5: Convex Optimization

optimization

- convexity
- linear programming example

Optimization

standard form optimization problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & g_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_j(x)=0, \quad j=1,\ldots,p \end{array}$$

- $x \in \mathbb{R}^n$: decision variables the things you choose
- $f_0: \mathbb{R}^n \to \mathbb{R}$: objective function the cost you pay for choosing x
- $g_i: \mathbb{R}^n \to \mathbb{R}$: inequality constraint functions criteria your choice must satisfy
- $h_j : \mathbb{R}^n \to \mathbb{R}$: equality constraint functions

a solution or optimal point x^* returns the smallest value of f_0 from all choices of x that satisfy all the constraints

a feasible point is any x that satisfies all the constraints

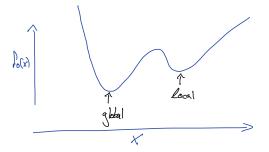
Optimization

Minima

we say that \bar{x} is a local minimum if \bar{x} is feasible and there exists an $\epsilon > 0$ such that

 $f_0(\bar{x}) \le f_0(x)$ for all $x \in \mathcal{B}(\bar{x}, \epsilon)$

when the inequality holds for all $x \in \mathbb{R}^n$, then \bar{x} is global minimum



Solving optimization problems

- most problems are very difficult to solve
- large n is a computational not a theoretical problem
- in many cases, sub-optimal solutions are fine
 - provided we can quantify the sub-optimality level
- how the problem is modeled will determine how/if it can be solved

Which problems are solvable?

- convex optimization problems
 - least-squares
 - linear programs
 - conic programs
- a few special cases
 - problems involving exactly two quadratics, a few others if n is small

Affine sets

let V be a vector space, then $S\subseteq V \mathrm{is}$ an affine set if

$$x, y \in S \quad \lambda, \gamma \in \mathbb{R} \quad \lambda + \gamma = 1 \quad \Rightarrow \quad \lambda x + \gamma y \in S$$

Geometrically: the line v through x, y, with $x, y \in S$

$$\{v \in V \mid v = \theta x + (1 - \theta)y, \quad \theta \in \mathbb{R}\}\$$

is contained in \boldsymbol{S}

Representations:

- range(Au + b), with $u \in U$ where $A : U \to V$
- the solution to a set of linear equations: let $B: V \rightarrow U$

$$S = \{x \mid Bx = c\}$$

Convex sets

the set $S \subseteq V$ is convex if

$$x, y \in S \quad \lambda, \gamma \ge 0 \quad \lambda + \gamma = 1 \quad \Rightarrow \quad \lambda x + \gamma y \in S$$

Geometrically: the line segment between x, y, with $x, y \in S$

$$\mathcal{L}(x,y) = \{ v \in V \mid v = \theta x + (1-\theta)y, \quad \theta \in [0,1] \}$$

is contained in ${\boldsymbol{S}}$

[Figure from Boyd & Vandenberghe]

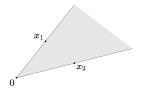
Convex cones

the set $S \subseteq V$ is a **cone** if

 $x \in S, \quad \theta \ge 0 \quad \Rightarrow \quad \theta x \in S$

S is a convex cone if

 $x_1, x_2 \in S \quad \lambda, \gamma \ge 0 \quad \Rightarrow \quad \lambda x_1 + \gamma x_2 \in S$



Geometrically: a set that contains all conic combinations of x_1 and x_2

[Figure from Boyd & Vandenberghe]

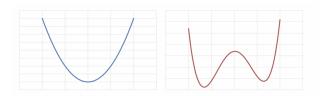
Convex functions

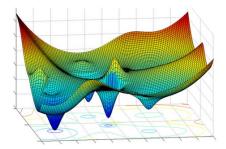
let $X\subseteq V$ be a convex subset of V, then $f:X\to \mathbb{R}$ is convex if

 $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \quad \text{ for all } x,y \in X \text{ and } \theta \in [0,1]$

Geometrically: line segment between (x, f(x)) and (y, f(y)) lies above the graph of f

- f is strictly convex if inequality is strict
- if f is convex, -f is concave





Verifying convexity

- in 1 or 2 dimensions, plot the function
- use the inequality definition definition
- if f is twice differentiable everywhere, then if for all $x \in X$

 $\nabla^2 f(x) \succeq 0$

then $f \mbox{ is convex }$

Examples of convex functions

Scalar functions

- ax + b on \mathbb{R} for any $a, b \in \mathbb{R}$
- $e^{\alpha x}$, any $\alpha \in \mathbb{R}$
- x^{α} on \mathbb{R}_++ for $\alpha \geq 1$ or $\alpha \leq 0$
- $|x|^p$ on \mathbb{R} for $p \ge 1$
- relu function: $\max\{0, x\}$

Vector functions

- $a^T x + b$
- ||x|| (any norm)
- softmax function: $\log(e^{x_1} + e^{x_2} + \dots + e^{x_n})$

Constructive convex analysis

verify convexity by showing that the function is built as follows:

- non-negative scaling: f convex, $\alpha \ge 0 \implies \alpha f$ convex
- summation: f, g convex $\implies f + g$ convex
- affine composition: f convex $\implies f(Ax + b)$ convex
- pointwise maximum: $f_1, \ldots f_l$ convex $\implies \max_i f_i(x)$ convex
- convex: h convex increasing, f convex $\implies h(f(x))$ is convex

Convex optimization

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & g_i(x) \leq 0, \quad i=1,\ldots,m \\ & a_j^T x = b, \quad j=1,\ldots,p \end{array}$$

- $x \in \mathbb{R}^n$: decision variables
- $f_0 : \mathbb{R}^n \to \mathbb{R}$: convex objective function
- $g_i : \mathbb{R}^n \to \mathbb{R}$: convex inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$: inequality constraint functions must be affine

some important facts

- the feasible set is a convex set
- all solutions x^{*} are globally optimal
- the set of solutions forms a convex set

Assumption for this course: if a problem is convex, we can solve it

Theorem

For a convex problem, all local minima are also global minima.

Theorem

For a convex problem, all local minima are also global minima.

Proof.

let \bar{x} be a local minimum: $f_0(\bar{x}) \leq f_0(x)$ for all $x \in \mathcal{B}(\bar{x}, \epsilon)$

assume a contradiction, feasible z such that $f_0(z) < f_0(\bar{x})$

the feasible set is convex, so

 $\theta \bar{x} + (1 - \theta) z$ is feasible for $\theta \in [0, 1]$

as f_0 is convex

$$f_0(\theta \bar{x} + (1 - \theta)z) \le \theta f_0(\bar{x}) + (1 - \theta)f_0(z) < \theta f_0(\bar{x}) + (1 - \theta)f_0(\bar{x}) = f_0(\bar{x})$$

as $\theta \to 1, \ (\theta \bar{x} + (1-\theta)z) \to \bar{x}$ and we have a contradiction

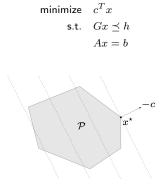
Epigraph formulation

it is often convenient to specify an optimization problem in an equivalent form

 $\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & g_i(x) \leq 0, \quad i=1,\ldots,m \\ & f_0(x) \leq t \\ & Ax = b \end{array}$

- t is a new scalar variable
- has the same feasible set as the original problem

Linear programming



- feasible set is a **polytope**
- the optimal point, if it exists, is, w.l.o.g at a vertex

[Figure from Boyd & Vandenberghe]

Open-loop output tracking

consider the linear, scalar input/output system

$$y_t = h_0 u_t + h_1 u_{t-1} + h_2 u_{t-3} + \dots \quad u_t = 0 \text{ if } t < 0$$

for $t \in [0, M]$, write in matrix form, write at y = Hu, where

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} h_0 & 0 & 0 & \dots & 0 \\ h_1 & h_0 & 0 & \dots & 0 \\ h_2 & h_1 & h_0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ h_M & h_{M-1} & h_{M-2} & \dots & h_0 \\ \vdots & \vdots & \vdots & 0 \\ h_N & H_{N-1} & h_{N-2} & \dots & H_{N-M} \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_M \end{bmatrix}$$

• design $u_0, u_1, \ldots u_M$ to achieve desired output

[Example from Lieven Vandenberghe's EE236A class]

Linear programming

• **Objective:** minimize the maximum deviation from a desired trajectory y_{des}

$$\max_{t \in [0,N]} |y_t - y_{\mathrm{des},t}|$$

• Constraint 1: input amplitude bounds

$$|u_i| \leq U \quad \text{for } t = 1, \dots, M \quad \iff \quad ||u||_{\infty} \leq U$$

• Constraint 2: input slew-rate bound

$$|u_{t+1} - u_t| \leq S$$
 for $t = 1, \dots, M - 1$

implement slew rate via the linear inequality $Du \preceq S\mathbf{1}$ where

$$D := \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 0 & -1 & 1 \end{bmatrix}$$

LP formulation

 $\|z\|_{\infty}$ -norm constraint can be expressed as a set of linear inequalities

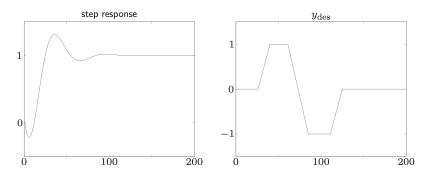
 $z \in \mathbb{R}^2$ $||z||_{\infty} \le 5$ \iff $-5 \le z_1 \le 5$ and $-5 \le z_2 \le 5$

as a result, the optimization problem

$$\begin{array}{ll} \underset{u}{\text{minimize}} & \|Hu - y_{\text{des}}\|_{\infty} \\ \text{s.t.} & \|u\|_{\infty} \leq U \\ & \|Du\|_{\infty} \leq S \end{array}$$

can be written in "standard form"

$$\begin{array}{ll} \underset{\gamma,u}{\text{minimize}} & \gamma \\ \text{s.t.} & -\gamma \mathbf{1} \leq Hu - y_{\text{des}} \leq \gamma \mathbf{1} \\ & -U\mathbf{1} \leq u \leq U\mathbf{1} \\ & -S\mathbf{1} \leq Du \leq S\mathbf{1} \end{array}$$

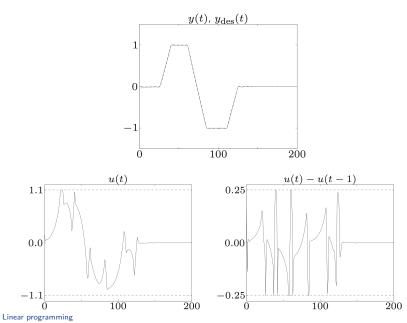


Design specifications:

- $y_{\rm des}$ as shown
- $||u||_{\infty} \leq 1.1$
- $||u_{t+1} u_t||_{\infty} \le \frac{1}{4}$
- input horizon: M = 150
- output horizon N = 200

Linear programming

LP Solution



Linear quadratic regulator

the output tracking problem is open-loop, i.e.:

- the input at time k is oblivious to the state at time k-1
- if the model is wrong (it always is), or there is any disturbance (there always is), the control policy cannot correct for it

The LQR problem

consider the discrete time system

$$x_{t+1} = Ax_t + Bu_t, \quad t = 0, \dots, N$$

with initial condition $x_0 = x^{\text{init}}$ over time horizon N

control objective: pick inputs $u_0, u_1, \ldots, u_{N-1}$ in order to make

- x_0, x_1, \ldots small (i.e., good regulation regulation or control)
- u_0, u_1, \ldots small (i.e., input efficiency)

these objectives are in competition with each other

The Linear Quadratic Regulator

Cost function

define the quadratic cost function

$$J(u) := \min_{u_0, u_1, \dots, u_{N-1}} \sum_{i=1}^{N-1} (x_t^T Q x_t + u_t^T R u_t) + x_N^T Q_f x_N$$

where $Q \succeq 0$, $Q_f \succeq 0,$ and $R \succ 0$ are given

positive (semi)definiteness ensure the minimum possible cost is non-negative

- Q determines the state cost and Q_f the terminal state cost
- R determines the input cost, $R \succ 0$ means any (non-zero) input adds to J

The Linear Quadratic Regulator

the LQR problem

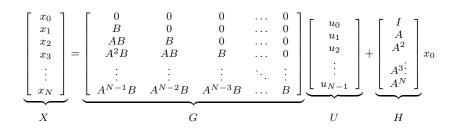
$$\begin{array}{l} \underset{u_{0},u_{1},\ldots u_{N-1}}{\text{minimize}} & \sum_{i=1}^{N-1} (x_{t}^{T}Qx_{t}+u_{t}^{T}Ru_{t})+x_{N}^{T}Q_{f}x_{N} \\ \text{subject to} & x_{t+1}=Ax_{t}+Bu_{t}, \quad t=0,\ldots,N \end{array}$$

just a least squares problem in disguise-a convex quadratic program

stack the state and control input vectors into augmented vectors

$$X = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_N \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$

X is a linear function of U:



rewrite the dynamics and cost as

 $X = GU + Hx_0$ $J(U) = X^T Q X + U^T R U$

$$Q = \operatorname{diag}(Q, \dots, Q, Q_f) \quad \mathcal{R} = \operatorname{diag}(R, \dots, R)$$

The Linear Quadratic Regulator

with

substituting X into J gives gives

$$J(U) = (GU + Hx_0)^T \mathcal{Q}(GU + Hx_0) + U^T \mathcal{R}U$$

- problem data: $G \in \mathbb{R}^{Nn \times Nm}$, $H \in \mathbb{R}^{Nn \times n}$, Q, Q_f , R, and x_0
- minimizing J(U) is an unconstrained least squares problem
- could solve via QR factorization with cost $O(N^3 nm^2)$
- optimal solution is

$$U^{\star} = -(G^T \mathcal{Q}G + \mathcal{R})^{-1} G^T \mathcal{Q}G x_0$$

LQR least-squares solution notes

- the solution method described is conceptually very simple
- easily handles time-varying systems

$$x_{t+1} = A_t x_t + B_t u_t$$

• even the least-squares approach to time invariant systems is not practical

– as ${\cal N}$ increases, so do ${\cal G}$ and ${\cal H}$

• nor is it robust, the optimal policy is againopen-loop

$$-(G^T\mathcal{Q}G+\mathcal{R})^{-1}G^T\mathcal{Q}Gx_0$$

• we will show that a dynamic programming formulation provides a closed-loop solution next