
Anesthesia Delivery Control

EEME 6602: Modern Control Theory

Patrick Munar

Final Report

Electrical Engineering
Columbia University
New York, USA
May 8 2023

1



Contents

1 Introduction 3

2 Literature Review 4
2.1 Bispectral Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Compartment Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Parsimonious Wiener Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Generalized Hill Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Problem Statement 6
3.1 Anesthesia System Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Pharmacokinetics and Pharmacodynamics . . . . . . . . . . . . . . . . . . . . 6
3.1.2 State-Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Proposed Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Results 10
4.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 Static BIS Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Dynamic BIS Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Future Work 15

6 Conclusion 15

7 References 16

A Model Predictive Control 17
A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2.1 Continuous-Time to Discrete-Time . . . . . . . . . . . . . . . . . . . . . . . . 18
A.2.2 Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.3.1 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.4.1 Input Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.4.2 Input Rate of Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.4.3 Combining Input Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.4.4 Input Change Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.5 Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.5.1 Modified Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.5.2 Gradient Descent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.5.3 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2



1 Introduction

Advancements in the fields of engineering and mathematics have significantly contributed to the
medical industry. Integrating modern mathematical and analytical techniques opens opportunities
for new surgical, diagnostic, and pharmaceutical solutions in healthcare. The proposed project ad-
dresses the latter, specifically anesthesia distribution and control, and is an interdisciplinary work
of biochemistry and control systems engineering.

Many, if not all, surgical procedures are going to be invasive and will put a tremendous amount
of strain on the body of the patient. It goes without saying that providing the proper amount of
general anesthesia is paramount to the success of any surgical procedure. Administering anesthetics
to a surgical patient can be done either through inhalation or intraveneous fluids directly entering
the bloodstream. Both approaches will lead to similar outcomes where the combination of the spe-
cific anesthetic drugs will block the pain receptors in the peripheral nervous system from sending
electrical signals to the central nervous system. If these electrical signals are not registered by the
central nervous system, this keeps the patient from experiencing any discomfort and pain during the
surgery. Providing general anesthesia ensures that the patient’s vitals are kept stable throughout
the surgery and that the amount of trauma and stress the body endures is limited. It is for the
previously mentioned reasons that general anesthesia can be seen as the foundation to any surgical
procedure.

While general anesthesia can be administered as an inhaled drug, the proposed project primar-
ily considers the use of intraveneous fluids as the means for delivering the proposed anesthetics of
propofol and remifentanil. Much of the existing literature examines and models anesthesia delivery
with these drugs, and this project aims to build upon that work. However, even when narrowing
the scope to one type of general anesthesia technique, the task of maintaining the proper level of
sedation throughout a given surgical procedure is still quite complex. A variety of factors need to
be considered, most of which revolve around the patient. These would include age, gender, weight,
height, as well as their accompanying medical history. However, as mentioned earlier, there has
been much research in the area of biochemistry and systems engineering that makes it possible to
model the human body and its reaction to anesthetic drugs. Being able to model a system for
anesthesia distribution does not mean the current results match the performance of being able to
properly match a desired sedation level during a surgical procedure.

Depending on the individual, as well as the type of procedure and amount of anesthetic used,
the required sedation level of a patient is very hard to match with what the actual reading may
be. There is also the concern for administering too much or too little of either anesthetic. Being
on either side of these extremes may result in further health complications for the patient as well
as a poorly managed surgical procedure. The proposed project discusses and elaborates on the
aforementioned goal and how the use of optimization and modern control techniques can synthesize
a solution that improves the ability of anesthesiologists to safely control and maintain the sedation
of level of a patient.
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2 Literature Review

Anesthesia control, and more broadly pharmacokinetics and phramacodynamics, is a vast inter-
discplinary field of study. With advances in the areas of mathematics, medicine, biochemistry, and
pharmacology, we have been able to model the reaction that the human body has to drugs used
for general anesthesia. Much of the recent literature used to inform my understanding of this type
of system comes from studies as recent as the past decade. This section looks to summarize those
findings and how they contribute to informing the system model that I would like to control.

2.1 Bispectral Index

The bispsectral index, or BIS, is a metric used in anesthesiology to quantify the consciousness of
a patient. During a medical procedure, electrodes are placed on the forehead of a patient and return
the brain activity through electroencephalogram, or EEG, readings. These are used to calculate
and monitor the BIS of a patient in real time. The bispectral index is a dimensionless metric and
ranges between 0-100. Readings that are between 90-100 are where people are at full consciousness.
Readings that are between 70-90 denote a state of moderate sedation and even some levels of deep
sleep. For both of these ranges, the central and peripheral nervous systems of the brain are still
able to detect and report pain or discomfort. However, anything between 30-60 is defined as the
appropriate BIS range for general anesthesia. This region indicates a deep hypnotic state where
pain receptors in the peripheral nervous systems do not relay these electrical signals back to the
central nervous system. Anything below a BIS of 30 is extremely low electrical activity and close
to flatlining.

2.2 Compartment Models

Pharmacokinetic/Pharmacodynamics, or PK/PD, compartment models are the basis for de-
scribing and modelling how drugs are absorbed, metabolized, and distributed throughout the body.
These types of models, as the name implies, breaks up the body into a series of compartments.
These compartments can represent almost anything in the human body from tissues, muscle, and
organs. These individual compartments will interact dynamically with one another to create a
relation for the drugs behavior in the body. The interaction between the compartments is usually
related through drug flow rates, concentration, and dissipation. However, some compartments have
a stronger affect for certain drugs, but that is obviously dependent on the drug being analyzed.
Adding more compartments to a PK model will increase the complexity and accuracy of the drug
behavior.

With respect to modelling anesthesia control, the primary compartments that need to be con-
sidered are parts of the body rich and deficient in blood vessels. Areas of the body that are rich in
blood vessels include the brain and muscles. Consequently, areas of the body that are deficient in
blood vessels are fatty tissues and smaller organs. A three compartment model that incorporates
the previously mentioned categories is displayed in Figure 1.
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Figure 1: PK/PD Compartment Model

2.3 Parsimonious Wiener Model

A parsimonious Wiener model is used in conjunction with the previously compartment model to
fully outline the relationship between the infusion of propofol and remifentanil, and the bispectral
index of the patient. The parsimonious Wiener model is a a type of mathematical model used to de-
scribe input and output relationships of signals. The model contains linear system dynamics which
feed into a nonlinear operator that produces the entire system output. This is mainly different from
the classical Wiener model which contains a nonlinear function as a part of the plant. Additionally,
the traditional Wiener model is MIMO whereas the parsimonious Wiener model is SISO. Finally,
the parsimonious Wiener model has specific applications to pharmacokinetics/pharmacodynamics,
thus making it a favorable tool for modelling these types of systems.

For anesthesia control, the parsimonious Wiener model incorporates the linear system dynamics
of the PK/PD compartment models as well as the combined nonlinear effect that propofol and
remifentanil have on the bispectral index of the patient. A general block diagram of the parsimo-
nious Wiener model used for anesthesia delivery is displayed in Figure 2.

Figure 2: Parsimonious Wiener Model

2.4 Generalized Hill Equation

The final concept acquired from my literature review of anesthesia control is the use of the
generalized Hill equation to model nonlinear effects that intravenous anesthetics have on the body.
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The generalized Hill equation for anesthesia relates the combined potency of a given drug to the
BIS of a patient. It requires the base BIS that a patient would normally be at with no sedation, as
well as the current potency of the anesthetics present in the bloodstream. The form of the function
makes it nonlinear since it does not abide by superposition or homogeneity. This will be further
elaborated on when discussing the system model.

3 Problem Statement

Now that we have discussed the related literature to anesthesia control, we are able to formalize
the problem that we would like to address in this project. Being able to properly manipulate the
sedation level and hypnotic state of a patient would help medical procedures and surgeries operate
more smoothly. Therefore, we would like to create and test a control strategy that would improve
the current anesthesia system’s ability to track a desired BIS for different patients and procedures.
The control strategy should be robust to noise and disturbances as either of these present in the
system would be disruptive to any medical procedure, and be detrimental to patient health. As
such, the proposed control strategy is to implement model predictive control as its architecture is
tailored for tracking desired outputs, even in the presence of disturbances and noise.

3.1 Anesthesia System Development

As seen in Section 2, and its associated subsections, the overall process of relating the infusion
of propofol and remifentanil to the patient BIS is complex. The following derivations aim to show
the synthesis of this anesthesia delivery system using the previously outlined concepts

3.1.1 Pharmacokinetics and Pharmacodynamics

A linear system model can be developed from transfer functions that relate the infusion rates
of propofol and remifentanil to their relative concentrations. These transfer functions provide the
linear system dynamics to the system and show the individual effect of each anesthetic where α and
η are patient specific parameters determined through clinical trials.

cp(s) =
90α3

(10α+ s)(9α+ s)(α+ s)
up(s)

cr(s) =
6η3

(3η + s)(2η + s)(η + s)
ur(s)

(1)

Knowing the concentration of each drug still does not provide enough information to determine
the effect on the BIS. As such, the concentrations of propofol and remifentanil need to be normalized.
This converts the concentrations of these drugs into their relative potencies.

yp(t) = 0.1cp(t)

yr(t) = 100cr(t)
(2)
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The individual potencies of propofol and remifentanil can be superimposed to determine the
overall potency of the two anesthetic drugs. Essentially the above expressions will be summed
together where the potency for propofol is scaled by µ, another patient specific parameter.

y(t) = µyp(t) + yr(t)

= 0.1µcp(t) + 100cr(t)
(3)

The combined potency is then finally inputted into the nonlinear, generalized Hill equation.
This nonlinear function relates the combined potency to the BIS of the patient. Again, a patient
specific parameter γ is used to improve simulation accuracy.

z(t) =
z0

1 + y(t)γ
(4)

It is important to note that these PK/PD expressions will have varying effects on the overall
system. This is primarily due to the inclusion of the set of patient specific parameters α, η, γ, µ.
While not fully apparent until the final result, we see that these PK/PD relationships begin to
create the basis for our state-space model.

3.1.2 State-Space Model

Now that the pharmacokinetics and pharmacodynamics have been properly discussed, we are
able to incorporate them in our synthesis of an anesthesia control system that uses the two drugs
propofol and remifentanil. Our main objective is to convert the previously derived expressions into
a system of linear equations that can be modelled by (A,B,C,D).

To start with the state matrixA, we primarily consider the transfer functions relating the changes
individual changes of the concentrations of propofol and remifentanil. These transfer functions each
have 3 poles, and thus it follows that state matrices for each drug Ap, Ar ∈ R3×3.

Ap =

−10α 0 0
α −9α 0
0 α −α

 , Ar =

−3η 0 0
2η −2η 0
0 η −η

 (5)

The input matrix B also stems from the transfer functions for propofol and remifentanil and
takes into account the associated infusion rate of each drug. It follows that the input matrices for
each drug Bp, Br ∈ R3.

Bp =

10α0
0

 , Br =

3η0
0

 (6)

The output matrix C takes into account the relationship between the concentrations of propofol
and remifentanil with respect to their individual and combined potencies. As expected, the output
matrices for each drug CT

p , C
T
r ∈ R3.
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Cp =
[
0 0 0.1µ

]
, Cr =

[
0 0 100

]
(7)

This system does not include a D matrix, and therefore we are unable to properly model dis-
turbances that directly affect the output of the system.

Each anesthetic also had associated with it state vectors xp(t), xr(t) ∈ R3 and inputs up(t), ur(t) ∈
R. The states for each anesthetic corresponded to the changes in the concentration of each anes-
thetic and the inputs corresponded to the infusion rates at which each drug was administered to
the patient.

xp(t) =

xp1(t)xp2(t)
xp3(t)

 , xr(t) =

xr1(t)xr2(t)
xr3(t)

 (8)

The previously defined matrices, states, and inputs only model the individual effects of propofol
and remifentanil. In other words, so far we have only defined two smaller systems (Ap, Bp, Cp)
and (Ar, Br, Cr) which are independent of one another. Concatenating these systems requires the
inclusion of the appropriate zero matrices O to create compatible system sizing. As such, the new
sizing for the entire anesthesia delivery system has A ∈ R6×6,B ∈ R6×2, and CT ∈ R6.

A =

[
Ap O3×3

O3×3 Ar

]
, B =

[
Bp O3×1

O3×1 Br

]
, C =

[
Cp Cr

]
(9)

We are able to concatenate these smaller systems with one another to form a larger system
(A,B,C) which incorporates both effects of propofol and remifentanil. This provides a comprehen-
sive system model of the effects that these drugs have on the BIS of a patient.

Combining the state, input, output matrices of propofol and remifentanil also results in com-
bined state, input, and output vectors. Based on the structure of concatenating the state and input
matrices, the effects of these drugs in the state remain independent of one another. However, the
structure of the output matrix imposes the effects of both anesthetics together.

x(t) =

[
xp(t)
xr(t)

]
, u(t) =

[
up(t)
ur(t)

]
(10)

These new state and input vectors help fully relate the concentrations and flow rates of propo-
fol and remifentanil. Based on the sizing of these new matrices, it is not difficult to derive that
x(t) ∈ R6 and u(t) ∈ R2.

Finally, after all the appropriate derivations and review of PK/PD expressions of the two desired
anesthetics, we are able to fully express this anesthesia delivery system in the form of a linear
dynamical system.
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˙x(t) =

[
ẋp(t)
ẋr(t)

]
=

[
Ap O3×3

O3×3 Ar

] [
xp(t)
xr(t)

]
+

[
Bp O3×1

O3×1 Br

] [
up(t)
ur(t)

]
y(t) =

[
Cp Cr

] [xp(t)
xr(t)

]
z(t) =

z0
1 + y(t)γ

(11)

Where the system matrices (A,B,C) and states take the form of a concatenated version of
(Ap, Bp, Cp) and (Ar, Br, Cr) with patient specific parameters α, η, γ, µ included for further speci-
ficity.

After having defined the anesthesia delivery system model, we need to examine what are the
useful control techniques and strategies that we can apply to improve the base system performance.
This will be elaborated in Section 4 which discusses the numerical results when testing this system.

3.2 Proposed Control Strategy

As stated in the problem statement, the primary goal of this project is to design a controller
that will assist the current anesthesia delivery system in tracking a reference BIS level. Therefore,
the control strategy should be able to determine the optimal input flow rates of propofol and
remifentanil that can achieve the desired effect. When stated as an algorithm, a candidate control
strategy should perform the following:

1. Take as input a reference BIS level zdes(t).

2. Determine the combined potency y(t) and subsequently the individual potencies of propofol
and remifentanil yp(t) and yr(t).

3. Determine the assoiciated concentrations of propofol and remifentanil cp(t) and cr(t).

4. Calculate from the concentrations the required flow rates of propofol and remifentanil up(t)
and ur(t).

5. Optimize the input flow rates to minimize the error at the output z(t).

6. Repeat for the entire duration of the procedure.

Even though in many ways this algorithm is vague and potentially naive, it provides a frame-
work for the expected functionality of the control strategy that we would like to implement for this
system. Some bonus features to the control strategy may include having robustness to disturbances
or the inclusion of some sort of filter to diminish noise contributions.

Based on the problem statement requires and overall goals of the project, I have determined
that model predictive control is an excellent control strategy that can realize the desired closed-loop
performance. For a comprehensive derivation of this control strategy, refer to Appendix A.
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4 Results

After implementing the previously discussed control strategy in MATLAB, I was able to evalu-
ate the performance of the controller and its ability to track a desired BIS. Before actually applying
the proposed control strategy, it was important to first characterize the uncontrolled system. This
would mainly inform what needs to be improved and what the control strategy should help accom-
plish. Evaluating the controlled system was also done in parallel to make direct comparisons and
analysis of the closed-loop system performance.

4.1 Model Predictive Control

The primary objective is to create a control law that is capable of effectively tracking a desired
BIS while minimizing the amount of anesthetic injected into the patient. Prioritizing these results
will ensure that our prescribed control law is safe for the patient and maintains proper sedation
throughout a surgical procedure. Model predictive control is one such strategy that can help achieve
these objectives.

4.1.1 Static BIS Progression

Before examining the various BIS progression cases, we first applied the model predictive con-
troller to the different step responses for a static BIS. Again, these were iterated for each patient
and for the appropriate BIS levels during surgery. This refers to bringing down the patient BIS
within the range of 40-60 which has been specified as the desired sedation level for invasive medical
procedures. Figures 3-5 display the results of applying model predictive control to each of the pa-
tients. Each column of plots shows the static progression of bringing a patient to the desired BIS,
as well as the amount of propofol and remifentanil administered to the patient measured in flow
rates. The red line in the larger BIS plot denotes the reference signal that we want the patient to
track. The solid lines represent the uncontrolled system response and the dotted lines represent the
system response using model predictive control. Finally, each column shows the results for tracking
a BIS of 60, 50, and 40.

These results provide some insight about how the model predictive controller affects the uncon-
trolled system. While only a static BIS progression was used, these observations can serve as a
baseline for the overall behavior of the implemented control strategy:

• Undershoot - A primary observation about the controlled output is the presence of under-
shoot. This is indiscriminate of the varying patient models and parameters since there is
undershoot in every response. The severity of the undershoot could be examined more closely
however. It is hard to determine if the magnitude of the undershoot is due to the model for
each patient or the configuration of the model predictive controller.

• Fall Time - While specific fall time metrics were not recorded, it is clear that the output using
model predictive control has less lag than the uncontrolled response. This improvement in fall
time not only indicates good system performance, but for a physical interpretation this means
that the patient better reaches the desired BIS in an appropriate amount of time. Specifically,
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Figure 3: Static BIS Progression - Patient 1

Figure 4: Static BIS Progression - Patient 2
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Figure 5: Static BIS Progression - Patient 3

the plots for patient 3 show how the model predictive controller is able to significantly reduce
the lag of the output response.

• Drug Usage - Unlike the steady-state approach used for the uncontrolled system, applying
the model predictive controller produces a nonlinear input sequence of flow rates. A key
result is that the overall use of propofol is diminished significantly for every patient and every
BIS level. Even though the use of remifentanil is increased, the reduced infusion of propofol
decreases the total amount of anesthetic used for each patient.

Despite gaining a lot of insights about the general effects of the implemented model predictive
controller on this system, there needs to be further testing on dynamic BIS progressions as they
better reflect what the actual sedation level of a patient behaves like during a surgical procedure.

4.1.2 Dynamic BIS Progression

Now after getting conducting some preliminary analysis on general effects of this control law
on static BIS progressions, we can more further explore the effects on dynamic BIS progressions.
Following the same format as before, each set of plots shows the uncontrolled and patient response
to four different dynamic BIS progression cases. These reference BIS signals are no longer just
dropping down to a single level as that does not accurately represent what occurs in an actual
procedure. The reference signals for each case follow the pattern of first bringing down the patient
BIS to operating level as quickly as possible, then adding some fluctuations in the patient BIS while
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they are in a deeply sedated state, and finally gradually bringing the patient back to consciousness.
Again, each plot is accompanied by the propofol and remifentanil infusion rates for each case. Fig-
ures 6-8 show the simulated results.

Figure 6: Dynamic BIS Progression - Patient 1

Many of the observation that were made for the static BIS progression cases can be generalized
to the dynamic BIS progression cases as well. There is the presence of undershoot in the different
cases for each patient especially in the initial portion of the outlined procedure. Overshoot is also
present in the sequence of gradually bringing the patient back to full consciousness. This is mostly
minimal since the difference between increasing BIS levels is not as abrupt. While mostly visible
with patient 3, the model predictive controller still provides good tracking at the output since the
lag on the actual patient BIS compared to the desired BIS is reduced as well. Finally, we see a
diminished use of propofol and intermittent use of remifentanil which contributes to less anesthetic
used for each procedure and each patient.

After analyzing the simulated results, we see that model predictive control is a suitable strategy
for improving the reference tracking of the uncontrolled system while minimizing the amount of
anesthetic administered to the patient. The main limitations to the strategy would have to be the
available hardware. This strategy revolves around optimization which can be iterated for several
epochs to determine the minimal flow rates for the desired BIS. Even though this control strategy
is computationally expensive, the results show that this price is worth paying especially for systems
that perform poorly in the open-loop configuration.
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Figure 7: Dynamic BIS Progression - Patient 2

Figure 8: Dynamic BIS Progression - Patient 3
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5 Future Work

As of now, what was currently accomplished is excellent in its own right, but is strictly theoret-
ical. If there was more time in the semester, a next step would be to further complexify the system
model. More research would need to be conducted on pharmacokinetics, pharmacodynamics, and
compartment models to potentially reflect any higher order effects that the current anesthesia de-
livery system did not consider.

This primarily alludes to unforeseen side effects and limitations of propofol and remifentanil.
Additionally, another direction to further take the project in is to explore how the model works
with inhalable anesthetics. Anesthetics administered as a gas changes how the model and system
dynamics would need to be constructed. The system would not only need to consider the gas flow
rates of the anesthetics, but the breathing rate of the patient. Pursuing this direction would cer-
tainly be quite challenging, but it would be interesting to compare and contrast how the current
control strategy implemented in this project would fare with a new system model.

Other areas of future work would potentially include a transition between theory and physical
implementation. Anesthetics, whether they are administered through intraveneous fluids or inhala-
tion, can be delivered through automation of the actual hardware. Since this solution produces the
optimal flow rates of propofol and remifentanil, the next step would be to see how these flow rates
can be actuated. Exploring fields of ASIC design or microcontroller programming could be areas
to consider if taking the project into industry.

6 Conclusion

Through the use of modern mathematical concepts, optimization techniques, and control strate-
gies, this project was able to synthesize an advanced solution for safely manipulating the sedation
level of a patient undergoing an invasive surgical procedure. A culmination of biochemical and
pharmaceutical models made it possible to accurately evaluate the anesthetic effects of propofol
and remifentanil on the sedation level of a patient. The tested control strategy also provides great
flexibility in tailoring what is the appropriate amount of anesthetic required for a certain patient
and their desired sedation levels. This improved the safety and utility of the analyzed control
strategy since it determines what is the minimum amount of anesthetic required to get the desired
results. This control method provides anesthesiologists an effective and robust option for determin-
ing the optimal combination of anesthetic drugs to administer to a patient. This project represents
the combined work of varying scientific fields. The resulting controller is an interdisciplinary ac-
complishment of biochemistry, pharmacology, mathematics, and engineering all coming together to
further advance the medical industry.
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A Model Predictive Control

A.1 Overview

Model predictive control, otherwise known as ”MPC” or the moving horizon or receding horizon
control, is a control strategy for assisting linear dynamical systems track a desired output. Model
predictive control can be used with stable/unstable and linear/nonlinear system dynamics. This
technique performs its computation online for a given reference signal, and thus is a computationally
expensive control method. However, the computational price to pay is justified in that MPC, when
configured with the proper settings and constraints, yields exceptional performance in controlling
the plant output.

The high level description of model predictive control is as follows. The controller will take as
input the current state, input, and output of the system and then compute over a finite prediction
horizon how the state and output will change based on the next input in the predicted control
sequence. While only the first element in the predicted control sequence is used as the actual plant
input, having a longer prediction horizon, and subsequently more predicted inputs and outputs,
will better inform the controller about what is the optimal plant input that will track the reference
signal. This strategy operates in discrete-time and uses both controllability and observability prop-
erties to perform the online inference of the optimal input sequence for tracking the desired output
at the plant.

Figure 9: Model Predictive Control Illustration

As such continuous-time systems need to first be discretized, typically by a zero order hold
(ZOH), before any computation can be performed. This will be discussed in later subsections, but
the discrete-time system is further augmented into a system that becomes a function of predicted
input changes, current states, and predicted outputs. This augmented system, sometimes referred
to as the ”plant model”, is essential for the model predictive controller in performing inference.
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In addition to creating an augmented, discrete-time plant model, model predictive control uti-
lizes an optimizer to determine the optimal input sequence for the plant. The optimizer itself takes
as input the predicted error between the actual output and the predicted output, a quadratic cost
function and any accompanying equality or inequality constraints, and outputs a predicted input
at the given time step.

Figure 10: Model Predictive Control Architecture

More will be discussed about how the optimizer performs the inference of the optimal input
sequence in later subsections, but this overview primarily illustrates the main control methodology
being applied to this anesthesia delivery system.

A.2 Derivation

Before implementing model predictive control in MATLAB, an essential preliminary step was
to derive the expected dimensions and sizes of the matrices used in this technique. The following
derivations will cover the system conversion from continuous-time to discrete-time and the augmen-
tation of the discrete-time model for MPC.

A.2.1 Continuous-Time to Discrete-Time

Suppose we have the continuous-time system (A,B,C) with the following state-space model:

˙x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

z(t) = f(y(t))

(12)
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This system is then passed through a ZOH to be discretized. Applying the MATLAB command
c2dm() to (A,B,C) for some sampling time Ts will automatically perform this conversion with the
below calculations.

Ad = eATs Bd =

∫ Ts

0
eAτBdτ Cd = C (13)

This results in the discrete-time system (Ad, Bd, Cd) with the following state-space model:

x(k + 1) = Adx(k) +Bdu(k)

y(k) = Cdx(k)

z(k) = f(y(k))

(14)

Depending on the continuous-time system, specifically the patient specific parameters, different
sampling times Ts will affect the performance of the model predictive control strategy. Further
discussion on sampling time selection is done in Section –.

A.2.2 Augmentation

From Section –, which defines the anesthesia delivery system model, we know that A ∈ R6×6,
B ∈ R6×1, and C ∈ R1×6. Consequently, converting from continuous- to discrete-time does change
the dimensions of the system which accordingly makes Ad ∈ R6×6, Bd ∈ R6×1, and Cd ∈ R1×6.
Reviewing the current dimensions of the base system model is important in ensuring that we build
the proper augmented system model.

Currently, our discrete-time system operates in terms of the input and output at time step k
and the state at the current time step k and the next time step k+1. To construct the augmented
system model we need to consider the changes in our discrete-time system by applying the back-
wards difference operator, denoted by ∆f(k + 1) = f(k + 1)− f(k), to the entire system.

First, we apply the backwards difference operator to the state equation:

∆x(k + 1) = x(k + 1)− x(k)

= Adx(k) +Bdu(k)−Adx(k − 1)−Bdu(k − 1)

= Ad(x(k)− x(k − 1)) +Bd(u(k)− u(k − 1))

(15)

This allows us to get an expression for the state change at the next time step k + 1 in terms of
the current change in the state and input.

∆x(k + 1) = Ad∆x(k) +Bd∆u(k) (16)

Second, we apply the backwards difference operator to the output equation:
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∆y(k + 1) = y(k + 1)− y(k)

= Cdx(k + 1)− Cdx(k)

= Cd(x(k + 1)− x(k))

= Cd∆x(k + 1)

= CdAd∆x(k) + CdBd∆u(k)

(17)

It follows that the output at the next time step k+1 is now a function of the current change in
the state and input.

y(k + 1) = y(k) + CdAd∆x(k) + CdBd∆u(k) (18)

Finally, we combine the two results into a new system of linear equations where the future
output and state change are a function of the current output, state and input change:

[
∆x(k + 1)
y(k + 1)

]
=

[
Ad On×p

CdAd Ip

] [
∆x(k)
y(k)

]
+

[
Bd

CdBd

]
∆u(k)

y(k) =
[
Op×n Ip

] [∆x(k)
y(k)

] (19)

This augmented system states can be formalized with the following definitions that combine the
current input change and output into a single state variable.

xa(k) =

[
∆x(k)
y(k)

]
(20)

The augmented system matrices can also be assigned with the following definitions to further
simplify our analysis of constructing a model predictive controller.

Φ =

[
Ad On×p

CdAd Ip

]
Ψ =

[
Bd

CdBd

]
Ω =

[
Op×n Ip

]
(21)

With the previous definitions, the new system can be written in terms of the augmented state
variable and augmented system matrices:

xa(k + 1) = Φxa(k) + Ψ∆u(k)

y(k) = Ωxa(k)
(22)

If we examine closely the augmented system (Φ,Ψ,Ω), as well as the associated matrix multipli-
cations that go into constructing these augmented matrices, we are able to determine the expected
dimensions of the augmented system model. In particular, we know that there are n = 6 states,
m = 2 inputs, and p = 1 outputs. This would indicate that Φ ∈ R7×7, Ψ ∈ R7×2, and Ω ∈ R1×7.
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From the Cayley-Hamilton theorem we know that for some square matrix S ∈ RN×N :

SN ∈ span{SN−1, SN−2, . . . , S, I} (23)

By using the Cayley-Hamilton theorem with the augmented state matrix Φ we can determine
the minimum prediction horizon Np associated with the predictive anesthesia system model. Since
there are n′ = 7 augmented states, the predictive plant model requires at least a prediction horizon
of Np = 7.

This system is only a function of the current time step k and the next time step k + 1. As
stated earlier, model predictive control is able to compute more accurately the optimal control
sequence over a prediction horizon Np. This would result in a running computation of predicted
input changes,

∆u(k),∆u(k + 1), . . . ,∆u(k +Np − 1) (24)

The augmented states xa which contain the state change ∆x(k) and output y(k) of the plant,

xa(k + 1), xa(k + 2), . . . , xa(k +Np) (25)

And the predicted outputs of the plant based on the predicted input changes.

y(k + 1), y(k + 2), . . . , y(k +Np) (26)

Taking into account the previous observations and properly understanding the premise of model
predictive control, we can further modify the augmented system (Φ,Ψ,Ω) to take into account the
prediction horizon Np.

First, we can rewrite the predicted augmented states as a recursion of one another and the
predicted input changes:

xa(k + 1) = Φxa(k) + Ψ∆u(k)

xa(k + 2) = Φxa(k + 1) + Ψ∆u(k + 1) = Φ2xa(k) + ΦΨ∆u(k) + Ψ∆u(k + 1)

...

xa(k +Np) = ΦNpxa(k) + ΦNp−1Ψ∆u(k) + ΦNp−2Ψ∆u(k + 1) + · · ·+Ψ∆u(k +Np)

(27)

A similar recursion method can be applied to the predicted outputs since they are directly a
function of the predicted augmented states:

y(k + 1) = Ωxa(k + 1) = ΩΦxa(k) + ΩΨ∆u(k)

y(k + 2) = Ωxa(k + 2) = ΩΦ2xa(k) + ΩΦΨ∆u(k) + ΩΨ∆u(k + 1)

...

y(k +Np) = Ωxa(k +Np) = ΩΦNpxa(k) + ΩΦNp−1Ψ∆u(k) + · · ·+ΩΦ∆u(k +Np − 1)

(28)
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Second, we convert the derived recursions into a system of linear equations that will encapsulate
the augmented state, input change, and output over the specified prediction horizon Np. Starting
with the predicted augmented states we are able to write:

xa(k + 1)
xa(k + 2)

...
xa(k +Np)

 =


Φ
Φ2

...
ΦNp

xa(k) +


Ψ
ΦΨ Ψ
...

. . .

ΦNp−1Ψ · · · Ψ




∆u(k)
∆u(k + 1)

...
∆u(k +Np − 1)

 (29)

Again, we are able to follow a similar procedure for converting the predicted outputs into a
system of linear equations represented as:

y(k + 1)
y(k + 2)

...
y(k +Np)

 =


ΩΦ
ΩΦ2

...
ΩΦNp

xa(k) +


ΩΨ
ΩΦΨ ΩΨ
...

. . .

ΩΦNp−1Ψ · · · ΩΨ




∆u(k)
∆u(k + 1)

...
∆u(k +Np − 1)

 (30)

We formalize this modified augmented system of linear equations by defining new variables over
the prediction horizon for the predicted input changes and the predicted output.

Y =


y(k + 1)
y(k + 2)

...
y(k +Np)

 ∆U =


∆u(k)

∆u(k + 1)
...

∆u(k +Np − 1)

 (31)

Based on the previous derivations of the prediction horizon and the sizing of the augmented
system matrices, we know that Y ∈ R7×1 and ∆U ∈ R14×1. This is because there are two inputs
to the anesthesia delivery system and thus the prediction horizon needs to cover both inputs for
proper inference.

The modified augmented system matrices can also be assigned with the following definitions to
formalize the model predictive controller.

W =


ΩΦ
ΩΦ2

...
ΩΦNp

 Z =


ΩΨ
ΩΦΨ ΩΨ
...

. . .

ΩΦNp−1Ψ · · · ΩΨ

 (32)

Again, to determine the sizing of the modified augmented system matrices we can examine the
previous sizing derivations. Specifically, Y (k) ∈ R7×1 and xa(k) ∈ R7×1. W needs to be compatible
with xa(k) to get the proper output dimensions, therefore W ∈ R7×7. Similarly, Z needs to map
∆U to R7×1. Since ∆U ∈ R14×1, then Z ∈ R7×14.

Finally, with the previous definitions, the modified augmented system is capable of performing
model predictive control for the plant output and can be written as a function of the current
augmented state and the predicted input changes over the specified prediction horizon:
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Y = Wxa(k) + Z∆U (33)

This is the predictive plant model and takes as input the necessary information for making
inference about how the output will change relative to a new input. Ultimately, this modified plant
model will inform the optimizer about what control action is required to reach the desired output.

A.3 Optimization

An optimization strategy needs to be implemented to assist in computing the optimal input se-
quence for the actual plant. The following section discusses the optimization problem that is solved
to realize this controller by outlining the cost function and the linear matrix inequality constraints
that will be imposed on the optimal input.

A.3.1 Cost Function

Like with any optimization problem, the model predictive control strategy has its own associated
cost function which revolves around the decision variable ∆U . Implementing the model predictive
control strategy aims to minimize this exact cost function.

J(∆U) =
1

2
(rp − Y )TQ(rp − Y ) +

1

2
∆UTR∆U (34)

The actual cost function is quadratic and has two terms that are associated with the predicted
output Y , and its difference from the reference signal rp, and with the predicted input changes
∆U . The Q ∈ R7×7 and R ∈ R14×14 matrices will accordingly penalize deviations from the desired
output rp and large changes in the input. Note that:

rp =
[
yref (k) yref (k + 1) · · · yref (k +Np)

]T
(35)

Furthermore, to solve this optimization problem the gradient of the cost function needs to be
calculated with respect to the decision variable ∆U .

∇J(∆U) = −(rp −Wxa − Z∆U)TQZ +∆UTR (36)

Evaluating the gradient is essential to determining the optimal solution via the gradient descent
method. This will be discussed in more detail in Section –.–.–.

A.4 Constraints

While model predictive control is a powerful controller/observer based technique, it may com-
pute an optimal input sequence that is infeasible for the plant or does not properly align with
the physical system dynamics. For the anesthesia delivery system, the two inputs are flow rates of
propofol and remifentanil. Unless there is another drug injected at the same flow rates to counteract
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propofol and remifentanil, which is not modelled in this system, there is no possible way for the
control designer to remove the already infused drug from the patient. In other words, a negative
control action, in this case a backwards flow rate, does not have proper meaning for this particular
anesthesia delivery system model.

It is this understanding and interpretation of the current anesthesia delivery system which acts
as the motivation for wanting to impose constraints on the input of the model predictive controller.
These constraints can be synthesized with linear matrix inequalities and are accordingly included
in the computation of the optimal input sequence. There are two types of input constraints that
we want to implement on this optimization problem.

A.4.1 Input Amplitude

The first set of constraints that are going to be imposed for this model predictive controller are
on the amplitude of the control action. This was discussed previously in the motivation for input
constraints, but essentially we are looking to keep all control action values positive as a backwards
flow rate would not be feasible for the physical system.

The generalized form of amplitude constraints on the control action at the current time step k
for the desired output can be expressed as:

umin
i ≤ ui(k) ≤ umax

i for i = 1, 2, . . . ,m (37)

To express the generalized form over the prediction horizon Np, in other words for all the
elements in ∆U , we note the relation between the current current input, the previous input, and
the change in the input.

u(k) = u(k − 1) + ∆u(k)

= u(k − 1) +
[
Im Om · · · Om

]
∆U

(38)

It follows that the next input is expressed in a similar form from the elements of the input
changes over the prediction horizon.

u(k + 1) = u(k) + ∆u(k + 1)

= u(k − 1) + ∆u(k) + ∆u(k + 1)

= u(k − 1) +
[
Im Im · · · Om

]
∆U

(39)

When continuing with this pattern over for time steps k, k + 1, . . . , k + Np − 1, the predicted
inputs, previous inputs, and input changes over the prediction horizon can be related through a
system of equations:
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
u(k)

u(k + 1)
...

u(k +Np − 1)

 =


Im
Im
...
Im

u(k − 1) +


Im Om · · · Om

Im Im · · · Om
...

. . .
...

Im Im · · · Im




∆u(k)
∆u(k + 1)

...
∆u(k +Np − 1)

 (40)

Assigning some of the vectors and matrices with the following definitions can further simplify
the process in rewriting the input amplitude constraints.

U =


u(k)

u(k + 1)
...

u(k +Np − 1)

 Ẽ =


Im
Im
...
Im

 H̃ =


Im Om · · · Om

Im Im · · · Om
...

. . .
...

Im Im · · · Im

 (41)

We are able to determine the exact sizing of the previously defined vectors and matrices based
on Sections –.–.– and –.–.–. Knowing these dimensions, it can be calculated that U ∈ R14, Ẽ ∈ R14,
and H̃ ∈ R14×14.

Therefore, we are able to express now:

U = Ẽu(k − 1) + H̃∆U (42)

Referring back to the generalized form of the amplitude constraints on the control action, this
can be expressed for the vector U of predicted inputs as:

Umin ≤ U ≤ Umax (43)

The vectors for the minimum and maximum input amplitudes are in R28 and given the following
definitions.

Umin =


umin
1

umin
2
...

umin
1

umin
2

 and Umax =


umax
1

umax
2
...

umax
1

umax
2

 (44)

Combining the modified generalized form with the previously derived expression relating the
predicted inputs to the previous input and the predicted input changes yields a more comprehensive
expression of the input amplitude constraint.

[
−U
U

]
≤

[
−Umin

Umax

]
[
−Ẽu(k − 1)− H̃∆U

Ẽu(k − 1) + H̃∆U

]
≤

[
−Umin

Umax

]
[
−H̃

H̃

]
∆U ≤

[
−Umin + Ẽu(k − 1)

Umax − Ẽu(k − 1)

] (45)
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Again, we are able to apply the following definitions to the above block matrices.

H =

[
−H̃

H̃

]
E =

[
−Umin + Ẽu(k − 1)

Umax − Ẽu(k − 1)

]
(46)

Based on previous derivations, we are able to determine that H ∈ R28×14 and E ∈ R28 which
gives a sense of the computational intensity by including these constraints.

Finally, these definitions allow us to formalize the input amplitude constraints over the prediction
horizon in a linear matrix inequality that takes the form:

H∆U ≤ E (47)

Implementing this linear matrix inequality into the optimizer for the model predictive controller
will constrain the computed inputs to lie between the specified range of the control designer. This
is just one of two input constraints that need to be considered for the model predictive controller.

A.4.2 Input Rate of Change

The second set of constraints that are going to be imposed are on the rate of change of the
control action. The primary motivation of including this constraint is to minimize, and in some
cases induce, sharp changes in the control action and keep the flow rates at a gradual increase or
decrease throughout a given patient procedure.

The generalized form of rate of change constraints on the control action at the current time step
k for the desired output can be expressed as:

∆umin
i ≤ ∆ui(k) ≤ ∆umax

i for i = 1, 2, . . . ,m (48)

Following similar steps as for when we derived the input constraints, the generalized form of the
rate of change constraints can be expressed for the ∆u(k) of predicted input changes as:

∆Umin ≤ ∆u(k) ≤ ∆Umax (49)

The vectors for the minimum and maximum input rate of changes are in R2 and given the
following definitions.

∆Umin =
[
∆umin

1 ∆umin
2

]T
and ∆Umax =

[
∆umax

1 ∆umax
2

]T
(50)

Combining the modified generalized form with the previous minimum and maximum input
change definitions creates a refined expression of the input rate of change constraint.[

−Im
Im

]
∆u(k) ≤

[
−∆Umin

∆Umax

]
(51)
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It follows that the input changes at the next time step k+ 1 through the prediction horizon Np

can be expressed in an identical manner.

[
−Im
Im

]
∆u(k + 1) ≤

[
−∆Umin

∆Umax

]
...[

−Im
Im

]
∆u(k +Np − 1) ≤

[
−∆Umin

∆Umax

] (52)

When continuing with this pattern, the predicted input changes can be bounded by the minimum
and maximum rate of change through a system of equations:

−Im Om · · · Om Om

Im Om · · · Om Om

Om −Im · · · Om Om

Om Im · · · Om Om
...

...
Om Om · · · Om −Im
Om Om · · · Om Im




∆u(k)

∆u(k + 1)
...

∆u(k +Np − 1)

 ≤



−∆Umin

∆Umax

−∆Umin

∆Umax

...
−∆Umin

∆Umax


(53)

Assigning some of the vectors and matrices with the following definitions can further simplify
the process in rewriting the input rate of change constraints.

G =



−Im Om · · · Om Om

Im Om · · · Om Om

Om −Im · · · Om Om

Om Im · · · Om Om
...

...
Om Om · · · Om −Im
Om Om · · · Om Im


C =



−∆Umin

∆Umax

−∆Umin

∆Umax

...
−∆Umin

∆Umax


(54)

Again, we are able to determine the exact sizing of the previously defined vectors and matrices
based on Sections –.–.– and –.–.–. Knowing these dimensions, it can be calculated that G ∈ R28×14

and C ∈ R28.

Finally, these definitions allow us to formalize the input rate of change constraints over the
prediction horizon in a linear matrix inequality that takes the form:

G∆U ≤ C (55)

Adding this linear matrix inequality into the optimizer for the model predictive controller will
constrain the minimum and maximum allowable differentials between control actions. This is the
second of two input constraints that need to be considered.
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A.4.3 Combining Input Constraints

Having derived the two linear matrix inequalities for the control action amplitude and rate of
change, we need to synthesize both expressions into a single linear matrix inequality that accounts
for both input constraints.

H∆U ≤ E (amplitude)

G∆U ≤ C (rate of change)
(56)

Since both constraints include the vector ∆U of input changes over the prediction horizon Np,
these expressions can be combined into a larger block linear matrix inequality denoted by the
following: [

H O28×14

O28×14 G

] [
∆U
∆U

]
≤

[
E
C

]
(57)

Like with all the previous derivations, assigning new definitions to these block matrices can sim-
plify the combined inequality constraints for the gradient descent algorithm which will be discussed
in Section –.–.–.

Θ =

[
H O28×14

O28×14 G

]
Π =

[
E
C

]
(58)

Additionally, ∆U =
[
∆U ∆U

]T ∈ R28 will represent the independently combined predicted
input changes associated for each individual constraint. These definitions have Θ ∈ R56×28 and
Π ∈ R56. The sizes of these block matrices and vectors further show the computational intensity of
imposing input constraints for our model predictive controller.

These variables result in the following simplified linear matrix inequality that encompasses all
desired input constraints:

Θ∆U ≤ Π (59)

This finalized LMI will be be an input to the optimizer and will be used for calculating the
optimal input changes. While clearly computationally expensive, the inclusion of this LMI will
ultimately assist in modelling a more accurate anesthesia delivery system.

A.4.4 Input Change Equality

There is one extra constraint that can be imposed on this optimization problem. A constraint
can be setup to ensure that the values associated with each predicted set of input changes for each
input constraint are equivalent.

Suppose we have the two sets of predicted input changes ∆U1 for the amplitude constraint and
∆U2, for the rate of change constraint. The desired result of this constraint can be expressed as:
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∆u1(k + i) = ∆u2(k + i) for i = 0, 1, . . . , Np − 1 (60)

The general expression above can be rewritten with identity matrices for both sets of predicted
input changes concatenated on top of one another.

[
I14×28 −I14×28

] [∆U1

∆U2

]
= 0 (61)

Here again, we assign definitions to the block matrices to further simplify the equality constraints
for the gradient descent algorithm during optimization.

Ξ =
[
I14 −I14

]
(62)

Similar to the inequality constraints, ∆U =
[
∆U1 ∆U2

]T ∈ R28 represents the independently
combined predicted input changes for each individual constraint. This definition has Ξ ∈ R14×28

which continues to show the high computational cost of placing constraints on our model predictive
controller.

This variable substitutions results in the following simplified linear matrix inequality imposed
on the input constraints over the prediction horizon:

Ξ∆U = 0 (63)

With all the LMIs defined, they can be set as inputs to the optimizer for calculating our de-
sired, optimal input changes. These inequality and equality constraints will help further model an
accurate anesthesia delivery system with appropriate propofol and remifentanil flow rates.

A.5 Realization

Even though there are optimization tools such as CVX, or even built-in MATLAB toolboxes
for MPC, the methodology used to implement this model predictive controller lies in the gradient
descent algorithm. More specifically, a first-order Lagrangian algorithm is applied for the inequality
and equality constraints. This section looks to outline the exact calculations and mathematical
methods used to compute the optimal input sequence to the anesthesia delivery system.

A.5.1 Modified Cost Function

First, let us restate the cost function associated with this optimization problem for our model
predictive controller:

J(∆U) =
1

2
(rp −Y)TQ(rp −Y) +

1

2
∆UTR∆U (64)

It is important to note the inclusion of the bold variables in the cost function. This indicates
that the cost function, and subsequently each matrix and vector variable in it, needs to be modified
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to account for the multiple inequality constraints.

Essentially all the bold matrix and vector variables are now block matrices and concatenated
vectors of the original variables. The following definitions will clarify the structure of these variables
as they are implemented for this algorithm.

For the reference output and calculated output over the prediction horizon:

Y =


Y

O7×1

O7×1

Y

 rp =


rp

O7×1

O7×1

rp

 (65)

For the output deviation and input change weight matrices:

Q =

[
Q O21×21

O21×21 Q

]
R =

[
R O14×14

O14×14 R

]
(66)

Second, it follows that we need to consider a modified expression for the gradient of the cost
function given the inequality and equality constraints on this optimization problem:

∇J(∆U) = −(rp −Wxa − Z∆U)TQZ+∆UTR (67)

The variables that need modification for the cost function gradient expression are the modified
augmented system and input matrices:

W =

[
W O21×21

O21×21 W

]
Z =

[
Z O21×14

O21×14 Z

]
(68)

When examining the composition of these new block matrix variables we see that Y, rp ∈ R28

and Q,R,W,Z ∈ R28×28. With these dimensions, it can also be determined that ∇J(∆U)T ∈ R28.
Understanding the dimensions of the modified cost function will ensure that our results from the
gradient descent algorithm are consistent.

A.5.2 Gradient Descent Algorithm

Finally, we are able to implement the gradient descent algorithm as the optimizer for our model
predictive controller. This algorithm will compute for each time step what is the optimal input that
will get our system closest to the desired output. After completing all the necessary derivations, we
are able to outline the finalized optimization problem:

min
∆U

J(∆U) =
1

2
(rp −Y)TQ(rp −Y) +

1

2
∆UTR∆U

s.t. Θ∆U ≤ Π where g(∆U) = Θ∆U−Π

Ξ∆U = 0 where h(∆U) = Ξ∆U

(69)
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Since we are minimizing with respect to the decision variable ∆U, it follows that the gradi-
ent descent algorithm needs to make iterative computations to find ∆U∗. Without imposing the
inequality and equality constraints, the above optimization problem can be written as:

∆U+ = ∆U− α∇J(∆U)T (70)

To compute the next, optimal value of ∆U, the algorithm requires a predefined step size α as
well as the gradient of the cost function ∇J(∆U)T . As a reminder, the computed ∆U+ ∈ R28 is a
vector of the predicted input changes over the prediction horizon Np = 7 for m = 2 inputs.

We can modify the above expression to include constraints by adding the Jacobian matrices of
each constraint:

∆U+ = ∆U− α(∇J(∆U)T +ΘTµ+ ΞTλ) (71)

Notice that the gradient step size α is now multiplied through by the summation of the gradient
of the cost function, Θ, for the input amplitude and rate of change constraints, and Ξ, for the
equality constraints of the prediction horizon.

The Jacobian matrices also need to be multiplied by Karush-Kuhn-Tucker multipliers for opti-
mization. These are updated throughout the gradient descent algorithm as well:

µ+ = [µ+ βg(∆U)]+
λ+ = λ+ βh(∆U)

(72)

The optimization multipliers are computed by evaluating the inequality and equality constraints
at the current values of ∆U and multiplying by a gradient step size β. Consequently, µ ∈ R56 and
λ ∈ R14 for the proper computation of optimal input changes.

A.5.3 MATLAB

With the gradient descent algorithm outlined by the previous derivations and mathematical
theory, we can realize this algorithm by using MATLAB. The following steps are performed by
MATLAB to solve the optimization problem posed by model predictive control:

1. Define reference signal length N and reference signal values zref.

2. From time steps k = 1 to k = N − 1 do the following:

(a) Assign reference signal values from the current time step k to the prediction horizon
k +Np to the augmented reference signal vector rp.

(b) For a given number of gradient descent algorithm iterations do the following:

i. Evaluate the cost function gradient:

∇J(∆U) = −(rp −Wxa − Z∆U)TQZ+∆UTR
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ii. Evaluate the inequality constraints:

g(∆U) = Θ∆U−Π

iii. Evaluate the equality constraints:

h(∆U) = Ξ∆U

iv. Compute the predicted input change:

∆U+ = ∆U− α(∇J(∆U)T +ΘTµ+ ΞTλ)

v. Update the Karush-Kuhn-Tucker multipliers:

µ+ = [µ+ βg(∆U)]+
λ+ = λ+ βh(∆U)

(c) Using the augmented (Φ,Ψ,Ω), calculate the following:

i. Predicted input:

u+ = u+∆U(1)

ii. Augmented state:

x+a = Φxa +Ψ∆U(1)

iii. Observed state:

y = Ωx+a

iv. Predicted output:

z = f(y)

No built-in toolboxes need to be downloaded, and the entire algorithm can be sythesized with
the use of for loops and if,else statements. As seen in the derivation, the matrix multiplications
make the entire algorithm computationally expensive. Reducing the number of iterations of the
gradient descent algorithm that are performed for each time step reduces the computational inten-
sity. However, the algorithm will not converge as well to the optimal solution.

A GitHub repository contains all the code used for analyzing this system and synthesizing a
model predictive controller: https://github.com/pmunar15/Anesthesia-Delivery-Control.git
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