11: \mathcal{H}_2 Optimal Control

- defining the closed-loop map (D&P §5.1–5.2)
- the \mathcal{H}_2 system norm (D&P §6)
- the \mathcal{H}_2 optimal control problem (D&P §6.4)
- the linear quadratic regulator

General feedback arrangement

the plant G is described by the state-space system:

$$\dot{x}(t) = Ax(t) + \begin{bmatrix} B_1 & B_2 \end{bmatrix} \begin{bmatrix} w(t) \\ u(t) \end{bmatrix}$$
$$\begin{bmatrix} z(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} x(t) + \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} \begin{bmatrix} w(t) \\ u(t) \end{bmatrix}$$

and controller \boldsymbol{K} by

$$\dot{x}_K(t) = A_K x_K(t) + B_K y(t)$$
$$u(t) = C_K x_K(t) + D_K y(t)$$

Closed-loop Map

State feedback

 \bullet G is described by

$$\dot{x}(t) = Ax(t) + \begin{bmatrix} 0 & B_2 \end{bmatrix} \begin{bmatrix} w(t) \\ u(t) \end{bmatrix}$$
$$\begin{bmatrix} z(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} I \\ I \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} w(t) \\ u(t) \end{bmatrix}$$

• K is described by

$$\dot{x}_K(t) = 0x_K(t) + 0y(t)$$
$$u(t) = 0x_K(t) + D_K y(t)$$

Luenberger-based controller

• G has an output map

$$\dot{x}(t) = Ax(t) + \begin{bmatrix} 0 & B_2 \end{bmatrix} \begin{bmatrix} w(t) \\ u(t) \end{bmatrix}$$
$$\begin{bmatrix} z(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} I \\ C_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 0 & D_{22} \end{bmatrix} \begin{bmatrix} w(t) \\ u(t) \end{bmatrix}$$

• K is dynamic

$$\begin{bmatrix} A_K & B_K \\ \hline C_K & D_K \end{bmatrix} = \begin{bmatrix} A + LC + BF + LDF & -L \\ \hline F & 0 \end{bmatrix}$$

Assumptions

it will be assumed that:

• (A, B) and (A_K, B_K) are stabilizable, *i.e.*,

A + BK and $A_K + B_K F$ can be made stable

• (A, C) and (A_K, C_K) are detectable, *i.e.*,

A + LC and $A_K + HC_K$ can be made stable

Definition

The feedback interconnection G, K is said to be well-posed if solutions exist for

$$x(t), \quad x_K(t), \quad y(t), \quad u(t),$$

for all initial conditions x(0), $x_K(0)$ and inputs w(t).

Note: all "physical" systems are well-posed

Theorem The feedback interconnection

is well posed if $(I - D_{22}D_K)^{-1}$ exists.

Note:

• if $D_{22} = 0$ or $D_K = 0$ then the closed-loop system is always well-posed

•
$$(I - D_{22}D_K)^{-1}$$
 exists iff $(I - D_K D_{22})^{-1} =: Q$ exists

Closed-loop Map

Closed-loop stability

Definition

The closed-loop system G, K is internally stable if it is well posed, and for all initial conditions x(0) and $x_K(0)$, the limits

 $x(t), x_K(t) \to 0$ as $t \to \infty$ hold

when w = 0.

internal stability requires:

• $(I - D_{22}D_K)^{-1}$ to be invertible • the eigenvalues of

$$\begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_2 \\ C_K & 0 \end{bmatrix}$$

to have negative real parts

Assumptions

for the remainder of the course, unless otherwise stated, we will assume that

- all state space descriptions are minimal realizations
- all feedback connections are well-posed
- the appropriate matrices are stabilizable and detectable

Closed-loop dynamics

the closed-loop system defines the map from w to z with states $x_{\rm cl} = \left[\begin{array}{c} x \\ x_K \end{array} \right]$

the system has the form

$$\dot{x}_{\rm cl}(t) = \mathcal{A}x_{\rm cl}(t) + \mathcal{B}w(t)$$
$$z(t) = \mathcal{C}x_{\rm cl}(t) + \mathcal{D}w(t)$$

compactly we write the map as

$$z = \mathcal{F}_l(G, K)w$$

Closed-loop Map

Closed-loop dynamics: \mathcal{A}, \mathcal{B}

eliminating u and y:

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix} \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_K(t) \end{bmatrix} + \begin{bmatrix} 0 \\ D_{21} \end{bmatrix} w(t)$$

Closed-loop dynamics: \mathcal{A}, \mathcal{B}

eliminating u and y:

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix} \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_K(t) \end{bmatrix} + \begin{bmatrix} 0 \\ D_{21} \end{bmatrix} w(t)$$

substitute the above expression for \boldsymbol{u} and \boldsymbol{y} into

$$\begin{bmatrix} \dot{x} \\ \dot{x}_K \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} w$$

to get

$$\begin{bmatrix} \dot{x} \\ \dot{x}_{K} \end{bmatrix} = \underbrace{\left(\begin{bmatrix} A & 0 \\ 0 & A_{K} \end{bmatrix} + \begin{bmatrix} B_{2} & 0 \\ 0 & B_{K} \end{bmatrix} \begin{bmatrix} I & -D_{K} \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_{K} \\ C_{2} & 0 \end{bmatrix} \right)}_{\mathcal{A}} \begin{bmatrix} x \\ x_{K} \end{bmatrix}$$

$$+ \underbrace{\begin{bmatrix} B_{1} + B_{2}D_{K}QD_{21} \\ B_{K}QD_{21} \end{bmatrix}}_{\mathcal{B}} w$$

Closed-loop Map

Closed-loop dynamics: \mathcal{C}, \mathcal{D}

now we construct the output equation $z(t) = Cx_{cl}(t) + Dw(t)$:

$$z = \begin{bmatrix} C_1 & 0 \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} D_{12} & 0 \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} + D_{11}w.$$

Closed-loop dynamics: \mathcal{C}, \mathcal{D}

now we construct the output equation $z(t) = Cx_{cl}(t) + Dw(t)$:

$$z = \begin{bmatrix} C_1 & 0 \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} D_{12} & 0 \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} + D_{11}w.$$

Again, substitute

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} 0 \\ D_{21} \end{bmatrix} w,$$

Closed-loop dynamics: \mathcal{C}, \mathcal{D}

now we construct the output equation $z(t) = Cx_{cl}(t) + Dw(t)$:

$$z = \begin{bmatrix} C_1 & 0 \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} D_{12} & 0 \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} + D_{11}w.$$

Again, substitute

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} \begin{bmatrix} x \\ x_K \end{bmatrix} + \begin{bmatrix} 0 \\ D_{21} \end{bmatrix} w,$$

to obtain

$$z = \overbrace{\left(\begin{bmatrix} C \\ C_1 & 0 \end{bmatrix} + \begin{bmatrix} D_{12} & 0 \end{bmatrix} \begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix}\right)}^{\left[\begin{array}{c} x \\ x_K \end{array}\right]} + \underbrace{(D_{11} + D_{12}D_KQD_{21})}_{\mathcal{D}}w.$$

Optimal control

$$Choose \begin{bmatrix} A_{K} & B_{K} \\ \hline C_{K} & D_{K} \end{bmatrix} in order to minimize ||\mathcal{F}_{l}(G, K)||: \\ \\ \left\| \begin{bmatrix} \begin{bmatrix} A & 0 \\ 0 & A_{K} \end{bmatrix} + \begin{bmatrix} B_{2} & 0 \\ 0 & B_{K} \end{bmatrix} \begin{bmatrix} I & -D_{K} \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_{K} \\ C_{2} & 0 \end{bmatrix} \begin{bmatrix} B_{1} + B_{2}D_{K}QD_{21} \\ B_{K}QD_{21} \\ \hline B_{K}QD_{21} \end{bmatrix} \right\| \\ \\ \hline \begin{bmatrix} C_{1} & 0 \end{bmatrix} + \begin{bmatrix} D_{12} & 0 \end{bmatrix} \begin{bmatrix} I & -D_{K} \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_{K} \\ C_{2} & 0 \end{bmatrix} = D_{11} + D_{12}D_{K}QD_{21} \end{bmatrix}$$

where $Q = (I - D_K D_{22})^{-1}$

- clearly not convex in (A_K, B_K, C_K, D_K)
- which norm should we use?

System norms

- in the context of BIBO stability, we looked at $L_\infty \to L_\infty$ norm
 - clearly (!) this is called the L_1 -induced norm
- minimizing the closed-loop in this norm is called L_1 -optimal control
- L_1 optimal control in general is difficult to solve

instead, we will look at two other systems norms:

- the \mathcal{H}_2 -norm: average energy
- \bullet the $\mathcal{H}_\infty\text{-norm:}$ quantifies the peak energy of a stable system

The \mathcal{H}_2 -norm: Impulse response interpretation

consider the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

which has a transfer matrix

$$\hat{G}(s) = C(sI - A)^{-1}B$$

and impulse response

$$H(t) = Ce^{At}B$$

Definition

Assume G=(A,B,C) is controllable and observable, the $\mathcal{H}_2\text{-norm}$ of G is

$$\|G\|_{\mathcal{H}_2} = \left(\int_0^\infty \|H(t)\|_F^2 \, \mathrm{d}t\right)^{\frac{1}{2}} = \left(\frac{1}{2\pi} \int_{-\infty}^\infty \|G(j\omega)\|_F^2 \, \mathrm{d}\omega\right)^{\frac{1}{2}}.$$

\mathcal{H}_2 System Norm

The \mathcal{H}_2 -norm: White noise response

consider the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

 \mathcal{H}_2 norm interpreted as the average energy of y when w is white noise:

$$||G||_{\mathcal{H}_2} = \mathbb{E} \int_0^\infty ||y(t)||_2^2 = \mathbb{E} ||y||_{L_2[0,\infty)}$$

- w(t) satisfies $\mathbb{E}w(t) = 0$, $\mathbb{E}[w(t)w(t)^T] = Q\delta(t-\tau)$
- in discrete time $w_k \sim N(0, Q)$

The \mathcal{H}_2 -norm: White noise response

consider the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

 \mathcal{H}_2 norm interpreted as the average energy of y when w is white noise:

$$||G||_{\mathcal{H}_2} = \mathbb{E} \int_0^\infty ||y(t)||_2^2 = \mathbb{E} ||y||_{L_2[0,\infty)}$$

- w(t) satisfies $\mathbb{E}w(t) = 0$, $\mathbb{E}[w(t)w(t)^T] = Q\delta(t-\tau)$
- in discrete time $w_k \sim N(0, Q)$

Note

in both interpretations, the initial condition does not affect the \mathcal{H}_2 norm

\mathcal{H}_2 System Norm

Computing the \mathcal{H}_2 -norm

Theorem Assume A is Hurwitz and (A, B, C) controllable and observable. Then

$$\|G\|_{\mathcal{H}_2} = \left(\operatorname{trace}(B^T P B)\right)^{\frac{1}{2}},$$

where P solves the Lyapunov equation $A^T P + PA + C^T C = 0$.

Equivalently,

$$||G||_{\mathcal{H}_2} = \left(\operatorname{trace}(CQC^T)\right)^{\frac{1}{2}},$$

where where Q solves the Lyapunov equation $AQ + QA^T + BB^T = 0$.

Proof.

Apply the definition and make use of the linearity of the trace function.

\mathcal{H}_2 System Norm

Equations and gramians

Controllability gramian: $AX_{c} + X_{c}A^{T} + BB^{T} = 0$

Observability gramian: $A^T Y_o + Y_o A + C^T C = 0$

Generalized gramians:

$$AX + XA^T + BB^T \preceq 0 \qquad A^TY + YA + C^TC \preceq 0$$

Equations and gramians

Controllability gramian: $AX_{c} + X_{c}A^{T} + BB^{T} = 0$

Observability gramian: $A^T Y_0 + Y_0 A + C^T C = 0$

Generalized gramians:

$$AX + XA^T + BB^T \preceq 0 \qquad A^TY + YA + C^TC \preceq 0$$

Lemma

Suppose A is Hurwitz and X_c satisfies

$$AX_{\rm c} + X_{\rm c}A^T + Q = 0$$

where Q is an arbitrary symmetric matrix. If X satisfies

$$AX + XA^T + Q \preceq 0,$$

then $X \succeq X_c$.

 \mathcal{H}_2 System Norm

Useful matrix inequality facts

Monotonicity of the trace

given two symmetric matrices X and Y, then

$$X \preceq Y \implies \operatorname{Tr} X \leq \operatorname{Tr} Y$$

n.b. the converse is not true

Useful matrix inequality facts

Monotonicity of the trace

given two symmetric matrices X and Y, then

$$X \preceq Y \implies \operatorname{Tr} X \leq \operatorname{Tr} Y$$

n.b. the converse is not true

Schur complement

given matrices Q, M and R with M and Q being symmetric, then the following statements are equivalent:

1 the following two matrix inequalities hold:

$$Q \succ 0$$
 and $M - RQ^{-1}R^T \succ 0$.

2 the linear matrix inequality

$$\begin{bmatrix} M & R \\ R^T & Q \end{bmatrix} \succ 0$$

is satisfied.

 \mathcal{H}_2 System Norm

Computing the \mathcal{H}_2 -norm with an LMI

Theorem

Let $G = \begin{bmatrix} A & B \\ \hline C & 0 \end{bmatrix}$, then A is Hurwitz and $||G||_{\mathcal{H}_2} < 1$ if and only if there exists a symmetric matrix $X \succ 0$ such that

$$\operatorname{trace}(C\boldsymbol{X}C^T) < 1 \quad \textit{and} \quad A\boldsymbol{X} + \boldsymbol{X}A^T + BB^T \prec 0.$$

Proof.

("only if")

 ${\scriptstyle \textcircled{0}}$ by hypothesis A is Hurwitz and ${\rm trace}(CXC^T)<1$

❷ we know $X \succeq X_c$, this implies $\operatorname{trace}(CX_cC^T) < 1$

$$X = \int_0^\infty e^{tA} (BB^T + \epsilon I) e^{tA^T} \, \mathrm{d}t \quad \text{for } \epsilon > 0,$$

R.H.S. is a continuous function of ϵ and $X=X_{\rm c}$ when $\epsilon=0$

() thus, X satisfies $AX + XA^T + BB^T + \epsilon I = 0. \label{eq:alpha}$

("if")

() same idea, start with $A^T X + XA + BB^T \prec 0$ and work backwards.

The \mathcal{H}_2 optimal control problem

- we only cover the full information control problem
- given a system of the form

$$G = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & 0 & D_{12} \\ I & 0 & 0 \end{bmatrix}, \quad \text{where } A \in \mathbb{R}^{n \times n}, B_1 \in \mathbb{R}^{n \times p}, B_2 \in \mathbb{R}^{n \times m}, C_1 \in \mathbb{R}^{q \times n}$$

find a controller K with structure

$$K = \begin{bmatrix} 0 & 0 \\ \hline 0 & F \end{bmatrix}$$

that minimizes $\|\mathcal{F}_l(G, K)\|_{\mathcal{H}_2}$

• no loss in achievable performance by using a static controller (skip proof of this)

LMI solution to the full-information \mathcal{H}_2 control problem

Theorem

There exists a feedback law u = Kx that internally stabilizes G and satisfies

 $\|\mathcal{F}_l(G,K)\| < 1$

if and only if there exist symmetric matrices $X \in \mathbb{R}^{n \times n}$, $W \in \mathbb{R}^{q \times q}$, and a rectangular matrix $Z \in \mathbb{R}^{m \times n}$ such that

$$F = ZX^{-1}$$

and the following inequalities are satisfied:

$$\begin{bmatrix} A & B_2 \end{bmatrix} \begin{bmatrix} X \\ Z \end{bmatrix} + \begin{bmatrix} X & Z^T \end{bmatrix} \begin{bmatrix} A^T \\ B_2^T \end{bmatrix} + B_1 B_1^T \prec 0, \\ \begin{bmatrix} W & C_1 X + D_{12} Z \\ (C_1 X + D_{12} Z)^T & X \end{bmatrix} \succ 0, \\ \operatorname{trace}(W) < 1.$$

 $\begin{array}{l} \mbox{Proof.}\\ \mbox{\mathcal{H}_2 lemma, monotonicity of trace, Schur complement.} \end{array}$

LQR as a special case of \mathcal{H}_2 -control

The Linear Quadratic Regulator:

the LQR problem requires finding a control input u(t) such that

$$\int_0^\infty \left(x(t)^T Q x(t) + u(t) R u(t) \right) \mathrm{d}t$$

is minimized, subject to $\dot{x}(t) = Ax(t) + Bu(t), \, Q \succeq 0$ and $R \succ 0$ are given

- $x(t)^T Q x(t)$ penalizes the deviation of x from 0 at time t
- $u(t)^T Ru(t)$ penalizes the magnitude of the input u at time t
- objectives are in competition with each other

LQR as a special case of \mathcal{H}_2 -control

The Linear Quadratic Regulator:

the LQR problem requires finding a control input u(t) such that

$$\int_0^\infty \left(x(t)^T Q x(t) + u(t) R u(t) \right) \mathrm{d}t$$

is minimized, subject to $\dot{x}(t) = Ax(t) + Bu(t), \, Q \succeq 0$ and $R \succ 0$ are given

- $x(t)^T Q x(t)$ penalizes the deviation of x from 0 at time t
- $u(t)^T Ru(t)$ penalizes the magnitude of the input u at time t
- objectives are in competition with each other

using the notation for the general problem, the state equation is

$$\dot{x}(t) = A(t) + B_1 w(t) + B_2 u(t)$$

and we assume $w_i(t) = \delta(t) \cdot e_i$

Defining z

construct the fictitious output

$$z(t) = \begin{bmatrix} Q^{\frac{1}{2}} \\ 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ R^{\frac{1}{2}} \end{bmatrix} u(t)$$

where $Q = Q^{\frac{1}{2}}Q^{\frac{1}{2}}, R = R^{\frac{1}{2}}R^{\frac{1}{2}}$

 \mathcal{H}_2 -control is then simply finding K to minimize $\|z\|_{L_2[0,\infty)}$

using the control law u(t) = Kx(t), the closed-loop system is

$$\begin{aligned} x(t) &= (A + BK)x(t) + w(t) \\ z(t) &= \begin{bmatrix} Q^{\frac{1}{2}} \\ R^{\frac{1}{2}}K \end{bmatrix} x(t) \\ y(t) &= x(t) \end{aligned}$$

Finite-horizon, discrete-time LQR

consider the discrete time system

$$x_{t+1} = Ax_t + Bu_t, \quad t = 0, \dots, N$$

with initial condition $x_0 = x^{\text{init}}$ over time horizon N

control objective: pick inputs $u_0, u_1, \ldots, u_{N-1}$ in order to make

- x_0, x_1, \ldots small (i.e., good regulation regulation or control)
- u_0, u_1, \ldots small (i.e., input efficiency)

cost function

define the quadratic cost function

$$J(u) := \min_{u_0, u_1, \dots, u_{N-1}} \sum_{i=1}^{N-1} (x_t^T Q x_t + u_t^T R u_i) + x_N^T Q_f x_N$$

where $Q \succeq 0$, $Q_f \succeq 0,$ and $R \succ 0$ are given

positive (semi)definiteness ensure the minimum possible cost is non-negative

- Q determines the state cost and Q_f the terminal state cost
- R determines the input cost, $R \succ 0$ means any (non-zero) input adds to J

LQR solution via dynamic programming

- dynamic programming provides a recursive method for solving the LQR problem
- broadly applicable to many problems sequential decision making
- idea: break problem into a sequence of problems, solve backwards in time

Value function

for $t=0,\ldots,N$ define the value function is defined as

$$V_t(z) = \underset{\boldsymbol{u_t}, \dots, \boldsymbol{u_{N-1}}}{\operatorname{minimize}} \quad \sum_{\tau=t}^{N-1} (x_\tau^T Q x_\tau + \boldsymbol{u_\tau}^T R \boldsymbol{u_\tau}) + x_N^T Q_f x_N$$

s.t. $x_t = z$, $x_{\tau+1} = Ax_{\tau} + Bu_{\tau}$, $\tau = t, \dots, N-1$

Value function

for $t = 0, \ldots, N$ define the value function is defined as

$$V_t(z) = \underset{u_t, \dots, u_{N-1}}{\operatorname{minimize}} \sum_{\tau=t}^{N-1} (x_\tau^T Q x_\tau + u_\tau^T R u_\tau) + x_N^T Q_f x_N$$

s.t. $x_t = z, \quad x_{\tau+1} = A x_\tau + B u_\tau, \quad \tau = t, \dots, N-1$

- Vt aka value function, Bellman equation, Hamilton-Jacobi Equation...
- $V_t(z)$ gives the minimum LQR cost-to-go, starting from state z at time t
- V₀(x₀) recovers the LQR problem exactly
- the larger t is, the fewer decisions there are to be made
- at the t = N, there is no decision to make

$$V_N(z) = z^T Q_f z$$

• dynamic programming: solve for V_k in terms of V_{k+1} until we hit V_0

Dynamic programming

begin by taking the value function and pull the first stage cost out:

$$V_t(z) = \min_{u_t} \min_{u_{t+1}, \dots, u_{N-1}} \left(x_t^T Q x_t + u_t^T R u_t + \sum_{k=t+1}^{N-1} (x_k^T Q x_k + u_k^T R u_k) + x_N^T Q_f x_N \right)$$

$$= \min_{u_t} x_t^T Q x_t + u_t^T R u_t + \min_{u_{t+1}, \dots, u_{N-1}} \left(\sum_{k=t+1}^{N-1} (x_k^T Q x_k + u_k^T R u_k) + x_N^T Q_f x_N \right)$$

Dynamic programming

begin by taking the value function and pull the first stage cost out:

$$V_t(z) = \min_{u_t} \min_{u_{t+1}, \dots, u_{N-1}} \left(x_t^T Q x_t + u_t^T R u_t + \sum_{k=t+1}^{N-1} (x_k^T Q x_k + u_k^T R u_k) + x_N^T Q_f x_N \right)$$

$$= \min_{u_t} x_t^T Q x_t + u_t^T R u_t + \min_{u_{t+1}, \dots, u_{N-1}} \left(\sum_{k=t+1}^{N-1} (x_k^T Q x_k + u_k^T R u_k) + x_N^T Q_f x_N \right)$$

to simplify, relabel u_t as w to get

$$V_t(z) = \min_{w} z^T Q z + w^T R w + \min_{u_{t+1}, \dots, u_{N-1}} \left(\sum_{k=t+1}^{N-1} (x_k^T Q x_k + u_k^T R u_k) + x_N^T Q_f x_N \right)$$

 $V_{t+1}(Az + Bw)$

where $x_{t+1} = Az + Bw$

LQR

the value function can now be written recursively as

$$V_t(z) = \min_{w} \left(z^T Q z + w^T R w + V_{t+1} (A z + B w) \right)$$

the value function can now be written recursively as

$$V_t(z) = \min_{w} \left(z^T Q z + w^T R w + V_{t+1} (A z + B w) \right)$$

it will now be shown that V_t is a quadratic function (for all t, not just t = N):

assume that $V_t(z) = z^T P_t z$ for some P_t , then

$$V_t(z) = \min_w \left(z^T Q z + w^T R w + V_{t+1} (Az + Bw) \right)$$
$$= \min_w \left(z^T Q z + w^T R w + (Az + Bw)^T P_{t+1} (Az + Bw) \right)$$

the value function can now be written recursively as

$$V_t(z) = \min_{w} \left(z^T Q z + w^T R w + V_{t+1} (A z + B w) \right)$$

it will now be shown that V_t is a quadratic function (for all t, not just t = N):

assume that $V_t(z) = z^T P_t z$ for some P_t , then

$$V_t(z) = \min_w \left(z^T Q z + w^T R w + V_{t+1} (Az + Bw) \right)$$
$$= \min_w \left(z^T Q z + w^T R w + (Az + Bw)^T P_{t+1} (Az + Bw) \right)$$

solving for \boldsymbol{w} by expanding, and setting the derivative to zero gives

$$2w^{T}R + 2(Az + Bw)^{T}P_{t+1}B = 0$$

from which

$$w^{\star} = -(R + B^T P_{t+1}B)^{-1} B^T P_{t+1} A z$$

finally, to show V_t is quadratic, substitute w^{\star} into value function

$$V_{t}(z) = z^{T}Qz + w^{\star T}Rw^{\star} + (Az + Bw^{\star})^{T}P_{t+1}(Az + Bw^{\star})$$
$$= z^{T}\underbrace{\left(A^{T}P_{t+1}A + Q - A^{T}P_{t+1}B(B^{T}P_{t+1}B + R)^{-1}B^{T}P_{t+1}A\right)}_{P_{t}}z$$

moreover, $P_t \succeq 0$

LQR algorithm

•
$$P_N := Q_f$$

• for $t = N$ down to $t = 1$:
 $P_{t-1} := Q + A^T P_t A - A^T P_t B (R + B^T P_t B)^{-1} B^T P_t A$
• for $t = 0$ up to $t = N - 1$:
 $K_t := -(R + B^T P_{t+1}B)^{-1} B^T P_{t+1}A$
• for $t = 0$ up to $t = N - 1$:

$$u_t^{\mathrm{lqr}} := K_t x_t$$

Notes

- optimal control input is **linear** in the state x_t
- P_t and K_t can be computed ahead of time (u_t computed in real time)
- cost to go is cost-to-go is $V_t(z) = z^T P_t z$.

LQR Example

$$x_{t+1} = \begin{bmatrix} 1.5 & -0.5 \\ 0.75 & 3.5 \end{bmatrix} x_t + \begin{bmatrix} -0.5 \\ 0.25 \end{bmatrix} u_t$$

the autonomous part of the system is not internally stable

LQR Example

$$x_{t+1} = \begin{bmatrix} 1.5 & -0.5\\ 0.75 & 3.5 \end{bmatrix} x_t + \begin{bmatrix} -0.5\\ 0.25 \end{bmatrix} u_t$$

the autonomous part of the system is not internally stable

cost function

$$\sum_{i=1}^{24} (x_t^T Q x_t + u_t^T R u_t) + x_{25}^T Q x_{25}$$

with $Q=\rho I,\ R=\mu$

• $x_0 = [1, 1]^T$

• will examine the effect of different cost function choices

() equal weighting: $\rho = \mu = 1$

() equal weighting: $\rho = \mu = 1$

2 up-weighting state penalty: $\rho = 100, \mu = 1$

() equal weighting: $\rho = \mu = 1$

2 up-weighting state penalty: $\rho = 100, \mu = 1$

3 up-weighting control penalty: $\rho = 1, \mu = 100$

Infinite-horizon, discrete time LQR

• linear system dynamics: $x_{t+1} = Ax_t + Bu_t$ with $x_0 = x^{\text{init}}$ and quadratic cost:

$$J(u) = \sum_{\tau=0}^{\infty} (x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau})$$

- assume (A, B) controllable
- controllability \implies existence of n such that $u_{\tau} = 0$ for all $\tau > n \implies J(u) < \infty$

Infinite-horizon, discrete time LQR

• linear system dynamics: $x_{t+1} = Ax_t + Bu_t$ with $x_0 = x^{\text{init}}$ and quadratic cost:

$$J(u) = \sum_{\tau=0}^{\infty} (x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau})$$

- assume (A, B) controllable
- controllability \implies existence of n such that $u_{\tau} = 0$ for all $\tau > n \implies J(u) < \infty$

Value function

$$\begin{aligned} V(z) &= \min_{u_0, u_1, \dots} \sum_{\tau=0}^{\infty} (x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau}) \\ \text{s.t.} \quad x_t &= z, \quad x_{\tau+1} = A x_{\tau} + B u_{\tau} \end{aligned}$$

• V is not a function of t (c.f. finite-horizon case)

Solution derivation

- the value function is quadratic, i.e., $V(z) = z^T P z$ with $P \succeq 0$
- V again expressed recursively:

$$V(z) = \min_{w} \left(z^{T}Qz + w^{T}Rw + V(Az + Bw) \right)$$

• using the quadratic "assumption"

$$z^T P z = \min_{w} \left(z^T Q z + w^T R w + (A z + B w)^T P(A z + B w) \right)$$

•
$$w^{\text{opt}} = -(R + B^T P B)^{-1} B^T P A z$$

• to obtain P, substitute w^{opt} into (#) to get

$$z^{T}(Q + A^{T}PA - A^{T}PA(R + B^{T}PB)^{-1}B^{T}PA)z$$

Solution

the optimal controller is $u_t = K x_t$, where

$$K = -(R + B^T P B)^{-1} B^T P A$$

- contrast this to finite-horizon case
- P obtained from solving

$$P = Q + A^T P A - A^T P A (R + B^T P B)^{-1} B^T P A \qquad (\#)$$

- (#) is the Discrete Algebraic Riccati Equation (DARE)
- >>DARE in MATLAB
- scipy.linalg.solve_discrete_are in Python
- does not require a recursive solution for P, solve DARE once

Infinite vs finite horizon

- T = 7 shown below
- T > 12 almost impossible to distinguish
- in general, P_t converges quickly as t gets further below N

Continuous-time LQR

quadratic cost function and linear dynamics, (A, B) controllable

$$\begin{split} \min_{u} & \int_{0}^{\infty} \left(x(t)^{T} Q x(t) + u(t) R u(t) \right) \mathrm{d}t \\ \text{s.t.} & \dot{x}(t) = A x(t) + B u(t) \end{split}$$

many ways to obtain the solution (we omit details)

• optimal controller is static, u(t) = Kx(t) where

$$K = -R^{-1}B^T P$$

and P is obtained by solving the Algebraic Riccati Equation (ARE)

$$Q + A^T P + PA - PBR^{-1}B^T P = 0$$

- >>CARE in MATLAB
- A + BK is stable if (A, B) controllable and (A, Q) detectable