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3: Linear dynamical systems

• state-space representations

• transfer matrices

• matrix exponential

• eigenvalues and vectors

• diagonalizable autonomous systems
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State-space system representation

system of coupled linear differential equations and an algebraic output equation

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t),

where

• x(t) ∈ Rn is the state

• u(t) ∈ Rm is the input or control action

• y(t) ∈ Rp is the output

Notation

• x(t) is an n-dimensional vector

• x(·) is a signal

• will use x as shorthand for both (context will be clear)

• Compactly, the system may be written as[
A B
C D

]
or (A,B,C,D)
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Higher order systems

matrix notation packs quite a punch, consider the autonomous system

x(k) = Ak−1x
(k−1) + . . .+A1x

(1) +A0x, x(t) ∈ Rn

where x(l) denotes the lth derivative w.r.t. t

define a new variable z =


x

x(1)

...

x(k−1)

 ∈ Rnk, then

ż(t) =


x(1)

...

x(k)

 =


0 I 0 . . . 0
0 0 I . . . 0
...

...
0 0 0 . . . I
A0 A1 A2 . . . Ak−1

 z(t)

which is just a first-order system with enlarged state: ż = Az

State-space representation 3



Mechanical systems

mechanical systems with k degrees of freedom (d.o.f.)

Mq̈(t) +Dq̇(t) +Kq(t) = u(t)

• q(t) ∈ Rk is the configuration or system coordinates

• M,D,K, are the mass, damping, and stiffness matrices

• y(t) ∈ Rp is the output

State space form

define the state as x(t) =

[
q(t)
q̇(t)

]

ẋ(t) =

[
0 I

−M−1K −M−1D

]
x(t) +

[
0

M−1

]
u(t)

select velocity to be the measured output

y(t) =
[

0 I
]
x(t)
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Linear time-invariant systems

Homogeneity: scaling the input scales the output

Superposition: addition of inputs produces an addition in the output

Time-invariance: delaying the input delays the output
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Operations on systems

suppose we have two systems Gi =

[
Ai Bi

Ci Di

]
for i ∈ {1, 2}

Parallel connection:

G1 +G2 =

 A1 0 B1

0 A2 B2

C1 C2 D1 +D2



Series connection:

G1G2 =

 A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2


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Transfer functions

let f : R+ → Rp×q , recall the Laplace transform of a function f :

F (s) = L{f(t)}, L{f(t)} =
∫ ∞

0
e−stf(t)dt

with domain of convergence {s | real(s) > α}

• defines a linear mapping between time and frequency domain

αf(t) + βg(t) ←→ αF (s) + βG(s)

• applied to vectors and matrices element-by-element

• convention is to use uppercase letters or “hats” to represent transformations

• inverse operation L−1{F (s)}

Transfer functions 7



Derivative property

assuming ḟ(t) has a Laplace transform, then it is given by sf̂(s)− f(0), i.e.,

L{ḟ(t)} = sf̂(s)− f(0)

to show this, apply definition

L{ḟ(t)} =
∫ ∞

0
e−stḟ(t)dt

= e−stf(t)
∣∣t→∞
t=0

+ s

∫ ∞

0
e−stf(t)dt

= lim
t→∞

e−stf(t)− es·0f(0) + s

∫ ∞

0
e−stf(t)dt
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Application to linear systems

recall our linear system description:

ẋ(t) = Ax(t) +Bu(t), with x(0) = 0,

y(t) = Cx(t) +Bu(t),

applying the Laplace transform, gives

ŷ(s) = Ĝû(s), where Ĝ(s) = C(sI −A)−1B +D[
A B
C D

]
(s) = C(sI −A)−1B +D
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the function Ĝ : C→ Cp×m defined as

Ĝ(s) = C(sI −A)−1B +D

is called a transfer function or transfer matrix

Rational functions

the scalar function ĝ : C→ C is called rational if

ĝ(s) =
bmsm−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a0

• when ai, bi are real, ĝ is real-rational

• ĝ is proper if n ≥ m, and strictly proper if n > m

Transfer matrices

• transfer matrix is rational if all of its entries are rational

• likewise, proper, if all entries are proper
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Solution to a state-space equation

given the system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Bu(t),

we want to know:

• what form does the state equation x take? ... and y

• long-term behavior of the system:

lim
t→∞

x(t), lim
t→∞

y(t)?

• can this behavior be determined directly from A,B,C,D?

• can/how do we modify the system behavior?

• is it tractable to do so?
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Autonomous systems

autonomous systems have no outside force acting on them, i.e., u(t) ≡ 0

ẋ(t) = Ax(t), with initial condition x(0) = x0

Scalar differential equations

ẋ(t) = αx(t), x(0) = x0, where α ∈ R

the solution is given by

x(t) = eαtx0

• solution is the map x0 → x(·)

• solve via Laplace or direct integration

• behavior of x depends on the sign of α
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Beyond scalar systems

the matrix exponential is defined for a square matrix as

eM = I +M +
M2

2!
+

M3

3!
+ · · ·

Mk

k!
+ · · ·

• the series always converges

• similar behavior to the scalar exponential – some important differences

• [eM ]i,j ̸= emij

• MATLAB or Python use >> expm(M)

• eM is always invertible
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Computing eM

computing the matrix exponential is via it’s definition

eM = I +M +
M2

2!
+

M3

3!
+ · · ·

Mk

k!
+ · · ·

is rarely a good idea

• safest choice is to use >> expm(M)

• in certain cases, definition is ok:

M =

 5 −3 2
15 −9 6
10 −6 4

 , M2 =

 0 0 0
0 0 0
0 0 0

 =⇒ eM = I +M
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The matrix exponential: Properties

eM = I +M +
M2

2!
+

M3

3!
+ . . .

Mk

k!
+ . . .

1 e0 = I

2 eM
T

=
(
eM
)T

3
d
dt

eMt = MeMt

d

dt
eMt =

d

dt

(
I +Mt+

(Mt)2

2!
+

(Mt)3

3!
+ · · ·+

(Mt)k

k!
+ · · ·

)
= M

(
I +Mt+

(Mt)2

2!
+

(Mt)3

3!
+ · · ·+

(Mt)k−1

(k − 1)!
+ · · ·

)

4 eM+N ̸= eMeN unless M and N commute, i.e., MN = NM
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Autonomous system solution

Theorem
The autonomous system ẋ(t) = Ax(t) with initial condition x(0) = x0, where
A ∈ Rn×n, has the unique solution x(t) = eAtx0.

Stability

• the system is said to be stable iff

lim
t→∞

eAtx0 = 0

for all x0 ∈ Rn

• equivalently, there exist constants c1, c2 > 0 such that

∥eAtx0∥ ≤ c1e
c2t∥x0∥

for all x0 ∈ Rn

when considering the system G = (A,B,C,D), if ẋ = Ax is stable, then we say G is
internally stable
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A decoupled system in R2

the system

ẋ1(t) = −3x1(t), x(0) = x0

ẋ2(t) = 4x2(t)

is decoupled because the value of x1(t) does not affect x2(t), and vice-versa

in matrix notation this corresponds to the autonomous system with

A =

[
−3 0
0 4

]

solution is given by the x1(t) = e−3tx1(0), x2(t) = e4tx2(0)

• initial conditions of the form x0 =

[
c
0

]
tend to 0 at t→∞

• system diverges for all other initial conditions
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The harmonic oscillator

ẋ(t) =

[
0 1
−1 0

]
x(t)

x(t) =

[
cos t sin t
− sin t cos t

]
x(0)
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solution via Laplace transform

1 sI −A =

[
s −1
1 s

]
and so (sI −A)−1 =

[
s

s2+1
1

s2+1
−1

s2+1
s

s2+1

]
(⋆)

2 apply L−1 to each element:

L−1

{[
s

s2+1
1

s2+1
−1

s2+1
s

s2+1

]}
=

[
cos t sin t
− sin t cos t

]

(⋆) recall the formula for 2× 2 matrix inversion:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
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Eigenvalues and eigenvectors

for A ∈ Cn×n, λ ∈ C is an eigenvalue of A, denoted λ ∈ eig(A), if for some vector
v ∈ Cn with v ̸= 0 we have

Av = λv

• eigenvectors are not unique, if v is an eigenvector, so is αv for any α ∈ C

• vectors which satisfy wTA = λwT are called left eigenvectors of A

• real matrices can have complex eigenvalues
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Useful Eigenvalue/vector properties

• let Ax = λx be an eigen-pair, and k a positive integer, then Akx = λkx

show via induction:
– (k=1): A1x = Ax = λx

– (inductive step) assume Akx = λkx, show that it holds for k + 1, i.e.,

A
k+1

x = λ
k+1

x

apply Ak+1 = AAk and the assumption gives Ak+1x = AAkx

A
k+1

Ax = A(A
k
x)

= A(λ
k
x)

= λ
k
(Ax)

= λ
k · λx

= λ
k+1

x.
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Eigenvectors and dynamical systems

Given Av = λv and the system ẋ = Ax with x(0) = v, then

x(t) = eλtv

this follows from the matrix exponential definition:

x(t) = etAv =

(
I + tA+

(tA)2

2!
+ . . .

)
v

= v + λtv +
(λt)2

2!
v + . . . ( from Akv = λkv)

= eλtv

• when λ is real, the motion is boring - stays on the line spanned by v

• the solution x(t) = eλtv is called a mode of the system (associated to λ)
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Complex eigenvalues

suppose Av = λv and λ = σ + jω is complex (ω ̸= 0)

the trajectory x(t) = aeλtv satisfies ẋ(t) = Ax(t) for a ∈ C

this implies that real(aeλtv) is also a trajectory:

x(t) = real(αeλtv)

= eσt [vre vim]

[
cosωt sinωt
sinωt cosωt

] [
α
−β

]

where
v = vre + vim, and, a = α+ jβ
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Eigenspaces

for A ∈ Cn×n, λ ∈ C is an eigenvalue of A, denoted λ ∈ eig(A), if for some vector
v ∈ Cn with v ̸= 0 we have

Av = λv

• the eigenspace associated with the eigenvalue λk is the subspace

Ek = null(λkI −A) (⇐⇒ {v | λkv = Av})

• suppose that a set of eigenvectors satisfies

span{z1, . . . , zn} = Cn

(
⇐⇒

⋃
i

Ei = Cn

)
,

then V =
[

z1, . . . , zn
]
is invertible
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Diagonalization

let X =
[

x1, . . . , xn
]
be an invertible matrix built from the eigenvectors of A such

that span(x1, . . . , xn) = Cn

then AX = XΛ with Λ =

 λ1

. . .

λn


as X is invertible, we get X−1AX = Λ

• we say X diagonalizes A

• in general, the transformation W = P−1ZP is called a similarity transform

• unfortunately, not all matrices can be diagonalized:

A =

[
0 1
0 0

]
, λ1 = λ2 = 0, x1 =

[
−1
0

]
, x2 =

[
1
0

]
• having distinct eigenvalues is sufficient, but not necessary
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Stability of diagonalizable systems

ẋ(t) = Ax(t), with x(0) = x0 has the unique solution x(t) = eAtx0

suppose A is diagonalizable i.e., there exists an X such that A = XΛX−1, then

Ak = XΛX−1XΛX−1 . . . XΛX−1 = XΛkX−1

together with the definition of the matrix exponential

eAt =

(
XX−1 + (XΛX−1)t+

(XΛ2X−1)t2

2!
+ · · ·

)
= X

(
I + Λt+

(Λt)2

2
+ · · ·

)
X−1

= XeΛtX−1,

the matrix eΛt is a diagonal matrix with entries eλit
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Summary

specifically, eΛt has the form  eλ1t

. . .

eλnt


• by definition, XeΛtX−1 and eAt have the same eigenvalues

• multiplication on the left and right does not change the sign of λ

• the solution x(t) is a linear combination of the functions eλit

• we conclude that the system is stable iff

lim
t→∞

eλit → 0 for all i

which occurs iff Reλi < 0 for all i

what about non-diagonalizable systems?
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Modal form

• when x(0) = v and Av = λv then

x(t) = eλtv (†)

• when A has linearly independent eigenvectors then

x(t) = XeΛtX−1x0

• we can extend (†) to arbitrary initial conditions with independent eigenvectors by
expressing x0 as a linear combination of the eigenvectors:

x0 = c1v1 + c2v2 + · · ·+ cnvn where Avi = λivi

and ci are some (scalars) to be determined, it then follows that

x(t) =
n∑

i=1

cie
λitvi
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Modal form and left eigenvectors

it is straight forward to show that

ci = wT
i x(0) where wT

i A = λiw
T
i

giving

x(t) =
n∑

i=1

eλit(wT
i x(0))vi.

Hint

• relationship between WT and V

• x(t) = eAtx0 = V eλtV −1x0
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