
Self-Balanced Cube Robot Modeling and Control
Qixiao Zhang

Electrical Engineering, Columbia University
New York, USA

qz2487@columbia.edu

Abstract—This paper is for the course project of EE6602:
Modern Control Theory. In this paper, the model of this self-
balanced cube robot is proposed and we used several ways to
control the reaction wheels inside the robot so that the robot can
stand on its corner. Some simplification to the model is deployed
in the modelling to reduce the complexity of computation.

Index Terms—Contorl, H∞, LQR

I. INTRODUCTION

With the development of control methods, we can control
the robots more and more accurate so that they can meet our
needs in daily lives and in industry. A fine-controlled robot can
do very dexterously jobs. Therefore, I want to do this applied
projects about robot controlling.

As we know, a very classic model in mechanical system
about self-balancing is the famous ”inverted pendulum”. This
is a start of self-balanced system in the control field. Self-
balanced system has a very wide range of applications in our
daily life and the most famous one is the self-balanced car.
With the similar idea, a cube robot called ”Cubli” [1] which
can stand on its corner attracts me. This is a self-balanced
cubic robot which can balance on one of its corner. Besides,
it can also ’work’ or ’jump up’. To make the cube stand
on its corner, there are a few inner reaction wheels which
can balance the cube itself. Therefore, we have to design an
appropriate controller to generate a proper torque inside the
cube to maintain its balance via the wheel. And this is the
start of my idea on this project.

At the very beginning, my idea was to simplify this robot so
that it can stand on its edge. But after deriving the math model
of this robot, I changed my idea since this model is way too
easy to control. It just need one reaction wheel and therefore
there’s only one input and two states. Then I switched my idea
to imitate the robot standing on the corner and the difficulty
to model this robot increase dramatically.

The specific problems will be demonstrated in Modeling
Section (III).

II. LITERATURE REVIEW

I found a few papers about the self-balancing cube robot.
I used the model they provided but I changed a lot during
the induction of the modeling because there are a lot of typos
and inconsistency in these paper. For example, in paper [2],
the model they gave shows that they mixed up the γ̈ and γ.
They have the output quantity y = [α β γ θ̇1 θ̇2 θ̇3]

T .
However, because we only know the representation of γ̈ and

it is not depend on γ̇ or γ, so that we actually cannot observe
the status of γ since we can only know the acceleration of γ.
An astonishing part is that in the end they managed to control
the angle γ, which is not consistent to their preprocessing.

Another paper [3] about this same model has the same
problem. After I derived this model, I cannot found a way
to control the yaw angle γ of this robot with three actuators.
However, after fixing the problems in their paper, this model
is very reasonable and acceptable since it can make sure the
cube stand on the corner even though we cannot control the
yaw angle.

III. MODELING WITH LAGRANGIAN EQUATION OF
MOTION

We used the model from paper [2] and [3]. This is a cube
with three reactions wheels embedded inside. In our design,
we are going to adjust the voltage of three motors to control
the torque of the whole system.

Fig. 1. Schematic diagram of Cube robot

The model is shown in Fig 1. And we are going to analyze
this system with Lagrangian Equation of Motion.

First, we can assume these parameters in the system:
Constant:
l: centroid height of the system.
m: mass of the robot.
Ix,Iy ,Iz: The total inertia moment of the system in the body

frame.
Iw: The inertia moment of the reaction wheels.

Kt: Moment constant of motor.
Rm: Armature resistance.
g: Gravity constant.
State Variable:
α,β,γ: The deflection angles in reference frame in pitch,

roll and yaw direction.
θ̇A, θ̇B , θ̇C : The angle velocities of reaction wheels in

reaction wheels coordinate frame.
Input:
va,vb,vc: Input voltages of motors respectively.

A. Coordinate system

As mentioned in [3], we have three coordinates: o−xyz, o−
xbybzb and c−xfyfzf . The first one is the fixed coordinate, the
second one is the body coordinate, the third one is the reaction
wheel coordinate. The relationship between these coordinates
is shown below.

The transformation matrix we will use later from body to
reaction wheel coordinate is

Tbf = Ry(−35.3°) ·Rx(45°) (1)

where Ry and Rx denote the rotation matrix in y and x axis.

B. Energy of the System and Lagrange Function

To construct the Lagrange equation of motion, we need to
construct the Lagrange function first. We need the total energy
of the whole system. We can compute it with these equations:

• Kinetic energy of rotation for the robot.

Trobot =
1

2
(Iyα̈

2 + Ixβ̈
2 + Iz γ̈

2) (2)

• Kinetic energy of rotation for the wheels.

Twheel =
1

2
Iw(θ̈

2
A + θ̈2B + θ̈2C) (3)

• Potential energy of the system.

E = mgl cosα cosβ (4)

From equation (2), (3), (4), we can derive our Lagrange
Function:

L = Trobot + Twheel − E (5)

C. Armature Circuit Analysis

We are using Brushless DC motors to control the torque of
the reaction wheels. we can use the amature circuit equation
to derive the voltage and then get the relationship between
torque τ and amature voltage. The amature circuit equation:

vj = Rmij + Lm
di

dt
+Keθ̇j , j = A,B,C

where vj is the input voltage of motors, ij is the current
of motors, Lm is the amature capacity, Ke is the back
electromotive force constant.

Since Lm is very small, we can ignore that. And the
generated torque is:

τj = Kti = Kt(vj −Keθ̇j)

Also, in BLDC, Kt = Ke. Therefore, we can get:

τj =
Ktvj
Rm

− K2
t θ̇j
Rm

(6)

D. Lagrange Equation of Motion

The Lagrange equation of motion is:

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= τi (7)

where q1 = α, q2 = β, q3 = γ, q4 = θA, q5 = θB , q6 = θC ,
And τ1 = τα, τ2 = τβ , τ3 = τγ , τ4 = τθA , τ5 = τθB ,

τ6 = τθC .
τα, τβ , τγ describe the components reaction torque impacted

on cube along the axes of body frame:τατβ
τγ

 = −Iw · Tbf

θ̈Aθ̈B
θ̈C

 (8)

τθA , τθB , τθC are the components of Coriolis inertia force
impacted on reaction wheels along the axes of reaction wheels
frame: τθAτθB

τθC

 =

τAτB
τC

− Iw · TT
bf

α̈β̈
γ̈

 (9)

E. Dynamic System Derivation

We can put (1)-(5) into (7) to get this:

Iyα̈ = mgl sinα cosβ + τα

Ixβ̈ = mgl sinβ cosα+ τβ

Iz γ̈ = τγ

Iwθ̈A = τθA

Iwθ̈B = τθB

Iwθ̈C = τθC

Substitute τα, τβ , τγ and τθA , τθB , τθC in (8) and (9) with
τA, τB and τC and use (6) to use input voltage to represent
torque from the motor.

After simplification, we substitute the θ in first three equa-
tions with the last three equations.

The result is like this:

(Iy − Iw)α̈ = mgl sinα cosβ −
√
6
6

Kt

Rm
[(2vA − vB − vC)

−Kt(2θ̇A − θ̇B − θ̇C)]

(Ix − Iw)β̈ = mgl sinβ cosα−
√
2
2

Kt

Rm
[(vB − vC)

−Kt(θ̇B − θ̇C)]

(Iz − Iw)γ̈ = −
√
3
3

Kt

Rm
[(vA + vB + vC)−

Kt(θ̇A + θ̇B + θ̇C)]

Iwθ̈A = K1vA +K2vB +K3vC
−Kt(K1θ̇A +K2θ̇B +K3θ̇C)

Iwθ̈B = K4vA +K5vB +K6vC
−Kt(K4θ̇A +K5θ̇B +K6θ̇C)

Iwθ̈C = K7vA +K8vB +K9vC
−Kt(K7θ̇A +K8θ̇B +K9θ̇C)

where the Ki is as follows:

K1 =
Kt

Rm
(
1

Iw
+

2

3(Iy − Iw)
+

1

3(Iz − Iw)
)

K2 = K3 = K4 = K7 =
Kt

Rm
(− 1

3(Iy − Iw)
+

1

3(Iz − Iw)
)

K5 =
Kt

Rm
(
1

Iw
+

1

6(Iy − Iw)
+

1

2(Ix − Iw)
+

1

3(Iz − Iw)
)

K6 = K8 =
Kt

Rm
(

1

6(Iy − Iw)
− 1

2(Ix − Iw)
+

1

3(Iz − Iw)
)

K9 =
Kt

Rm
(
1

Iw
+

1

6(Iy − Iw)
+

1

2(Ix − Iw)
+

1

3(Iz − Iw)
)

Set our state vector x = [α̇ β̇ γ̇ α β θ̇A θ̇B θ̇C]
T and our

input vector u = [vA vB vC]
T .

Set the output vector like y = [γ̇ α β θ̇A θ̇B θ̇C]
T and the

input vector u = [va vb vc]

The state space equation of this system is{
ẋ = Ax+Bu

y = Cx

F. Simplification of the Model

From previous part, we used Coriolis Force to derive the
system. However, since we cannot control the yaw angle γ,
the angle velocity of γ could be a very big value. The reason
of this problem is that we need some big torque at the very
beginning and this could gives a very fast constant angular
velocity to the yaw angle which will lead to the explosion of
Coriolis Force.

For the simplification, we can remove the Coriolis Force the
system impacting on the reaction wheels to prevent explosion.

Also, we can save the computation of those complicated
paramters (K1,K2, ...) And the new system is shown below:

(Iy − Iw)α̈ = mgl sinα cosβ −
√
6
6

Kt

Rm
[(2vA − vB − vC)

−Kt(2θ̇A − θ̇B − θ̇C)]

(Ix − Iw)β̈ = mgl sinβ cosα−
√
2
2

Kt

Rm
[(vB − vC)

−Kt(θ̇B − θ̇C)]

(Iz − Iw)γ̈ = −
√
3
3

Kt

Rm
[(vA + vB + vC)−

Kt(θ̇A + θ̇B + θ̇C)]

Iwθ̈A = Kt

Rm
(vA −Ktθ̇A)

Iwθ̈B = Kt

Rm
(vB −Ktθ̇B)

Iwθ̈C = Kt

Rm
(vC −Ktθ̇C)

G. State Space Representation
After the above operations we can get our state space model

A =

0 0 0
mgl

Iy−Iw
0

√
6K2

t
3Rm(Iy−Iw)

−
√

6K2
t

3Rm(Iy−Iw)
−

√
6K2

t
3Rm(Iy−Iw)

0 0 0 0
mgl

Ix−Iw
0

√
2K2

t
2Rm(Ix−Iw)

−
√

2K2
t

2Rm(Ix−Iw)

0 0 0 0 0 −
√

3K2
t

3Rm(Iz−Iw)
−

√
3K2

t
3Rm(Iz−Iw)

−
√

3K2
t

3Rm(Iz−Iw)
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 0 0 0
−K2

t
RmIw

0 0

0 0 0 0 0 0
−K2

t
RmIw

0

0 0 0 0 0 0 0
−K2

t
RmIw

B =

−
√
6Kt

3Rm(Iy−Iw)

√
6Kt

6Rm(Iy−Iw)

√
6Kt

6Rm(Iy−Iw)

0 −
√
2Kt

2Rm(Ix−Iw)

√
2Kt

2Rm(Ix−Iw)

−
√
3Kt

3Rm(Iz−Iw) −
√
3Kt

3Rm(Iz−Iw) −
√
3Kt

3Rm(Iz−Iw)

0 0 0;
0 0 0;
Kt

RmIw
0 0

0 Kt

RmIw
0

0 0 Kt

RmIw

C =

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

D = 0

TABLE I
CONSTANT PARAMETERS

Table Constant Values
Ix 0.014484 Iy 0.014484
Iz 0.004026 Iw 0.000189
L 0.108 m 1.146
Kt 0.0251 Rm 0.0464
g 9.81

IV. RESULTS

A. Controllability and Observability

The constants in the system are shown in Table I, we
substitute these constants to get our system (A,B,C,D).

We can derive the eigenvalue of A and we can see the
eigenvalues are real but do not always have negative real part.
This means my system is not internally stable.

The controllability matrix

C = [B AB A2B A3B A4B A5B A6B A7B]

has rank = 8 which means this system is controllable.
My model is a dynamic system and we can directly set

the output to be the states. To test the Luenberger observer,
instead of setting the output to be directly states, we reduced
two states but still make the system observable. This is how
be desgigned the C matrix. The observability matrix

C = [C CA CA2 CA3 CA4 CA5 CA6 CA7]T

has rank = 8 which means this system is observable.

B. Simulation

This part is to test if this system is consistent with the reality.
a) Zero Input Response: This simulation start with 20°

at α angle and 0° at β angle. We did the simulation in 0.5
second. From Fig. 2, we can see the reaction wheel is spinning
with rotation axis x due to we have no limitation for α.

Fig. 2. Simulation with zero input and α = 20°

b) Zero State Response: The zero state response start
with zero state and has a input of [0; 0.5;−0.5]T at all the time.
From Fig. 3, we can see the reaction wheel A keep static while
B and C are rotating in different directions while the speed is
around 20 rad/s This is consistent with our settings.

From the result above we can get that our model is consis-
tent with the reality.

Fig. 3. Simulation with zero state and constant input [0; 0.5;−0.5]T

C. LQR

Since we already have the state space model, we can use
LQR controller as a initial trial. The algorithm of continuous
LQR is

J(u) =

∫ ∞

0

xTQx+ uTRudt

The most important part is to design the Q and R matrix. As
we can see the Q matrix is used to penalize the state while
R is used to penalize the input. If we want to make the state
converge faster, we need to set Q larger than R and vice versa.
Since what we are trying to control is the α and β angle,
which are the states, we need to make Q larger than R. First I
choose Q = diag(100, 100, 100, 100, 100, 100, 100, 100) and
R = diag(0.01, 0.01, 0.01). We got the control result in Fig.
4. The controller we designed just meet our needs. As we can
see from the figure, there’s a peak value in θ̇c, which is the
angular velocity of c reaction wheel. The peak value is around
600 rad/s, which is also 5400 rpm. Although it seems very
high but it is totally acceptable for a BLDC motor in our daily
life. Also, for the result of the controller, we can see that all
the states converges in 1 second. This means the controller is
very practical for our cube robot.

D. Luenberger Observer

In practice we cannot see the inner state or it is hard to
measure some states. That’s why we need the observer to see
the inner state. We learned Luenberger observer in class. The
characteristic of Luenberger observer is that the state w is the
estimate x̂. Since my system is a dynamic system, the output
is just simply the states. So I erased some states in the output
so that I can design an observer for this system.

We need to design an L to make sure A+LC is stable by
solving its LMI problem:

W ≻ 0
ATW +WA+ CTV + V TC ≺ 0

where L = W−1V T .

Fig. 4. Simulation with LQR control

After solving the LMI problem with cvx, we get the L we
want. According to the Separation Principle, we can design
the observer and controller separately. Here I’m going to use
the controller we get in LQR to do to simulation.

The combinitional system of the observer and controller has
the result in Fig. 5. We can see the observer almost follows
the original state with some initial conditions.

Fig. 5. Luenberger observer with LQR controller

E. H2 Optimal Control

Consider the full information control problem here. As-
sume the exogenous input of the closed-loop system is some
disturbance applied to the system. Let’s say we have some
disturbance which caused B1 = 0.1B2. Also since our system
is dynamic, we can just make C = I , this means the output
is just the state. Therefore, the system of G is

G =

 A B1 B2

I 0 0
I 0 0

K =

[
0 0
0 F

]
The closed-loop system is

Fl(G,K) =

[
A+B2F B1

C1 +D12F D11

]
=

[
A+B2F B1

I 0

]
The feedback controller F can be derived by solving the

LMI problem

min γ2

s.t. trace(W) < γ2

[A B2]

[
X
Z

]
+ [X ZT]

[
AT

BT
2

]
+B1B

T
1 ≺ 0,

X ≻ 0[
X (C1X +D12Z)T

(C1X +D12Z) W

]
≻ 0

where F = ZX−1.
We solve F with cvx and then do the simulation for this

closed loop system. The initial condition response is shown
in Fig. 6. Since we are trying to mark w as a disturbance,
I use some random inputs which follow normal distribution
N(0, 1) and the result is shown in Fig. 7. The grey line is
the disturbance input. The controller shows a very impressive
result. Although we have some disturbance, the states converge
as we thought.

Fig. 6. Initial condition response of H2 optimal control

We also want to make sure the controller input is acceptable
in reality. So we checked the control input here.

>> max(abs(F*x_h2'),[],2)
ans =

126.8252
314.6543
900.1839

.
From the result shown above, the maximum value of input is

extremely high and it is up to 900 volts. This is not acceptable

Fig. 7. Simulation of H2 optimal control with disturbance

in reality because we cannot set such a high voltage for our
BLDC motor.

F. H∞ State Feedback Control

As we know, the H2 optimal control is doing control over
minimizing the average ”energy” of the closed-loop system
while H∞ minimizes the maximum ”energy” of the closed-
loop system.

Here we can assume we have the same closed loop system
as the H2 control (IV-E). The goal of the controller design is
to minimize ∥Fl(G,K)∥H∞ . So we can use the KYP Lemma
to design the LMI question which is equivalent to this goal.
Here we choose the dual KYP conditions. The LMI question
which is also a Semi-definite Program can be put like this:
minγ,Y γ

s.t.

Y AT + AY + ZT BT

2 + B2Z B1 Y C1 + ZT DT
12 0

BT
1 −γI DT

11 0

C1Y + D12Z D11 −γI 0
0 0 0 −Y

 ≺ 0

After solving this LMI problem we can get the controller
F = ZY −1. The initial condition response is shown in Fig.
8 and the response with white noise disturbance is shown in
Fig. 9.

In Fig. 8, we can see the overhead of the signals are much
bigger than the H2 signal in Fig. 6. And the converge time is
longer. As disturbance, some random noise are added to the
exogenous input w. However, we can see the controller is very
robust with small noise since the states converges even with
disturbance.

Also, we checked the input with this controller to see if
the input value is reasonable. In our full information control
problem we know that the feedback loop has u = Fx. The
control input of the system is just the state times the controller.
Therefore, we can search for the maximum value of the control
input. For the controller I designed, we can see the maximum
input is like

>> max(abs(F*x_hinf'),[],2)
ans =

8.8259
18.6715

Fig. 8. Simulation of H∞ optimal control with initial state

Fig. 9. Simulation of Hinfty optimal control with disturbance

30.1884

.
These are all reasonable since our input is the armature

voltage of the motor. The maximum voltage is around 30 volts.
This is acceptable. So this controller is practical for the system.

G. Controller Tuning

The controller we learned this semester is only about how
to design a controller from 0 to 1 instead of how to make
the controller better. Therefore, in my controller designing
process, the overhead and converging time are not considered.

For the controller tuning, I simply restricted the conditions
furthermore in LMI to tune the controller. For example, in the
LMI problem of H2, we only have conditions such as less than
0 or bigger than 0. But I used negative value for a less than
sign instead of a true zero. I used this method because the cvx
will only optimize the conditions right to the equality in LMI.
The zero in the inequality is just a relaxation of existance of
the controller.

CONCLUSION AND POTENTIAL FUTURE WORK

In this project, we derived a model for the cubic robot
which can stand on its corner. And then we derived some
different controllers for this dynamic model such as LQR, H2

optimal control, H∞ state feedback control. In addition to
that, Luenberger observer is also implemented with the LQR
controller.

In addition, I used the model from the paper ??. But actually
their paper have many problems and I did the calculation again
to fix the model. This takes me a lot of time but I think it’s
meaningful.

However, I do not have much experience to tune the model
with pole placement or the root locus process. So in this
project only the basic tuning are deployed and some of them
may not have an ideal effect. I’m very interested in this model
even though it is a higher level version of inverted pendulum.

Therefore, in the future, I may still have some future plan for
this model. I did not include my MPC control in this project
due to time limitation because whatever the horizon I set for
the MPC it just blew up. It must be my reason and I think in
the future I can handle it with more experience and knowledge.

REFERENCES

[1] M. Gajamohan, M. Muehlebach, T. Widmer and R. D’Andrea, ”The
Cubli: A reaction wheel based 3D inverted pendulum,” 2013 European
Control Conference (ECC), Zurich, Switzerland, 2013, pp. 268-274, doi:
10.23919/ECC.2013.6669562.

[2] Q. Yin, F. Wang, S. Lu, Y. Fan, Y. Liu and G. Li, ”Research on Balance
Control of Cube Robot,” 2021 IEEE International Conference on Real-
time Computing and Robotics (RCAR), Xining, China, 2021, pp. 462-
467, doi: 10.1109/RCAR52367.2021.9517632.

[3] Z. Chen, X. Ruan and Y. Li, ”Balancing control of a cubical robot
balancing on its corner,” 2018 IEEE 15th International Workshop on
Advanced Motion Control (AMC), Tokyo, Japan, 2018, pp. 631-636,
doi: 10.1109/AMC.2019.8371167.

APPENDIX

%% Load Parameters
%Inertia: kg*mˆ2
clear;
Ix = 0.014484;
Iy = Ix;
Iz = 0.004026;
Iw = 0.000189;
%Length: m
L = 0.108;
%mass: kg
m = 1.146;
%Moment constant of motor: N*m/A
Kt = 0.0251;
%Resistor: olm
Rm = 0.0464;
%Gravity constant: m/sˆ2
g = 9.81;

%% System Description
modelSelect = 0;
%0 means simplified model
%1 means original model.

if modelSelect == 0
A = [0 0 0 m*g*L/(Iy-Iw) 0 sqrt(6).*Kt.ˆ2/(3*Rm.*(Iy-Iw)) -sqrt(6).*

Kt.ˆ2/(3*Rm.*(Iy-Iw)) -sqrt(6).*Kt.ˆ2/(3*Rm.*(Iy-Iw));
0 0 0 0 m*g*L/(Ix-Iw) 0 sqrt(2).*

Kt.ˆ2/(2*Rm.*(Ix-Iw)) -sqrt(2).*Kt.ˆ2/(2*Rm.*(Ix-Iw));
0 0 0 0 0 -sqrt(3).*Kt.ˆ2/(3*Rm.*(Iz-Iw)) -sqrt(3).*

Kt.ˆ2/(3*Rm.*(Iz-Iw)) -sqrt(3).*Kt.ˆ2/(3*Rm.*(Iz-Iw));
1 0 0 0 0 0 0

0 ;
0 1 0 0 0 0 0

0 ;
0 0 0 0 0 -Kt.ˆ2/(Iw.*Rm) 0

0 ;
0 0 0 0 0 0 -Kt.ˆ2/(Iw

.*Rm) 0 ;
0 0 0 0 0 0 0

-Kt.ˆ2/(Iw.*Rm)];

B = [-sqrt(6).*Kt/(3.*Rm.*(Iy-Iw)) sqrt(6).*Kt/(6.*Rm.*(Iy-Iw)) sqrt(6).*Kt
/(6.*Rm.*(Iy-Iw)) ;
0 -sqrt(2).*Kt/(2.*Rm.*(Ix-Iw)) sqrt(2).*Kt

/(2.*Rm.*(Ix-Iw)) ;
-sqrt(3).*Kt/(3.*Rm.*(Iz-Iw)) -sqrt(3).*Kt/(3.*Rm.*(Iz-Iw)) -sqrt(3).*Kt

/(3.*Rm.*(Iz-Iw));
0 0 0

;
0 0 0

;
Kt/(Rm.*Iw) 0 0

;

0 Kt/(Rm.*Iw) 0
;

0 0 Kt/(Rm.*Iw)
];

else
%dtheta A
K1 = Kt/Rm*(1/Iw+ 2/(3*(Iy-Iw)) + 1/(3*(Iz-Iw)));
K2 = Kt/Rm*(-1/(3*(Iy-Iw)) + 1/(3*(Iz-Iw)));
K3 = Kt/Rm*(-1/(3*(Iy-Iw)) + 1/(3*(Iz-Iw)));

%dtheta B
K4 = Kt/Rm*(-1/(3*(Iy-Iw)) + 1/(3*(Iz-Iw)));
K5 = Kt/Rm*(1/Iw + 1/(6*(Iy-Iw)) + 1/(2*(Ix-Iw)) + 1/(3*(Iz-Iw)));
K6 = Kt/Rm*(1/(6*(Iy-Iw)) - 1/(2*(Ix-Iw)) + 1/(3*(Iz-Iw)));

%dtheta C
K7 = Kt/Rm*(-1/(3*(Iy-Iw)) + 1/(3*(Iz-Iw)));
K8 = Kt/Rm*(1/(6*(Iy-Iw)) - 1/(2*(Ix-Iw)) + 1/(3*(Iz-Iw)));
K9 = Kt/Rm*(1/Iw + 1/(6*(Iy-Iw)) + 1/(2*(Ix-Iw)) + 1/(3*(Iz-Iw)));

A = [0 0 0 m*g*L/(Iy-Iw) 0 sqrt(6).*Kt
.ˆ2/(3*Rm.*(Iy-Iw)) -sqrt(6).*Kt.ˆ2/(3*Rm.*(Iy-Iw)) -sqrt(6).*Kt.ˆ2/(3*
Rm.*(Iy-Iw));
0 0 0 0 m*g*L/(Ix-Iw) 0

sqrt(2).*Kt.ˆ2/(2*Rm.*(Ix-Iw)) -sqrt
(2).*Kt.ˆ2/(2*Rm.*(Ix-Iw));

0 0 0 0 0 -sqrt(3).*Kt
.ˆ2/(3*Rm.*(Iz-Iw)) -sqrt(3).*Kt.ˆ2/(3*Rm.*(Iz-Iw)) -sqrt(3).*Kt
.ˆ2/(3*Rm.*(Iz-Iw));

1 0 0 0 0 0
0 0

;
0 1 0 0 0 0

0 0
;

0 0 0 m*g*L*sqrt(6)/(3*(Iw-Iy)) 0 -Kt*K1
-Kt*K2 -Kt*K3

;
0 0 0 m*g*L*sqrt(6)/(6*(Iy-Iw)) -m*g*L*sqrt(2)/(2*(Ix-Iw)) -Kt*K4

-Kt*K5 -Kt*K6
;%

0 0 0 m*g*L*sqrt(6)/(6*(Iy-Iw)) m*g*L*sqrt(2)/(2*(Ix-Iw)) -Kt*K7
-Kt*K8 -Kt*K9

];%

B = [-sqrt(6).*Kt/(3.*Rm.*(Iy-Iw)) sqrt(6).*Kt/(6.*Rm.*(Iy-Iw)) sqrt(6).*Kt
/(6.*Rm.*(Iy-Iw)) ;
0 -sqrt(2).*Kt/(2.*Rm.*(Ix-Iw)) sqrt(2).*Kt

/(2.*Rm.*(Ix-Iw)) ;
-sqrt(3).*Kt/(3.*Rm.*(Iz-Iw)) -sqrt(3).*Kt/(3.*Rm.*(Iz-Iw)) -sqrt(3).*Kt

/(3.*Rm.*(Iz-Iw));
0 0 0

;
0 0 0

;

K1 K2 K3
;

K4 K5 K6
;%

K7 K8 K9
];%

end
%C = [zeros(5,3) diag(ones(5,1))];
C =[0 0 1 0 0 0 0 0;

0 0 0 1 0 0 0 0;
0 0 0 0 1 0 0 0;
0 0 0 0 0 1 0 0;
0 0 0 0 0 0 1 0;
0 0 0 0 0 0 0 1];

D=0;

%% Check Controllability
rank(ctrb(A,B))

%% Check Observability
rank(obsv(A,C))
%% Zero Input Simulation
states = {'d\alpha','d\beta','d\gamma','\alpha','\beta','\theta_A','\theta_B','\

theta_C'};
inputs = {'v_a','v_b','v_c'};
outputs = {'d\gamma','\alpha','\beta','\theta_A','\theta_B','\theta_C'};
T = 0:0.01:0.5; %Simulate for 0.5 second

%Zero Input Simulation
U = zeros(3,length(T));
x0 = [0 0 0 20/180*pi 0 0 0 0]; %20 degree
sys = ss(A,B,C,D,'statename',states,'inputname',inputs,'outputname',outputs);
lsim(sys,U,T,x0)

%% Zero State Simulation
U = [zeros(1,length(T));0.5*ones(1,length(T));-0.5*ones(1,length(T))];
%U = [0.5*ones(1,length(T));-0.25*ones(1,length(T));-0.25*ones(1,length(T))];
%U = [0.25*ones(1,length(T));0.25*ones(1,length(T));0.25*ones(1,length(T))];

%initial condition
x0 = [0 0 0 0 0 0 0 0];

sys = ss(A,B,C,D,'statename',states,'inputname',inputs,'outputname',outputs);
lsim(sys,U,T,x0)

%impulse(sys)
%% LQR control
Q = diag(100*ones(1,8));
R = diag(0.01*ones(1,3));
[K,S,P] = lqr(sys,Q,R);
T = 0:0.01:1; %Simulate for 1 second
U = [zeros(3,length(T))];

sys2 = ss(A-B*K,B,C,D,'statename',states,'inputname',inputs,'outputname',outputs);
x0 = [0 0 0 20/180*pi -30/180*pi 0 0 0];
lsim(sys2,U,T,x0)

%% Luenberger Observer

cvx_begin sdp
variable W(8,8) symmetric
variable V(6,8)
LMI = A'*W+W*A+C'*V+V'*C;
W >= 0.01*eye(8);
LMI <= -10000*eye(8);

cvx_end

L = W\V';

%Compute eigenvalue of A+LC to determine the stabiblity
eig(A+L*C)

%Observer Simulation
A_ob = [A -B*K; -L*C A+L*C-B*K];
B_ob = [zeros(8,3);zeros(8,3)];
C_ob = eye(16); %Set output to be the states
D_ob = 0;

sys_ob = ss(A_ob,B_ob,C_ob,D_ob);

x0 = [0 0 0 20/180*pi -30/180*pi 0 0 0 zeros(1,8)];
[y_cl,t,x_cl] = initial(sys_ob,x0);

%Plot
subplot(2,1,1)
plot(t,x_cl(:,1),t,x_cl(:,9),t,zeros(size(t)),'r--')
set(legend('$$d\alpha$$','$$d\hat{\alpha}$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,1.6])
xlabel('Time(sec)')
ylabel('d\alpha')

subplot(2,1,2)
plot(t,x_cl(:,2),t,x_cl(:,10),t,zeros(size(t)),'r--')
set(legend('$$d\beta$$','$$d\hat{\beta}$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,1.6])
xlabel('Time(sec)')
ylabel('d\beta')

sgtitle('Simulation of states and their observer')

%% H-2 Optimal Control
B1 = 0.1.*B;
cvx_begin sdp

variable X(8,8) symmetric
variable Z(3,8)
variable W(8,8) symmetric
variable gsq
minimize (gsq)

[A B]*[X; Z]+[X Z']*[A'; B']+ B1*B1' <= -100*eye(8);
[X X';
X W] >= 1*eye(16);
trace (W) <= gsq ;
X >= 0;

cvx_end

F = Z/X;

sysh2 = ss(A+B*F,B1,C,D,'statename',states,'inputname',inputs,'outputname',outputs);
x0 = [0 0 0 60/180*pi -60/180*pi 0 0 0];

%T = 0:0.01:1; %Simulate for 1 second
%U = [3*randn(3,length(T))];
%lsim(sysh2,U,T,x0)
[y_h2,t,x_h2] = initial(sysh2,x0);

%Plot
subplot(5,1,1)
plot(t,x_h2(:,4),t,zeros(size(t)),'r--')
set(legend('$$\alpha$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,1])

ylabel('\alpha')

subplot(5,1,2)
plot(t,x_h2(:,5),t,zeros(size(t)),'r--')
set(legend('$$\beta$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,1])

ylabel('\beta')

subplot(5,1,3)
plot(t,x_h2(:,6),t,zeros(size(t)),'r--')
set(legend('$$d\theta_a$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,1])

ylabel('d\theta_a')

subplot(5,1,4)
plot(t,x_h2(:,7),t,zeros(size(t)),'r--')
set(legend('$$d\theta_b$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,1])

ylabel('d\theta_b')

subplot(5,1,5)
plot(t,x_h2(:,8),t,zeros(size(t)),'r--')
set(legend('$$d\theta_c$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,1])
xlabel('Time(sec)')
ylabel('d\theta_c')

sgtitle('Simulation of the system with H-2 controller')

%% H2 with disturbance
%Add disturbance to the input
T = 0:0.01:1; %Simulate for 1 second
U = [3*randn(3,length(T))];
lsim(sysh2,U,T,x0)

max(abs(F*x_h2'),[],2)

%% H-infty
cvx_begin sdp

variable Y(8,8) symmetric
variable gam
variable Z(3,8)
min gam
[Y*A'+A*Y+Z'*B'+B*Z, B1, Y, zeros(8,8);
B1', -gam*eye(3), zeros(3,8), zeros(3,8);
Y, zeros(8,3), -gam*eye(8), zeros(8,8);
zeros(8,8), zeros(8,3), zeros(8,8), -Y]<=0;

cvx_end

F = Z/Y;

syshinf = ss(A+B*F,B1,C,D,'statename',states,'inputname',inputs,'outputname',outputs)
;

x0 = [0 0 0 60/180*pi -60/180*pi 0 0 0];

%T = 0:0.01:1; %Simulate for 1 second
%U = [3*randn(3,length(T))];
%lsim(sysh2,U,T,x0)
[y_hinf,t,x_hinf] = initial(syshinf,x0);

%Plot
subplot(5,1,1)
plot(t,x_hinf(:,4),t,zeros(size(t)),'r--')
set(legend('$$\alpha$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,2.5])

ylabel('\alpha')

subplot(5,1,2)
plot(t,x_hinf(:,5),t,zeros(size(t)),'r--')
set(legend('$$\beta$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,2.5])

ylabel('\beta')

subplot(5,1,3)
plot(t,x_hinf(:,6),t,zeros(size(t)),'r--')
set(legend('$$d\theta_a$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,2.5])

ylabel('d\theta_a')

subplot(5,1,4)
plot(t,x_hinf(:,7),t,zeros(size(t)),'r--')
set(legend('$$d\theta_b$$'),'Interpreter','Latex','FontSize', 10);

xlim([0,2.5])

ylabel('d\theta_b')

subplot(5,1,5)
plot(t,x_hinf(:,8),t,zeros(size(t)),'r--')
set(legend('$$d\theta_c$$'),'Interpreter','Latex','FontSize', 10);
xlim([0,2.5])
xlabel('Time(sec)')
ylabel('d\theta_c')

sgtitle('Simulation of the system with H-infty controller')
%% H infty disturbance
%Add disturbance to the input
T = 0:0.01:1; %Simulate for 1 second
U = [3*randn(3,length(T))];
lsim(syshinf,U,T,x0)

max(abs(F*x_hinf'),[],2)

	Introduction
	Literature Review
	Modeling with Lagrangian Equation of Motion
	Coordinate system
	Energy of the System and Lagrange Function
	Armature Circuit Analysis
	Lagrange Equation of Motion
	Dynamic System Derivation
	Simplification of the Model
	State Space Representation

	Results
	Controllability and Observability
	Simulation
	LQR
	Luenberger Observer
	H2 Optimal Control
	H State Feedback Control
	Controller Tuning

	References
	Appendix

