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2: Least-squares

® approximate solutions of overdetermined systems
— projection and orthogonality

— QR decomposition

— BLUE property

® |east-norm solutions of underdetermined systems



Overdetermined system of linear equations

consider the system of equations

y = Az, where A€ R™ "™ with m >n
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® more equations (rows of A,y) than unknowns (z)

® typically no solution: no z s.t. y = Ax

instead, find z s.t. y =~ Ax:
® define the residual r = Az — y
® make r small by minimizing ||7||

® denote x5 as the x that minimizes ||r||: least-squares approximate solution

overdetermined systems



Norms

the Euclidean norm of a vector z € R"

2l = \/2% + 25 + -+ 22 = VT2

® ||z|| measures the length of a vector (from the origin)

® ||z — z|| measures the distance between vectors z and z

more generally, a norm is any function f : V' — R that satisfies

® f(x) >0 forall z € V with f(z) =0 if and only if z =0

@ f(z+y) < f(z)+ f(y) forallz,y eV

® f(A\z) =|\|f(z) forall NeCand z € V

when satisfied, we replace f with || - ||
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Least-squares approximate solution

® for simplicity, assume rank(A) =n

® finding x5 is an unconstrained optimization problem:

I7? = 2T AT Az — 29T Az + yTy

® set gradient w.r.t. x to zero:

Valrl|? = 24T Az — 24Ty =0

® produces the normal equations:

AT Az = ATy

® by assumption the inverse exists, giving

w5 = (ATA) "t ATy

overdetermined systems



Geometry

® Ax)s is the point in range(A) closest to y
® Az is the projection of y onto the subspace range(A)

® the projection is orthogonal (see later)

T'O\ﬂ% @
the range of A € R™*" is defined as
range(A) = {Az | z € R"} CR™
® the set of vectors that can be reached by applying A to vectors in R™
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in summary, in general there is no x such that y = Az

® the least-squares approximate solution is
ze = (ATA) 71 ATy
provides the smallest residual error in the Euclidean norm
® 114 is a linear function of y
® if Ais square (m = n), then z;;, = A~ 1y
® jfy € range(A), then y = Axg
o AT = (AT A)~1 AT is called the pseudo-inverse of A
o AT is a left inverse of (full rank, tall) A, i.e., it satisfies
ATA=1

® many other left inverses exist: BA =1 <= B is a left inverse
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Orthogonality

the unsigned angle between two vectors z and y in R™ is defined as

0:cos_1< xTy )
ll Iyl

thus 27y = ||z [|y]| cos 6
the term zT'y defines an inner product on R™, usually denoted by {(x, )

special cases:

® 2 and y are aligned: @ = 0, then 27y = ||z|| |||
® 2 and y are antialigned: 0 = 7, then 2Ty = —||z||||y||
® 2 and y are orthogonal: @ = +7/2, then 2Ty =0

orthogonal vectors are often denoted by z L y
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Projection onto a subspace

Az is the point in range(A) closest to y, it is the projection of y onto range(A):
Azl = Prange(a) (V)
® Prange(a) is @ linear function:
Prange(a)(y) = Azs = A(ATA)~1 ATy

® the matrix A(AT A)~1AT is called the projection matrix (associated with
range(A)) or projector

properties of projection matrices

® |f P is a projecor (onto V), then I — P is a projector matrix
® | — P projects on V-

e P2=Pandso (I-P)P=0=P(I-P)
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Orthogonal projections

the optimal residual
r= Az —y = (A(ATA)71AT — )y
is orthogonal to range(A): to see this, observe that for all z € R",

(r,Az) = yT(AATA)"1AT — )T A2z =0, ie.,r L range(A)

A,

g
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properties of orthogonal projectors
® a projector P provides an orthogonal projection if and only if P = PT

overdetermined systems



Optimality of xi

for any z € R™, we have

Az —y||* = [|(Azis —y) + Az — z15) |2
= || Azis — yl|® + [ Az — 215)]|

therefore, for any x # x5, || Az — y|| > ||Azis — yl|

show using properties of norms and the fact that r L range(A)

overdetermined systems
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QR decomposition

given H € R"*F n >k, rank(H) = k, then H = QR

H:"\’Tw

4--|=.—>

F— D —

—r—> —rx —>

o dimensions: Q € R"** R € RFXF

® QTQ = I, R is upper-triangular

® R;;'s are non-zero

® most definitions require R;; > 0, in this case, Q and R are unique

® express @ in terms of it's columns: Q = [ g 92 ... Qqk ] the column
vectors form an orthonormal set:

laill =1, qfq=0ifi#j

® columns of @ form an orthonormal basis for range(H)

overdetermined systems
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Full QR decomposition

the full QR decomposition of a full-rank matrix H € R™*k s defined as

H=[ Q1 Q2] [ IEI ] ,  where [Q1 Q2] € R™™" is orthogonal,

and Rj is upper-triangular and invertible

i : =
Ty a e Nalf
0 = [\l
| l o |&

—K—> &— 1t —>&n-u>

® H = Q1R; is the QR factorization defined previously

® the additional n — k columns that form Q2 are orthogonal to range(H)

>>[Q,R]=qr(H) Y%gives full qr factorization

® >>[Q,R]=qr(H,0) Y%gives qr factorization

overdetermined systems
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Notes

the above QR decompositions assume H is full-rank and tall
rank deficiency produces non-invertible R (R1)

every tall m X n matrix has a full QR decomposition, and hence a QR
decomposition

every full-rank, tall matrix has a unique QR decomposition with an invertible R

the projector A(AT A)=1 AT written in terms of the QR factorization is QQT

overdetermined systems
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Solving least-squares via QR decomposition

assuming A is full rank and tall, rewrite x5 in terms of QR factorization A = QR
zs = (ATA)~1ATy
= (QR)T(QR) "1 @Ry
— R1QTy

Algorithm

©® compute QR factorization A = QR

® compute w = QTy

® solve Rz =w // triangular system, use back substitution
there are many ways to compute zj:

>>[Q,R]= qr(A,0)
>>x1s = R\(Q’*y)

overdetermined systems
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Least-squares via full QR decomposition

full QR factorization of A:

Ry

A= Q1 Q2] [ 0 } , Q=1[Q1 Q2] € R™*™ is orthogonal,

® multiplication by an orthogonal matrix doesn't affect the norm:
Uz|? = 2T0TUz = 272 = |22

® substitute QR factorization to get

2

4z —1? = @1 @al [ Ja-u

= [ i@ @al [ o101 @

=l e ]I
-QTy

= |Riz - QT ylI” + 1lQ3 yl?

overdetermined systems
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recall, least-squares objective is to minimize ||r||?

® shown that [|r|* = [|Az — y[|* = [ Riz — QT y|I* + |QF y[I®

no optimization performed yet - this involves selecting x:

® clearly selecting x = x)s = R;lQlTy achieves optimality

the residual at x4 is
T
Azs —y=—Q2Q3y
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Example: linear regression

objective: estimate the weight of a fish based on its width

® sample size N = 10

® data consists of points (x;,y;) where x; is the diagonal width and y; the weight

diagonal width | weight
fem] ]
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26.3 290 =) .
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29.7 450 ;3 300- » .

29.7 420 =
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suggests an approximately linear relationship: y ~ ma + b, find m, b that minimize

N
minimize Z(mmZ +b—y;)?

m,b £
i=1

overdetermined systems
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solving the least squares problem provides estimates (7, b) = (36.8, —662.3)

500

450
= 400
=
2
= 350
2 » Data
=% ——Line of best fit
sl 300 Residuals
=

250,

200

25 26 27 28 29 30

Diagonal length [cm)]

line of best fit, y = 36.8z — 662.3 minimizes the sum of the square of the residuals

overdetermined systems



Estimation

many signal reconstruction and estimation problems take the form

y=Azx+v, AeR™*" m>n

® x € R™ is the vector we want to estimate/recover/reconstruct
® y € R™ is the sensor measurement/observable

® v € R™ is the unknown measurement error/noise

If v was known exactly, or v = 0, then any left inverse of A recovers x

y=Arx+v=Ar = By=BArx==x

one such choice is B = Af

overdetermined systems
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Least-squares estimation

choose an estimate & (of x) that minimizes

Az —y]|

captures the magnitude of the difference between

® the observation

® what would be observed if we could run the model with no noise/error

a linear estimator is any mapping from y to & that can be written as & = By

® least squares estimate # = (AT A)~1 ATy is one example

overdetermined systems 20



Best Linear Unbiased Estimate (BLUE) property

® Jinear: map from observation to estimate is represented by a linear function

flaz + By) = af(z) + Bf(y), o,BER, zyeR

® unbiased: no estimation error when there is no noise:

& =x whenv =20

estimation error of an estimator is x — &, for unbiased linear estimators:
r—&=x— By=—Bv

clearly, we should make B “small” subject to the constraint BA =1

o best: AT = (AT A)~1AT is the smallest left inverse of A in the sense that:
for any B such that BA = I, it can be shown that

IBIE > A%

overdetermined systems
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Underdetermined systems of linear equations

consider the system of equations

y = Az, where A€ R™ ™ withm <n

1
T%=I A X

i

—n—>

® more unknowns (z) than equations (rows of A, b)
® 1 is underspecified; many (infinite) choices of z satisfy the equation

® A has a nontrivial nullspace

assume that rank(A) = m, so for every y € R™, there is a solution

underdetermined systems
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Nullspace

the nullspace of the matrix A € R™*" is defined as

null(A) = {z € R" | Az =0} CR"

® the set of vectors mapped to 0 by the map Az

® null(A) characterizes ambiguity in z when y = Az:

y=Azand z€nullA = y=A(z+2)

® conversely, if z and & are solutions, then Z = x + z with z € null(A)

all dimensions are related:

n = rank(A) + dim (null(A))
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Nullspace parameterization of solutions

assuming A is wide and full-rank, set of all solutions has the form
{z|y= Az} ={zp + 2z € null(4) and y = Azp}

where x}, is any “particular” solution

® the vextor z characterizes the choices available

® the dimension of the nullspace gives the number of degrees of freedom in the
solution

® choose z to optimize over solutions

underdetermined systems
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Least-norm solution

a particular solution of interest is

Lln = AT(AAT)ily

which can be verified by direct substitution: Az, =y

the solution x),, solves the constrained optimization problem

minimize ||z||

subjectto Az =y

(z1n is the unique solution to this optimization problem)

underdetermined systems
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Optimal least-norm solution

we've directly verified that x), is feasible, now show it's optimal

suppose y = Az, then we must have A(z — x1,) =0

consider the inner product

(@ —210)Tam = (z — 210)TAT(A4T) "1y
= (A(x — 21n))"(AAT) "y
=0

the result above shows (z — x1y) L z1,, so
2)1? = 2w + & — 2] = [|2w]? + & — 21| > [Jon]?
which means x},, has the smallest norm amongst all solutions

underdetermined systems
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Geometry

® 1), is the orthogonal projection of 0 onto the set {z | Az = y}

® 71, L null(A)

noll </‘L>

Xgq

iKlA*Q

o At — AT(AAT)=! is a right inverse of (full rank, wide) A: AAT =1
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Solution via QR factorization

apply a QR decomposition to AT, so that AT = QR

assumed that m < n and rank(A) = m, then
® R e R™X™ jsinvertible

° Qe R™™ with QTQ = I,

substituting the factorization into x1, = AT (AAT) "1y we see that

2= QR Ty and el =R~y

note: Z~T is shorthand for (ZT)~1

underdetermined systems 28



Example: optimal mass transfer

unit mass subject to force x; at time 4, initially at rest

4

I
'/2?45

— Mass

® y; and v;: position and velocity at time ¢

® 1;: constant force applied for time interval [¢,t + 1]

dynamics given by

vi41 — v = x¢  (force equals Av)

yi+1 —yt = v (velocity equals Ay)

objective: choose force  to move mass 1 unit of distance in 10s, leaving it at rest

[Example from Boyd & Lall]

underdetermined systems
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® initial conditions: yo =0, vo =0
® target: yi0o =1, vio =0

® expand the system dynamics and express target in terms of initial conditions and
the z;s:

v10_111..‘1lml+v0
yio | |9 8 7 ... 1 0 Yo

9

solve for least-norm solution

underdetermined systems



simulated solution

position

velocity

underdetermined systems
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