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8: Controllability: An operator perspective

• minimum norm control problem (D&P §4.3)

• L2 space (D&P §3.1–3.2 & 3.3.1)

• controllability operator (D&P §4.3)

• controllability ellipsoid (D&P §4.3)
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Controllability

we have seen several tests to determine if the system ẋ = Ax+Bu is controllable:

• rank test

rank CAB = rank(
[

B AB A2B . . . An−1B
]
)

?
= n

• if (A,B) stable, controllability Gramian test:

AX +XAT +BBT = 0, X
?
≻ 0

• for unstable (A,B), PBH test:

rank [A− λI B]
?
= n for all λ ∈ C̄+

Note

controllability does not address how to get to a specific state
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State transfer

• time duration T

• desired state xdes

• how to select input u to get from x(0) to x(T ) = xdes
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Underdetermined systems of linear equations

consider the system of equations

y = Ax, where A ∈ Rm×n with m < n, rank(A) = m

• more unknowns (x) than equations (rows of A, b)

• x is underspecified; many (infinite) choices of x satisfy the equation

• A has a nontrivial nullspace

• all solutions are given by

{x | Ax = y} = {xp + z | z ∈ null(A)}

where xp is any particular solution, i.e., y = Axp
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Minimum norm solution

one choice of solution to y = Ax is

xln = AT (AAT )−1y

it was shown that xln solves y = Ax with the smallest ∥x∥2, i.e., it solves

minimize ∥x∥2
subject to y = Ax

Minimum norm control

• objective function: choose a “minimal” input function u

• constraints: start at x0, get to xdes under the system dynamics ẋ = Ax+Bu
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Functions

recall our goal is to design a control action u(t) = ϕ(x(t)) that changes the behavior of

ẋ(t) = Ax(t) +Bu(t)

we will restrict our attention to functions that belong to the space L2(I) where

I := [a, b], a ≤ b

L2(I) is:

• the space of square integrable functions

• a vector space, and a Banach space, and a Hilbert space
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The L2(I) function space

fix the interval I (for example [0, 1]), then L2[0, 1] is a vector space defined as

L2([0, 1]) := {u : [0, 1] → C | u is Lebesgue measurable and ∥u∥L2[0,1] < ∞}

where

∥u∥L2[0,1] :=

(∫ 1

0
∥u(t)∥22 dt

) 1
2

associated to L2[0, 1] is the inner product:

⟨x, y⟩L2[0,1] :=

∫ 1

0
x∗(t)y(t)dt

• easy to show that ⟨·, ·⟩L2[0,1] satisfies the definition of an inner product

• the norm is induced by the inner product

⟨x, x⟩L2[0,1] = ∥x∥2L2[0,1]

Minimum norm control 7



Examples

set I = [0,∞), do the following functions belong to L2[0,∞)?

• f(t) = eαt

• f(t) = cos t

Frequency domain:

Parseval’s theorem tells us (for I = [0,∞) ):

∥u∥2L2[0,∞) = ∥û∥2
L̂2(jω)

=

(
1

2π

∫ ∞

0
û∗(jω)û(jω) dω

)
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L2 Summary

• L2(I) is a vector space

• the set of square integrable functions

• functions with bounded “energy”

• for specific choices of I very precise frequency domain characterizations exist

• as well as being a vector space, L2(I) is a normed vector space

• and an inner product space

Definition
A Hilbert space is a complete inner product space with the norm induced by its inner
product.

• Rn,Cn,Cm×n, L2(I) are Hilbert spaces
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L∞(I) spaces

the L∞ space of signals on an interval I is

L∞(I) = {u : I → Cm | ∥u∥∞ < ∞}

where
∥u∥∞ = ess sup

t∈I
∥u(t)∥∞

Notes

• ∥u∥∞ measures the peak of the signal

• in contrast ∥u∥2 captures the volume

• ess supt∈I ∥u(t)∥∞ < 1 ⇐⇒ ∥u(t)∥∞ < 1 ∀t except at a finite set of points

• not an inner product space, not a Hilbert space
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Operators

a bounded linear map is called an operator

Linear maps

let V and Z be vector spaces, the map F : V → Z is a linear map if

F (αv + βw) = αF (v) + βF (w), for all v, w ∈ V, α, β ∈ R.

• common to write Fv instead of F (v)

Bounded linear maps

if F : V → Z is a linear map, it is bounded if there exists a c > 0 such that

∥Fv∥Z ≤ c∥v∥V , for all v ∈ V.

• the space of bounded linear maps from V to Z is denoted L(V, Z)
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Adjoints

Definition
Suppose V and Z are Hilbert spaces, and F ∈ L(V, Z). The operator F ∗ ∈ L(Z, V )
is called the adjoint of F if

⟨z, Fv⟩Z = ⟨F ∗z, v⟩V
for all v ∈ V and z ∈ Z.

can be viewed as overloading of transpose to linear operators

• the adjoint of A ∈ Rm×n is AT

• extension: adjoint of a complex matrix is its conjugate transpose

useful property of adjoints:

∥F∥ = ∥F ∗∥ = ∥F ∗F∥
1
2

• more on operator norms later
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Controllability Operator

consider the linear dynamical system

ẋ(t) = Ax(t) +Bu(t), x(−∞) = 0

the controllability operator is a function

Ψc : L2(−∞, 0] → Cn

defined as

u 7→
∫ 0

−∞
e−AτBu(τ)dτ.
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Minimum norm control

given the system ẋ(t) = Ax(t) +Bu(t) with x(−∞) = 0 construct a control law

u ∈ L2(−∞, 0]

such that x(0) = xdes such that ∥u∥L2(−∞,0] is minimized
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Minimum norm control

given the system ẋ(t) = Ax(t) +Bu(t) with x(−∞) = 0 construct a control law

u ∈ L2(−∞, 0]

such that x(0) = xdes such that ∥u∥L2(−∞,0] is minimized

we can express this using the controllability operator as

minimize ∥u∥L2(−∞,0]

subject to Ψcu = x0

• decision variable: the function u

• constraint: u must move x(−∞) = 0 to x0, u belongs to L2(−∞, 0]

• w.l.o.g. ∥x0∥2 = 1
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A comparison

proof later, first let’s use intuition

minimize ∥x∥
subject to Ax = y

minimize ∥u∥L2(−∞,0]

subject to Ψcu = x0

Similarities

• objective functions are both norms induced by inner products

• constraints are linear

• both are convex

Differences

• the control problem is infinite dimensional

• we don’t yet have a solution

• we do know x⋆ = xln = AT (AAT )−1y
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The Adjoint of Ψc

to determine the optimal input u we need an expression for the adjoint of Ψc

Ψc : L2(−∞, 0] → Cn, therfore Ψ∗
c : Cn → L2(−∞, 0]

assume ξ ∈ Cn and u ∈ L2(−∞, 0], apply definition of an adjoint:

⟨Ψ∗
cξ, u⟩L2(−∞,0] = ⟨ξ,Ψcu⟩Cn

= ξ∗
∫ 0

−∞
e−AτBu(τ)dτ

=

∫ 0

−∞
ξ∗e−AτBu(τ)dτ

=
〈
B∗e−A∗τ ξ, u

〉
L2(−∞,0]

and so we conclude that

Ψ∗
c : ξ 7→

{
B∗e−A∗τ ξ for τ ≤ 0
0 otherwise
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Controllability gramian

• the controllability operator, Ψc, is a map from L2(−∞, 0] → Cn defined as∫ 0

−∞
e−AτBu(τ)dτ

• its adjoint operator Ψ∗
c is a map from Cn → L2(−∞, 0 given by{

B∗e−A∗τ ξ for τ ≤ 0
0 otherwise

• it follows that ΨcΨ∗
c is the solution to the Lyapunov equation:

ΨcΨ
∗
c =

∫ 0

−∞
e−AτBB∗e−A∗τdτ =

∫ ∞

0
eAτBB∗eA

∗τdτ = Xc

where Xc solves AXc +XcA∗ +BB∗ = 0

• it follows that (ΨcΨ∗
c)

−1 exists iff (A,B) is controllable
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Solving the minimum norm control problem

Theorem

Suppose (A,B) is controllable. Then

1 ΨcΨ∗
c is invertible. (Define Xc := ΨcΨ∗

c)

2 For any point x0 ∈ Cn, the input uopt = Ψ∗
cX

−1
c x0 solves the minimum norm

control problem.

3 The optimal input “energy” is

∥uopt∥2L2
= xT

0 X−1
c x0.

Comparison to minimum norm problem

minimize ∥x∥
subject to Ax = y

xln = AT (AAT )−1y

minimize ∥u∥L2(−∞,0]

subject to Ψcu = x0

uopt = Ψ∗
c(ΨcΨ∗

c)
−1x0
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Solving the minimum norm control problem

Proof sketch.

1 already shown invertibility

2 verify that Ψcuopt = x0

3 show that ∥u∥ ≥ ∥uopt∥

4 to show property 3, apply definitions

Note

proof step 3 uses the fact that the operator

W := Ψ∗
cX

−1
c Ψc

on L2(−∞, 0] defines an orthogonal projection
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Singular Value Decomposition

given A ∈ Cm×n, define p = min{m,n}, the SVD of A is given by

A = UΣV ∗

where

• U ∈ Cm×m is unitary

• V ∈ Cn×n is unitary

• Σ ∈ Rm×n is diagonal

when m ̸= n, the matrix Σ takes the form

Σ =

[
Σ̂
0

]
or Σ =

[
Σ̃ 0

]
where Σ̂ = diag(σ1, . . . , σn) and Σ̃ = diag(σ1, . . . , σm), and

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0
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SVD for tall matrices

A = U Σ V

n

m

m×m m× n

n× n

SVD for wide matrices

A = U Σ V

n

m

m×m m× n

n× n

• Σ always has the same shape as A
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Rank

given A ∈ Cm×n, the singular value decomposition is

A = UΣV ∗ =

p∑
i=1

σiuiv
∗
i

where U =
[

u1 u2 . . . um
]
and V =

[
v1 v2 . . . vn

]
• σi is the ith singular value

• ui is the ith left singular vector

• vi is the ith right singular vector

the rank of A is given by the number of non-zero singular values
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Relationship to eigen-decomposition

given A ∈ Cm×n, the singular value decomposition is

A = UΣV ∗ =

p∑
i=1

σiuiv
∗
i

then A∗A = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗ and it follows that

• vi are the eigenvectors of A∗A

• σi =
√

λi(A∗A), i.e., the eigenvalues of A∗A

the same argument applied to AA∗ tells us that

• ui are the eigenvectors of AA∗

• σi =
√

λi(AA∗)

from this we now see that ∥A∥2 =
√

λmax(A∗A) = σ1
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Further properties of the SVD

>> [U,S,V]=svd(A)

A = UΣV ∗ =

p∑
i=1

σiuiv
∗
i

let rank(A) = r, then

• {u1, u2, . . . , ur} form an orthonormal basis for range(A).

• {v1, v2, . . . , vr} form an orthonormal basis for null(A)⊥.

SVD as a linear map

rotate → scale → rotate
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Geometric interpretation

A ∈ Rm×n maps the unit sphere in Rn to an ellipsoid in Cm
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Ellipsoids

let W be a real n× n matrix and

• W = WT and W ≻ 0 (positive definite)

• define W = MMT (W ≻ 0 ⇒ M ≻ 0)

W defines an ellipsoid:
E =

{
x ∈ Rn | x∗W−1x ≤ 1

}

• semi-axis lengths determined by eigenvalues of W

• orientation determined by eigenvectors of W
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Ellipsoid representations

let U be a Hilbert space and M : U → Rn and range(M) = Rn

define Z = MM∗, then the following sets define the same ellipsoid:

1 E1 =
{
x ∈ Rn | x∗Z−1x ≤ 1

}
2 E2 =

{
Z

1
2 y | y ∈ Rn, ∥y∥2 ≤ 1

}
3 E3 = {Mu | u ∈ U, ∥u∥2 ≤ 1}

E1 = E2 = E3
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Controllability Ellipsoid

the set of states reachable with an input u ∈ L2(−∞, 0] with ∥u∥L2(−∞,0] ≤ 1 is

Ec =
{
Ψcu | ∥u∥L2(−∞,0] ≤ 1

}
an alternative representation using matrices is given by

Ec =
{
ξ ∈ Rn | ξ∗X−1

c ξ ≤ 1
}
, where Xc = ΨcΨ

∗
c

where λi is an eigenvalue of Xc

the energy required to drive the state to x(0) = xd ∈ Rn is

∥uopt∥2 = ⟨Ψ∗
cX

−1
c xd,Ψ

∗
cX

−1
c xd⟩ = x∗

dX
−1
c xd
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Computation

When A is stable, the controllability gramian Xc ∈ Rn×n is the unique solution to

AXc +XcA
∗ +BB∗ = 0.

Note: This is a Lyapunov equation.

Properties

• the matrix Xc ⪰ 0 (because Xc = ΨcΨ∗
c)

• if (A,B) is controllable, then Xc ≻ 0
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Controllability Summary

• if A is stable, the controllability gramian

Xc =

∫ ∞

0
eAτBB∗eA

∗τdτ

is real symmetric, and Xc ⪰ 0

• Xc = ΨcΨ∗
c

• Xc is the unique solution to AXc +XcA∗ +BB∗ = 0

• >>Xc= lyap(A,B*B’)

• eigenvalues of Xc provide information how controllable the system is

• if any λi = 0, then (A,B) is not controllable

• Ψ∗
c and Xc combine to provide the optimal minimum norm control input

Interpretation via singular values

• eigenvalues of ΨcΨ
−1
c are the squares of the singular values of Ψc

• use the singular values Ψc instead of using rank(CAB) to determine range(Ψc)
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