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4: Autonomous systems

® diagoanlizable system stability (recap)
® Jordan canonical form for non-diagonalizable systems
® [ yapunov theory

® |yapunov theory for linear systems



Autonomous systems

systems with no external inputs and no output map are said to be autonomous

z(t) = Az(t), x(0) ==xz0, wheredim(A)=nxn

® the solution to the set of n-coupled linear differential equations is
z(t) = et4ag
® an autonomous system is said to be stable iff

lim z(t) =0 forall zg € R™

t— o0
® if A has n linearly independent eigenvectors, then the solution takes the form
z(t) = Vel vz
and stability can be determined by the spectrum of A:

spec(A) = {A1,A2,..., A} = {X € C | X[ — A is singular}

Diagonalizable systems



Stability of diagonalizable systems
consider the solution z(t) = Ve!AV ~1zg

® ¢t4 is a diagonal matrix, specifically

e

® which makes it clear that

lim z(t) =0 forall zp € R™ s equivalent to  lim e** — 0 for all i
t—o0 t—o0
® stability reduced to checking a the sign of n eigenvalues

not all matrices are diagonalizable

O =
—

Diagonalizable systems



Nilpotent matrices

non-diagonalizable matrices can be approximately diagonalized

recall the definition of matrix commutation: MN = NM

® for o € C, we have that oI and N commute

® therefore, e?1TN = ¢oleN

an n X m matrix is said to be nilpotent of order k if N¥—1 £ 0 and N* = 0.

0 1 0 0 0 1
N=|0 0 1|, N2=|0 0 0], N3=03x3
0 0 0 0 0 0

Jordan form



Algebraic multiplicity
the characteristic polynomial of A € C"*"™, denoted p4, is the degree n polynomial
pa(z) =det(zI — A)
the characteristic polynomial provides another characterizations of the spectrum of A

® ) is an eigenvalue of A iff p4(A\) =0

Ais an eigenvalue of A <= there is a non-zero z s.t. Az — Az =0
<= Al — Ais singular

—  det(\[ — A) =0.

® pa can always be expressed as pa(z) = (z — A1)(z — A2) ... (2 — A\n)

® the algebraic multiplicity of an eigenvalue is the number of times it appears in
the factorized expression of p 4

Jordan form



Jordan blocks

given A € C™*™, let A be an eigenvalue of A of multiplicity [,

the Jordan block associated to A is the I X I matrix

A1

J=M+N = R , N e C™ nilpotent

® J has one eigenvalue, A, of multiplicity [

® J has only one linearly independent eigenvector

for any matrix A € C™*"™, there exists an invertible matrix T" and Jordan blocks J;
such that
Ji

TAT ' =J =
Jp

Jordan form



Solution via Jordan canonical form

using similar arguments to the diagonalizable setting

A* = TJ*T~L, where J = blkdiag(J1, ..., Jp)

and so,
e T+N)E
e =TellT =T T
eOpI+N)t

Jordan form



Solution via Jordan canonical form

using similar arguments to the diagonalizable setting

A* = TJ*T~L, where J = blkdiag(J1, ..., Jp)

and so,
e T+N)E
e =TeltT" =T Tt
eApI+N)t
each exponential block has the form

oMt 2 k—1

Jit (N?) ()"~
it = - I+ Nt e ———

¢ : TN (k—1)!

it

Jordan form



Autonomous system stability

® the system @(t) = Az(t) with z(0) = zo € R™, is said to be stable iff
lim¢— o0 etz = 0 for all zp € R™.

® all systems admit a Jordan decomposition

tk

® the solutions consist of linear combinations of functions of the form ?ekt

® stability is thus determined by the eigenvalues of A

Theorem
An autonomous system is stable if and only if all of the eigenvalues of A have strictly
negative real part. That is

Re(\) < 0 for all X € eig(A). O

® matrices whose eigenvalues have real parts strictly less than zero are said to be
Hurwitz.

Jordan form



Nonlinear autonomous systems

consider the time-invariant dynamical system

i(t) = f(z(t), 2(0) =w=o,
where
® f:R™ — R™ is the vector field
® z* is an equilibrium point if f(z*) =0
Stability
when dealing with nonlinear systems, we refer to the stability of an equilibrium point,

not the system.

® the eq. point z* is globally asymptotically stable (G.A.S.) if for every trajectory
xz(t)
z(t) = x* as t — oo
® the eq. point z* is locally asymptotically stable (L.A.S.) if there exists an R > 0
such that
|[z(0) —z*|| <R = z(t) > z"ast— oo

Lyapunov theory



® convenient to change coordinates so that z* =0

® linear systems are a special case, f(z) = Az
— for linear systems G.A.S. <= L.AS. <= stability

— ‘“stability” is determined by Re[\;(A)]
® there are lots of other variations on stability

® for nonlinear f, establishing stability is a not straight forward
— finding an eq. point can be a challenge

— solving for z(t) almost never possible
— simulation is is inconclusive

— most of the theory that exists is not constructive

Lyapunov theory
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Pendulum
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Positive definite functions

A function V : R™ — R is positive definite if

® V(z) >0 for all z € R™\ {0}

Examples

® if z € R™ and P is symmetric matrix with positive eigenvalues, then

n

n
V(z)=2"Pz=> > Pijziz; >0 forall z#0
i=1j=1

Lyapunov theory 12



Lyapunov theory

draw conclusions about the stability of * without having to calculate x(¢)

Theorem

Consider the system @(t) = f(x(t)) with (0) = zo. Without loss of generality, we
assume x* = 0 and that x* € D C R"™ . If there exists a continuously differentiable
function V : D — R such that

V(z) is positive definite on D,
V(z(t)) is negative definite on D,

then x* is locally asymptotically stable.

® V is called a Lyapunov function

® replace “definite” with “semidefinite” to obtain the weaker notion that z* is
locally stable

Lyapunov theory

13



candidate Lyapunov function: V(z) = () (1 —cosz1) + %:c%, D=-2r<z <27

Lyapunov theory

Example: Frictionless pendulum

T = X2
To = —%sinxl

T S
7=

V(x) = (?) T1sinxy + Todo

(9N 9\
= 7 xosinxry — x2 7 sinxz; =0

14



Lyapunov theory

a few takeaways:
® [ yapunov methods provide a powerful tool for stability analysis, but...

® where does V' come from?
— for mechanical systems, total energy = potential + kinetic

— everything else?!

® if the proposed Lyapunov function fails the two tests, the eq. point may still be
stable

® testing positivity of a function is usually intractable

Lyapunov theory
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Lyapunov theory for linear systems

define the Lyapunov equation as
ATP+PA+ Q=0

where A € R"*™ and P,Q € S".
® linear in the matrix variable P
associated to the Lyapunov equation are

® the linear dynamical system z(t) = Az(t)

® a quadratic Lyapunov function candidate V(z) = T Px

apply the chain rule to obtain the derivative:

V(z(t)) = —27Qz

Linear systems 16



Solution to the Lyapunov equation

when A is stable, there is an integral solution to the Lyapunov equation

Theorem
Suppose A and @ are square matrices and that A is Hurwitz. Then

o T
P = / et QetAde
0

is the unique solution to AT P + PA 4+ Q = 0.

Linear systems
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Solution to the Lyapunov equation

when A is stable, there is an integral solution to the Lyapunov equation

Theorem
Suppose A and @ are square matrices and that A is Hurwitz. Then

oo T
pP= / et Qettdt
0
is the unique solution to AT P + PA 4+ Q = 0.

Proof: Substitute in the expression for P to get

(e @)

d

ATP+PA=/ a{ezATQezA}dt
0

oo

T
— otA QetA’

= Q.

0

Uniqueness follows from defining TI(P) := AT P + PA and showing that
null(IT) =0

Linear systems
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Theorem
Suppose Q = 0. Then A is Hurwitz if and only if there exists a solution P > O to the
Lyapunov equation ATP + PA+Q = 0.

Proof:
(only if direction)

® we established the unique solution P = [ eta” QetAdt

® when @Q > 0 it is clear that P > 0 (Use Q = Q%Q%)

(converse)

® Suppose P > 0 solves the Lyapunov equation and that Av = Av
® |t then follows that A*v™* Pv 4+ Av* Pv + v*Qu = 0, and since P = 0,

v*Qu
v* Pv

2real(\) = — <0,

it follows that A is Hurwitz O

Linear systems
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Cost-to-go interpretation

assuming A is stable and P solves ATP + PA+ Q = 0, then

</°° o)
- / )t

where z(t) = Az(t) and z(0) = z.

Vi(z) =

V(z) is the cost-to-go from z when considering an integral quadratic cost function

Linear systems
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Notes

® the proof was if and only if
— linear systems are internally stable if and only if there is a quadratic Lyapunov function

— the choice of Q is arbitrary
® an alternative proof based on a Lyapunov argument was hinted at earlier

® we will see later that in some cases @Q > 0 will suffice

® to solve a Lyapunov equation in Matlab, use >>1yap(A’,eye(n))

— note the transpose

Linear systems 20



Summary: stability tests for autonomous systems

Two tests for internal stability
® check eigenvalues of A
@ solve the Lyapunov equation for P (A, Q given)

® solve the linear matrix inequalities for P (next week)

Which method to use?
® each method is equivalent (in theory)
® computing eigenvalues is often ill-conditioned (numerically problematic)

® | Mils offer greater flexibility - focus of this course

Linear systems 21
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