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3: Linear dynamical systems

® state-space representations
® transfer matrices

® matrix exponential

® eigenvalues and vectors

® diagonalizable autonomous systems



State-space system representation

system of coupled linear differential equations and an algebraic output equation

z(t) = Az(t) + Bu(t), z(0)= zo,
y(t) = Ca(t) + Du(t),

where
® z(t) € R™ is the state
® u(t) € R™ is the input or control action
® y(t) € RP is the output

Notation
® z(t) is an n-dimensional vector
® z(-) is a signal
® will use = as shorthand for both (context will be clear)

® Compactly, the system may be written as
|: 2 g } or (A,B,C,D)

State-space representation



Higher order systems
matrix notation packs quite a punch, consider the autonomous system
) = Ak,lx(kfl) +o 4+ Az Aoz, z(t) €R™

where () denotes the [t derivative w.r.t. ¢

T
2D
define a new variable z = . c R"k, then
k=1

I 0 0

() 0o 0 I 0
2(t) = : = : : z(t)

2(k) 0 0 0o ... I

Ag A1 A ... Ap_4

which is just a first-order system with enlarged state: Z = Az

State-space representation



Mechanical systems
mechanical systems with k degrees of freedom (d.o.f.)

M(t) + Dq(t) + Kq(t) = u(t)

® ¢(t) € R* is the configuration or system coordinates
® M, D, K, are the mass, damping, and stiffness matrices
® y(t) € RP is the output

State space form

define the state as z(t) = [ Zg; :|

(t) = [ K i ]x(t)+[ et }u(t)

select velocity to be the measured output

y(t):[ 0 I ]z(t)

State-space representation



Linear time-invariant systems

Homogeneity: scaling the input scales the output
u(t) G y(®) c-uft) G c-y(t)

Superposition: addition of inputs produces an addition in the output

Time-invariance: delaying the input delays the output

u(t) G y(®) ut—r1) G y(t —7)

w1 (t) + ua(t) G y1(t) + ya(t)
L~ ]

State-space representation



Operations on systems

suppose we have two systems G; = éf gl for i € {1,2}
L v g B

Parallel connection:

0 B
G1+ G = 0 Ao B>
C1 C2 | D1+ Do

Series connection:
Ay B1Cs | BiD2
G1Go = 0 Ao Bo
C1 Di1Cz | DiDs

State-space representation



Transfer functions

let f: R4 — RPXY, recall the Laplace transform of a function f:
P = L0}, £U@)= [ e

with domain of convergence {s | real(s) > a}

® defines a linear mapping between time and frequency domain
af(t)+Bg(t) <«— oF(s)+BG(s)
® applied to vectors and matrices element-by-element
® convention is to use uppercase letters or “hats” to represent transformations

® inverse operation £L71{F(s)}

Transfer functions



Derivative property

assuming f(t) has a Laplace transform, then it is given by sf(s) — F(0), i.e.,

L{f ()} = sf(s) = f(0)

to show this, apply definition

/Ooo e Stf(t)dt

= e St f()], 7 + s/oo e SLF(t)dt
0

L{f ()}

= tgrgo e Stf(t) — e Of(0) +s /000 e~ St (t)dt

Transfer functions



Application to linear systems

recall our linear system description:

z(t) = Az(t) + Bu(t), with z(0) =0,
y(t) = Ca(t) + Bu(d),

applying the Laplace transform, gives

G(s) = Ga(s), where G(s)=C(sI—A)'B+D

{%‘%} (s)=C(sI = A)"'B+D

Transfer functions



the function G : C — CPX™ defined as
G(s)=C(sI— A)"'B+D

is called a transfer function or transfer matrix

Rational functions

the scalar function g : C — C is called rational if

by s™ 1 + -+ 4 b1s + bg
s"+ap_15"" 1+ 4ao

9(s) =

® when a;, b; are real, g is real-rational

® g is proper if n > m, and strictly proper if n > m
Transfer matrices

® transfer matrix is rational if all of its entries are rational

® |ikewise, proper, if all entries are proper

Transfer functions
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Solution to a state-space equation

given the system

z(t) = Az(t) + Bu(t), z(0) = =,
y(t) = Ca(t) + Bu(t),

we want to know:

® what form does the state equation x take? ... and y

® long-term behavior of the system:
li t li t)?
Jrm @ ®), - lim ()

® can this behavior be determined directly from A, B,C, D?

® can/how do we modify the system behavior?

® is it tractable to do so?

Solutions of state-space equations
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Autonomous systems

autonomous systems have no outside force acting on them, i.e., u(t) =0

(t) = Az(t), with initial condition z(0) = x¢

Scalar differential equations

z(t) = az(t), x(0) ==z0, wherea€R

Solutions of state-space equations
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Autonomous systems

autonomous systems have no outside force acting on them, i.e., u(t) =0

(t) = Az(t), with initial condition z(0) = x¢

Scalar differential equations

z(t) = az(t), x(0) ==z0, wherea€R

the solution is given by

z(t) = e*xg

® solution is the map zo — x(+)
® solve via Laplace or direct integration

® behavior of x depends on the sign of «

Solutions of state-space equations
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Beyond scalar systems

the matrix exponential is defined for a square matrix as

M2 M3 Mk
M— PR PR PR — oo
eM=T1+M+ 51 + 30 + 2 +

® the series always converges

similar behavior to the scalar exponential — some important differences
[eM]s,5 # €™id

® MATLAB or Python use >> expm(M)

eM is always invertible

Solutions of state-space equations 13



Computing e

computing the matrix exponential is via it's definition

M2 M3 Mk
M— PR PR o8 — oo
eM=T+M+ TR o+

is rarely a good idea

® safest choice is to use >> expm(M)

® in certain cases, definition is ok:

5 —3 2 0 0 0
M=|1 -9 6|, M?2=]0 0 0 =
10 -6 4 0 0 0

Solutions of state-space equations

M=I1+M
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The matrix exponential: Properties

M2 M3 MF

M _ e W el -
e’ =1+ M+ 21 + 3l +... + ...

) %ehlt — MeMt

d e d (Mt)?  (M)®
= = — (I + Mt ST
a© dt(+ A TR A T
2 3
(1 Q1000

© eMFN £ eMeN ynless M and N commute, j.e., MN =

Solutions of state-space equations

(Mt)k—1

LI

(k—1)!

NM

)
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Autonomous system solution

Theorem

The autonomous system &(t) = Ax(t) with initial condition £(0) = xo, where
A € R™™, has the unique solution x(t) = eAtxg. O

Stability

® the system is said to be stable iff
lim eAtxo =0
— 00

for all xp € R™

® equivalently, there exist constants ci,c2 > 0 such that
lle**zo|| < ere®|aoll
for all xp € R™
when considering the system G = (A, B,C, D), if £ = Az is stable, then we say G is
internally stable

Solutions of state-space equations 16



A decoupled system in R?
the system

1 (t) = 735!31(15), I(O) = x0
To (t) = 4xo (t)

is decoupled because the value of x;(t) does not affect x2(¢), and vice-versa

in matrix notation this corresponds to the autonomous system with

[ 8]

Solutions of state-space equations
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A decoupled system in R?
the system

1 (t) = 735!31(15), I(O) = x0
To (t) = 4xo (t)

is decoupled because the value of x;(t) does not affect x2(¢), and vice-versa

in matrix notation this corresponds to the autonomous system with
-3 0

solution is given by the x1(t) = e~3%z1(0), z2(t) = e**x2(0)

® initial conditions of the form zg = [ 8 } tend to 0 at t — oo

® system diverges for all other initial conditions

Solutions of state-space equations
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The harmonic oscillator

15!
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Solutions of state-space equations
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solution via Laplace transform

1
®sl—A= [ i _i } and so (s — A)~1 = [ s241 8?41 ] (%)

L - A
s24+1 s2+41

@ apply L1 to each element:

1 .
-1 Szjil 21 } _ { cost sint :|
_ s o
i -y sint cost

(%) recall the formula for 2 x 2 matrix inversion:

a b0 1 d —b
c d T ad—bc| —¢ a

Solutions of state-space equations 19



Eigenvalues and eigenvectors

for A € C"*™, X\ € C is an eigenvalue of A, denoted ) € eig(A), if for some vector
v € C™ with v # 0 we have
Av=Xv

® eigenvectors are not unique, if v is an eigenvector, so is aw for any a € C
® vectors which satisfy w” A = Aw” are called left eigenvectors of A
® real matrices can have complex eigenvalues

Solutions of state-space equations 20



Useful Eigenvalue/vector properties

® let Az = Az be an eigen-pair, and k a positive integer, then AFz = A\Fg

show via induction:
— (k=1): Alz = Az = Xz
— (inductive step) assume A*2 = Az, show that it holds for k + 1, i.e.,
AR, — \RHL,
apply ARt = AAF and the assumption gives ARty = AAFg
AT Az = A(AFa)
= A(\*2)
= A"(Ax)
="z

Aty O

Solutions of state-space equations 21



Eigenvectors and dynamical systems

Given Av = Av and the system & = Az with z(0) = v, then

z(t) = Mo
this follows from the matrix exponential definition:
tA)2
z(t) = etv = (I+tA+ ( 2') +...)u

2
();) v .. ( from A%y = o)

=v+ AMv+

=My

® when X is real, the motion is boring - stays on the line spanned by v

® the solution z(t) = e*w is called a mode of the system (associated to \)

Solutions of state-space equations
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Complex eigenvalues

suppose Av = Av and A = o + jw is complex (w # 0)
the trajectory x(t) = ae v satisfies @(t) = Ax(t) for a € C
this implies that real(ae*v) is also a trajectory:

z(t) = real(aeMv)

= ¢ [vre Vim] [ coswt sinwt } [ _(; ]

sinwt coswt

where
U = Ure + Vim, and, a=a+jB

Solutions of state-space equations
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Eigenspaces

for A€ C"*™, X\ € Cis an eigenvalue of A, denoted \ € eig(A), if for some vector
v € C™ with v # 0 we have
Av=Xv

® the eigenspace associated with the eigenvalue Ay is the subspace

Er=nullA I — A) (<= {v ]| Agv = Av})

® suppose that a set of eigenvectors satisfies

span{z1i,...,zn} =C" <<:> U&:(C"),

7

then V = [ Z1y...,2n } is invertible

Solutions of state-space equations
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Diagonalization

let X = [ @1,...,2n | be an invertible matrix built from the eigenvectors of A such
that span(z1,...,xn) = C"

A1
then AX = XA with A =
An

as X is invertible, we get X 1AX = A
® we say X diagonalizes A

® in general, the transformation W = P~1ZP is called a similarity transform

® unfortunately, not all matrices can be diagonalized:

0 1 —1
A:[O 0}, A1 = X2 =0, 331:|: 0]7552:{

O =
| S

® having distinct eigenvalues is sufficient, but not necessary

Solutions of state-space equations
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Stability of diagonalizable systems
#(t) = Az(t), with £(0) = xo has the unique solution z(t) = etz
suppose A is diagonalizable i.e., there exists an X such that A = XAX !, then

AF = XAXTIXAXTY . XAX = XxAFX?

together with the definition of the matrix exponential

(XA2X~1)2 )
+ o+

eAt = (XX’l + (XAX Nyt o

2
:X(I+At+ (A;) +--->X’1

— XeAtX71

At Ait

the matrix e*" is a diagonal matrix with entries e

Solutions of state-space equations
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Summary

specifically, e has the form

® by definition, Xe* X! and e4? have the same eigenvalues

® multiplication on the left and right does not change the sign of A
® the solution z(t) is a linear combination of the functions e*it
® we conclude that the system is stable iff

A

lim e*t — 0 for all i
— 00

which occurs iff Re \; < 0 for all ¢

what about non-diagonalizable systems?

Solutions of state-space equations 27



Modal form

® when z(0) = v and Av = v then
a(t)=eMv (1)
® when A has linearly independent eigenvectors then
z(t) = XeM X 1ag

® we can extend () to arbitrary initial conditions with independent eigenvectors by
expressing xo as a linear combination of the eigenvectors:

Ty = c1v1 + cova + -+ + cpvn  Where Av; = \;jv;

and ¢; are some (scalars) to be determined, it then follows that

n
z(t) = Z cietity,
i=1

Solutions of state-space equations
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Modal form and left eigenvectors

it is straight forward to show that
¢; = wlz(0) where wlA=\uw!
giving
z(t) = z": it (wl 2(0))v;.
i=1

Hint
e relationship between W7 and V

o z(t) = ettayg = VeV lx

Solutions of state-space equations
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