6: Convex Optimization: Linear Matrix Inequalities in Control

• LP recap

- autonomous system stability
- nonlinear/robust stability analysis

Linear programming

- feasible set is a **polytope**
- the optimal point, if it exists, is, w.l.o.g at a vertex

[Figure from Boyd & Vandenberghe]

Alternative form of an LP

LPs are sometimes expressed in an equivalent form:

minimize
$$\hat{c}^T \hat{x}$$

s.t. $\hat{A}\hat{x} = \hat{b}$ (2)
 $\hat{x} \succeq 0$

- the set $x \succeq 0$ is called the positive orthant, denoted \mathbb{R}^k_+
- the positive orthant is a convex cone
- reformulating the LP in this form introduces additional variables and and constraints
- equivalent means we can recover the solution of one problem from the other

expressing LP (1) in the form of (2) can be done in two stages

() inequality constraint elimination: introduce slack variables to get rid of $Gx \preceq h$

 $Gx \preceq h \quad \Longleftrightarrow \quad Gx + s = h, \quad s \succeq 0$

expressing LP (1) in the form of (2) can be done in two stages

() inequality constraint elimination: introduce slack variables to get rid of $Gx \leq h$

 $Gx \preceq h \iff Gx + s = h, s \succeq 0$

2 express decision vector as difference of two +ve variables

 $x := x^+ - x^-$ where $x^+, x^- \succeq 0$

expressing LP (1) in the form of (2) can be done in two stages

() inequality constraint elimination: introduce slack variables to get rid of $Gx \leq h$

 $Gx \preceq h \iff Gx + s = h, s \succeq 0$

2 express decision vector as difference of two +ve variables

$$x := x^+ - x^-$$
 where $x^+, x^- \succeq 0$

the resulting problem is an LP in the form of (2) with decision variables in red

minimize
$$c^T x^+ - c^T x^-$$

s.t. $Gx^+ - Gx^- + s = h$
 $Ax^+ - Ax^- = b$
 $x^+ \succeq 0, \quad x^- \succeq 0, \quad s \succeq 0$

Semidefinite programming

most general form of a convex optimization problem is a semidefinite program (SDP)

an SDP consists of

- cost function: linear
- · equality constraints: affine equality constraints
- inequality constraints: linear matrix inequalities (LMIs)

Primal form SDP

minimize
$$c^T x$$

subject to $F_0 + x_1 F_1 + x_2 F_2 + \dots x_n F_n \succeq 0$ (3)
 $Ax = b$

Problem data: $F_i \in \mathbb{S}^k$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$

Linear matrix inequalities

matrix valued constraints of the form

$$\underbrace{F_0 + x_1 F_1 + x_2 F_2 + \dots x_n F_n}_{F(x)} \succeq 0$$

where

- decision vector \pmb{x} takes values from in \mathbb{R}^n
- the operator $F: \mathbb{R}^n \to \mathbb{S}^k$ is affine
- $F_0, F_1, \ldots, F_n \in \mathbb{S}^k$

Note

- looks abstract and not "user friendly"
- very general formulation, the most expressive convex constraint that exists
- most control problems we formulate in this class will be defined by LMIs

Symmetric matrices

the set of symmetric $n \times n$ matrices

$$\mathbb{S}^n = \{ X \in \mathbb{R}^{n \times n} \mid X = X^T \}$$

is a subspace of $\mathbb{R}^{n \times n}$

the matrix $W \in \mathbb{S}^n$ is said to be **positive semidefinite** if, for all $x \in \mathbb{R}^n$,

 $x^TWx \geq 0$

- $W \succeq 0$ denotes that W is psd
- $W \in \mathbb{S}^n$ is positive definite if, for all $x \neq 0$, $x^T W x > 0$
- interpret $X \succeq Y$ as $X Y \succeq 0$

Theorem

The set of $n \times n$ positive semidefinite matrices is a convex cone.

Eigenvalues of symmetric matrices

Theorem The eigenvalues of $A \in \mathbb{S}^n$ are real.

Proof: By definition

$$Ax = \lambda x$$
 for $x \neq 0$.

Left multiply by x^* to get

$$\lambda x^* x = x^* A x \quad \Rightarrow \quad \lambda = \frac{x^* A x}{x^* x}$$

Take conjugate of λ :

$$\lambda^* = \frac{x^*A^*x}{x^*x} = \frac{x^*Ax}{x^*x},$$

and we conclude $\lambda = \lambda^*$. \Box

Eigenvectors and diagonalization

Theorem

If $A = A^T \in \mathbb{R}^{n \times n}$, then there exist n mutually orthogonal eigenvectors $\{u_1, \ldots, u_n\}$ that satisfy

$$Au_i = \lambda_i u_i \quad u_i^T u_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

In matrix form, there exists a U such that $U^T U = I$ and

$$U^{-1}AU = U^T AU = \Lambda.$$

Testing for positive semidefiniteness

recall, $W \succeq 0 \iff x^T W x \ge 0$ for all $x \ne 0$

• all symmetric matrices admit an orthogonal decomposition

$$W = U\Lambda U^T$$
, where $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$

• U orthogonal means $U^T U = U U^T = I$

•
$$\langle u_i, u_j \rangle = 0$$
 when $i \neq j$, $\langle u_i, u_i \rangle = 1$

- define the new coordinates $z = U^T x$ (and so x = Uz)
- it follows that

$$x^T W x = \sum_{i=1}^n \lambda_i z_i^2,$$

and so testing if $W\succeq 0$ reduces to checking the sign of all the eigenvalues

Partial ordering

for scalars $x, y \in \mathbb{R}$, the query $x \stackrel{?}{\geq} y \mapsto \{ \text{true}, \text{false} \}.$

• the inequality defines a complete ordering

for $X, Y \in \mathbb{S}^n$, evaluating X "greater than or equal to" Y is more involved

$$X \succeq Y \iff X - Y \succeq 0$$

- $X \not\ge 0$ does not imply $X \succeq 0$

more generally, a convex cone $\ensuremath{\mathcal{C}}$ generates a partial ordering

$$X - Y \preceq 0$$
 if $X - Y \in \mathcal{C}$

SDP convexity

Theorem

The set $\{x \in \mathbb{R}^n \mid F(x) \succeq 0\}$ is a convex set.

• multiple LMIs can be combined into a single constraint

$$F_0 + x_1 F_1 + x_2 F_2 + \dots x_n F_n \succeq 0$$

$$\hat{F}_0 + x_1 \hat{F}_1 + x_2 \hat{F}_2 + \dots x_n \hat{F}_n \succeq \hat{0}$$

is equivalent to

$$\begin{bmatrix} F_0 \\ \hat{F}_0 \end{bmatrix} + x_1 \begin{bmatrix} F_1 \\ \hat{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} F_2 \\ \hat{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} F_n \\ \hat{F}_n \end{bmatrix} \succeq 0$$

LMI example

• recall the definition on an LMI: $F_0 + x_1F_1 + x_2F_2 + \ldots x_nF_n \succeq 0$ the LMI constraint

$$\begin{bmatrix} 4x_2 & 2x_1 + x_2 & 5\\ 2x_1 + x_2 & x_2 & 2x_2 + 8\\ 5 & 2x_2 + 8 & -3x_1 - 6 \end{bmatrix} \succeq 0$$

LMI example

• recall the definition on an LMI: $F_0 + x_1F_1 + x_2F_2 + \ldots x_nF_n \succeq 0$ the LMI constraint

$$\begin{bmatrix} 4x_2 & 2x_1 + x_2 & 5\\ 2x_1 + x_2 & x_2 & 2x_2 + 8\\ 5 & 2x_2 + 8 & -3x_1 - 6 \end{bmatrix} \succeq 0$$

in standard form F(x), is

$$\begin{bmatrix} 0 & 0 & 5 \\ 0 & 0 & 8 \\ 5 & 8 & -6 \end{bmatrix} + x_1 \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & -3 \end{bmatrix} + x_2 \begin{bmatrix} 4 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix}$$

Alternative form form SDP

in the same way that there were different, but equivalent ways of expressing an LP: (1) and (2), the same is true for SDPs

Dual form SDP

minimize trace
$$CX$$

s.t. trace $A_iX = b_i$, $i = 1, ..., m$ (4)
 $X \succeq 0$

where the problem data is $C, A_1, \ldots A_m, \in \mathbb{S}^n$ and $X \in \mathbb{S}^n$ is the decision variable

- trace XY defines an inner product over the space of symmetric matrices
- the feasible set is the intersection of a convex cone and and an affine set
- generalizes LP from positive orthant to the psd cone
- rich theory that links problems (3) and (4), we mostly not use it

Autonomous system stability LMI

• the autonomous linear system $\dot{x} = Ax$ is stable iff

 $A^T \mathbf{P} + \mathbf{P}A + Q = 0$

returns ${\pmb P} \succ 0$ when $Q \succ 0$

• $V(z) = z^T P z$ is a Lyapunov function if

$$z^T P z > 0$$
 and $z^T (A^T P + P A) z < 0$ for all z (5)

Autonomous system stability LMI

• the autonomous linear system $\dot{x} = Ax$ is stable iff

 $A^T \mathbf{P} + \mathbf{P}A + Q = 0$

returns $P \succ 0$ when $Q \succ 0$

•
$$V(z) = z^T P z$$
 is a Lyapunov function if
 $z^T P z > 0$ and $z^T (A^T P + P A) z < 0$ for all z (5)

• the inequalities (5) are equivalent to the existence of a matrix P where

$$P \succ 0, \quad A^T P + PA \prec 0$$
 (6)

an LMI!

• the LMIs in (6) can be expressed in the standard form $\sum x_i F_i \preceq G$

Theorem

The autonomous linear system $\dot{x} = Ax$ is stable iff

$$\left[\begin{array}{cc} -P & 0\\ 0 & A^T P + P A \end{array}\right] \prec 0$$

has a feasible solution.

Notes

• we cannot directly enforce $X \succ 0$, if this is needed (as above), we implement

$$X - \epsilon I \succeq 0$$

where ϵ is a small positive constant

• if
$$F(x)$$
 is linear in x, then $F(x) \succ 0 \iff F(x) \succeq I$

Another Lyapunov LMI

if the system $\dot{x} = Ax$ is stable, then there exists an $\alpha > 0$, such that

$$V(x) = x^T P x > 0, \ (P \succ 0) \quad \text{and} \quad \dot{V} \le -\alpha V \tag{7}$$

• Specifically, if P and $Q \succ 0$ solve the Lyapunov equation, then

$$\alpha = \frac{\lambda_{\min}(Q)}{\lambda_{\max}(P)}$$

• follows from the fact that for any $W \succeq 0$

$$\lambda_{\min}(W) \|z\|^2 \le z^T W z \le \lambda_{\max}(W) \|z\|^2$$

- condition (7) is only an LMI if α (or a bound) is known
- expressing (7) as an LMI

$$P \succ 0 \quad A^T P + PA + \alpha P \prec 0$$

it is often the case that enforcing a matrix inequality on all x is too restrictive, i.e., we only require

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{F} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge 0 \quad \text{for } x \in \mathcal{D}$$
(8)

• in general, this is NP-hard, e.g., $\mathcal{D}=\mathbb{R}^n_+$

- however, if D can be represented by a quadratic inequality, we can derive necessary and sufficient conditions for (8)
- a specific example of $\mathcal D$ is the set of x_1, x_2 such that

$$x_1^T x_1 \ge x_2^T H^T H x_2$$

which can be expressed as

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \underbrace{\begin{bmatrix} I & 0 \\ 0 & -H^T H \end{bmatrix}}_{G} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge 0$$

it is often the case that enforcing a matrix inequality on all \boldsymbol{x} is too restrictive, i.e., we only require

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{F} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge 0 \quad \text{for } x \in \mathcal{D}$$

an equivalent way of viewing this is the implication:

when does
$$x \in \mathcal{D} \implies x^T F x \ge 0$$
?

the S-Procedure formalizes this for quadratics described by symmetric matrices

is
$$z^T F z \ge 0$$
 for all $z \in \{x \mid x^T G x \ge 0\}$
(†) \mathcal{D}

the S-Procedure formalizes this for quadratics described by symmetric matrices

is
$$z^T F z \ge 0$$
 for all $z \in \{x \mid x^T G x \ge 0\}$

Theorem

1 If there exists a $\tau \in \mathbb{R}_+$ such that $F \succeq \tau G$ then

 $z^TFz \geq 0 \quad \text{for all} \quad z \in \{x \mid x^TGx \geq 0\}.$

e Equivalently, for all z such that $z^T F z ≥ 0 \implies z^T G z ≥ 0$ if there exists a τ ≥ 0 such that $F \succeq τG$.

The converse of (1) and (2) holds if there exists exists a vector w such that $w^T G w > 0$.

the S-Procedure formalizes this for quadratics described by symmetric matrices

is
$$z^T F z \ge 0$$
 for all $z \in \{x \mid x^T G x \ge 0\}$

Theorem

1 If there exists a $\tau \in \mathbb{R}_+$ such that $F \succeq \tau G$ then

 $z^TFz \geq 0 \quad \text{for all} \quad z \in \{x \mid x^TGx \geq 0\}.$

@ Equivalently, for all z such that $z^T F z \ge 0 \implies z^T G z \ge 0$ if there exists a $\tau \ge 0$ such that $F \succeq \tau G$.

The converse of (1) and (2) holds if there exists exists a vector w such that $w^T G w > 0$.

- we will not prove this result
- inequality (†) can be made strict if $F \succ \tau G$
- this is often referred to as the lossless S-procedure

Robustness analysis

 $\phi: \mathbb{R} \to \mathbb{R}$ is said to be [l, u]-sector bounded if for all $x \in \mathbb{R}$, $p = \phi(x) \in [lx, ux]$

can express as a quadratic inequality

$$(p-ux)(p-lx) \le 0$$
 for all $x, p = \phi(x)$

Special cases:

- $[0,\infty] \iff \operatorname{sign}(p) = \operatorname{sign}(x)$
- $[-1,1] \iff |p| < |x|$

Lur'e system

consider the nonlinear system

$$\dot{x} = Ax + Bp, \quad q = Cx, \quad p = \phi(t, q) \tag{9}$$

Problem Specification

- $\phi(t, \cdot)$ is [l, u]-sector bounded for all t
- ϕ is unknown, but [l, u] is given
- all other problem data is known
- for simplicity, we consider scalar outputs, i.e., $q(t) \in \mathbb{R}$

Is this system stable for all [l, u]-sector bounded functions ϕ ?

Closed-loop representation

system (9) is a linear dynamical system with a static nonlinear feedback term

$$\dot{x} = Ax + B\phi(t, Cx)$$

can generalize to vector-valued outputs

Global asymptotic stability analysis

our goal is to determine if the Lur'e system (9) is globally asymptotically stable via the Lyapunov function $V(x)=x^T P x$

() we need to show that $V(x) \geq 0$ and $\dot{V}(x) \leq -\alpha V(x)$ for some given $\alpha > 0$

 $\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x} + \alpha x^T P x \leq 0 \quad \text{for all } x \text{ and } [l, u] \text{-sector bounded functions}$

Ø write out the derivative

$$\dot{V}(x) = (Ax + B\phi(t, Cx))^T P x + x^T P (Ax + B\phi(t, Cx)) + \alpha x^T P x \le 0$$

3 using $p = \phi(x)$, derivative condition becomes

$$(Ax + Bp)^T P + P(Ax + Bp) + \alpha x^T Px \le 0$$

for all x and p that satisfy $(p-uq)(p-lq) \leq 0$ where q = Cx

 ${\rm \ress}$ the inequality $(p-uq)(p-lq)\leq 0$ can be written as the matrix inequality

$$\left[\begin{array}{c} x\\ p \end{array}\right]^T \left[\begin{array}{c} \sigma C^T C & -\nu C^T\\ -\nu C & 1 \end{array}\right] \left[\begin{array}{c} x\\ p \end{array}\right] \leq 0$$

where $\sigma = l u$ and $\nu = \frac{l+u}{2}$

6 in matrix inequality form, we need

$$\left[\begin{array}{c} x\\ p \end{array}\right]^T \left[\begin{array}{c} A^TP + PA + \alpha P & PB\\ B^TP & 0 \end{array}\right] \left[\begin{array}{c} x\\ p \end{array}\right] \leq 0$$

whenever

$$\left[\begin{array}{c} x\\ p \end{array}\right]^T \left[\begin{array}{c} \sigma C^T C & -\nu C^T\\ -\nu C & 1 \end{array}\right] \left[\begin{array}{c} x\\ p \end{array}\right] \leq 0$$

apply the S-procedure

$$\begin{bmatrix} A^T P + PA + \alpha P & PB \\ B^T P & 0 \end{bmatrix} \preceq \tau \begin{bmatrix} \sigma C^T C & -\nu C^T \\ -\nu C & 1 \end{bmatrix}$$

Lur'e stability summary

we conclude that Lur'e system

$$\dot{x} = Ax + Bp, \quad q = Cx, \quad p = \phi(t,q)$$

with ϕ an $[l,u]\mbox{-sector}$ bounded function is stable, if

$$\begin{bmatrix} A^T P + PA + \alpha P - \tau \sigma C^T C & PB + \tau \nu C^T \\ B^T P + \tau \nu C & -\tau \end{bmatrix} \leq 0, \quad P \succeq I, \ \tau \ge 0$$

- this is a robust result; it guarantees stability for all functions in the sector bound
- only requires the nonlinearity to be covered by choosing u and l
- the larger the sector, the more functions are covered, but feasibility becomes less likely