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8: Controllability: An operator perspective

® minimum norm control problem (D&P §4.3)
® [, space (D&P §3.1-3.2 & 3.3.1)
® controllability operator (D&P §4.3)

® controllability ellipsoid (D&P §4.3)



Controllability

we have seen several tests to determine if the system & = Az + Bu is controllable:

® rank test

rank Cap = rank([B AB A?B ... A"1B ]) z n

® if (A, B) stable, controllability Gramian test:

o

AX + XAT + BBT =0, X >0
® for unstable (A, B), PBH test:

rank [A — AI B]Zn forall A\eCT

Note

controllability does not address how to get to a specific state

Minimum norm optimization



State transfer

z(0)

® time duration T'
® desired state Tgeg

® how to select input u to get from z(0) to z(T) = Tdes

Minimum norm optimization



Underdetermined systems of linear equations

consider the system of equations

y= Az, where A € R™*"™ with m <n, rank(A)=m

1 A
T‘t:"l" A x'

m

) )

® more unknowns () than equations (rows of A,b)
® 1 is underspecified; many (infinite) choices of x satisfy the equation

® A has a nontrivial nullspace

all solutions are given by
{z | Az =y} ={zp + 2 | z € null(A)}

where x;, is any particular solution, i.e., y = Az,

Minimum norm optimization



Minimum norm solution

one choice of solution to y = Ax is

z = AT(AAT) 1y

it was shown that ), solves y = Az with the smallest ||z]|2, i.e., it solves

minimize  ||z|2
subject to y = Ax

Minimum norm optimization



Minimum norm solution

one choice of solution to y = Ax is

z = AT(AAT) 1y

it was shown that zj, solves y = Az with the smallest ||z]|2, i.e., it solves

minimize  ||z|2
subject to y = Ax

Minimum norm control

® objective function: choose a “minimal” input function u

® constraints: start at zg, get to zqes under the system dynamics © = Ax + Bu

Minimum norm optimization



Functions

recall our goal is to design a control action u(t) = ¢(z(¢)) that changes the behavior of

z(t) = Az(t) + Bu(t)

we will restrict our attention to functions that belong to the space La(Z) where

Z:=1la,b], a<b

Lo(T) is:

® the space of square integrable functions

® a vector space, and a Banach space, and a Hilbert space

Minimum norm control



The Ly(Z) function space
fix the interval Z (for example [0, 1]), then L3[0, 1] is a vector space defined as

L2([0,1]) :={u : [0,1] = C | u is Lebesgue measurable and [|u||1,[0,1] < o0}

1 ) 3
lull Ly 0] = (/0 lu(t)|3 dt)

where

associated to L2[0, 1] is the inner product:
1
(@0 ooy = [ " @0t

® easy to show that (-,-),[0,1] satisfies the definition of an inner product
® the norm is induced by the inner product

(@, 2) Ly10,1) = 2117 510,11

Minimum norm control



Examples

set I = [0, 00), do the following functions belong to L2[0, c0)?

IO =

® f(t) = cost

Minimum norm control



Examples

set I = [0, 00), do the following functions belong to L2[0, c0)?

. 1) = e
® f(t) = cost

Frequency domain:

Parseval’s theorem tells us (for Z = [0, c0) ):

. 1 /> ..
I 0.0y = 112,50y = (55 [ 0 Gedatie) av)

Minimum norm control



Lo Summary

® L(Z) is a vector space
® the set of square integrable functions
® functions with bounded “energy”
® for specific choices of Z very precise frequency domain characterizations exist
® as well as being a vector space, L2(Z) is a normed vector space
® and an inner product space
Definition

A Hilbert space is a complete inner product space with the norm induced by its inner
product.

® R™ C",C™*", Ly(Z) are Hilbert spaces

Minimum norm control



Lo (Z) spaces

the L space of signals on an interval Z is
Loo(Z) ={u:Z — C™ | ||ul]joc < o0}

where
llulloo = esssup [[u(t)|loc
teT

Notes

® |lullcc measures the peak of the signal
® in contrast ||ul|2 captures the volume
® esssuper [[u(t)|loo <1 <= [[u(t)||co < 1Vt except at a finite set of points

® not an inner product space, not a Hilbert space

Minimum norm control
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Operators
a bounded linear map is called an operator

Linear maps
let V and Z be vector spaces, the map F : V — Z is a linear map if

F(av + pw) = aF(v) + BF(w), forallv,w eV, «,B€R.

® common to write F'v instead of F'(v)

Minimum norm control 11



Operators
a bounded linear map is called an operator

Linear maps
let V and Z be vector spaces, the map F : V — Z is a linear map if

F(av 4 pw) = aF(v) + fF(w), forallv,w eV, a,B€R.
® common to write F'v instead of F'(v)

Bounded linear maps
if F:V — Z is a linear map, it is bounded if there exists a ¢ > 0 such that

[[Fvllz < cllv|]ly, forallveV.

® the space of bounded linear maps from V to Z is denoted L(V, Z)

Minimum norm control 11



Adjoints

Definition
Suppose V' and Z are Hilbert spaces, and F' € L£(V, Z). The operator F* € L(Z,V)
is called the adjoint of F' if

(z, Fv)z = (F*z,v)y

forallveVand z € Z.

can be viewed as overloading of transpose to linear operators

® the adjoint of A € R™*™ js AT

® extension: adjoint of a complex matrix is its conjugate transpose

useful property of adjoints:

* 1
IE] = IF~] = |17 F[|2

® more on operator norms later

Minimum norm control
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Controllability Operator

consider the linear dynamical system

&(t) = Az(t) + Bu(t), xz(—o0)=0

the controllability operator is a function
Ve : LQ(—OO7O] —-Cc"

defined as 0
u H/ e~ A7 Bu(r)dr.

—o0

Minimum norm control 13



Minimum norm control
given the system &(t) = Az (t) + Bu(t) with z(—oc0) = 0 construct a control law

u € La(—o00,0]

such that z(0) = zges such that ||lul|z,(—o,0) is minimized

Minimum norm control
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Minimum norm control

given the system &(t) = Az (t) + Bu(t) with z(—oc0) = 0 construct a control law

u € La(—o00,0]

such that z(0) = zges such that ||lul|z,(—o,0) is minimized

A
T2
2=z ol = 1
L) >
z(—o0)|=0 X1

Minimum norm control



Minimum norm control

given the system &(t) = Axz(t) + Bu(t) with z(—o0) = 0 construct a control law

u € La(—00,0]

such that (0) = 24es such that |lul|z, (—oo,0) is minimized

we can express this using the controllability operator as

minimize ||UHL2(—oo,0]
subject to V.u = z9

® decision variable: the function u
® constraint: w must move z(—o0) = 0 to xg, u belongs to La(—o0,0]

® w.lo.g. HQC()HQ =1

Minimum norm control
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A comparison

proof later, first let's use intuition

minimize  ||z]|
subject to Az =y

Minimum norm control

minimize
subject to

llll 2o (—o0,0)
V.u = x9
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A comparison

proof later, first let's use intuition

minimize |zl minimize  |[ulz,(—o0,0]
subject to Ax =y subject to W.u = xg

Similarities
® objective functions are both norms induced by inner products

® constraints are linear

® both are convex

Differences

® the control problem is infinite dimensional
® we don't yet have a solution

® we do know z* =z, = AT(AAT) 1y

Minimum norm control 16



The Adjoint of U,

to determine the optimal input u we need an expression for the adjoint of W,

W, : La(—00,0] = C", therfore W} :C"™ — Lo(—o0,0]

assume £ € C" and u € La(—00,0], apply definition of an adjoint:
<\PZ£7 u>L2(—oo,O] = <§7 \IICU>C"

0
=5*L e~ A7 Bu(r)dr

:/0 e~ AT Bu(r)dr

= <B*€7A*T§, u>

Lo (—00,0]
and so we conclude that

. B*e=A"T¢ forr <0
Vel { 0 otherwise

Minimum norm control



Controllability gramian

® the controllability operator, W, is a map from La(—o00,0] — C™ defined as

0
/ e~ AT Bu(r)dr

— 00
® its adjoint operator ¥ is a map from C"™ — La(—o0, 0 given by
0 otherwise

{ B*e=A'TE forr <0

® it follows that W.W¥7 is the solution to the Lyapunov equation:
O * 0 *
U Uk =/ e ATBB*e~ 4 Tdr =/ eA"BB*eA Tdr = X,
—o0 0

where X, solves AX. + X .A* + BB* =0

e it follows that (U, ¥})~! exists iff (A, B) is controllable

Minimum norm control
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Solving the minimum norm control problem

Theorem

Suppose (A, B) is controllable. Then
® U .U} is invertible. (Define X, := U .U})

® For any point xog € C™, the input uopt = \Iszc_lwo solves the minimum norm
control problem.

® The optimal input “energy” is

luoptlZ, = x5 Xc 0.

Minimum norm control
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Solving the minimum norm control problem

Theorem

Suppose (A, B) is controllable. Then
® U .U} is invertible. (Define X, := U .U})

® For any point xog € C™, the input uopt = \I!zXc_lwo solves the minimum norm
control problem.

® The optimal input “energy” is

luoptlZ, = x5 Xc 0.

Comparison to minimum norm problem

minimize  ||z|] minimize

llull £y (—o0,0]
subject to Ax =y

subject to VY.u =z

Ty = AT(AAT)_ly Uopt = ‘I’i(‘Pc‘PZ)71$O

Minimum norm control
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Solving the minimum norm control problem

Proof sketch.

® already shown invertibility
@ verify that Weuopt = o
® show that |lu|| > ||uopt]|

© to show property 3, apply definitions

Note
proof step 3 uses the fact that the operator
W=0rX 1,

on La(—00,0] defines an orthogonal projection

Minimum norm control 20



Singular Value Decomposition

given A € C™*™, define p = min{m,n}, the SVD of A is given by
A=UxXV*
where
® U e C™*™ is unitary
® V € C"*™ is unitary

® 3 € R™*™ is diagonal

when m # n, the matrix X takes the form

E:{%] or 2:[§3 0}

where & = diag(o1,...,0n) and T = diag(o1,...,0m), and

o12>202>...20p20

21
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SVD for tall matrices

n mXm mXmn
nxn
m A = U b 1%
SVD for wide matrices
nxn
n mXxXm mxXn
m A = U % \%

® 3 always has the same shape as A

SVD
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Rank

given A € C™*™, the singular value decomposition is
P
A=UNV* =) ou]
i=1

whereU:[ Ul U2 ... Um ] andV:[ vl v
® o, is the it singular value
® w; is the ith left singular vector

® y; is the ith right singular vector

the rank of A is given by the number of non-zero singular values

SVD

v ]
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Relationship to eigen-decomposition

given A € C™*" the singular value decomposition is

p
A=UXV* = Z oiUU;
i=1

then A*A = VE*U*UEV* = VE*EV™ and it follows that
® y; are the eigenvectors of A*A
® g, = \/m i.e., the eigenvalues of A*A

the same argument applied to AA* tells us that
® u; are the eigenvectors of AA*

® g, = \/)\Z’(AA*)

from this we now see that ||A|l2 = /Amax(A*A) = o1

SVD
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Further properties of the SVD

>> [U,S,V]=svd(A)
p
A=UXV* = Z oiU U
i=1

let rank(A) = r, then

® {uy,u2,...,ur} form an orthonormal basis for range(A).

® {v1,v3,...,v,} form an orthonormal basis for null(A)-L.

SVD as a linear map

rotate — scale — rotate

SVD 25



Geometric interpretation

A € R™*™ maps the unit sphere in R™ to an ellipsoid in C™

SVD
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Ellipsoids

let W be a real n X n matrix and

e W =WT and W = 0 (positive definite)

o define W = MMT (W = 0= M > 0)

W defines an ellipsoid:
E={zeR™ |z*W 2 <1}

,// v /l /
\\ B -

® semi-axis lengths determined by eigenvalues of W

® orientation determined by eigenvectors of W

SVD
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Ellipsoid representations

let U be a Hilbert space and M : U — R" and range(M) = R"

define Z = M M*, then the following sets define the same ellipsoid:
o0& ={cck [2*Z <1}
1
0 &= {zby yer |yl <1}

© & ={Mu|uecU,lul2 <1}

S

SVD 28



Controllability Ellipsoid

the set of states reachable with an input u € L2(—00,0] with [lullz,(—0c,0) < 1is

Ec={Yeu | |lullp,(—co,0) <1}

an alternative representation using matrices is given by

Ec={¢eR" X716 <1}, where X.=U.U}

where )\; is an eigenvalue of X,

the energy required to drive the state to z(0) = zq € R" is

ltopt[|* = (WE X wa, UEX taq) = 25X ag

Controllability ellipsoids



Computation
When A is stable, the controllability gramian X, € R™"*" is the unique solution to
AX.+ X.A* + BB* =0.

Note: This is a Lyapunov equation.

Properties
® the matrix X, > 0 (because X, = U .¥})
® if (A, B) is controllable, then X, > 0

Controllability ellipsoids
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Controllability Summary

® if A is stable, the controllability gramian
e *
X, = / eATBB e Tdr
0

is real symmetric, and X, >~ 0
o X, =0, U
® X, is the unique solution to AX. + X.A*+ BB* =0
® >>Xc= lyap(A,B*B’)
® eigenvalues of X, provide information how controllable the system is
® if any A\; = 0, then (A, B) is not controllable

® U* and X combine to provide the optimal minimum norm control input

Interpretation via singular values

® cigenvalues of V.U, are the squares of the singular values of ¥,

® use the singular values ¥ instead of using rank(C4p) to determine range(¥.)

Controllability ellipsoids
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