James Anderson, Columbia University, E6602

11: H, Optimal Control

® defining the closed-loop map (D&P §5.1-5.2)
® the H2 system norm (D&P §6)
® the H2 optimal control problem (D&P §6.4)

® the linear quadratic regulator



General feedback arrangement

K

the plant G is described by the state-space system:

#(t) = Ae(t) + [ B1 Ba | [ ‘u”((lf)) }

[0 1=[8 o[ B B2 ][40)]
and controller K by

tr(t) = Az (t) + Bry(t)
u(t) = Crzk(t) + Dry(t)

Closed-loop Map



State feedback
® (G is described by

i(t)=Az@®)+[ 0 Bz ] [

L =L o0 o]

® K is described by

u(t) = Oz g () + Dxy(t)

& = Az + Bau

Dg

Closed-loop Map



Luenberger-based controller

® G has an output map

#(t) = Az(t) + [ 0 Bs | [ u((zf)) }

L =Le o[ o ][]

Bk | _[ A+ LC+BF+LDF | —L
- F | ©

Closed-loop Map



Assumptions

it will be assumed that:
® (A, B) and (Ak, Bk) are stabilizable, i.e.,
A+ BK and Ak + BgF can be made stable

® (A,C) and (Ak,Ck) are detectable, i.e.,

A+ LC and Ag + HCk can be made stable

Definition
The feedback interconnection G, K is said to be well-posed if solutions exist for

$(t), TK (t)7 y(t)1 u(t)v

for all initial conditions z(0), zx (0) and inputs w(t).

Note: all “physical” systems are well-posed

Closed-loop Map



Theorem
The feedback interconnection

K

is well posed if (I — D22 D)~ exists.

Note:
® if Do =0 or D = 0 then the closed-loop system is always well-posed

® (I — DagDp )~ 1 exists iff (I — Dy Da2)™! =: Q exists

Closed-loop Map



Closed-loop stability

Definition

The closed-loop system G, K is internally stable if it is well posed, and for all initial

conditions z(0) and zx (0), the limits

z(t),zx (t) = 0 as t — oo hold

when w = 0.

internal stability requires:

® (I — D22Dg )~ ! to be invertible

@® the eigenvalues of

A 0 i By 0 I
0 Ag 0 Bg —D2o
to have negative real parts

Closed-loop Map



Assumptions

for the remainder of the course, unless otherwise stated, we will assume that

® all state space descriptions are minimal realizations

® 3|l feedback connections are well-posed

® the appropriate matrices are stabilizable and detectable

Closed-loop Map



Closed-loop dynamics

[
|

K

. . x
the closed-loop system defines the map from w to z with states z, = [ n ]
K

the system has the form

Zel(t) = Az (t) 4+ Bw(t)
2(t) = Cxq (t) + Dw(t)

compactly we write the map as

z=F(G, K)w

Closed-loop Map



Closed-loop dynamics: A, B

—11)22 _?K } [ Zgg } - { 002 C;)K ] { ;2(3) ]+{ D(; }w(t)
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Closed-loop dynamics: A, B

eliminating w and y:
e I I A S I PN R P EC

substitute the above expression for u and y into
T A 0 T Ba 0 u B
L=l L L s [ [ ]
to get
i |_([4 0 ],[B 0 I —Dg ]7'[ 0 Ck
T - Ak 0 Bk — Do I Cy 0

Bi + B2Dg QD21
+ [ Bk QD2 v

o

B

Closed-loop Map



Closed-loop dynamics: C,D

now we construct the output equation z(t) = Cz(t) + Dw(t):

= 0][ v ]+[D12 o]{ﬂ+pnw.

TK

Closed-loop Map
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Closed-loop dynamics: C,D

now we construct the output equation z(t) = Cz(t) + Dw(t):

= 0][5{]+[D12 o]{”+pnw.

Again, substitute

Lo L]l Sl e Lo ]

Closed-loop Map 11



Closed-loop dynamics: C,D

now we construct the output equation z(t) = Cz(t) + Dw(t):

= 0}[5{]+[D12 0]{Z}+an.

Again, substitute

Lo L]l Sl e Lo ]

to obtain

S CRIRTIAE TS (P

+ (D11 + D12DgQD21) w.

D

Closed-loop Map 11



Optimal control

Choose |: A | Bre } in order to minimize ||F;(G, K)|[:

Ck | Dk
A 0 By 0 I —Dy 171 0 Ck By + Ba Dy QDay
o aAx |t o By — Doy 1 cy 0 By QDo
I —-Di 171 o Ci
[ €1 0 ]4+[ D12 0] { — Doy 1 ] { Co 3 D11 + D12DgQDgy

where Q = (I — D Dag) ™!

® clearly not convex in (Ax,Bgk,Ck,Dk)

® which norm should we use?

Closed-loop Map 12



System norms

® in the context of BIBO stability, we looked at Looc — Loo norm
— clearly (!) this is called the Lq-induced norm

® minimizing the closed-loop in this norm is called Li-optimal control

® [ optimal control in general is difficult to solve

instead, we will look at two other systems norms:

® the Ha-norm: average energy

® the Hoo-norm: quantifies the peak energy of a stable system

Hso System Norm

13



The Ho-norm: Impulse response interpretation

consider the system

z(t) = Az(t) + Bu(t)
y(t) = Cx(t)

which has a transfer matrix
G(s)=C(sI— A)"'B

and impulse response
H(t) = Ce**B

Definition
Assume G = (A, B, C) is controllable and observable, the Hz-norm of G is

Gl = ([ 1% dt)% ~ (4 [ lcGen? dw)% .

Hso System Norm 14



The H5-norm: White noise response

consider the system

z(t) = Az(t) + Bu(t)
y(t) = Ca(t)

Ha2 norm interpreted as the average energy of y when w is white noise:

Gl = E/O ly@IIZ = E 1yl £410,00))

® w(t) satisfies Ew(t) = 0, Elw()w(t)T] = Q5(t — 7)
® in discrete time wg ~ N(0,Q)

Ho System Norm
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The H5-norm: White noise response

consider the system

z(t) = Az(t) + Bu(t)
y(t) = Ca(t)

Ha2 norm interpreted as the average energy of y when w is white noise:

Gl = E/O ly@IIZ = E 1yl £410,00))

® w(t) satisfies Ew(t) = 0, Elw()w(t)T] = Q5(t — 7)
® in discrete time wg ~ N(0,Q)

Note

in both interpretations, the initial condition does not affect the H2 norm

Hso System Norm 15



Computing the Ho-norm

Theorem
Assume A is Hurwitz and (A, B, C) controllable and observable. Then

1
|Gl = (trace(BTPB)> 2

where P solves the Lyapunov equation AT P + PA+ CTC = 0.

Equivalently,
1
|Gl = (trace(CQCT))?

where where Q solves the Lyapunov equation AQ + QAT + BBT = 0.

Proof.

Apply the definition and make use of the linearity of the trace function.

Hso System Norm

16



Equations and gramians
Controllability gramian: AX. + X.AT + BBT =0
Observability gramian: ATY, + Y, A+CTC =0

Generalized gramians:

AX + XAT + BBT <0 ATy + YA+ CTC <0

Hso System Norm
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Equations and gramians
Controllability gramian: AX. + X.AT + BBT =0
Observability gramian: ATY, + Y, A+CTC =0

Generalized gramians:

AX + XAT + BBT <0 ATy + YA+ CTC <0

Lemma
Suppose A is Hurwitz and X satisfies

AXc+XcAT+Q:0
where Q is an arbitrary symmetric matrix. If X satisfies
AX + XAT +Q =0,

then X = Xc.

Hso System Norm
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Useful matrix inequality facts

Monotonicity of the trace

given two symmetric matrices X and Y, then
XY = TrX<TrY

n.b. the converse is not true

Ho System Norm
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Useful matrix inequality facts

Monotonicity of the trace
given two symmetric matrices X and Y, then
XY = TrX<TrY

n.b. the converse is not true

Schur complement

given matrices Q, M and R with M and @ being symmetric, then the following
statements are equivalent:

® the following two matrix inequalities hold:
Q>0 and M—RQ 'RT -o0.
@® the linear matrix inequality
Mo R >0
RT Q@

is satisfied.

Hso System Norm

18



Computing the Hs-norm with an LMI

Theorem

A | B
c|o0

symmetric matrix X > 0 such that

Let G = { } , then A is Hurwitz and ||G||4, < 1 if and only if there exists a

trace(CXCT) <1 and AX+ XAT + BBT <.

Ho System Norm
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Proof.
(“only if")
@ by hypothesis A is Hurwitz and trace(CXC7T) < 1

® we know X > X, this implies trace(CX.CT) < 1

© define
X = / ABBT + EI)etA dt  for e > 0,

R.H.S. is a continuous function of € and X = X. when e =0

o thus, X satisfies
AX 4+ XAT + BBT eI =0.
(if")
©® same idea, start with AT X + XA + BBT < 0 and work backwards.

Hso System Norm 20



The Hs optimal control problem

® we only cover the full information control problem

® given a system of the form

A | By Bs
0 D12
0 0

G

,  where A € R"*™ By € R"*P, By € R"*™ (7 € R¥X"

find a controller K with structure

4]

that minimizes || 7 (G, K)||n,

® no loss in achievable performance by using a static controller (skip proof of this)

Ho optimal control o1



LMI solution to the full-information 75 control problem

Theorem
There exists a feedback law w = Kx that internally stabilizes G and satisfies

I7(G, K| <1

if and only if there exist symmetric matrices X € R*"*™, W € R9%9, and a
rectangular matrix Z € R™*"™ such that

F=2zx"1

and the following inequalities are satisfied:

X 1 [AT T
[A Bo] || +[X Z"]|5r|+BiB] <0,
2
w C1X + D22 .0
(C1X + D122)T X ’

trace(W) < 1.

Proof.

Ho lemma, monotonicity of trace, Schur complement.

Ho optimal control
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LQR as a special case of H,-control

The Linear Quadratic Regulator:

the LQR problem requires finding a control input u(¢) such that

/O (:c(t)TQx(t) + u(t)Ru(t)) at

is minimized, subject to ©(t) = Az(t) + Bu(t), @ = 0 and R > 0 are given

e 2(t)TQx(t) penalizes the deviation of z from 0 at time ¢
e u(t)T Ru(t) penalizes the magnitude of the input u at time ¢

® objectives are in competition with each other

LQR
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LQR as a special case of H,-control

The Linear Quadratic Regulator:
the LQR problem requires finding a control input u(¢) such that
oo
/ (:c(t)TQx(t) + u(t)Ru(t)) at
0

is minimized, subject to ©(t) = Az(t) + Bu(t), @ = 0 and R > 0 are given

e 2(t)TQx(t) penalizes the deviation of z from 0 at time ¢
e u(t)T Ru(t) penalizes the magnitude of the input u at time ¢

® objectives are in competition with each other

using the notation for the general problem, the state equation is
z(t) = A(t) + Biw(t) + Bau(t)

and we assume w;(t) = 0(t) - ¢;
LQR
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Defining =

construct the fictitious output

u(t)

_ @2
2(t) = { 0 ]$(t)+ Rl

where Q = Q%Q%,R: RIR3

Ha-control is then simply finding K to minimize ||z]|1,[0,00)

using the control law u(t) = Kz(t), the closed-loop system is

a(t) = (A + BK)z(t) + w(t)

_[e ],
2(t) = RéK] (t)
y(t) = o(t)

LQR 24



Finite-horizon, discrete-time LQR

consider the discrete time system

x¢41 = Azg + Bug, t=0,...,N

with initial condition z¢ = it over time horizon N

control objective: pick inputs ug,u1,...,uny—_1 in order to make
® z0,21,... small (i.e., good regulation regulation or control)
® ug,u1,...small (i.e., input efficiency)

LQR

25



cost function

define the quadratic cost function

N-1
J(u) ;= minimize Z (T Qe + ul Rug) + I%Qfo

UQ,UL 5 UN —1 <
=1

where Q = 0, Qf = 0, and R = 0 are given

positive (semi)definiteness ensure the minimum possible cost is non-negative

® @ determines the state cost and Q; the terminal state cost

® R determines the input cost, R > 0 means any (non-zero) input adds to J

LQR
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LQR

LQR solution via dynamic programming

® dynamic programming provides a recursive method for solving the LQR problem
® broadly applicable to many problems sequential decision making

® idea: break problem into a sequence of problems, solve backwards in time

27



Value function

for t = 0,..., N define the value function is defined as
N-1
Vi(z) = minimize Z (2T Qxr + urTRu,) + x%Qfo
Ut yeey WN — 1 —
st. z¢ =2, z;41 =Azxr+Bu,, T=t,...,N—-1

LQR



Value function

for t = 0,..., N define the value function is defined as
N-1
Vi(z) = minimize ; (T Qzr +u:TRus) + 25 Qran

st. z¢ =2, z;41 =Azxr+Bu,, T=t,...,N—-1

® V; aka value function, Bellman equation, Hamilton-Jacobi Equation...

® Vi(z) gives the minimum LQR cost-to-go, starting from state z at time ¢

® Vo(zo) recovers the LQR problem exactly
® the larger t is, the fewer decisions there are to be made
® at the ¢ = N, there is no decision to make
Vn(z) = zTsz
® dynamic programming: solve for V}, in terms of Vi until we hit Vo

LQR

28



Dynamic programming

begin by taking the value function and pull the first stage cost out:

N-1
Vi(z) = min min ] Quy +ul Ruy + Z (eF Qzy, + uf Rug) + 25 QN
Ut Upg1seUN—1
k=t+1
N-1
= min I?th + quut + min Z (x{ka + ugRuk) + xTJC,Qfa:N
ut wtuN -1\ S

LQR 29



Dynamic programming

begin by taking the value function and pull the first stage cost out:

N-1
Vi(z) = min min ] Quy +ul Ruy + Z (eF Qzy, + uf Rug) + 25 QN
Ut Utgl,-UN—1 [l
N-1
= min Z‘?th + quut + min Z (IEQI)C + ugRuk) + xTJC,QfJ:N
u Ut g1, UN—1
k=t+1
to simplify, relabel u+ as w to get
N-1
V(z) = min 2T Qz+wT Rw+ min Z (IgQIk + u{Ruk) + I%Qfo
w Up1y- - UN—1 arai

Vi+1(Az + Bw)

where z¢y1 = Az + Bw

LQR 29



the value function can now be written recursively as

Vi(z) = min <zTQz +wT Rw + Vi1 (Az + Bw))

LQR
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the value function can now be written recursively as

Vi(z) = min <zTQz +wT Rw + Vi1 (Az + Bw))

it will now be shown that V; is a quadratic function (for all ¢, not just ¢ = N):

assume that V;(z) = 2T P,z for some P;, then
Vi(z) = min (zTQz +wT Rw + Vip1(Az + Bw))
w

= n}li)n <zTQz +wT Rw + (Az + Bw)T Pyq (Az + Bw))

LQR 30



the value function can now be written recursively as

Vi(z) = min <zTQz +wT Rw + Vi1 (Az + Bw))

it will now be shown that V; is a quadratic function (for all ¢, not just ¢ = N):

assume that V;(z) = 2T P,z for some P;, then
Vi(z) = min (zTQz +wT Rw + Vip1(Az + Bw))
w

= n}li)n <zTQz +wT Rw + (Az + Bw)T Pyq (Az + Bw))

solving for w by expanding, and setting the derivative to zero gives
2wTR+2(Az + Bw)T P, 1B=0
from which

w* = —(R + BTPt+1B)7lBTPt+1AZ

LQR
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finally, to show V4 is quadratic, substitute w* into value function
Vi(2) = 2T Qz + w*T Rw* 4+ (Az + Bw*)T Pry1(Az + Bw*)

=27 (ATPtHA +Q—ATP \B(BTP1B + R)_lBTPtHA) 2

P

moreover, P > 0

LQR 31



LQR algorithm

® Py :=Qy
® for t = N down to t = 1:
P :=Q+ATP,A—- ATP,B(R+ BTP,B)"'BTP,A
©®@ fort =0Ouptot=N—1:
Ki:=—(R+BTP1B)"'BTP, 1A

o fort =0Ouptot=N—1:
'U,Lqr::Kt.’Et

Notes
® optimal control input is linear in the state x;

® P; and K can be computed ahead of time (u; computed in real time)

® cost to go is cost-to-go is Vi(z) = 2T Pz,

LQR 32



LQR Example

vy = | 18 05 [ =057,
1= o75 35 | 0.25 | “*

the autonomous part of the system is not internally stable

le13 Open-loop

- x

1254 o o
1.00 -
0.75 1
% 050
0.25 1
0.00 -
-0.25 4

0 5 10 15 20 25
Time

LQR 33



LQR Example

wpay = | 18 05 [ -057,
1= o075 35 | 0.25 | “*

the autonomous part of the system is not internally stable

® cost function

24
> (! Qui + uf Ruy) + 235Qwas
i=1

with Q =pl, R=p
® 19 = [1) I]T
® will examine the effect of different cost function choices

LQR
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® equal weighting: p=pu =1

System trajectories Control actions
100
- x
X 100
50
x 3 0
0 -100
—-200
0 5 10 15 20 25 0 5 10 15

LQR



LQR

® equal weighting: p=pu =1

System trajectories

Control actions

100
- X - u
- x 100
50
x 0
° -100
-200
0 5 10 15 20 25 10 15 20 25
® up-weighting state penalty: p = 100, u =
System trajectories Control actions
100 - x; 300 - u
- x 200
50 100
x
0
0
-100
—s0 -200
0 5 10 15 20 25 10 15 20 25
35



LQR

® equal weighting: p=pu =1

100

100

75
50

=25

System trajectories

Control actions

—— Xx; ——u
- x 100
s 0
-100
-200
0 5 10 15 20 25 10 15 20 25
® up-weighting state penalty: p =100, u =1
System trajectories Control actions
- x; 300 - u
- x 200
100
s
0
-100
-200
0 5 10 15 20 25 10 15 20 25
® up-weighting control penalty: p =1, u = 100
System trajectories Control actions
- x1 - u
- x 100
s 0
{ -/.,::::’::A -100
"
4 5 10 15 20 25 10 15 20 25
35



LQR

Infinite-horizon, discrete time LQR

® linear system dynamics: z¢4+1 = Az + Bug with 29 = 2™t and quadratic cost:

oo
J(u) = Z(QIZQxT + UZRUT)
=0
® assume (A, B) controllable

® controllability = existence of n such that ur =0 forall 7 >n = J(u) < oo

36



Infinite-horizon, discrete time LQR

® linear system dynamics: z¢4+1 = Az + Bug with 29 = 2™t and quadratic cost:

oo
J(u) = 2(333@337 + UZRUT)
=0
® assume (A, B) controllable

® controllability = existence of n such that ur =0 forall 7 >n = J(u) < oo

Value function

)

V(z) = min Z(wZQxT +uT Ru,)

UQ,UT -
T =0

st. x¢ =2, ;41 = Az, + Bus

® V is not a function of ¢ (c.f. finite-horizon case)

LQR
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LQR

Solution derivation

the value function is quadratic, i.e., V() = 27 Pz with P = 0

V again expressed recursively:

V(z) = min (27 Qz + wT Rw + V(Az + Bw))
w

using the quadratic “assumption”

(#)

2T Pz = min (27Qz + wT Rw + (Az + Bw)T P(Az + Bw))

wP* = —(R+ BTPB)~'BTPAz

to obtain P, substitute w°P' into (#) to get

ZT(Q+ATPA - ATPA(R+ BTPB)"'BTPA)z

37



Solution

the optimal controller is uy = Kx¢, where
K=—(R+BTPB)"'BTPA

® contrast this to finite-horizon case

P obtained from solving
P=Q+ ATPA - ATPAR+BTPB)"!BTPA
® (#) is the Discrete Algebraic Riccati Equation (DARE)
® >>DARE in MATLAB
® scipy.linalg.solve_discrete_are in Python

® does not require a recursive solution for P, solve DARE once

LQR
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LQR

Infinite vs finite horizon

® T = 7 shown below

® T > 12 almost impossible to distinguish

® in general, P; converges quickly as t gets further below N

State Trajectories

Control Inputs

o x (inf)
%= x (finite)

-150

-200

—e— u (inf)

%= u (finite)
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Continuous-time LQR

quadratic cost function and linear dynamics, (A, B) controllable
(o)
min / (#(0) Qu(t) + u(t) Ru(t)) dt
v Jo

st @(t) = Az(t) + Bu(t)

many ways to obtain the solution (we omit details)

® optimal controller is static, u(t) = Kxz(t) where
K=-R'BTpP
and P is obtained by solving the Algebraic Riccati Equation (ARE)
Q+ATP+PA-PBR'BTP=0

® >>CARE in MATLAB
® A+ BK is stable if (A, B) controllable and (A, Q) detectable

LQR

40



	Closed-loop Map
	H2 System Norm
	H2 optimal control
	LQR

