4: Autonomous systems

- diagoanlizable system stability (recap)
- Jordan canonical form for non-diagonalizable systems
- Lyapunov theory
- Lyapunov theory for linear systems

Autonomous systems

systems with no external inputs and no output map are said to be autonomous

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0, \quad \text{where } \dim(A) = n \times n$$

• the solution to the set of *n*-coupled linear differential equations is

$$x(t) = e^{tA}x_0$$

• an autonomous system is said to be stable iff

$$\lim_{t \to \infty} x(t) = 0 \quad \text{for all } x_0 \in \mathbb{R}^n$$

• if A has n linearly independent eigenvectors, then the solution takes the form

$$x(t) = V e^{t\Lambda} V^{-1} x_0$$

and stability can be determined by the spectrum of A:

$$\operatorname{spec}(A) = \{\lambda_1, \lambda_2, \dots, \lambda_n\} = \{\lambda \in \mathbb{C} \mid \lambda I - A \text{ is singular}\}\$$

Diagonalizable systems

Stability of diagonalizable systems

consider the solution $x(t) = V e^{t\Lambda} V^{-1} x_0$

• e^{tA} is a diagonal matrix, specifically

$$\left[\begin{array}{cc} e^{\lambda_1 t} & & \\ & \ddots & \\ & & e^{\lambda_n t} \end{array}\right]$$

• which makes it clear that

 $\lim_{t\to\infty} x(t)=0 \quad \text{for all } x_0\in\mathbb{R}^n \quad \text{is equivalent to} \quad \lim_{t\to\infty} e^{\lambda_i t}\to 0 \quad \text{for all } i$

• stability reduced to checking a the sign of n eigenvalues

not all matrices are diagonalizable

$$X = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

Nilpotent matrices

non-diagonalizable matrices can be approximately diagonalized

recall the definition of matrix commutation: MN = NM

- for $\sigma \in \mathbb{C}$, we have that σI and N commute
- therefore, $e^{\sigma I+N} = e^{\sigma I} e^N$

an $n \times n$ matrix is said to be **nilpotent** of order k if $N^{k-1} \neq 0$ and $N^k = 0$.

$$N = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad N^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad N^3 = 0_{3 \times 3}$$

Algebraic multiplicity

the characteristic polynomial of $A \in \mathbb{C}^{n \times n}$, denoted p_A , is the degree n polynomial

 $p_A(z) = \det(zI - A)$

the characteristic polynomial provides another characterizations of the spectrum of A

• λ is an eigenvalue of A iff $p_A(\lambda) = 0$

 λ is an eigenvalue of $A \iff$ there is a non-zero x s.t. $\lambda x - Ax = 0$

 $\iff \lambda I - A$ is singular

 $\iff \det(\lambda I - A) = 0.$

- p_A can always be expressed as $p_A(z) = (z \lambda_1)(z \lambda_2) \dots (z \lambda_n)$
- the algebraic multiplicity of an eigenvalue is the number of times it appears in the factorized expression of p_A

Jordan blocks

given $A \in \mathbb{C}^{n \times n}$, let λ be an eigenvalue of A of multiplicity l,

the Jordan block associated to λ is the $l \times l$ matrix

$$J = \lambda I + N = \begin{bmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix}, \quad N \in \mathbb{C}^{l \times l} \text{ nilpotent}$$

- J has one eigenvalue, λ , of multiplicity l
- J has only one linearly independent eigenvector

for any matrix $A\in \mathbb{C}^{n\times n},$ there exists an invertible matrix T and Jordan blocks J_i such that

$$TAT^{-1} = J = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_p \end{bmatrix}$$

Solution via Jordan canonical form

using similar arguments to the diagonalizable setting

$$A^k = TJ^kT^{-1}$$
, where $J = \mathsf{blkdiag}(J_1, \dots, J_p)$

and so,

$$e^{At} = Te^{Jt}T^{-1} = T \begin{bmatrix} e^{(\lambda_1 I + N)t} & & \\ & \ddots & \\ & & e^{(\lambda_p I + N)t} \end{bmatrix} T^{-1}$$

Solution via Jordan canonical form

using similar arguments to the diagonalizable setting

$$A^k = TJ^kT^{-1}$$
, where $J = \mathsf{blkdiag}(J_1, \dots, J_p)$

and so,

$$e^{At} = Te^{Jt}T^{-1} = T \begin{bmatrix} e^{(\lambda_1 I + N)t} & & \\ & \ddots & \\ & & e^{(\lambda_p I + N)t} \end{bmatrix} T^{-1}.$$

each exponential block has the form

$$e^{J_i t} = \begin{bmatrix} e^{\lambda_i t} & & \\ & \ddots & \\ & & e^{\lambda_i t} \end{bmatrix} \left[I + Nt + \frac{(Nt)^2}{2!} + \dots + \frac{(Nt)^{k-1}}{(k-1)!} \right]$$

Jordan form

Autonomous system stability

- the system $\dot{x}(t) = Ax(t)$ with $x(0) = x_0 \in \mathbb{R}^n$, is said to be stable iff $\lim_{t\to\infty} e^{At}x_0 = 0$ for all $x_0 \in \mathbb{R}^n$.
- all systems admit a Jordan decomposition
- the solutions consist of linear combinations of functions of the form $\frac{t^k}{k!}e^{\lambda t}$
- $\bullet\,$ stability is thus determined by the eigenvalues of $A\,$

Theorem

An autonomous system is stable if and only if all of the eigenvalues of A have strictly negative real part. That is

$$\operatorname{\mathbf{Re}}(\lambda) < 0 \text{ for all } \lambda \in \operatorname{eig}(A).$$

matrices whose eigenvalues have real parts strictly less than zero are said to be Hurwitz.

Nonlinear autonomous systems

consider the time-invariant dynamical system

$$\dot{x}(t) = f(x(t)), \quad x(0) = x_0,$$

where

- $f: \mathbb{R}^n \to \mathbb{R}^n$ is the vector field
- x^* is an equilibrium point if $f(x^*) = 0$

Stability

when dealing with nonlinear systems, we refer to the stability of an equilibrium point, not the system.

• the eq. point x^* is globally asymptotically stable (G.A.S.) if for every trajectory x(t)

$$x(t) \to x^{\star}$$
 as $t \to \infty$

• the eq. point x^* is *locally asymptotically stable* (L.A.S.) if there exists an R > 0 such that

$$\|x(0) - x^{\star}\| \leq R \quad \Rightarrow \quad x(t) o x^{\star} \text{ as } t o \infty$$

Lyapunov theory

- convenient to change coordinates so that $x^{\star} = 0$
- linear systems are a special case, f(x) = Ax
 - for linear systems G.A.S. \iff L.A.S. \iff stability
 - "stability" is determined by $\mathbf{Re}[\lambda_i(A)]$
- there are lots of other variations on stability
- for nonlinear f, establishing stability is a not straight forward
 - finding an eq. point can be a challenge
 - solving for x(t) almost never possible
 - simulation is is inconclusive
 - most of the theory that exists is not constructive

Pendulum

Lyapunov theory

Positive definite functions

A function $V : \mathbb{R}^n \to \mathbb{R}$ is positive definite if

• V(x) > 0 for all $x \in \mathbb{R}^n \setminus \{0\}$

Examples

- $V(x,y) = x^2 + y^2$
- if $z \in \mathbb{R}^n$ and P is symmetric matrix with positive eigenvalues, then

$$V(z) = z^T P z = \sum_{i=1}^{n} \sum_{j=1}^{n} P_{ij} z_i z_j > 0 \quad \text{for all } z \neq 0$$

Lyapunov theory

draw conclusions about the stability of x^{\star} without having to calculate x(t)

Theorem

Consider the system $\dot{x}(t) = f(x(t))$ with $x(0) = x_0$. Without loss of generality, we assume $x^* = 0$ and that $x^* \in D \subseteq \mathbb{R}^n$. If there exists a continuously differentiable function $V : D \to \mathbb{R}$ such that

V(x) is positive definite on \mathcal{D} ,

 $\dot{V}(x(t))$ is negative definite on \mathcal{D} ,

then x^* is locally asymptotically stable.

• V is called a Lyapunov function

• replace "definite" with "semidefinite" to obtain the weaker notion that x^{\star} is locally stable

Example: Frictionless pendulum

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = -\frac{g}{l}\sin x_1$$

candidate Lyapunov function: $V(x) = \left(\frac{g}{l}\right)(1 - \cos x_1) + \frac{1}{2}x_2^2$, $\mathcal{D} = -2\pi < x_1 < 2\pi$

$$\dot{V}(x) = \left(\frac{g}{l}\right) \dot{x}_1 \sin x_1 + x_2 \dot{x}_2$$
$$= \left(\frac{g}{l}\right) x_2 \sin x_1 - x_2 \left(\frac{g}{l}\right) \sin x_1 = 0$$

Lyapunov theory

Lyapunov theory

a few takeaways:

- Lyapunov methods provide a powerful tool for stability analysis, but...
- where does V come from?
 - for mechanical systems, total energy = potential + kinetic
 - everything else?!
- if the proposed Lyapunov function fails the two tests, the eq. point may still be stable
- testing positivity of a function is usually intractable

Lyapunov theory for linear systems

define the Lyapunov equation as

$$A^T P + PA + Q = 0$$

where $A \in \mathbb{R}^{n \times n}$ and $P, Q \in \mathbb{S}^n$.

• linear in the matrix variable P

associated to the Lyapunov equation are

- the linear dynamical system $\dot{x}(t) = Ax(t)$
- a quadratic Lyapunov function candidate $V(x) = x^T P x$

apply the chain rule to obtain the derivative:

$$\dot{V}(x(t)) = -x^T Q x$$

Linear systems

Solution to the Lyapunov equation

when A is stable, there is an integral solution to the Lyapunov equation

Theorem

Suppose A and Q are square matrices and that A is Hurwitz. Then

$$P = \int_0^\infty e^{tA^T} Q e^{tA} \mathrm{d}t$$

is the unique solution to $A^T P + PA + Q = 0$.

Solution to the Lyapunov equation

when A is stable, there is an integral solution to the Lyapunov equation

Theorem

Suppose A and Q are square matrices and that A is Hurwitz. Then

$$P = \int_0^\infty e^{tA^T} Q e^{tA} \mathrm{d}t$$

is the unique solution to $A^T P + PA + Q = 0$.

Proof: Substitute in the expression for P to get

$$A^{T}P + PA = \int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ e^{tA^{T}} Q e^{tA} \right\} \mathrm{d}t$$
$$= e^{tA^{T}} Q e^{tA} \Big|_{0}^{\infty}$$
$$= -Q.$$

Uniqueness follows from defining $\Pi(P):=A^TP+PA$ and showing that $\mathrm{null}(\Pi)=0$

Linear systems

Theorem

Suppose $Q \succ 0$. Then A is Hurwitz if and only if there exists a solution $P \succ 0$ to the Lyapunov equation $A^T P + PA + Q = 0$.

Proof:

(only if direction)

- we established the unique solution $P=\int_0^\infty e^{tA^T}Qe^{tA}\mathrm{d}t$
- when $Q \succ 0$ it is clear that $P \succ 0$ (Use $Q = Q^{\frac{1}{2}}Q^{\frac{1}{2}}$)

(converse)

- Suppose $P \succ 0$ solves the Lyapunov equation and that $Av = \lambda v$
- It then follows that $\lambda^* v^* P v + \lambda v^* P v + v^* Q v = 0$, and since $P \succ 0$,

$$2 \mathrm{real}(\lambda) = -\frac{v^* Q v}{v^* P v} < 0,$$

it follows that A is Hurwitz

Cost-to-go interpretation

assuming A is stable and P solves $A^T P + P A + Q = 0,$ then

$$V(z) = z^T P z$$

= $z^T \left(\int_0^\infty e^{tA^T} Q e^{tA} dt \right) z$
= $\int_0^\infty x(t)^T Q x(t) dt$

where $\dot{x}(t) = Ax(t)$ and x(0) = z.

V(z) is the cost-to-go from z when considering an integral quadratic cost function

Notes

- the proof was if and only if
 - linear systems are internally stable if and only if there is a quadratic Lyapunov function
 - the choice of Q is arbitrary
- an alternative proof based on a Lyapunov argument was hinted at earlier
- we will see later that in some cases $Q \succeq 0$ will suffice
- to solve a Lyapunov equation in Matlab, use >>lyap(A',eye(n))

 note the transpose

Summary: stability tests for autonomous systems

Two tests for internal stability

 \bullet check eigenvalues of A

2 solve the Lyapunov equation for P(A, Q given)

 \bigcirc solve the linear matrix inequalities for P (next week)

Which method to use?

- each method is equivalent (in theory)
- computing eigenvalues is often ill-conditioned (numerically problematic)
- LMIs offer greater flexibility focus of this course