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Optimization

standard form optimization problem

minimize f0(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

• x ∈ Rn : decision variables – the things you choose

• f0 : Rn → R: objective function – the cost you pay for choosing x

• gi : Rn → R: inequality constraint functions – criteria your choice must satisfy

• hj : Rn → R: equality constraint functions

a solution or optimal point x⋆ returns the smallest value of f0 from all choices of x
that satisfy all the constraints

a feasible point is any x that satisfies all the constraints
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Minima

we say that x̄ is a local minimum if x̄ is feasible and there exists an ϵ > 0 such that

f0(x̄) ≤ f0(x) for all x ∈ B(x̄, ϵ)

when the inequality holds for all x ∈ Rn, then x̄ is global minimum
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Solving optimization problems

• most problems are very difficult to solve

• large n is a computational not a theoretical problem

• in many cases, sub-optimal solutions are fine
– provided we can quantify the sub-optimality level

• how the problem is modeled will determine how/if it can be solved

Which problems are solvable?

• convex optimization problems
– least-squares
– linear programs
– conic programs

• a few special cases
– problems involving exactly two quadratics, a few others if n is small
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Affine sets

let V be a vector space, then S ⊆ V is an affine set if

x, y ∈ S λ, γ ∈ R λ+ γ = 1 ⇒ λx+ γy ∈ S

Geometrically: the line v through x, y, with x, y ∈ S

{v ∈ V | v = θx+ (1− θ)y, θ ∈ R}

is contained in S

Representations:

• range(Au+ b), with u ∈ U where A : U → V

• the solution to a set of linear equations: let B : V → U

S = {x | Bx = c}
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Convex sets

the set S ⊆ V is convex if

x, y ∈ S λ, γ ≥ 0 λ+ γ = 1 ⇒ λx+ γy ∈ S

Geometrically: the line segment between x, y, with x, y ∈ S

L(x, y) = {v ∈ V | v = θx+ (1− θ)y, θ ∈ [0, 1]}

is contained in S

[Figure from Boyd & Vandenberghe]
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Convex cones

the set S ⊆ V is a cone if

x ∈ S, θ ≥ 0 ⇒ θx ∈ S

S is a convex cone if

x1, x2 ∈ S λ, γ ≥ 0 ⇒ λx1 + γx2 ∈ S

Geometrically: a set that contains all conic combinations of x1 and x2

[Figure from Boyd & Vandenberghe]
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Convex functions

let X ⊆ V be a convex subset of V , then f : X → R is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) for all x, y ∈ X and θ ∈ [0, 1]

Geometrically: line segment between (x, f(x)) and (y, f(y)) lies above the graph of f

• f is strictly convex if inequality is strict

• if f is convex, −f is concave
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Verifying convexity

• in 1 or 2 dimensions, plot the function

• use the inequality definition definition

• if f is twice differentiable everywhere, then if for all x ∈ X

∇2f(x) ⪰ 0

then f is convex
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Examples of convex functions

Scalar functions

• ax+ b on R for any a, b ∈ R

• eαx, any α ∈ R

• xα on R++ for α ≥ 1 or α ≤ 0

• |x|p on R for p ≥ 1

• relu function: max{0, x}

Vector functions

• aT x+ b

• ∥x∥ (any norm)

• softmax function: log(ex1 + ex2 + · · ·+ exn )
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Constructive convex analysis

verify convexity by showing that the function is built as follows:

• non-negative scaling: f convex, α ≥ 0 =⇒ αf convex

• summation: f, g convex =⇒ f + g convex

• affine composition: f convex =⇒ f(Ax+ b) convex

• pointwise maximum: f1, . . . fl convex =⇒ maxi fi(x) convex

• convex: h convex increasing, f convex =⇒ h(f(x)) is convex
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Convex optimization

minimize f0(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

aTj x = b, j = 1, . . . , p

• x ∈ Rn : decision variables

• f0 : Rn → R: convex objective function

• gi : Rn → R: convex inequality constraint functions

• hj : Rn → R: inequality constraint functions – must be affine

some important facts

• the feasible set is a convex set

• all solutions x⋆ are globally optimal

• the set of solutions forms a convex set

Assumption for this course: if a problem is convex, we can solve it
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Theorem
For a convex problem, all local minima are also global minima.

Proof.
let x̄ be a local minimum: f0(x̄) ≤ f0(x) for all x ∈ B(x̄, ϵ)

assume a contradiction, feasible z such that f0(z) < f0(x̄)

the feasible set is convex, so

θx̄+ (1− θ)z is feasible for θ ∈ [0, 1]

as f0 is convex

f0(θx̄+ (1− θ)z) ≤ θf0(x̄) + (1− θ)f0(z)

< θf0(x̄) + (1− θ)f0(x̄) = f0(x̄)

as θ → 1, (θx̄+ (1− θ)z) → x̄ and we have a contradiction
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Epigraph formulation

it is often convenient to specify an optimization problem in an equivalent form

minimize t
subject to gi(x) ≤ 0, i = 1, . . . ,m

f0(x) ≤ t
Ax = b

• t is a new scalar variable

• has the same feasible set as the original problem
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Linear programming

minimize cT x

s.t. Gx ⪯ h

Ax = b

• feasible set is a polytope

• the optimal point, if it exists, is, w.l.o.g at a vertex

[Figure from Boyd & Vandenberghe]
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Open-loop output tracking

consider the linear, scalar input/output system

yt = h0ut + h1ut−1 + h2ut−3 + . . . ut = 0 if t < 0

for t ∈ [0,M ], write in matrix form, write at y = Hu, where


y0
y1
...

yN

 =



h0 0 0 . . . 0
h1 h0 0 . . . 0
h2 h1 h0 . . . 0
...

...
...

. . . 0
hM hM−1 hM−2 . . . h0

...
...

... 0
hN HN−1 hN−2 . . . HN−M




u0

u1

...
uM



• design u0, u1, . . . uM to achieve desired output

[Example from Lieven Vandenberghe’s EE236A class]
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• Objective: minimize the maximum deviation from a desired trajectory ydes

max
t∈[0,N ]

|yt − ydes,t|

• Constraint 1: input amplitude bounds

|ui| ≤ U for t = 1, . . . ,M ⇐⇒ ∥u∥∞ ≤ U

• Constraint 2: input slew-rate bound

|ut+1 − ut| ≤ S for t = 1, . . . ,M − 1

implement slew rate via the linear inequality Du ⪯ S1 where

D :=


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 . . . 0 −1 1
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LP formulation

∥z∥∞-norm constraint can be expressed as a set of linear inequalities

z ∈ R2 ∥z∥∞ ≤ 5 ⇐⇒ −5 ≤ z1 ≤ 5 and − 5 ≤ z2 ≤ 5

as a result, the optimization problem

minimize
u

∥Hu− ydes∥∞

s.t. ∥u∥∞ ≤ U

∥Du∥∞ ≤ S

can be written in “standard form”

minimize
γ,u

γ

s.t. − γ1 ≤ Hu− ydes ≤ γ1

− U1 ≤ u ≤ U1

− S1 ≤ Du ≤ S1
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Design specifications:

• ydes as shown

• ∥u∥∞ ≤ 1.1

• ∥ut+1 − ut∥∞ ≤ 1
4

• input horizon: M = 150

• output horizon N = 200
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LP Solution
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Linear quadratic regulator

the output tracking problem is open-loop, i.e.:

• the input at time k is oblivious to the state at time k − 1

• if the model is wrong (it always is), or there is any disturbance (there always is),
the control policy cannot correct for it

The LQR problem

consider the discrete time system

xt+1 = Axt +But, t = 0, . . . , N

with initial condition x0 = xinit over time horizon N

control objective: pick inputs u0, u1, . . . , uN−1 in order to make

• x0, x1, . . . small (i.e., good regulation regulation or control)

• u0, u1, . . . small (i.e., input efficiency)

these objectives are in competition with each other
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Cost function

define the quadratic cost function

J(u) := minimize
u0,u1,...uN−1

N−1∑
i=1

(xT
t Qxt + uT

t Rut) + xT
NQfxN

where Q ⪰ 0 , Qf ⪰ 0, and R ≻ 0 are given

positive (semi)definiteness ensure the minimum possible cost is non-negative

• Q determines the state cost and Qf the terminal state cost

• R determines the input cost, R ≻ 0 means any (non-zero) input adds to J
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the LQR problem

minimize
u0,u1,...uN−1

N−1∑
i=1

(xT
t Qxt + uT

t Rut) + xT
NQfxN

subject to xt+1 = Axt +But, t = 0, . . . , N

just a least squares problem in disguise–a convex quadratic program

stack the state and control input vectors into augmented vectors

X =


x0

x1

...
xN

 and U =


u0

u1

...
uN−1
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X is a linear function of U :



x0

x1

x2

x3

...
xN


︸ ︷︷ ︸

=



0 0 0 . . . 0
B 0 0 . . . 0
AB B 0 . . . 0
A2B AB B . . . 0
...

...
...

. . .
...

AN−1B AN−2B AN−3B . . . B


︸ ︷︷ ︸


u0

u1

u2

...
uN−1


︸ ︷︷ ︸

+


I
A
A2

A3
...

AN


︸ ︷︷ ︸

x0

X G U H

rewrite the dynamics and cost as

X = GU +Hx0

J(U) = XTQX + UTRU

with
Q = diag(Q, . . . , Q,Qf ) R = diag(R, . . . , R)
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substituting X into J gives gives

J(U) = (GU +Hx0)
TQ(GU +Hx0) + UTRU

• problem data: G ∈ RNn×Nm, H ∈ RNn×n, Q,Qf , R, and x0

• minimizing J(U) is an unconstrained least squares problem

• could solve via QR factorization with cost O(N3nm2)

• optimal solution is
U⋆ = −(GTQG+R)−1GTQGx0
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LQR least-squares solution notes

• the solution method described is conceptually very simple

• easily handles time-varying systems

xt+1 = Atxt +Btut

• even the least-squares approach to time invariant systems is not practical

– as N increases, so do G and H

• nor is it robust, the optimal policy is againopen-loop

−(GTQG+R)−1GTQGx0

• we will show that a dynamic programming formulation provides a closed-loop
solution next
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