (A,B,C) is controllable and observable, the H2-norm of G is

∥G∥H2
=

(∫ ∞

0
∥H(t)∥2F dt

) 1
2

=

(
1

2π

∫ ∞

−∞
∥G(jω)∥2F dω

) 1
2

.
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The H2-norm: White noise response

consider the system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

H2 norm interpreted as the average energy of y when w is white noise:

∥G∥H2
= E

∫ ∞

0
∥y(t)∥22 = E ∥y∥L2[0,∞)]

• w(t) satisfies Ew(t) = 0, E[w(t)w(t)T ] = Qδ(t− τ)

• in discrete time wk ∼ N(0, Q)

Note

in both interpretations, the initial condition does not affect the H2 norm
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Computing the H2-norm

Theorem
Assume A is Hurwitz and (A,B,C) controllable and observable. Then

∥G∥H2
=
(
trace(BTPB)

) 1
2
,

where P solves the Lyapunov equation ATP + PA+ CTC = 0.

Equivalently,

∥G∥H2
=
(
trace(CQCT )

) 1
2
,

where where Q solves the Lyapunov equation AQ+QAT +BBT = 0.

Proof.
Apply the definition and make use of the linearity of the trace function.
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Equations and gramians

Controllability gramian: AXc +XcAT +BBT = 0

Observability gramian: ATYo + YoA+ CTC = 0

Generalized gramians:

AX +XAT +BBT ⪯ 0 ATY + Y A+ CTC ⪯ 0

Lemma
Suppose A is Hurwitz and Xc satisfies

AXc +XcA
T +Q = 0

where Q is an arbitrary symmetric matrix. If X satisfies

AX +XAT +Q ⪯ 0,

then X ⪰ Xc.
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Useful matrix inequality facts

Monotonicity of the trace

given two symmetric matrices X and Y , then

X ⪯ Y =⇒ TrX ≤ TrY

n.b. the converse is not true

Schur complement

given matrices Q,M and R with M and Q being symmetric, then the following
statements are equivalent:

1 the following two matrix inequalities hold:

Q ≻ 0 and M −RQ−1RT ≻ 0.

2 the linear matrix inequality [
M R
RT Q

]
≻ 0

is satisfied.
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Computing the H2-norm with an LMI

Theorem

Let G =

[
A B
C 0

]
, then A is Hurwitz and ∥G∥H2 < 1 if and only if there exists a

symmetric matrix X ≻ 0 such that

trace(CXCT ) < 1 and AX +XAT +BBT ≺ 0.
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Proof.
(“only if”)

1 by hypothesis A is Hurwitz and trace(CXCT ) < 1

2 we know X ⪰ Xc, this implies trace(CXcCT ) < 1

3 define

X =

∫ ∞

0
etA(BBT + ϵI)etA

T
dt for ϵ > 0,

R.H.S. is a continuous function of ϵ and X = Xc when ϵ = 0

4 thus, X satisfies
AX +XAT +BBT + ϵI = 0.

(”if”)

1 same idea, start with ATX +XA+BBT ≺ 0 and work backwards.
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The H2 optimal control problem

• we only cover the full information control problem

• given a system of the form

G =

 A B1 B2

C1 0 D12

I 0 0

 , where A ∈ Rn×n, B1 ∈ Rn×p, B2 ∈ Rn×m, C1 ∈ Rq×n

find a controller K with structure

K =

[
0 0
0 F

]
that minimizes ∥Fl(G,K)∥H2

• no loss in achievable performance by using a static controller (skip proof of this)
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LMI solution to the full-information H2 control problem

Theorem
There exists a feedback law u = Kx that internally stabilizes G and satisfies

∥Fl(G,K)∥ < 1

if and only if there exist symmetric matrices X ∈ Rn×n, W ∈ Rq×q , and a
rectangular matrix Z ∈ Rm×n such that

F = ZX−1

and the following inequalities are satisfied:

[
A B2

] [X
Z

]
+
[
X ZT

] [AT

BT
2

]
+B1B

T
1 ≺ 0,[

W C1X +D12Z
(C1X +D12Z)T X

]
≻ 0,

trace(W ) < 1.

Proof.
H2 lemma, monotonicity of trace, Schur complement.
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LQR as a special case of H2-control

The Linear Quadratic Regulator:

the LQR problem requires finding a control input u(t) such that∫ ∞

0

(
x(t)TQx(t) + u(t)Ru(t)

)
dt

is minimized, subject to ẋ(t) = Ax(t) +Bu(t), Q ⪰ 0 and R ≻ 0 are given

• x(t)TQx(t) penalizes the deviation of x from 0 at time t

• u(t)TRu(t) penalizes the magnitude of the input u at time t

• objectives are in competition with each other

using the notation for the general problem, the state equation is

ẋ(t) = A(t) +B1w(t) +B2u(t)

and we assume wi(t) = δ(t) · ei

LQR 23
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Defining z

construct the fictitious output

z(t) =

[
Q

1
2

0

]
x(t) +

[
0

R
1
2

]
u(t)

where Q = Q
1
2 Q

1
2 , R = R

1
2 R

1
2

H2-control is then simply finding K to minimize ∥z∥L2[0,∞)

using the control law u(t) = Kx(t), the closed-loop system is

x(t) = (A+BK)x(t) + w(t)

z(t) =

[
Q

1
2

R
1
2 K

]
x(t)

y(t) = x(t)
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Finite-horizon, discrete-time LQR

consider the discrete time system

xt+1 = Axt +But, t = 0, . . . , N

with initial condition x0 = xinit over time horizon N

control objective: pick inputs u0, u1, . . . , uN−1 in order to make

• x0, x1, . . . small (i.e., good regulation regulation or control)

• u0, u1, . . . small (i.e., input efficiency)
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cost function

define the quadratic cost function

J(u) := minimize
u0,u1,...uN−1

N−1∑
i=1

(xT
t Qxt + uT

t Rut) + xT
NQfxN

where Q ⪰ 0 , Qf ⪰ 0, and R ≻ 0 are given

positive (semi)definiteness ensure the minimum possible cost is non-negative

• Q determines the state cost and Qf the terminal state cost

• R determines the input cost, R ≻ 0 means any (non-zero) input adds to J
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LQR solution via dynamic programming

• dynamic programming provides a recursive method for solving the LQR problem

• broadly applicable to many problems sequential decision making

• idea: break problem into a sequence of problems, solve backwards in time
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Value function

for t = 0, . . . , N define the value function is defined as

Vt(z) = minimize
ut,...,uN−1

N−1∑
τ=t

(xT
τ Qxτ + uτ

TRuτ ) + xT
NQfxN

s.t. xt = z, xτ+1 = Axτ +Buτ , τ = t, . . . , N − 1

• Vt aka value function, Bellman equation, Hamilton-Jacobi Equation...

• Vt(z) gives the minimum LQR cost-to-go, starting from state z at time t

• V0(x0) recovers the LQR problem exactly

• the larger t is, the fewer decisions there are to be made

• at the t = N , there is no decision to make

VN (z) = zTQf z

• dynamic programming: solve for Vk in terms of Vk+1 until we hit V0

LQR 28
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Dynamic programming

begin by taking the value function and pull the first stage cost out:

Vt(z) = min
ut

min
ut+1,...uN−1

xT
t Qxt + uT

t Rut +

N−1∑
k=t+1

(xT
k Qxk + uT

k Ruk) + xT
NQfxN



= min
ut

xT
t Qxt + uT

t Rut + min
ut+1,...uN−1

 N−1∑
k=t+1

(xT
k Qxk + uT

k Ruk) + xT
NQfxN



to simplify, relabel ut as w to get

Vt(z) = min
w

zTQz+wTRw+ min
ut+1,...uN−1

 N−1∑
k=t+1

(xT
k Qxk + uT

k Ruk) + xT
NQfxN


︸ ︷︷ ︸

Vt+1(Az +Bw)

where xt+1 = Az +Bw
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the value function can now be written recursively as

Vt(z) = min
w

(
zTQz + wTRw + Vt+1(Az +Bw)

)

it will now be shown that Vt is a quadratic function (for all t, not just t = N):

assume that Vt(z) = zTPtz for some Pt, then

Vt(z) = min
w

(
zTQz + wTRw + Vt+1(Az +Bw)

)
= min

w

(
zTQz + wTRw + (Az +Bw)TPt+1(Az +Bw)

)

solving for w by expanding, and setting the derivative to zero gives

2wTR+ 2(Az +Bw)TPt+1B = 0

from which
w⋆ = −(R+BTPt+1B)−1BTPt+1Az
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finally, to show Vt is quadratic, substitute w⋆ into value function

Vt(z) = zTQz + w⋆TRw⋆ + (Az +Bw⋆)TPt+1(Az +Bw⋆)

= zT
(
ATPt+1A+Q−ATPt+1B(BTPt+1B +R)−1BTPt+1A

)
︸ ︷︷ ︸ z

Pt

moreover, Pt ⪰ 0
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LQR algorithm

1 PN := Qf

2 for t = N down to t = 1:

Pt−1 := Q+ATPtA−ATPtB(R+BTPtB)−1BTPtA

3 for t = 0 up to t = N − 1:

Kt := −(R+BTPt+1B)−1BTPt+1A

4 for t = 0 up to t = N − 1:

ulqr
t := Ktxt

Notes

• optimal control input is linear in the state xt

• Pt and Kt can be computed ahead of time (ut computed in real time)

• cost to go is cost-to-go is Vt(z) = zTPtz.

LQR 32



LQR Example

xt+1 =

[
1.5 −0.5
0.75 3.5

]
xt +

[
−0.5
0.25

]
ut

the autonomous part of the system is not internally stable
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LQR Example

xt+1 =

[
1.5 −0.5
0.75 3.5

]
xt +

[
−0.5
0.25

]
ut

the autonomous part of the system is not internally stable

• cost function
24∑
i=1

(xT
t Qxt + uT

t Rut) + xT
25Qx25

with Q = ρI, R = µ

• x0 = [1, 1]T

• will examine the effect of different cost function choices
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1 equal weighting: ρ = µ = 1

2 up-weighting state penalty: ρ = 100, µ = 1

3 up-weighting control penalty: ρ = 1, µ = 100
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Infinite-horizon, discrete time LQR

• linear system dynamics: xt+1 = Axt +But with x0 = xinit and quadratic cost:

J(u) =
∞∑

τ=0

(xT
τ Qxτ + uT

τ Ruτ )

• assume (A,B) controllable

• controllability =⇒ existence of n such that uτ = 0 for all τ > n =⇒ J(u) < ∞

Value function

V (z) = min
u0,u1,...

∞∑
τ=0

(xT
τ Qxτ + uT

τ Ruτ )

s.t. xt = z, xτ+1 = Axτ +Buτ

• V is not a function of t (c.f. finite-horizon case)
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Solution derivation

• the value function is quadratic, i.e., V (z) = zTPz with P ⪰ 0

• V again expressed recursively:

V (z) = min
w

(zTQz + wTRw + V (Az +Bw))

• using the quadratic “assumption”

zTPz = min
w

(

(#)︷ ︸︸ ︷
zTQz + wTRw + (Az +Bw)TP (Az +Bw))

• wopt = −(R+BTPB)−1BTPAz

• to obtain P , substitute wopt into (#) to get

zT (Q+ATPA−ATPA(R+BTPB)−1BTPA)z
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Solution

the optimal controller is ut = Kxt, where

K = −(R+BTPB)−1BTPA

• contrast this to finite-horizon case

• P obtained from solving

P = Q+ATPA−ATPA(R+BTPB)−1BTPA (#)

• (#) is the Discrete Algebraic Riccati Equation (DARE)

• >>DARE in MATLAB

• scipy.linalg.solve discrete are in Python

• does not require a recursive solution for P , solve DARE once
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Infinite vs finite horizon

• T = 7 shown below

• T > 12 almost impossible to distinguish

• in general, Pt converges quickly as t gets further below N
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Continuous-time LQR

quadratic cost function and linear dynamics, (A,B) controllable

min
u

∫ ∞

0

(
x(t)TQx(t) + u(t)Ru(t)

)
dt

s.t. ẋ(t) = Ax(t) +Bu(t)

many ways to obtain the solution (we omit details)

• optimal controller is static, u(t) = Kx(t) where

K = −R−1BTP

and P is obtained by solving the Algebraic Riccati Equation (ARE)

Q+ATP + PA− PBR−1BTP = 0

• >>CARE in MATLAB

• A+BK is stable if (A,B) controllable and (A,Q) detectable
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