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• LP recap

• semidefinite programming

– autonomous system stability

– nonlinear/robust stability analysis
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Linear programming

minimize cT x

s.t. Gx ⪯ h (1)

Ax = b

• feasible set is a polytope

• the optimal point, if it exists, is, w.l.o.g at a vertex

[Figure from Boyd & Vandenberghe]
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Alternative form of an LP

LPs are sometimes expressed in an equivalent form:

minimize ĉT x̂

s.t. Âx̂ = b̂ (2)

x̂ ⪰ 0

• the set x ⪰ 0 is called the positive orthant, denoted Rk
+

• the positive orthant is a convex cone

• reformulating the LP in this form introduces additional variables and and
constraints

• equivalent means we can recover the solution of one problem from the other

Linear programming 3



expressing LP (1) in the form of (2) can be done in two stages

1 inequality constraint elimination: introduce slack variables to get rid of Gx ⪯ h

Gx ⪯ h ⇐⇒ Gx+ s = h, s ⪰ 0

2 express decision vector as difference of two +ve variables

x := x+ − x− where x+, x− ⪰ 0

the resulting problem is an LP in the form of (2) with decision variables in red

minimize cT x+ − cT x−

s.t. Gx+ −Gx− + s = h

Ax+ −Ax− = b

x+ ⪰ 0, x− ⪰ 0, s ⪰ 0
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Semidefinite programming

most general form of a convex optimization problem is a semidefinite program (SDP)

an SDP consists of

• cost function: linear

• equality constraints: affine equality constraints

• inequality constraints: linear matrix inequalities (LMIs)

Primal form SDP

minimize cT x
subject to F0 + x1F1 + x2F2 + . . . xnFn ⪰ 0

Ax = b
(3)

Problem data: Fi,∈ Sk, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn
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Linear matrix inequalities

matrix valued constraints of the form

F0 + x1F1 + x2F2 + . . . xnFn︸ ︷︷ ︸
F (x)

⪰ 0

where

• decision vector x takes values from in Rn

• the operator F : Rn → Sk is affine

• F0, F1, . . . , Fn ∈ Sk

Note

• looks abstract and not “user friendly”

• very general formulation, the most expressive convex constraint that exists

• most control problems we formulate in this class will be defined by LMIs
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Symmetric matrices

the set of symmetric n× n matrices

Sn = {X ∈ Rn×n | X = XT }

is a subspace of Rn×n

the matrix W ∈ Sn is said to be positive semidefinite if, for all x ∈ Rn,

xTWx ≥ 0

• W ⪰ 0 denotes that W is psd

• W ∈ Sn is positive definite if, for all x ̸= 0, xTWx > 0

• interpret X ⪰ Y as X − Y ⪰ 0

Theorem
The set of n× n positive semidefinite matrices is a convex cone.
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Eigenvalues of symmetric matrices

Theorem
The eigenvalues of A ∈ Sn are real.

Proof: By definition
Ax = λx for x ̸= 0.

Left multiply by x∗ to get

λx∗x = x∗Ax ⇒ λ =
x∗Ax

x∗x
.

Take conjugate of λ:

λ∗ =
x∗A∗x

x∗x
=

x∗Ax

x∗x
,

and we conclude λ = λ∗.
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Eigenvectors and diagonalization

Theorem
If A = AT ∈ Rn×n, then there exist n mutually orthogonal eigenvectors {u1, . . . , un}
that satisfy

Aui = λiui uT
i uj =

{
1 if i = j
0 otherwise

,

In matrix form, there exists a U such that UTU = I and

U−1AU = UTAU = Λ.
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Testing for positive semidefiniteness

recall, W ⪰ 0 ⇐⇒ xTWx ≥ 0 for all x ̸= 0

• all symmetric matrices admit an orthogonal decomposition

W = UΛUT , where Λ =

 λ1

. . .

λn


• U orthogonal means UTU = UUT = I

• ⟨ui, uj⟩ = 0 when i ̸= j, ⟨ui, ui⟩ = 1

• define the new coordinates z = UT x (and so x = Uz)

• it follows that

xTWx =
n∑

i=1

λiz
2
i ,

and so testing if W ⪰ 0 reduces to checking the sign of all the eigenvalues
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Partial ordering

for scalars x, y ∈ R, the query x
?
≥ y 7→ {true, false}.

• the inequality defines a complete ordering

for X,Y ∈ Sn, evaluating X “greater than or equal to” Y is more involved

X ⪰ Y ⇐⇒ X − Y ⪰ 0

• ⪰ defines a partial ordering

• X�⪯0 does not imply X ⪰ 0

more generally, a convex cone C generates a partial ordering

X − Y ⪯ 0 if X − Y ∈ C
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SDP convexity

Theorem

The set {x ∈ Rn | F (x) ⪰ 0} is a convex set.

• multiple LMIs can be combined into a single constraint

F0 + x1F1 + x2F2 + . . . xnFn ⪰ 0

F̂0 + x1F̂1 + x2F̂2 + . . . xnF̂n ⪰ 0̂

is equivalent to[
F0

F̂0

]
+ x1

[
F1

F̂1

]
+ x2

[
F2

F̂2

]
+ · · ·+ xn

[
Fn

F̂n

]
⪰ 0
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LMI example

• recall the definition on an LMI: F0 + x1F1 + x2F2 + . . . xnFn ⪰ 0

the LMI constraint 4x2 2x1 + x2 5
2x1 + x2 x2 2x2 + 8

5 2x2 + 8 −3x1 − 6

 ⪰ 0

in standard form F (x), is

 0 0 5
0 0 8
5 8 −6

+ x1

 0 2 0
2 0 0
0 0 −3

+ x2

 4 1 0
1 1 2
0 2 0
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Alternative form form SDP

in the same way that there were different, but equivalent ways of expressing an LP:
(1) and (2), the same is true for SDPs

Dual form SDP

minimize trace CX

s.t. trace AiX = bi, i = 1, . . . ,m (4)

X ⪰ 0

where the problem data is C,A1, . . . Am,∈ Sn and X ∈ Sn is the decision variable

• trace XY defines an inner product over the space of symmetric matrices

• the feasible set is the intersection of a convex cone and and an affine set

• generalizes LP from positive orthant to the psd cone

• rich theory that links problems (3) and (4), we mostly not use it
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Autonomous system stability LMI

• the autonomous linear system ẋ = Ax is stable iff

ATP + PA+Q = 0

returns P ≻ 0 when Q ≻ 0

• V (z) = zTPz is a Lyapunov function if

zTPz > 0 and zT (ATP + PA)z < 0 for all z (5)

• the inequalities (5) are equivalent to the existence of a matrix P where

P ≻ 0, ATP + PA ≺ 0 (6)

an LMI!

• the LMIs in (6) can be expressed in the standard form
∑

xiFi ⪯ G
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Theorem
The autonomous linear system ẋ = Ax is stable iff[

−P 0
0 ATP + PA

]
≺ 0

has a feasible solution.

Notes

• we cannot directly enforce X ≻ 0, if this is needed (as above), we implement

X − ϵI ⪰ 0

where ϵ is a small positive constant

• if F (x) is linear in x, then F (x) ≻ 0 ⇐⇒ F (x) ⪰ I
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Another Lyapunov LMI

if the system ẋ = Ax is stable, then there exists an α > 0, such that

V (x) = xTPx > 0, (P ≻ 0) and V̇ ≤ −αV (7)

• Specifically, if P and Q ≻ 0 solve the Lyapunov equation, then

α =
λmin(Q)

λmax(P )

• follows from the fact that for any W ⪰ 0

λmin(W )∥z∥2 ≤ zTWz ≤ λmax(W )∥z∥2

• condition (7) is only an LMI if α (or a bound) is known

• expressing (7) as an LMI

P ≻ 0 ATP + PA+ αP ≺ 0
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S-procedure

it is often the case that enforcing a matrix inequality on all x is too restrictive, i.e., we
only require [

x1

x2

]T [
A B
C D

]
︸ ︷︷ ︸

F

[
x1

x2

]
≥ 0 for x ∈ D (8)

• in general, this is NP-hard, e.g., D = Rn
+

• however, if D can be represented by a quadratic inequality, we can derive
necessary and sufficient conditions for (8)

• a specific example of D is the set of x1, x2 such that

xT
1 x1 ≥ xT

2 HTHx2

which can be expressed as[
x1

x2

]T [
I 0
0 −HTH

]
︸ ︷︷ ︸

G

[
x1

x2

]
≥ 0
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S-procedure

it is often the case that enforcing a matrix inequality on all x is too restrictive, i.e., we
only require [

x1

x2

]T [
A B
C D

]
︸ ︷︷ ︸

F

[
x1

x2

]
≥ 0 for x ∈ D

an equivalent way of viewing this is the implication:

when does x ∈ D =⇒ xTFx ≥ 0?
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S-procedure

the S-Procedure formalizes this for quadratics described by symmetric matrices

is zTFz ≥ 0︸ ︷︷ ︸
(†)

for all z ∈ {x | xTGx ≥ 0}︸ ︷︷ ︸
D

Theorem
1 If there exists a τ ∈ R+ such that F ⪰ τG then

zTFz ≥ 0 for all z ∈ {x | xTGx ≥ 0}.

2 Equivalently, for all z such that zTFz ≥ 0 =⇒ zTGz ≥ 0 if there exists a τ ≥ 0
such that F ⪰ τG.

The converse of (1) and (2) holds if there exists exists a vector w such that
wTGw > 0.

• we will not prove this result

• inequality (†) can be made strict if F ≻ τG

• this is often referred to as the lossless S-procedure
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Robustness analysis

ϕ : R → R is said to be [l, u]-sector bounded if for all x ∈ R, p = ϕ(x) ∈ [lx, ux]

x

p

lx

ux

φ(x)

can express as a quadratic inequality

(p− ux)(p− lx) ≤ 0 for all x, p = ϕ(x)

Special cases:

• [0,∞] ⇐⇒ sign(p) = sign(x)

• [−1, 1] ⇐⇒ |p| < |x|
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Lur’e system

consider the nonlinear system

ẋ = Ax+Bp, q = Cx, p = ϕ(t, q) (9)

Problem Specification

• ϕ(t, ·) is [l, u]-sector bounded for all t

• ϕ is unknown, but [l, u] is given

• all other problem data is known

• for simplicity, we consider scalar outputs, i.e., q(t) ∈ R

Is this system stable for all [l, u]-sector bounded functions ϕ?
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Closed-loop representation

system (9) is a linear dynamical system with a static nonlinear feedback term

ẋ = Ax+Bϕ(t, Cx)

ẋ = Ax+Bp

q = Cx

ϕ(t, ·)

qp

• can generalize to vector-valued outputs
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Global asymptotic stability analysis

our goal is to determine if the Lur’e system (9) is globally asymptotically stable via the
Lyapunov function V (x) = xTPx

1 we need to show that V (x) ≥ 0 and V̇ (x) ≤ −αV (x) for some given α > 0

V̇ (x) = ẋTPx+ xTP ẋ+ αxTPx ≤ 0 for all x and [l, u]-sector bounded functions

2 write out the derivative

V̇ (x) = (Ax+Bϕ(t, Cx))TPx+ xTP (Ax+Bϕ(t, Cx)) + αxTPx ≤ 0

3 using p = ϕ(x), derivative condition becomes

(Ax+Bp)TP + P (Ax+Bp) + αxTPx ≤ 0

for all x and p that satisfy (p− uq)(p− lq) ≤ 0 where q = Cx
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5 the inequality (p− uq)(p− lq) ≤ 0 can be written as the matrix inequality[
x
p

]T [
σCTC −νCT

−νC 1

] [
x
p

]
≤ 0

where σ = lu and ν = l+u
2

6 in matrix inequality form, we need[
x
p

]T [
ATP + PA+ αP PB

BTP 0

] [
x
p

]
≤ 0

whenever [
x
p

]T [
σCTC −νCT

−νC 1

] [
x
p

]
≤ 0

7 apply the S-procedure[
ATP + PA+ αP PB

BTP 0

]
⪯ τ

[
σCTC −νCT

−νC 1

]
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Lur’e stability summary

we conclude that Lur’e system

ẋ = Ax+Bp, q = Cx, p = ϕ(t, q)

with ϕ an [l, u]-sector bounded function is stable, if[
ATP + PA+ αP − τσCTC PB + τνCT

BTP + τνC −τ

]
⪯ 0, P ⪰ I, τ ≥ 0

• this is a robust result; it guarantees stability for all functions in the sector bound

• only requires the nonlinearity to be covered by choosing u and l

• the larger the sector, the more functions are covered, but feasibility becomes less
likely

Semidefinite programming 26


	Linear programming
	Semidefinite programming

