3: Linear dynamical systems

- state-space representations
- transfer matrices
- matrix exponential
- · eigenvalues and vectors
- diagonalizable autonomous systems

State-space system representation

system of coupled linear differential equations and an algebraic output equation

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

$$y(t) = Cx(t) + Du(t),$$

where

- $x(t) \in \mathbb{R}^n$ is the *state*
- $u(t) \in \mathbb{R}^m$ is the input or control action
- $y(t) \in \mathbb{R}^p$ is the output

Notation

- x(t) is an *n*-dimensional vector
- $x(\cdot)$ is a signal
- will use x as shorthand for both (context will be clear)
- Compactly, the system may be written as

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \quad \text{or} \quad (A, B, C, D)$$

Higher order systems

matrix notation packs quite a punch, consider the autonomous system

$$x^{(k)} = A_{k-1}x^{(k-1)} + \ldots + A_1x^{(1)} + A_0x, \quad x(t) \in \mathbb{R}^n$$

where $x^{(l)}$ denotes the $l^{\rm th}$ derivative w.r.t. t

define a new variable
$$z=\left[egin{array}{c} x\\ x^{(1)}\\ \vdots\\ x^{(k-1)} \end{array}
ight]\in \mathbb{R}^{nk}$$
 , then

$$\dot{z}(t) = \begin{bmatrix} x^{(1)} \\ \vdots \\ x^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 & \dots & 0 \\ 0 & 0 & I & \dots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \dots & I \\ A_0 & A_1 & A_2 & \dots & A_{k-1} \end{bmatrix} z(t)$$

which is just a first-order system with enlarged state: $\dot{z}=Az$

State-space representation

Mechanical systems

mechanical systems with k degrees of freedom (d.o.f.)

$$M\ddot{q}(t) + D\dot{q}(t) + Kq(t) = u(t)$$

- $q(t) \in \mathbb{R}^k$ is the configuration or system coordinates
- M, D, K, are the mass, damping, and stiffness matrices
- $y(t) \in \mathbb{R}^p$ is the output

State space form

define the state as $x(t) = \begin{bmatrix} q(t) \\ \dot{q}(t) \end{bmatrix}$

$$\dot{x}(t) = \left[\begin{array}{cc} 0 & I \\ -M^{-1}K & -M^{-1}D \end{array} \right] x(t) + \left[\begin{array}{c} 0 \\ M^{-1} \end{array} \right] u(t)$$

select velocity to be the measured output

$$y(t) = \begin{bmatrix} 0 & I \end{bmatrix} x(t)$$

State-space representation

Linear time-invariant systems

Homogeneity: scaling the input scales the output

Superposition: addition of inputs produces an addition in the output

Time-invariance: delaying the input delays the output

Operations on systems

suppose we have two systems $G_i = \begin{bmatrix} A_i & B_i \\ \hline C_i & D_i \end{bmatrix}$ for $i \in \{1,2\}$

Parallel connection:

$$G_1 + G_2 = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ \hline C_1 & C_2 & D_1 + D_2 \end{bmatrix}$$

Series connection:

$$G_1 G_2 = \begin{bmatrix} A_1 & B_1 C_2 & B_1 D_2 \\ 0 & A_2 & B_2 \\ \hline C_1 & D_1 C_2 & D_1 D_2 \end{bmatrix}$$

Transfer functions

let $f : \mathbb{R}_+ \to \mathbb{R}^{p \times q}$, recall the Laplace transform of a function f:

$$F(s) = \mathcal{L}\{f(t)\}, \quad \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$$

with domain of convergence $\{s \mid \mathbf{real}(s) > \alpha\}$

· defines a linear mapping between time and frequency domain

$$\alpha f(t) + \beta g(t) \quad \longleftrightarrow \quad \alpha F(s) + \beta G(s)$$

- · applied to vectors and matrices element-by-element
- convention is to use uppercase letters or "hats" to represent transformations
- inverse operation $\mathcal{L}^{-1}{F(s)}$

Derivative property

assuming $\dot{f}(t)$ has a Laplace transform, then it is given by $s \hat{f}(s) - f(0),$ i.e.,

$$\mathcal{L}\{\dot{f}(t)\} = s\hat{f}(s) - f(0)$$

to show this, apply definition

$$\begin{split} \mathcal{L}\{\dot{f}(t)\} &= \int_0^\infty e^{-st}\dot{f}(t)\mathrm{d}t\\ &= e^{-st}f(t)\big|_{t=0}^{t\to\infty} + s\int_0^\infty e^{-st}f(t)\mathrm{d}t\\ &= \lim_{t\to\infty} e^{-st}f(t) - e^{s\cdot0}f(0) + s\int_0^\infty e^{-st}f(t)\mathrm{d}t \end{split}$$

Application to linear systems

recall our linear system description:

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t), \quad \text{with} \quad x(0) = 0, \\ y(t) &= Cx(t) + Bu(t), \end{split}$$

applying the Laplace transform, gives

$$\begin{split} \hat{y}(s) &= \hat{G}\hat{u}(s), \quad \text{where} \quad \hat{G}(s) = C(sI - A)^{-1}B + D\\ & \left[\begin{array}{c|c} A & B\\ \hline C & D \end{array} \right](s) = C(sI - A)^{-1}B + D \end{split}$$

the function $\hat{G}:\mathbb{C}\rightarrow\mathbb{C}^{p\times m}$ defined as

$$\hat{G}(s) = C(sI - A)^{-1}B + D$$

is called a transfer function or transfer matrix

Rational functions

the scalar function $\hat{g}: \mathbb{C} \to \mathbb{C}$ is called *rational* if

$$\hat{g}(s) = \frac{b_m s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

- when a_i, b_i are real, \hat{g} is real-rational
- \hat{g} is proper if $n \ge m$, and strictly proper if n > m

Transfer matrices

- transfer matrix is rational if **all** of its entries are rational
- likewise, proper, if all entries are proper

Solution to a state-space equation

given the system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$$

 $y(t) = Cx(t) + Bu(t),$

we want to know:

- what form does the state equation x take? \ldots and y
- long-term behavior of the system:

$$\lim_{t \to \infty} x(t), \quad \lim_{t \to \infty} y(t)?$$

- can this behavior be determined directly from A, B, C, D?
- can/how do we modify the system behavior?
- is it tractable to do so?

Autonomous systems

autonomous systems have no outside force acting on them, i.e., $u(t)\equiv 0$

 $\dot{x}(t) = Ax(t)$, with initial condition $x(0) = x_0$

Scalar differential equations

$$\dot{x}(t) = \alpha x(t), \quad x(0) = x_0, \quad \text{where } \alpha \in \mathbb{R}$$

Autonomous systems

autonomous systems have no outside force acting on them, *i.e.*, $u(t) \equiv 0$

 $\dot{x}(t) = Ax(t)$, with initial condition $x(0) = x_0$

Scalar differential equations

$$\dot{x}(t) = \alpha x(t), \quad x(0) = x_0, \quad \text{where } \alpha \in \mathbb{R}$$

the solution is given by

$$x(t) = e^{\alpha t} x_0$$

- solution is the map $x_0 \to x(\cdot)$
- solve via Laplace or direct integration
- behavior of x depends on the sign of α

Beyond scalar systems

the matrix exponential is defined for a square matrix as

$$e^{M} = I + M + \frac{M^{2}}{2!} + \frac{M^{3}}{3!} + \dots + \frac{M^{k}}{k!} + \dots$$

- the series always converges
- similar behavior to the scalar exponential some important differences

•
$$[e^M]_{i,j} \neq e^{m_{ij}}$$

- MATLAB or Python use >> expm(M)
- e^M is always invertible

Computing e^M

computing the matrix exponential is via it's definition

$$e^{M} = I + M + \frac{M^{2}}{2!} + \frac{M^{3}}{3!} + \dots + \frac{M^{k}}{k!} + \dots$$

is rarely a good idea

- safest choice is to use >> expm(M)
- in certain cases, definition is ok:

$$M = \begin{bmatrix} 5 & -3 & 2\\ 15 & -9 & 6\\ 10 & -6 & 4 \end{bmatrix}, \quad M^2 = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \implies e^M = I + M$$

The matrix exponential: Properties

$$e^{M} = I + M + \frac{M^{2}}{2!} + \frac{M^{3}}{3!} + \dots \frac{M^{k}}{k!} + \dots$$

 $e^0 = I$

$$e^{M^T} = \left(e^M \right)^T$$

 $e^{M+N} \neq e^M e^N \text{ unless } M \text{ and } N \text{ commute, } i.e., MN = NM$

Solutions of state-space equations

Autonomous system solution

Theorem

The autonomous system $\dot{x}(t) = Ax(t)$ with initial condition $x(0) = x_0$, where $A \in \mathbb{R}^{n \times n}$, has the unique solution $x(t) = e^{At}x_0$.

Stability

• the system is said to be stable iff

$$\lim_{t \to \infty} e^{At} x_0 = 0$$

for all $x_0 \in \mathbb{R}^n$

• equivalently, there exist constants $c_1, c_2 > 0$ such that

$$\|e^{At}x_0\| \le c_1 e^{c_2 t} \|x_0\|$$

for all $x_0 \in \mathbb{R}^n$

when considering the system G = (A, B, C, D), if $\dot{x} = Ax$ is stable, then we say G is internally stable

A decoupled system in \mathbb{R}^2

the system

$$\dot{x}_1(t) = -3x_1(t), \quad x(0) = x_0$$

 $\dot{x}_2(t) = 4x_2(t)$

is decoupled because the value of $x_1(t)$ does not affect $x_2(t)$, and vice-versa

in matrix notation this corresponds to the autonomous system with

$$A = \left[\begin{array}{rr} -3 & 0 \\ 0 & 4 \end{array} \right]$$

A decoupled system in \mathbb{R}^2

the system

$$\dot{x}_1(t) = -3x_1(t), \quad x(0) = x_0$$

 $\dot{x}_2(t) = 4x_2(t)$

is **decoupled** because the value of $x_1(t)$ does not affect $x_2(t)$, and vice-versa

in matrix notation this corresponds to the autonomous system with

$$A = \left[\begin{array}{rrr} -3 & 0 \\ 0 & 4 \end{array} \right]$$

solution is given by the $x_1(t)=e^{-3t}x_1(0),\,x_2(t)=e^{4t}x_2(0)$

- initial conditions of the form $x_0 = \begin{bmatrix} c \\ 0 \end{bmatrix}$ tend to 0 at $t \to \infty$
- system diverges for all other initial conditions

The harmonic oscillator

$$\dot{x}(t) = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix} x(t)$$

solution via Laplace transform

•
$$sI - A = \begin{bmatrix} s & -1 \\ 1 & s \end{bmatrix}$$
 and so $(sI - A)^{-1} = \begin{bmatrix} \frac{s}{s^2 + 1} & \frac{1}{s^2 + 1} \\ \frac{-1}{s^2 + 1} & \frac{s}{s^2 + 1} \end{bmatrix}$ (*)

2 apply \mathcal{L}^{-1} to each element:

$$\mathcal{L}^{-1}\left\{ \begin{bmatrix} \frac{s}{s^2+1} & \frac{1}{s^2+1} \\ \frac{-1}{s^2+1} & \frac{s}{s^2+1} \end{bmatrix} \right\} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

(\star) recall the formula for 2 \times 2 matrix inversion:

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]^{-1} = \frac{1}{ad-bc} \left[\begin{array}{cc}d&-b\\-c&a\end{array}\right]$$

Eigenvalues and eigenvectors

for $A \in \mathbb{C}^{n \times n}$, $\lambda \in \mathbb{C}$ is an **eigenvalue** of A, denoted $\lambda \in \text{eig}(A)$, if for some vector $v \in \mathbb{C}^n$ with $v \neq 0$ we have

 $Av = \lambda v$

- eigenvectors are **not unique**, if v is an eigenvector, so is αv for any $\alpha \in \mathbb{C}$
- vectors which satisfy $w^T A = \lambda w^T$ are called **left eigenvectors** of A
- · real matrices can have complex eigenvalues

Useful Eigenvalue/vector properties

• let $Ax = \lambda x$ be an eigen-pair, and k a positive integer, then $A^k x = \lambda^k x$ show via induction:

- (k=1):
$$A^1x = Ax = \lambda x$$

– (inductive step) assume $A^k x = \lambda^k x$, show that it holds for k+1, i.e.,

$$A^{k+1}x = \lambda^{k+1}x$$

apply $A^{k+1} = AA^k$ and the assumption gives $A^{k+1} \boldsymbol{x} = AA^k \boldsymbol{x}$

$$A^{k+1}Ax = A(A^{k}x)$$
$$= A(\lambda^{k}x)$$
$$= \lambda^{k}(Ax)$$
$$= \lambda^{k} \cdot \lambda x$$
$$= \lambda^{k+1}x.$$

Eigenvectors and dynamical systems

Given $Av = \lambda v$ and the system $\dot{x} = Ax$ with x(0) = v, then

$$x(t) = e^{\lambda t} v$$

this follows from the matrix exponential definition:

$$\begin{aligned} x(t) &= e^{tA}v = \left(I + tA + \frac{(tA)^2}{2!} + \dots\right)v \\ &= v + \lambda tv + \frac{(\lambda t)^2}{2!}v + \dots \\ &= e^{\lambda t}v \end{aligned} \tag{from } A^kv = \lambda^kv) \end{aligned}$$

• when λ is real, the motion is boring - stays on the line spanned by v

• the solution $x(t) = e^{\lambda t} v$ is called a **mode** of the system (associated to λ)

Solutions of state-space equations

Complex eigenvalues

suppose $Av = \lambda v$ and $\lambda = \sigma + j\omega$ is complex ($\omega \neq 0$)

the trajectory $x(t)=ae^{\lambda t}v$ satisfies $\dot{x}(t)=Ax(t)$ for $a\in\mathbb{C}$

this implies that $\mathbf{real}(ae^{\lambda t}v)$ is also a trajectory:

$$\begin{aligned} x(t) &= \mathsf{real}(\alpha e^{\lambda t} v) \\ &= e^{\sigma t} \left[v_{\mathrm{re}} \; v_{\mathrm{im}} \right] \left[\begin{array}{c} \cos \omega t & \sin \omega t \\ \sin \omega t & \cos \omega t \end{array} \right] \left[\begin{array}{c} \alpha \\ -\beta \end{array} \right] \end{aligned}$$

where

$$v = v_{\rm re} + v_{\rm im}$$
, and, $a = \alpha + j\beta$

Eigenspaces

for $A\in\mathbb{C}^{n imes n}$, $\lambda\in\mathbb{C}$ is an eigenvalue of A, denoted $\lambda\in {\rm eig}(A)$, if for some vector $v\in\mathbb{C}^n$ with v
eq 0 we have

$$Av = \lambda v$$

• the eigenspace associated with the eigenvalue λ_k is the subspace

$$\mathcal{E}_k = \operatorname{null}(\lambda_k I - A) \quad (\iff \{v \mid \lambda_k v = Av\})$$

suppose that a set of eigenvectors satisfies

$$\operatorname{span}\{z_1,\ldots,z_n\} = \mathbb{C}^n \quad \left(\iff \bigcup_i \mathcal{E}_i = \mathbb{C}^n \right),$$

then $V = \begin{bmatrix} z_1, \ldots, z_n \end{bmatrix}$ is invertible

Solutions of state-space equations

Diagonalization

let $X = [x_1, \ldots, x_n]$ be an invertible matrix built from the eigenvectors of A such that $\operatorname{span}(x_1, \ldots, x_n) = \mathbb{C}^n$

then
$$AX = X\Lambda$$
 with $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$

as X is invertible, we get $X^{-1}AX=\Lambda$

- we say X diagonalizes A
- in general, the transformation $W = P^{-1}ZP$ is called a similarity transform
- unfortunately, not all matrices can be diagonalized:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \lambda_1 = \lambda_2 = 0, \quad x_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

having distinct eigenvalues is sufficient, but not necessary

Stability of diagonalizable systems

$$\dot{x}(t) = Ax(t)$$
, with $x(0) = x_0$ has the unique solution $x(t) = e^{At}x_0$

suppose A is diagonalizable *i.e.*, there exists an X such that $A = X\Lambda X^{-1}$, then

$$A^k = X\Lambda X^{-1} X\Lambda X^{-1} \dots X\Lambda X^{-1} = X\Lambda^k X^{-1}$$

together with the definition of the matrix exponential

$$e^{At} = \left(XX^{-1} + (X\Lambda X^{-1})t + \frac{(X\Lambda^2 X^{-1})t^2}{2!} + \cdots \right)$$

= $X \left(I + \Lambda t + \frac{(\Lambda t)^2}{2} + \cdots \right) X^{-1}$
= $X e^{\Lambda t} X^{-1},$

the matrix $e^{\Lambda t}$ is a diagonal matrix with entries $e^{\lambda_i t}$

Solutions of state-space equations

Summary

specifically, $e^{\Lambda t}$ has the form

$$\begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & & e^{\lambda_n t} \end{bmatrix}$$

- by definition, $Xe^{\Lambda t}X^{-1}$ and e^{At} have the same eigenvalues
- multiplication on the left and right does not change the sign of λ
- the solution x(t) is a linear combination of the functions $e^{\lambda_i t}$
- we conclude that the system is stable iff

$$\lim_{t \to \infty} e^{\lambda_i t} \to 0 \quad \text{for all i}$$

which occurs iff ${\rm \bf Re}\,\lambda_i<0$ for all i

what about non-diagonalizable systems?

Modal form

• when x(0) = v and $Av = \lambda v$ then

$$x(t) = e^{\lambda t} v \qquad (\dagger)$$

when A has linearly independent eigenvectors then

$$x(t) = X e^{\Lambda t} X^{-1} x_0$$

 we can extend (†) to arbitrary initial conditions with independent eigenvectors by expressing x₀ as a linear combination of the eigenvectors:

$$x_0 = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$
 where $Av_i = \lambda_i v_i$

and c_i are some (scalars) to be determined, it then follows that

$$x(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t} v_i$$

Modal form and left eigenvectors

it is straight forward to show that

$$c_i = w_i^T x(0) \quad \text{where} \quad w_i^T A = \lambda_i w_i^T$$

giving

$$x(t) = \sum_{i=1}^{n} e^{\lambda_i t} (w_i^T x(0)) v_i.$$

Hint

• relationship between $W^{T}% ^{T}$ and V

•
$$x(t) = e^{At}x_0 = Ve^{\lambda t}V^{-1}x_0$$