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2: Least-squares

• approximate solutions of overdetermined systems
– projection and orthogonality

– QR decomposition

– BLUE property

• least-norm solutions of underdetermined systems
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Overdetermined system of linear equations

consider the system of equations

y = Ax, where A ∈ Rm×n with m > n

• more equations (rows of A, y) than unknowns (x)

• typically no solution: no x s.t. y = Ax

instead, find x s.t. y ≈ Ax:

• define the residual r = Ax− y

• make r small by minimizing ∥r∥

• denote xls as the x that minimizes ∥r∥: least-squares approximate solution
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Norms

the Euclidean norm of a vector z ∈ Rn

∥z∥ =
√

z21 + z22 + · · ·+ z2n =
√
zT z

• ∥z∥ measures the length of a vector (from the origin)

• ∥z − x∥ measures the distance between vectors z and x

more generally, a norm is any function f : V → R that satisfies

1 f(x) ≥ 0 for all x ∈ V with f(x) = 0 if and only if x = 0

2 f(x+ y) ≤ f(x) + f(y) for all x, y ∈ V

3 f(λx) = |λ|f(x) for all λ ∈ C and x ∈ V

when satisfied, we replace f with ∥ · ∥
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Least-squares approximate solution

• for simplicity, assume rank(A) = n

• finding xls is an unconstrained optimization problem:

∥r∥2 = xTATAx− 2yTAx+ yT y

• set gradient w.r.t. x to zero:

∇x∥r∥2 = 2ATAx− 2AT y = 0

• produces the normal equations:

ATAx = AT y

• by assumption the inverse exists, giving

xls = (ATA)−1AT y
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Geometry

• Axls is the point in range(A) closest to y

• Axls is the projection of y onto the subspace range(A)

• the projection is orthogonal (see later)

the range of A ∈ Rm×n is defined as

range(A) = {Ax | x ∈ Rn} ⊆ Rm

• the set of vectors that can be reached by applying A to vectors in Rn
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in summary, in general there is no x such that y = Ax

• the least-squares approximate solution is

xls = (ATA)−1AT y

provides the smallest residual error in the Euclidean norm

• xls is a linear function of y

• if A is square (m = n), then xls = A−1y

• if y ∈ range(A), then y = Axls

• A† = (ATA)−1AT is called the pseudo-inverse of A

• A† is a left inverse of (full rank, tall) A, i.e., it satisfies

A†A = I

• many other left inverses exist: BA = I ⇐⇒ B is a left inverse
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Orthogonality

the unsigned angle between two vectors x and y in Rn is defined as

θ = cos−1

(
xT y

∥x∥∥y∥

)
thus xT y = ∥x∥∥y∥ cos θ

the term xT y defines an inner product on Rn, usually denoted by ⟨x, y⟩

special cases:

• x and y are aligned: θ = 0, then xT y = ∥x∥∥y∥

• x and y are antialigned: θ = π, then xT y = −∥x∥∥y∥

• x and y are orthogonal: θ = ±π/2, then xT y = 0

orthogonal vectors are often denoted by x ⊥ y
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Projection onto a subspace

Axls is the point in range(A) closest to y, it is the projection of y onto range(A):

Axls = Prange(A)(y)

• Prange(A) is a linear function:

Prange(A)(y) = Axls = A(ATA)−1AT y

• the matrix A(ATA)−1AT is called the projection matrix (associated with
range(A)) or projector

properties of projection matrices

• If P is a projecor (onto V), then I − P is a projector matrix

• I − P projects on V⊥

• P 2 = P and so (I − P )P = 0 = P (I − P )
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Orthogonal projections

the optimal residual

r = Axls − y = (A(ATA)−1AT − I)y

is orthogonal to range(A): to see this, observe that for all z ∈ Rn,

⟨r, Az⟩ = yT (A(ATA)−1AT − I)TAz = 0, i.e., r ⊥ range(A)

properties of orthogonal projectors

• a projector P provides an orthogonal projection if and only if P = PT
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Optimality of xls

for any x ∈ Rn, we have

∥Ax− y∥2 = ∥(Axls − y) +A(x− xls)∥2

= ∥Axls − y∥2 + ∥A(x− xls)∥2

therefore, for any x ̸= xls, ∥Ax− y∥ > ∥Axls − y∥

show using properties of norms and the fact that r ⊥ range(A)
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QR decomposition

given H ∈ Rn×k, n ≥ k, rank(H) = k, then H = QR

• dimensions: Q ∈ Rn×k, R ∈ Rk×k

• QTQ = Ik, R is upper-triangular

• Rii’s are non-zero

• most definitions require Rii > 0, in this case, Q and R are unique

• express Q in terms of it’s columns: Q =
[

q1 q2 . . . qk
]
, the column

vectors form an orthonormal set:

∥qi∥ = 1, qTi qj = 0 if i ̸= j

• columns of Q form an orthonormal basis for range(H)
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Full QR decomposition

the full QR decomposition of a full-rank matrix H ∈ Rn×k is defined as

H =
[

Q1 Q2
] [ R1

0

]
, where [Q1 Q2] ∈ Rn×n is orthogonal,

and R1 is upper-triangular and invertible

• H = Q1R1 is the QR factorization defined previously

• the additional n− k columns that form Q2 are orthogonal to range(H)

• >>[Q,R]=qr(H) %gives full qr factorization

• >>[Q,R]=qr(H,0) %gives qr factorization

overdetermined systems 12



Notes

• the above QR decompositions assume H is full-rank and tall

• rank deficiency produces non-invertible R (R1)

• every tall m× n matrix has a full QR decomposition, and hence a QR
decomposition

• every full-rank, tall matrix has a unique QR decomposition with an invertible R

• the projector A(ATA)−1AT written in terms of the QR factorization is QQT
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Solving least-squares via QR decomposition

assuming A is full rank and tall, rewrite xls in terms of QR factorization A = QR

xls = (ATA)−1AT y

= ((QR)T (QR))−1(QR)T y

= R−1QT y

Algorithm

1 compute QR factorization A = QR

2 compute w = QT y

3 solve Rx = w // triangular system, use back substitution

there are many ways to compute xls:

>>[Q,R]= qr(A,0)

>>xls = R\(Q’*y)
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Least-squares via full QR decomposition

full QR factorization of A:

A =
[

Q1 Q2
] [ R1

0

]
, Q = [Q1 Q2] ∈ Rm×m is orthogonal,

• multiplication by an orthogonal matrix doesn’t affect the norm:

∥Uz∥2 = zTUTUz = zT z = ∥z∥2

• substitute QR factorization to get

∥Ax− y∥2 =

∥∥∥∥[Q1 Q2]

[
R1

0

]
x− y

∥∥∥∥2
=

∥∥∥∥[Q1 Q2]
T [Q1 Q2]

[
R1

0

]
x− [Q1 Q2]

T y

∥∥∥∥2
=

∥∥∥∥[ R1x−QT
1 y

−QT
2 y

]∥∥∥∥2
= ∥R1x−QT

1 y∥2 + ∥QT
2 y∥2
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recall, least-squares objective is to minimize ∥r∥2

• shown that ∥r∥2 = ∥Ax− y∥2 = ∥R1x−QT
1 y∥2 + ∥QT

2 y∥2

no optimization performed yet - this involves selecting x:

• clearly selecting x = xls = R−1
1 QT

1 y achieves optimality

the residual at xls is
Axls − y = −Q2Q

T
2 y
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Example: linear regression

objective: estimate the weight of a fish based on its width

• sample size N = 10

• data consists of points (xi, yi) where xi is the diagonal width and yi the weight

suggests an approximately linear relationship: y ≈ mx+ b, find m, b that minimize

minimize
m,b

N∑
i=1

(mxi + b− yi)
2
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solving the least squares problem provides estimates (m̄, b̄) = (36.8,−662.3)

line of best fit, y = 36.8x− 662.3 minimizes the sum of the square of the residuals
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Estimation

many signal reconstruction and estimation problems take the form

y = Ax+ v, A ∈ Rm×n, m ≥ n

• x ∈ Rn is the vector we want to estimate/recover/reconstruct

• y ∈ Rm is the sensor measurement/observable

• v ∈ Rm is the unknown measurement error/noise

If v was known exactly, or v = 0, then any left inverse of A recovers x

y = Ax+ v = Ax ⇒ By = BAx = x

one such choice is B = A†

overdetermined systems 19



Least-squares estimation

choose an estimate x̂ (of x) that minimizes

∥Ax̂− y∥

captures the magnitude of the difference between

• the observation

• what would be observed if we could run the model with no noise/error

a linear estimator is any mapping from y to x̂ that can be written as x̂ = By

• least squares estimate x̂ = (ATA)−1AT y is one example
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Best Linear Unbiased Estimate (BLUE) property

• linear: map from observation to estimate is represented by a linear function

f(αx+ βy) = αf(x) + βf(y), α, β ∈ R, x, y ∈ Rl

• unbiased: no estimation error when there is no noise:

x̂ = x when v = 0

estimation error of an estimator is x− x̂, for unbiased linear estimators:

x− x̂ = x−By = −Bv

clearly, we should make B “small” subject to the constraint BA = I

• best: A† = (ATA)−1AT is the smallest left inverse of A in the sense that:
for any B such that BA = I, it can be shown that

∥B∥2F ≥ ∥A†∥2F

overdetermined systems 21



Underdetermined systems of linear equations

consider the system of equations

y = Ax, where A ∈ Rm×n with m < n

• more unknowns (x) than equations (rows of A, b)

• x is underspecified; many (infinite) choices of x satisfy the equation

• A has a nontrivial nullspace

assume that rank(A) = m, so for every y ∈ Rm, there is a solution
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Nullspace

the nullspace of the matrix A ∈ Rm×n is defined as

null(A) = {x ∈ Rn | Ax = 0} ⊆ Rn

• the set of vectors mapped to 0 by the map Az

• null(A) characterizes ambiguity in x when y = Ax:

y = Ax and z ∈ nullA ⇒ y = A(x+ z)

• conversely, if x and x̄ are solutions, then x̄ = x+ z with z ∈ null(A)

all dimensions are related:

n = rank(A) + dim (null(A))
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Nullspace parameterization of solutions

assuming A is wide and full-rank, set of all solutions has the form

{x | y = Ax} = {xp + z ∈ null(A) and y = Axp}

where xp is any “particular” solution

• the vextor z characterizes the choices available

• the dimension of the nullspace gives the number of degrees of freedom in the
solution

• choose z to optimize over solutions
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Least-norm solution

a particular solution of interest is

xln = AT (AAT )−1y

which can be verified by direct substitution: Axln = y

the solution xln solves the constrained optimization problem

minimize ∥x∥
subject to Ax = y

(xln is the unique solution to this optimization problem)
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Optimal least-norm solution

we’ve directly verified that xln is feasible, now show it’s optimal

suppose y = Ax, then we must have A(x− xln) = 0

consider the inner product

(x− xln)
T xln = (x− xln)

TAT (AAT )−1y

= (A(x− xln))
T (AAT )−1y

= 0

the result above shows (x− xln) ⊥ xln, so

∥x∥2 = ∥xln + x− xln∥2 = ∥xln∥2 + ∥x− xln∥2 ≥ ∥xln∥2

which means xln has the smallest norm amongst all solutions

underdetermined systems 26



Geometry

• xln is the orthogonal projection of 0 onto the set {x | Ax = y}

• xln ⊥ null(A)

• A† −AT (AAT )−1 is a right inverse of (full rank, wide) A: AA† = I
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Solution via QR factorization

apply a QR decomposition to AT , so that AT = QR

assumed that m < n and rank(A) = m, then

• R ∈ Rm×m is invertible

• Q ∈ Rn×m with QTQ = Im

substituting the factorization into xln = AT (AAT )−1y we see that

xln = QR−T y and ∥xln∥ = ∥R−T y∥

note: Z−T is shorthand for (ZT )−1
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Example: optimal mass transfer

unit mass subject to force xi at time i, initially at rest

• yt and vt: position and velocity at time t

• xt: constant force applied for time interval [t, t+ 1]

dynamics given by

vt+1 − vt = xt (force equals ∆v)

yt+1 − yt = vt (velocity equals ∆y)

objective: choose force x to move mass 1 unit of distance in 10s, leaving it at rest

[Example from Boyd & Lall]
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• initial conditions: y0 = 0, v0 = 0

• target: y10 = 1, v10 = 0

• expand the system dynamics and express target in terms of initial conditions and
the xis:

[
v10
y10

]
=

[
1 1 1 . . . 1 1
9 8 7 . . . 1 0

]
x0

x1

...
x9

+

[
v0
y0

]

solve for least-norm solution
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simulated solution
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