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4: Autonomous systems

• diagoanlizable system stability (recap)

• Jordan canonical form for non-diagonalizable systems

• Lyapunov theory

• Lyapunov theory for linear systems
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Autonomous systems

systems with no external inputs and no output map are said to be autonomous

ẋ(t) = Ax(t), x(0) = x0, where dim(A) = n× n

• the solution to the set of n-coupled linear differential equations is

x(t) = etAx0

• an autonomous system is said to be stable iff

lim
t→∞

x(t) = 0 for all x0 ∈ Rn

• if A has n linearly independent eigenvectors, then the solution takes the form

x(t) = V etΛV −1x0

and stability can be determined by the spectrum of A:

spec(A) = {λ1, λ2, . . . , λn} = {λ ∈ C | λI −A is singular}
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Stability of diagonalizable systems

consider the solution x(t) = V etΛV −1x0

• etA is a diagonal matrix, specifically eλ1t

. . .

eλnt


• which makes it clear that

lim
t→∞

x(t) = 0 for all x0 ∈ Rn is equivalent to lim
t→∞

eλit → 0 for all i

• stability reduced to checking a the sign of n eigenvalues

not all matrices are diagonalizable

X =

[
0 1
0 0

]
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Nilpotent matrices

non-diagonalizable matrices can be approximately diagonalized

recall the definition of matrix commutation: MN = NM

• for σ ∈ C, we have that σI and N commute

• therefore, eσI+N = eσIeN

an n× n matrix is said to be nilpotent of order k if Nk−1 ̸= 0 and Nk = 0.

N =

 0 1 0
0 0 1
0 0 0

 , N2 =

 0 0 1
0 0 0
0 0 0

 , N3 = 03×3
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Algebraic multiplicity

the characteristic polynomial of A ∈ Cn×n, denoted pA, is the degree n polynomial

pA(z) = det(zI −A)

the characteristic polynomial provides another characterizations of the spectrum of A

• λ is an eigenvalue of A iff pA(λ) = 0

λ is an eigenvalue of A ⇐⇒ there is a non-zero x s.t. λx−Ax = 0

⇐⇒ λI −A is singular

⇐⇒ det(λI −A) = 0.

• pA can always be expressed as pA(z) = (z − λ1)(z − λ2) . . . (z − λn)

• the algebraic multiplicity of an eigenvalue is the number of times it appears in
the factorized expression of pA
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Jordan blocks

given A ∈ Cn×n, let λ be an eigenvalue of A of multiplicity l,

the Jordan block associated to λ is the l × l matrix

J = λI +N =


λ 1

. . .
. . .

. . . 1
λ

 , N ∈ Cl×l nilpotent

• J has one eigenvalue, λ, of multiplicity l

• J has only one linearly independent eigenvector

for any matrix A ∈ Cn×n, there exists an invertible matrix T and Jordan blocks Ji
such that

TAT−1 = J =

 J1
. . .

Jp


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Solution via Jordan canonical form

using similar arguments to the diagonalizable setting

Ak = TJkT−1, where J = blkdiag(J1, . . . , Jp)

and so,

eAt = TeJtT−1 = T


e(λ1I+N)t

. . .

e(λpI+N)t

T−1.

each exponential block has the form

eJit =

 eλit

. . .

eλit

[
I +Nt+

(Nt)2

2!
+ · · ·+

(Nt)k−1

(k − 1)!

]
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Autonomous system stability

• the system ẋ(t) = Ax(t) with x(0) = x0 ∈ Rn, is said to be stable iff
limt→∞ eAtx0 = 0 for all x0 ∈ Rn.

• all systems admit a Jordan decomposition

• the solutions consist of linear combinations of functions of the form tk

k!
eλt

• stability is thus determined by the eigenvalues of A

Theorem
An autonomous system is stable if and only if all of the eigenvalues of A have strictly
negative real part. That is

Re(λ) < 0 for all λ ∈ eig(A).

• matrices whose eigenvalues have real parts strictly less than zero are said to be
Hurwitz.

Jordan form 8



Nonlinear autonomous systems

consider the time-invariant dynamical system

ẋ(t) = f(x(t)), x(0) = x0,

where

• f : Rn → Rn is the vector field

• x⋆ is an equilibrium point if f(x⋆) = 0

Stability

when dealing with nonlinear systems, we refer to the stability of an equilibrium point,
not the system.

• the eq. point x⋆ is globally asymptotically stable (G.A.S.) if for every trajectory
x(t)

x(t) → x⋆ as t → ∞

• the eq. point x⋆ is locally asymptotically stable (L.A.S.) if there exists an R > 0
such that

∥x(0)− x⋆∥ ≤ R ⇒ x(t) → x⋆ as t → ∞
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• convenient to change coordinates so that x⋆ = 0

• linear systems are a special case, f(x) = Ax
– for linear systems G.A.S. ⇐⇒ L.A.S. ⇐⇒ stability

– “stability” is determined by Re[λi(A)]

• there are lots of other variations on stability

• for nonlinear f , establishing stability is a not straight forward
– finding an eq. point can be a challenge

– solving for x(t) almost never possible

– simulation is is inconclusive

– most of the theory that exists is not constructive
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Pendulum

mlθ̈ = −mg sin θ − kl sin θ̇ =⇒ ẋ1 = x2

ẋ2 = − g
l
sinx1 − k

m
x2

x⋆ =

[
nπ
0

]
for n = 0,±1,±2, . . .
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Positive definite functions

A function V : Rn → R is positive definite if

• V (x) > 0 for all x ∈ Rn \ {0}

Examples

• V (x, y) = x2 + y2

• if z ∈ Rn and P is symmetric matrix with positive eigenvalues, then

V (z) = zTPz =
n∑

i=1

n∑
j=1

Pijzizj > 0 for all z ̸= 0

Lyapunov theory 12



Lyapunov theory

draw conclusions about the stability of x⋆ without having to calculate x(t)

Theorem

Consider the system ẋ(t) = f(x(t)) with x(0) = x0. Without loss of generality, we
assume x⋆ = 0 and that x⋆ ∈ D ⊆ Rn . If there exists a continuously differentiable
function V : D → R such that

V (x) is positive definite on D,

V̇ (x(t)) is negative definite on D,

then x⋆ is locally asymptotically stable.

• V is called a Lyapunov function

• replace “definite” with “semidefinite” to obtain the weaker notion that x⋆ is
locally stable
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Example: Frictionless pendulum

ẋ1 = x2

ẋ2 = − g
l
sinx1

candidate Lyapunov function: V (x) =
( g
l

)
(1− cosx1) +

1
2
x2
2, D = −2π < x1 < 2π

V̇ (x) =
(g

l

)
ẋ1 sinx1 + x2ẋ2

=
(g

l

)
x2 sinx1 − x2

(g

l

)
sinx1 = 0
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Lyapunov theory

a few takeaways:

• Lyapunov methods provide a powerful tool for stability analysis, but...

• where does V come from?
– for mechanical systems, total energy = potential + kinetic

– everything else?!

• if the proposed Lyapunov function fails the two tests, the eq. point may still be
stable

• testing positivity of a function is usually intractable
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Lyapunov theory for linear systems

define the Lyapunov equation as

ATP + PA+Q = 0

where A ∈ Rn×n and P,Q ∈ Sn.

• linear in the matrix variable P

associated to the Lyapunov equation are

• the linear dynamical system ẋ(t) = Ax(t)

• a quadratic Lyapunov function candidate V (x) = xTPx

apply the chain rule to obtain the derivative:

V̇ (x(t)) = −xTQx
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Solution to the Lyapunov equation

when A is stable, there is an integral solution to the Lyapunov equation

Theorem
Suppose A and Q are square matrices and that A is Hurwitz. Then

P =

∫ ∞

0
etA

T
QetAdt

is the unique solution to ATP + PA+Q = 0.

Proof: Substitute in the expression for P to get

ATP + PA =

∫ ∞

0

d

dt

{
etA

T
QetA

}
dt

= etA
T
QetA

∣∣∣∞
0

= −Q.

Uniqueness follows from defining Π(P ) := ATP + PA and showing that
null(Π) = 0
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Theorem
Suppose Q ≻ 0. Then A is Hurwitz if and only if there exists a solution P ≻ 0 to the
Lyapunov equation ATP + PA+Q = 0.

Proof:
(only if direction)

• we established the unique solution P =
∫∞
0 etA

T
QetAdt

• when Q ≻ 0 it is clear that P ≻ 0 (Use Q = Q
1
2 Q

1
2 )

(converse)

• Suppose P ≻ 0 solves the Lyapunov equation and that Av = λv

• It then follows that λ∗v∗Pv + λv∗Pv + v∗Qv = 0, and since P ≻ 0,

2real(λ) = −
v∗Qv

v∗Pv
< 0,

it follows that A is Hurwitz
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Cost-to-go interpretation

assuming A is stable and P solves ATP + PA+Q = 0, then

V (z) = zTPz

= zT
(∫ ∞

0
etA

T
QetAdt

)
z

=

∫ ∞

0
x(t)TQx(t)dt

where ẋ(t) = Ax(t) and x(0) = z.

V (z) is the cost-to-go from z when considering an integral quadratic cost function
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Notes

• the proof was if and only if
– linear systems are internally stable if and only if there is a quadratic Lyapunov function

– the choice of Q is arbitrary

• an alternative proof based on a Lyapunov argument was hinted at earlier

• we will see later that in some cases Q ⪰ 0 will suffice

• to solve a Lyapunov equation in Matlab, use >>lyap(A’,eye(n))

– note the transpose
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Summary: stability tests for autonomous systems

Two tests for internal stability

1 check eigenvalues of A

2 solve the Lyapunov equation for P (A,Q given)

3 solve the linear matrix inequalities for P (next week)

Which method to use?

• each method is equivalent (in theory)

• computing eigenvalues is often ill-conditioned (numerically problematic)

• LMIs offer greater flexibility - focus of this course
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