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Linear programming

minimize c¢’x
st. Gz =<h (1)
Ax=b

® feasible set is a polytope

® the optimal point, if it exists, is, w.l.o.g at a vertex
[Figure from Boyd & Vandenberghe]
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Alternative form of an LP

LPs are sometimes expressed in an equivalent form:

minimize ¢é° &
st. Az=5b (2)
=0

® the set « > 0 is called the positive orthant, denoted R’j_
® the positive orthant is a convex cone

® reformulating the LP in this form introduces additional variables and and
constraints

® equivalent means we can recover the solution of one problem from the other

Linear programming



expressing LP (1) in the form of (2) can be done in two stages

©® inequality constraint elimination: introduce slack variables to get rid of Gx < h

Gxr=h <= Gr+s=h, s=0
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expressing LP (1) in the form of (2) can be done in two stages

©® inequality constraint elimination: introduce slack variables to get rid of Gx < h

Gxr=h <= Gr+s=h, s=0

@ express decision vector as difference of two +ve variables

z:=at —2~ where 27,27 >0
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expressing LP (1) in the form of (2) can be done in two stages

©® inequality constraint elimination: introduce slack variables to get rid of Gx < h

Gxr=h <= Gr+s=h, s=0

@ express decision vector as difference of two +ve variables

z:=at —2~ where 27,27 >0

the resulting problem is an LP in the form of (2) with decision variables in red

minimize Tzt — Tz~
st. Gzt —Gz~ +s=h
Azt — Ax™ =b

zT =0, 2= =0, s»0

Linear programming



Semidefinite programming

most general form of a convex optimization problem is a semidefinite program (SDP)

an SDP consists of

® cost function: linear
® equality constraints: affine equality constraints

® inequality constraints: linear matrix inequalities (LMIs)

Primal form SDP

T

minimize ctx
subject to Fo+ 1 F) +x2Fo +...xpnFy =0 3)
Ar =b

Problem data: F;, € S¥, A € R™*", b € R™, and ¢ € R"

Semidefinite programming



Linear matrix inequalities

matrix valued constraints of the form

Fo+xi Py +acFo+ ... xnFpn =0

F(x)
where
® decision vector = takes values from in R™
® the operator F : R"® — SF is affine

® [y, Fy,...,F, €Sk

Note

® |ooks abstract and not “user friendly”
® very general formulation, the most expressive convex constraint that exists

® most control problems we formulate in this class will be defined by LMIs

Semidefinite programming



Symmetric matrices

the set of symmetric n X n matrices
S ={X eR™" | X = XxT}
is a subspace of R"*"
the matrix W € S™ is said to be positive semidefinite if, for all z € R"”,

"Wz >0

® W > 0 denotes that W is psd
e W € S™ is positive definite if, for all z £ 0, 2T Wz >0

® interpret X > Y as X —-Y >0

Theorem
The set of n X n positive semidefinite matrices is a convex cone.
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Eigenvalues of symmetric matrices

Theorem
The eigenvalues of A € S™ are real.

Proof: By definition
Ax = Az for x #0.

Left multiply by z* to get

*
A
Ar*z=z* Az = A= 22

Take conjugate of A:

and we conclude A = \*. [J

Semidefinite programming



Eigenvectors and diagonalization

Theorem

If A= AT ¢ R™"*", then there exist n mutually orthogonal eigenvectors {u1, ...

that satisfy
1 ifi=y

0 otherwise ’

Au; = \juy uZTuj = {
In matrix form, there exists a U such that UTU = I and

U~ tAU =UT AU = A.

Semidefinite programming
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Testing for positive semidefiniteness

recall, W = 0 <= zTWax >0 forallz #0

® all symmetric matrices admit an orthogonal decomposition

A1
W =UAUT, where A=

U orthogonal means UTU = UUT =1
® (u;,uj) =0 when i #j, (u;,u;) =1
® define the new coordinates z = UTz (and so x = Uz)

® it follows that
n
TWe = Z /\iziz,

i=1

and so testing if W > 0 reduces to checking the sign of all the eigenvalues

Semidefinite programming
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Partial ordering

?
for scalars z,y € R, the query = > y — {true, false}.
® the inequality defines a complete ordering
for X, Y € S™, evaluating X “greater than or equal to" Y is more involved

XY «<— X-Y>0
® > defines a partial ordering

L4 XﬁO does not imply X > 0

more generally, a convex cone C generates a partial ordering

X-Y =<0 if X-Ye€c

Semidefinite programming
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SDP convexity

Theorem

The set {x € R™ | F(x) > 0} is a convex set.

® multiple LMIs can be combined into a single constraint

Fo+zFi +aeky+ .. anFpn 20
Fo+x1Fy +xoFo+ ... ankyn =0

is equivalent to

Fy Py Fy Fy
LS [TLIPY PL P

Semidefinite programming
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LMI example

® recall the definition on an LMI: Fy + 21 Fy + 22 Fo + ... zpnFpy = 0

the LMI constraint

4xo 2x1 + x2 5
2x1 + x2 T2 2x2 + 8 =0
5 2x0 + 8 —3x1 — 6

Semidefinite programming 13



LMI example

® recall the definition on an LMI: Fy + 21 Fy + 22 Fo + ... zpnFpy = 0

the LMI constraint

4xo 2x1 + x2 5
2x1 + x2 T2 2x2 + 8 =0
5 2x0 + 8 —3x1 — 6

in standard form F'(z), is

0 0 5 0 2 0 4 1 0
0 O 8 | +z1| 2 O O | 4+z2| 1 1 2
5 8 —6 0 0 -3 2 0

Semidefinite programming 13



Alternative form form SDP

in the same way that there were different, but equivalent ways of expressing an LP:
(1) and (2), the same is true for SDPs

Dual form SDP

minimize trace C'X
sit. trace A, X =0b;, i=1,...,m (4)
X>0

where the problem data is C, A1,... A, € S™ and X € S™ is the decision variable
® trace XY defines an inner product over the space of symmetric matrices
® the feasible set is the intersection of a convex cone and and an affine set
® generalizes LP from positive orthant to the psd cone

® rich theory that links problems (3) and (4), we mostly not use it

Semidefinite programming



Autonomous system stability LMI

® the autonomous linear system & = Az is stable iff
ATP+PA+Q=0

returns P > 0 when Q > 0

® V(z) = 2T Pz is a Lyapunov function if

2TPz>0 and zT(ATP+PA)z<0 forall z

Semidefinite programming
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Autonomous system stability LMI

the autonomous linear system & = Ax is stable iff
ATP+PA+Q=0

returns P > 0 when Q > 0

V(z) = 2T Pz is a Lyapunov function if

2TPz>0 and 2T (ATP4+ PA)z<0 forall z (5)

the inequalities (5) are equivalent to the existence of a matrix P where
P>=0, ATP+PA<O (6)

an LMI!

the LMIs in (6) can be expressed in the standard form Y z;F; < G

Semidefinite programming
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Theorem
The autonomous linear system & = Ax is stable iff

—-P 0

0 ATptpa |70

has a feasible solution.

Notes
® we cannot directly enforce X > 0, if this is needed (as above), we implement
X—el >0
where € is a small positive constant

® if F(z) is linear in z, then F(z) = 0 < F(z) = I

Semidefinite programming
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Another Lyapunov LMI

if the system & = Ax is stable, then there exists an « > 0, such that

V(z) =2TPz >0, (P>~0) and V< —aV

® Specifically, if P and @ > 0 solve the Lyapunov equation, then
_ Amm(ca?)

" Amax(P)

follows from the fact that for any W > 0
Amin(W)|[2]|* < 2T W2 < Amax (W)]|2]|®
® condition (7) is only an LMI if a (or a bound) is known

® expressing (7) as an LMI

P>0 ATP4+PA+aP <0

Semidefinite programming

(™
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S-procedure

it is often the case that enforcing a matrix inequality on all x is too restrictive, i.e., we

[i;r[g gHg]zo forz € D (8)

F

only require

® in general, this is NP-hard, e.g., D = Rﬁ

® however, if D can be represented by a quadratic inequality, we can derive
necessary and sufficient conditions for (8)

® 3 specific example of D is the set of x1,x2 such that
leazl > mgHTsz
which can be expressed as
(2] (o cwma ][5 ]2
) 0 —-HTH zy | =
——

G

Semidefinite programming
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S-procedure

it is often the case that enforcing a matrix inequality on all x is too restrictive, i.e., we

only require
T
x1 A B 1
(27714 B[ %] 20 waeo

F

an equivalent way of viewing this is the implication:

when does z € D = 21 Fz > 07

Semidefinite programming
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S-procedure

the S-Procedure formalizes this for quadratics described by symmetric matrices

—_———
() D

is z'Fz>0 forall ze{z|aTGx>0}
[

Semidefinite programming
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S-procedure

the S-Procedure formalizes this for quadratics described by symmetric matrices

is z'Fz>0 forall ze{z|aTGx>0}
| S — —_————
(S)) D

Theorem
® If there exists a T € Ry such that F' = TG then
2TFz>0 forall z¢€ {z|zTGz>0}.

@ Equivalently, for all z such that 2T Fz >0 = 2TGz > 0 if there exists a T > 0
such that F' = 7G.

The converse of (1) and (2) holds if there exists exists a vector w such that
wT Gw > 0.

Semidefinite programming 20



S-procedure

the S-Procedure formalizes this for quadratics described by symmetric matrices

is z'Fz>0 forall ze{z|aTGx>0}
| S — —_————
(S)) D

Theorem
® If there exists a T € Ry such that F' = TG then

2TFz>0 forall z¢€ {z|zTGz>0}.

@ Equivalently, for all z such that 2T Fz >0 = 2TGz > 0 if there exists a T > 0
such that F' = 7G.

The converse of (1) and (2) holds if there exists exists a vector w such that
wT Gw > 0.

® we will not prove this result
® inequality () can be made strict if F' >~ 7G

® this is often referred to as the lossless S-procedure

Semidefinite programming 20



Robustness analysis

¢ : R — R is said to be [I, u]-sector bounded if for all z € R, p = ¢(z) € [lz, uz]
p
ux

»(@)
lx

can express as a quadratic inequality
(p—uz)(p—Ilz) <0 forall z,p = ¢(x)
Special cases:
® [0,00] <= sign(p) = sign(x)

* [L1] <= [pl <z

Semidefinite programming
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Lur’e system

consider the nonlinear system

t=Ax+ Bp, q=Cz, p=¢(tq) 9

Problem Specification
® &(t,-) is [l, u]-sector bounded for all ¢
® ¢ is unknown, but [I,u] is given
® all other problem data is known

® for simplicity, we consider scalar outputs, i.e., ¢(t) € R

Is this system stable for all [I, u]-sector bounded functions ¢?

Semidefinite programming 22



Closed-loop representation

system (9) is a linear dynamical system with a static nonlinear feedback term

&= Az + Bo(t,Cx)

© = Ax + Bp
q=Czx
p q
¢(t7')

® can generalize to vector-valued outputs

Semidefinite programming
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Global asymptotic stability analysis

our goal is to determine if the Lur’e system (9) is globally asymptotically stable via the
Lyapunov function V(z) = T Px

@ we need to show that V(z) > 0 and V() < —aV/(x) for some given o > 0

V(z) = &T Pz + 2T Pi + axT P <0 for all z and [I, u]-sector bounded functions

® write out the derivative

V(z) = (Az 4+ Bo(t,Cx))T Pz + 2T P(Ax + Bé(t,Cx)) + azT Pz < 0

® using p = ¢(z), derivative condition becomes
(Az + Bp)TP + P(Az + Bp) + axT P2 <0

for all z and p that satisfy (p — uq)(p — lq) < 0 where ¢ = Cx

Semidefinite programming 24



@ the inequality (p — uq)(p — lg) < 0 can be written as the matrix inequality
T T T
T cC*C —vC P
p —vC 1 p | =

where o = lu and v = HT“

@ in matrix inequality form, we need

e |"[ ATP+PA+aP PB ][] _,
P BTP 0 p |-
whenever
|:x:|T|:oCTC —ycTHx]<0
P —vC 1 p | —

@ apply the S-procedure

ATP 4+ PA+aP PB < oCTc —vCT
BTpP o |7 —wo 1

Semidefinite programming
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Lur’e stability summary

we conclude that Lur’e system
i =Ax+Bp, q¢=C=z p=0(tq)
with ¢ an [I, u]-sector bounded function is stable, if

T _ T T
A P+§?;ffycTUC C PBt:VC 20, P=1,7>0

® this is a robust result; it guarantees stability for all functions in the sector bound
® only requires the nonlinearity to be covered by choosing w and [

® the larger the sector, the more functions are covered, but feasibility becomes less
likely

Semidefinite programming 26
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