
Final Report
Smoother Transportation of Container with Water Using

Robot Arm and Double Pendulum Control

[Ketian Wang], UNI [kw3019]

09/05/2023

1 Introduction

This project initially focuses on the smoother transportation of containers with water. The prob-
lem will first be demonstrated as a double cart and double pendulum control issue, followed by the
development of a mathematical description of the system. Subsequently, the system’s lineariza-
tion will be performed to generate the state space expression. The observability and controllability
of the system will then be introduced, followed by the construction of the model in MATLAB
Simulink and the design of an LQR controller.

However, the linearization of the system has resulted in a limitation, where the joint angle can-
not exceed 5 degrees, greatly restricting the controller’s application scenarios. Therefore, in ad-
dition to traditional algorithm orientation control methods, this project also explores data-oriented
approaches. Specifically, the MPC controller will first be utilized to generate training data for
the forward dynamic. A Neural Network will then be trained using the generated data to han-
dle the considerable non-linearity of the forward system. Subsequently, a Deep Q-Network will be
employed as the controller. DQN does not require training data and can be applied to various prob-
lems. Finally, the PPO algorithm from the Reinforcement Learning domain will be implemented
to further demonstrate the power of data-oriented methods.

2 Initial Motivation

The initial aim of this project is to develop a control mechanism for a robot arm that is tasked with
transporting a water-filled container. To achieve this, the container and the water surface inside
it must oscillate in sync with the gripper’s movement. Thus, a sophisticated control system is
required to minimize the oscillation of both the container and the water. A basic schematic of the
proposed configuration can be found in the following figure:

1

Figure 1: Scratch of the configuration

The system proposed in this project has numerous potential applications in the automation
industry, particularly in scenarios where the transportation of liquid containers is required. Oscil-
lations during transport can have negative effects on certain types of liquids, such as soda, which
may lose flavor if exposed to excessive vibration. Similarly, in automated chemistry labs, the os-
cillation of sensitive lab vessels can result in hazardous liquids being spilled. By implementing an
effective control mechanism, these issues can be mitigated and avoided.

3 Schematic and System Description

Firstly, based on fluid dynamics, the oscillation of the water surface can be approximated reason-
ably well by a simple pendulum [1]. Further details on this proof will be covered in the final report.
Additionally, if the gripper operates only in a linear fashion, the entire system can be simplified
into a 2D plane, greatly reducing the number of parameters. Furthermore, the water container it-
self can be modeled as a simple pendulum. As a result, the system can be represented as a double
pendulum in series connected to a cart on a rail. This configuration is illustrated in the following
figure.

2

Figure 2: Scratch of the model

As can be seem in the above figure, the target of the actuation is to move the system from
point A to point B, while maintaining a low oscillation to the connected double pendulum. To
be more specific, the input and actuator of the system is the position of the cart u(t). Ideally,
u(t) should start at A and stop at B after a reasonable time interval. 6 states of the system can
be monitored, which are the position and speed of the cart x, ẋ; and the angle and angler speed
of the two pendulum θ1; θ2; θ̇1; θ̇2. The system dose not have a output, as the objective is the
transportation of the system. The sensor shall sensor the position of the cart and angle of the two
pendulum. The actuator shall move the cart to any assigned position. According to the model, the
mathematical representation will be developed in e following section.

4 Mathematical model

Using the Lagrangian method to obtain the dynamic model of the system. The total kinetic energy
of the system could be expressed as:

T =
1

2
mcẋ

2 +
1

2
m1[(θ̇1l1 cos θ1 + ẋ)2 + (θ̇1l1 sin θ1)2]

+
1

2
m2[(θ̇1l1 cos θ1 + θ̇2l2 cos θ2 + ẋ)2 + (θ̇1l1 sin θ1 + θ̇2l2 sin θ2)2]

(1)

The expression can be rearranged as:

T =
1

2
(mc +m1 +m2)ẋ

2 +
1

2
(m1 +m2)(θ̇

2
1l

2
1 + 2ẋθ̇1l1 cos θ1)

+
1

2
m2[θ̇

2
2l

2
2 + 2θ̇1l1θ̇2l2 cos(θ1 − θ2) + 2ẋθ̇2l2 cos θ2]

(2)

Suppose that the lowest point of the pendulum is the zero potential energy point, the total potential
energy of the system could be obtained as:

V = (m1 +m2)gl1(1− cos θ1) +m2gl2(1− cos θ2) (3)

3

Therefore, the Lagrangian variable is the difference of the kinetic energy and potential energy.

L = T − V (4)

Therefore, according the Lagrangian method, taking derivative with respect to each state variable
and time, the following equations could be obtained:

d

dt

(
∂L

∂ẋ

)
= (mc +m1 +m2)ẍ+ (m1 +m2)θ̈1l1 cos θ1 − (m1 +m2)θ̇

2
1l1 sin θ1

+m2θ̈2l2 cos θ2 −m2θ̇
2
2l2 sin θ2

(5)

d

dt

(
∂L

∂θ̇1

)
= (m1 +m2)l1(θ̈1l1 + ẍ cos θ1 − θ̇1ẋ sin θ1)

+m2l1l2(θ̈2 cos(θ1 − θ2)− θ̇2(θ̇1 − θ̇2) sin(θ1 − θ2))

(6)

d

dt

(
∂L

∂θ̇2

)
= m2l2(θ̈2l2 + θ̈1l1 cos(θ1 − θ2)− θ̇1l1(θ̇1 − θ̇2) sin(θ1 − θ2)

+ ẍ cos θ2 − ẋθ̇2 sin θ2)
(7)

∂L

∂x
= 0 (8)

∂L

∂θ1
= −(m1 +m2)l1 sin θ1(g + θ̇1ẋ)−m2θ̇1l1θ̇2l2 sin(θ1 − θ2) (9)

∂L

∂θ2
= m2l2[− sin θ2(g + θ̇2ẋ) + θ̇1l1θ̇2 sin(θ1 − θ2)] (10)

Therefore, the function for displacement could be represent as:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= (mc +m1 +m2)ẍ+ (m1 +m2)θ̈1l1 cos θ1 − (m1 +m2)θ̇

2
1l1 sin θ1

+m2θ̈2l2 cos θ2 −m2θ̇
2
2l2 sin θ2 = u(t)

(11)

As the joint is assumed to no torque input, the torque of the two pendulum is zero. Therefore:

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= (m1 +m2)l1(θ̈1l1 + ẍ cos θ1 − θ̇1ẋ sin θ1 + sin θ1(g + θ̇1ẋ))

+m2l1l2(θ̈2 cos(θ1 − θ2)− θ̇2(θ̇1 − θ̇2) sin(θ1 − θ2) + θ̇1θ̇2 sin(θ1 − θ2)) = 0
(12)

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= m2l2[θ̈2l2 + θ̈1l1 cos(θ1 − θ2)− θ̇1l1(θ̇1 − θ̇2) sin(θ1 − θ2)

+ sin θ2(g + θ̇2ẋ)− θ̇1l1θ̇2 sin(θ1 − θ2)]

(13)

4

After simplification, the system is governed by the three following equations:

(mc +m1 +m2)ẍ+ (m1 +m2)θ̈1l1 cos θ1 − (m1 +m2)θ̇
2
1l1 sin θ1

+m2θ̈2l2 cos θ2 −m2θ̇
2
2l2 sin θ2 = u(t)

(m1 +m2)(θ̈1l1 + ẍ cos θ1 − θ̇1ẋ sin θ1 + sin θ1(g + θ̇1ẋ))

+m2l2(θ̈2 cos(θ1 − θ2)− θ̇2(θ̇1 − θ̇2) sin(θ1 − θ2) + θ̇1θ̇2 sin(θ1 − θ2)) = 0

θ̈2l2 + θ̈1l1 cos(θ1 − θ2)− θ̇1l1(θ̇1 − θ̇2) sin(θ1 − θ2)

+ sin θ2(g + θ̇2ẋ)− θ̇1l1θ̇2 sin(θ1 − θ2) = 0

(14)

5 Model Simplify and Linearized

The linearization of this system can be somewhat contentious, as it encompasses trigonometric
terms that, when linearized, yield satisfactory accuracy only for small angles. In theory, the dou-
ble double pendulum’s angle should not be restricted; however, this project aims to transfer the
container and its liquid content with minimal oscillation. Consequently, the angles of both pendu-
lumsmay be deemed to fall within a 5-degree range. With this inmind, the system can be simplified
as follows:

sin θ1,2 ≈ θ1,2

cos θ1,2 ≈ 1−
θ21,2
2
≈ 1

cos (θ1 − θ2) ≈ 1− (θ1 − θ2)
2

2
≈ 1

sin(θ1 − θ2) ≈ (θ1 − θ2)

(15)

Accordingly, the system can be firstly simplified as:

(mc +m1 +m2)ẍ+ (m1 +m2)θ̈1l1 − (m1 +m2)θ̇
2
1l1θ1

+m2θ̈2l2 −m2θ̇
2
2l2θ2 = u(t)

(m1 +m2)(θ̈1l1 + ẍ− θ̇1ẋθ1 + θ1(g + θ̇1ẋ))

+m2l2(θ̈2 − θ̇2(θ̇1 − θ̇2)(θ1 − θ2) + θ̇1θ̇2(θ1 − θ2)) = 0

θ̈2l2 + θ̈1l1 − θ̇1l1(θ̇1 − θ̇2)(θ1 − θ2)

+θ2(g + θ̇2ẋ)− θ̇1l1θ̇2(θ1 − θ2) = 0

(16)

Eliminating the trigonometric terms, the state matrix still can not be computed due to the existing
of cross terms. Therefore, further linearization of the system should be calculated by to Eliminate
the cross terms:

A =
∂f(x, u)

∂x

∣∣∣∣
(x,u)=(0,0)

B =
∂f(x, u)

∂u

∣∣∣∣
(x,u)=(0,0)

(17)

5

The result is :

ẍ =
−(m2 +m1)g

mc
θ1 +

1

mc
u(t)

θ̈1 =
(m2mc +m1m2 +mcm1 +m2

1)g

l1mcm1
θ1 +

m2g

m1l1
θ2 −

1

mcl1
u(t)

θ̈2 = −
(m2 +m1)g

m1l2
θ1 +

(m2 +m1)g

m1l2
θ2 −

1

mcl2
u(t)

(18)

Therefore, the Simplify and Linearized model can be expressed as follow:

d

dt
x(t) = Ax(t) + Bu(t) (19)

Where x(t), A and B matrix are:

x(t) = [x, ẋ, θ1, θ̇1, θ2, θ̇2]
T

A =

0 1 0 0 0 0

0 0 − (m2+m1)g
mc

0 0 0

0 0 0 1 0 0

0 0
(m2mc+m1m2+mcm1+m2

1)g
l1mcm1

0 − m2g
m1l1

0

0 0 0 0 0 1

0 0 − (m2+m1)g
m1l2

0 (m2+m1)g
m1l2

0

B =

0
1
mc

0
− 1

mcl1
0

− 1
mcl2

(20)

6 Controllability and Observability

Firstly, since the controller will takes the position of cart and the position of the two link as the
feedback input to design a LQR controller, the system is fully observed. For the controllability,
as given the matrix A and B, the controllability criteria matrix can be also proved to be full rank.
Since this project dose not emphasize on investigation some noval system, the Controllability and
Observability proveness will not be unfolded.

7 Simulink Model and LQR Controller

7.1 Simulink Model

In this project, Matlab Simulink is utilized to define the system’s geometry and execute simulations.
Working in conjunction with Matlab scripts that carry out calculations, various controllers can be
designed to ensure smooth transportation. At the mid-term stage, the basic geometry of a cart and
double-pendulum system has been established, and a feedback control loop has been defined. The
model requires further refinement and rendering, while the feedback parameters still need to be
computed based on the selected method.The Simulink model is depicted in the figure below:

6

Figure 3: Simulink model configuration

The model features a prismatic joint that characterizes the cart’s movement, along with two
revolute joints that define the double-pendulum’s motion. The system employs the cart’s position,
speed, and the double-pendulum’s angular position and speed as feedback inputs. The controller
processes these six feedback parameters and applies force to the cart accordingly.

7.2 LQR controller

TheLQR feedback parameters can be conveniently calculated using the [K,S, P] = lqr(sys,Q,R,N)
function in MATLAB. The Q matrix here is chosen to be diag([1, 1, 5, 5, 5, 5]) and the weight for
the imput is 0.01 (the input is really not that important here) .And once the feedback gain is ob-
tained and forward to the Simulink, the performace can be obtained by the scope in the above
model, which are shown as follows:

Figure 4: Cart position

7

Figure 5: Cart speed

Figure 6: Joint 1 position

Figure 7: Joint 2 position

8

As can be seen form the above figure, the system will remain stable after about 7 second. The
Q and R matrix can be further modified if certain performance is desired.

8 Double Pendulum control with MPC and Neural Network

In this section, we will explore controlling the double pendulum system using a Model Predictive
Control (MPC) and learning the forward kinetics through a Neural Network. Initially, the MPC
controller will be implemented and tested within the teacher dynamic (real simulation environ-
ment). Following this, theMPCwill be employed to generate training data for the Neural Network.
After collecting the data, the Neural Network will be trained and the MPC controller, combined
with the learned forward dynamic, will be evaluated at various random points. The primary ob-
jective of using a Neural Network to learn the forward dynamic is to address its highly non-linear
nature. In the previous section, limiting the angle within 5 degrees achieved only modest accuracy,
rendering it impractical for real-world applications. By employing a Neural Network, we can more
effectively manage the non-linearity of the forward dynamic. This section will demonstrate that
even a small-scale Neural Network can yield remarkable accuracy in this context.

8.1 MPC controller design

The controller algorithm that being employed in this project is described as follows:
Algorithm 1:MPC controller
input : Current state xk
output: Optimized control input sequence U∗

k = [u∗k, . . . , u
∗
k]

Given an action uk, use sequence U0
k = [uk, uk,…, uk] (uk repeated N times);

“Roll out”the trajectory X0
k = [xk, xk+1,…, xk+N] and compute its cost;

Set u∗k = uk;
begin

Initialize xk;
while Improving do

Compute cost of U∗
k = [u∗k, . . . , u

∗
k];

for i = 0 to num_joints do
U i
k = u∗k ±∆u applied to the i-th element;

Roll out U i
k = [uik, u

i
k, . . . , u

i
k];

if best U i
k has lower cost than U∗

k then
u∗k ← best uik;

end
end
Execute uk H times, end up in state xk+H ;
Update xk and u∗k;

end
end
Please notice that in the MPC controller a constant action is maintained in the loop of one

horizon in order to achieve a higher efficiency. Specifically, the control horizon is chosen to be
10 and uk will be repeated 40 times. An decayed delta is also introduced in this controller to
make small adjustments of towards the end of the control section. To define the cost calculation,
a trajectory is firstly recorded for the 40 repeated uk, the position error to the target and the speed
error (since the target is to stop at the goal point, the absolute speed value will be the speed error)
will be accumulated throughout the 40 steps. For detailed definition, please refer to the code in

9

appendix.
The controller is then manual tested on 400 random generated goal point and the position error for
each test are plotted as follows:

Figure 8: MPC controller manual test

As can be seen, the controller have a very decent accuracy as low as 4 × 10−4 as the training
goes. Therefore, this controller is then used to collect the training data.

8.2 Training data collection

To train the NN, a large amount of data with sufficient diversity should be collected. In this project,
the data will be collected by the following steps:

1. Generate a random point and set as goal

2. Using MPC controller with real world dynamic to perform the simulation

3. In each step, collected the state of links, and MPC control action (two joints’ torque) as the
training features; collected the next step’s state as the training target. (remember that the NN
is trained to learn the forward dynamic.)

By collecting the data in this manner, the training data, especially the action can be more specified
at my designed controller, which is of great help when train the forward dynamic.

8.3 Neural network

As previously mentioned, we collected the state of the links (position and speed), and the MPC
control action (torque of both joints) as the training features, while using the subsequent step’s
state as the training target. However, since joint acceleration can be easily calculated if the action
is assumed constant within a single time step, the Neural Network can be trained to predict ac-
celeration. Subsequent step states can then be determined based on the predicted acceleration and
compared to the actual values to calculate the loss. This method can be illustrated in the following
figure:

10

Figure 9: NN train method

The trained loss are illustrated in the following figure:

Figure 10: NN train and test loss, ’log’ scale y-axis

As can be seem the train and test loss both decrease efficiently without very intense over fitting.
The learning forward dynamic will then be applied to the MPC controller on random points.

8.4 MPC with learning dynamic-testing

The testing results with model in each epoch are illustrated in the following two figures: (Please
notice the error in the x label, which should be ”epoched”. Apologize for any confusion.)

11

Figure 11: Accumulated position error, ’log’ scale y-axis

Figure 12: Accumulated speed error, ’log’ scale y-axis

Please note that both the position error and speed error represent accumulated errors over 200
time steps, with average position and speed errors falling below 0.1. Taking into account the time
required for the MPC to move the endpoint to the goal, the MPC controller, combined with the
Neural Network learning the forward dynamic, can effectively control the joint to reach the target
point.

12

9 Deep Q-learning with neural network

In contrast to the previous MPC + NN method, which required the collection of training data,
the Deep Q-Learning with Neural Network (DQN) approach does not rely on pre-collected data.
Instead, a set of actions (joint torque) will be defined, and the DQN will determine the best action
based on the current states. In this section, we will first introduce the DQN class, emphasizing
action design. Subsequently, the DQN will be trained specifically for the two-link environment.
Finally, the training results will be evaluated to demonstrate the effectiveness and adaptability of
the DQN method in achieving accurate and efficient control of the double pendulum system.

9.1 Q network and action definition

The general idea of DQN can be represented by the following figure:

Figure 13: DQN network layout

The net work will input the current state and the goal to decided the most likely action the agent
should take (The output is a probability distribution).

Specifically, the actions are designed following the concept of ”up, down, left, right, and stay.”
For the two-link system, they can simultaneously add torque, subtract torque, move in opposite
directions, or maintain the same action. Furthermore, to enable the system to converge faster
and allow for minimal adjustments once the goal is reached, a ”larger” action force is defined for
rapid adaptations, while a smaller action force is designated for fine-tuning within close range.
Therefore, in this project, the actions are defined to be a list

1 self.action_mapping = {0: [0, 0],
2 1: [‐2, ‐2],
3 2: [2, ‐2], 3: [‐2, 2], 4: [2, 2],
4 5: [‐0.05, ‐0.025], 6: [0.05, ‐0.025],
5 7: [‐0.05, 0.025], 8: [0.05, 0.025]}

13

When selecting an action, a policy must choose the one that has the highest estimated Q-value
for the current state. As part of the QNetwork class, the function: select_discrete_action(...)
does exactly that. The arm environment itself however expects a 2-dimensional, continuous ac-
tion vector. Therefore, when it comes to send an action to the environment, the kind of ac-
tion the environment expects should be provided. To determine how to convert between the dis-
crete action space of your Q-Network and the continuous action space of the arm is achieved by
action_discrete_to_continuous(...) function in the QNetwork

9.2 DQN training and reward engineering

In this project, the following procedure are executed to train the DQN. Specifically, reward en-

Algorithm 2: Train a DQN
input : Action network QA, target network QT , replay memory D, capacity N , episodes

M , time steps T , exploration rate ϵ, discount factor γ
output: Trained action network QA

begin
Initialize action network QA with random weights; target network QT = QA;
Initialize replay memoryD with capacity N ;
for episode = 1 to M do

Initialize: episode_reward = 0; s1 = random start state; reset robot to match s1;
for t = 1 to T do

With probability ϵ, at = random; otherwise at = maxaQA(st, a);
Execute at and observe rt+1, st+1; If st+1 is terminal: break (end episode);
episode_reward + = rt+1;
Store transition (st, at, rt+1, st+1) in D (remove old data if needed);
Train network:;
Sample random minibatch of transitions fromD;
Perform batch gradient descent on QA with
L = F (QA(st, at)− [rt + γmaxaQT (st+1, a)]);
Set st = st+1;

end
Report episode_reward;
Every k episodes: set target network QT = QA;

end
end

gineering is further refined to promote faster training convergence. Unlike the default negative
reward based on the square of the final position error, which diminishes as the terminal approaches
the goal point and may result in a gradient vanishing problem, two periodic rewards are defined to
encourage the agent to converge more rapidly, effectively moving closer to the target goal. When
the agent reaches an area within a range of 0.3 from the target, a reward of 10 will be granted. If
the agent moves even closer, within 0.1 of the target, an additional reward of 10 will be provided.
In this manner, the agent will initially learn to swiftly move the terminal within a range of 0.3 and
subsequently attempt to maintain it within the 0.1 range. The train loss and reward are plotted in
the following figures:

14

Figure 14: DQN training loss

The initial several epochs does not calculate the loss in order to prevent the larger gradient
variation. As can be seen, the train process functions effectively, and the train loss can decent to a
low value.

9.3 DQN testing

The model of every 5 epoch is saved and tested on several random points. The result are shown as
follows:

Figure 15: DQN training loss

as can be seen, the testing accumulative position error largely have the same tendency as the

15

training loss. And the method of DQN have proved to be effective in set as a controller of this
project.

10 Proximal Policy Optimization

In this section, the PPO algorithm in stable baselines 3 is deployed directly. Here, a brief process
introduction of PPO will be demonstrated.

1. Problem formulation: The task should be framed as a reinforcement learning problem. A
continuous state space and action space is chosen for this problem. The state includes the
angles and angular velocities of the two joints, while the action space comprise the torque
applied to each joint.

2. Reward function: A negative distance between the terminal and the target is defined as the
reward function

3. Environment: 8 parallel simulation environment are created. These environment provide the
agent with information of state, the reward, and whether the episode has ended.

4. Policy network: A policy network, represented by a neural network, ought to be employed
to map states to actions. The input to this network is the state, and the output corresponds
to the actions taken by the agent. The neural network will learn a policy for controlling the
two-joint link through the PPO algorithm.

5. PPO algorithm: The PPO algorithm should be applied to optimize the policy network. PPO
is designed to balance exploration and exploitation by limiting the policy update to avoid
significant deviations from the old policy. Two main components are involved in this al-
gorithm: the surrogate objective and the clipping mechanism. The surrogate objective is
calculated as the product of the advantage estimate and the probability ratio between the
new and old policies, while the clipping mechanism constrains the policy updates within a
pre-defined range to maintain stability.

As the training of the PPO is not modifiable, several selected intermediate models are saved
and tested. The result are shown as follow: (Please notice that the X axis should be the list
range(500, 63500, 500))

16

Figure 16: DQN training loss

As can be seen, the position error decreases effectively with the train process.

11 Conclusion

This project has successfully focused on improving the transportation of containers with water.
The problem was initially demonstrated as a double cart and double pendulum control issue, fol-
lowed by the development of a mathematical description of the system. Subsequently, the system
was linearized to generate the state space expression. The observability and controllability of the
system were introduced, followed by the construction of the model in MATLAB Simulink and the
design of an LQR controller.

However, the linearization of the system resulted in a limitation, where the joint angle could not
exceed 5 degrees, greatly restricting the controller’s application scenarios. Therefore, in addition
to traditional computational orientation control methods, this project also explored data-oriented
approaches. Specifically, the MPC controller was utilized to generate training data for the forward
dynamic. A Neural Network was then trained using the generated data to handle the considerable
non-linearity of the forward system. Subsequently, a Deep Q-Network was employed as the con-
troller. DQN does not require training data and can be applied to various problems. Finally, the
PPO algorithm from the Reinforcement Learning domain was implemented to further demonstrate
the power of data-oriented methods.

a key feature of this project was to compare algorithm-oriented control methods and data-
oriented approaches, both of which demonstrated significant potential. In the future, these two
sets of methods could be combined to allow the algorithm-oriented approach to guide the direc-
tion, while the Neural Network handles the computationally intensive tasks. This hybrid approach
could further enhance the performance and applicability of control systems for smoother trans-
portation of containers with water and other related applications.

Overall, though the initial objectives are slightly shifted, the project has achieved its goal.

17

References

[1] B. I. Rabinovich, V. G. Lebedev, andA. I.Mytarev, Vortex Processes and Solid BodyDynamics,
ser. Fluid Mechanics and its Applications, R. Moreau, Ed. Dordrecht: Springer Netherlands,
1994, vol. 25. [Online]. Available: http://link.springer.com/10.1007/978-94-011-1038-9

18

Appendix
In the appendix, related code will be provided

LQR in Matlab:

1 close all
2 clear all
3 clc
4
5 l1 = 0.15;
6 l2 = 0.15;
7 mc = 1;
8 m1 = 0.1;
9 m2 = 0.1;
10 g = 9.8 ;
11
12 A=[0 1 0 0 0 0;
13 0 0 (m1+m2)*g/mc 0 0 0;
14 0 0 0 1 0 0;
15 0 0 (m2*mc+m1*m2+mc*m1+m1^2)*g/(l1*mc*m1) 0 ‐m2*g/(m1*l1) 0;
16 0 0 0 0 0 1;
17 0 0 ‐(m2+m1)*g/(m1*l2) 0 (m2+m1)*g/(m1*l2) 0];
18
19 B=[0 ; 1/mc ; 0 ; ‐1/mc/l1; 0; ‐1/mc/l2];
20
21 Q=[1 0 0 0 0 0;
22 0 1 0 0 0 0;
23 0 0 5 0 0 0;
24 0 0 0 5 0 0;
25 0 0 0 0 5 0;
26 0 0 0 0 0 5] ;
27
28 R= 0.01 ;
29
30 K=lqr(A,B,Q,R) ;
31
32 k1 = K(1);
33 k2 = K(2);
34 k3 = K(3);
35 k4 = K(4);
36 k5 = K(5);
37 k6 = K(6);

MPC in python

1 class MPC:
2
3 def __init__(self):
4 self.control_horizon = 10
5 self.repeat_n = 40
6 self.∆_u_max = 0.1
7 self.∆_u_min = 0.01
8 self.∆_u_decay = 0.99
9 self.position_weight = 80
10 self.velocity_weight = 1
11 self.update_max = 40
12
13
14
15 def compute_cost(self, dynamics, trajectory, goal):
16 position_error = 0
17 velocity_error = 0
18 # print(trajectory)
19 for state in trajectory:
20 pos_ee = dynamics.compute_fk(state)
21 position_error += np.linalg.norm(goal ‐ pos_ee)**2
22 vel_ee = dynamics.compute_vel_ee(state)

19

23 velocity_error += np.linalg.norm(vel_ee)**2
24
25 # vel_ee = dynamics.compute_vel_ee(state)
26 # velocity_error = np.linalg.norm(vel_ee)**2
27 # print('position_error', position_error)
28 # print('velocity_error', velocity_error)
29 cost = position_error * self.position_weight + velocity_error * ...

self.velocity_weight
30 return cost
31
32
33 def rollout_trajectory(self, dynamics, state, U):
34 num_steps = len(U)
35 trajectory = [np.zeros_like(state) for _ in range(num_steps+1)]
36 # trajectory[0] = state
37 for i in range(len(U)):
38 state = dynamics.advance(state, U[0])
39 trajectory[i] = state
40 return trajectory
41
42 def compute_action(self, dynamics, state, goal, action):
43 # Put your code here. You must return an array of shape (num_links, 1)
44 N = self.repeat_n
45 H = self.control_horizon
46 num_joints = dynamics.get_action_dim()
47 # print('action', action)
48 best_action = np.copy(action).reshape(‐1)
49 U_star = np.tile(best_action, (N, 1))
50
51 for i in range(num_joints ‐ 1, ‐1, ‐1): # update from the largest joint
52 best_cost = float('inf')
53 update_flag = True
54 update_counter = 0
55
56 while update_flag and update_counter < self.update_max:
57
58
59 update_counter += 1
60 Du = self.∆_u_max * self.∆_u_decay ** update_counter
61 Du = np.max([Du, self.∆_u_min])
62 U_i_plus = np.copy(U_star)
63 U_i_minu = np.copy(U_star)
64 U_i_plus[:, i] += Du
65 U_i_minu[:, i] ‐= Du
66
67 trajectory_i_plus = self.rollout_trajectory(dynamics, state, U_i_plus)
68 cost_i_plus = self.compute_cost(dynamics, trajectory_i_plus, goal)
69 trajectory_i_minu = self.rollout_trajectory(dynamics, state, U_i_minu)
70 cost_i_minu = self.compute_cost(dynamics, trajectory_i_minu, goal)
71
72 min_cost = np.min([best_cost, cost_i_plus, cost_i_minu])
73
74
75 update_flag = False
76 if min_cost < best_cost:
77 update_flag = True
78 # print('update')
79 best_cost = min_cost
80 index = np.argmin([cost_i_plus, cost_i_minu])
81 combi = [U_i_plus, U_i_minu]
82 U_star = combi[index]
83
84 result = U_star[0].reshape([‐1, 1])
85
86 return result

DNN model

1 class Model(nn.Module):

20

2 def __init__(self, num_links, time_step):
3 super().__init__()
4 self.num_links = num_links
5 self.time_step = time_step
6
7 def forward(self, x):
8 qddot = self.compute_qddot(x)
9 state = x[:, :2*self.num_links]
10 next_state = self.compute_next_state(state, qddot)
11 return next_state
12
13 def compute_next_state(self, state, qddot):
14 pos = state[:, :self.num_links]
15 vel = state[:, self.num_links: 2 * self.num_links]
16
17 new_vel = vel + qddot * self.time_step
18 new_pos = pos + vel * self.time_step + qddot * 0.5 * self.time_step ** 2
19
20 output = torch.cat([new_pos, new_vel], dim=1)
21 return output
22
23 def compute_qddot(self, x):
24 pass
25
26 class Model2Link(Model): #
27 def __init__(self, time_step):
28 super().__init__(2, time_step)
29 # Your code goes here
30 self.layer1 = nn.Linear(6, 512)
31 self.layer2 = nn.Linear(512,64)
32 self.layer3 = nn.Linear(64,2)
33
34 def compute_qddot(self, x):
35 y = F.relu(self.layer1(x))
36 y = F.relu(self.layer2(y))
37 y = self.layer3(y)
38 # print(y)
39 # y = self.compute_next_state(state, y)
40 return y
41
42 def predict(self, features):
43 self.eval()
44 features = torch.from_numpy(features).float()
45 features = features.unsqueeze(0)
46 return self.forward(features).detach().numpy()

Q-network model

1 class QNetwork(nn.Module):
2 def __init__(self, env):
3 super(QNetwork, self).__init__()
4
5 # torque_range_1 = np.arange(‐1, 1.5, 0.5)
6 # torque_range_2 = np.arange(‐0.5, 0.75, 0.25)
7 # torque_combinations = [np.array([torque_1, torque_2]) for torque_1 in ...

torque_range_1 for torque_2 in torque_range_2]
8 # # random.shuffle(torque_combinations)
9
10 # action_mapping = {}
11 # for action_idx, torque_pair in enumerate(torque_combinations):
12 # action_mapping[action_idx] = torque_pair
13 self.action_mapping = {0: [0, 0],
14 1: [‐2, ‐2],
15 2: [2, ‐2], 3: [‐2, 2], 4: [2, 2],
16 5: [‐0.05, ‐0.025], 6: [0.05, ‐0.025],
17 7: [‐0.05, 0.025], 8: [0.05, 0.025]}
18
19 self.obs_dim = env.observation_space.shape[0]
20 self.action_dim = len(self.action_mapping)

21

21
22 self.fc1 = nn.Linear(self.obs_dim, 128)
23 self.fc2 = nn.Linear(128, 32)
24 self.fc3 = nn.Linear(32, self.action_dim)
25
26
27
28 def forward(self, x, device):
29 x = F.relu(self.fc1(x))
30 x = F.relu(self.fc2(x))
31 x = self.fc3(x)
32 return x
33
34 def select_discrete_action(self, obs, device):
35 # Put the observation through the network to estimate q values for all possible ...

discrete actions
36 obs = torch.Tensor(obs)
37 est_q_vals = self.forward(obs.reshape((1,) + obs.shape), device)
38 # Choose the discrete action with the highest estimated q value
39 discrete_action = torch.argmax(est_q_vals, dim=1).tolist()[0]
40 return discrete_action
41
42 def action_discrete_to_continuous(self, discrete_action):
43 continuous_action = self.action_mapping[discrete_action]
44 return continuous_action

DQN training model

1 class TrainDQN:
2
3
4 def __init__(self, env, seed=0):
5 np.random.seed(seed)
6 torch.manual_seed(seed)
7 torch.backends.cudnn.deterministic = False
8 self.env = env
9 self.device = torch.device('cpu')
10 self.q_network = QNetwork(env).to(self.device)
11 self.target_network = QNetwork(env).to(self.device)
12 self.target_network.load_state_dict(self.q_network.state_dict())
13
14 self.env.seed(seed)
15 self.env.observation_space.seed(seed)
16
17 self.num_action = 9
18
19 self.epsilon = 0.8
20 self.epsilon_dacay = 0.95
21 self.epsilon_min = 0.2
22
23 self.replay_buffer = ReplayBuffer(10000)
24
25 self.batch_size = 128
26 self.gamma = 0.95
27 self.criterion = nn.MSELoss()
28 self.lr = 0.001
29 self.optimizer = optim.Adam(self.q_network.parameters(), lr=self.lr)
30 self.num_episodes = 500
31
32 self.q_update_num = 5
33
34
35 def to_tensor(self, states, action_indexs, rewards, next_states):
36 states = torch.from_numpy(states).float()
37 action_indexs = torch.from_numpy(action_indexs).long()
38 rewards = torch.from_numpy(rewards).float()
39 next_states = torch.from_numpy(next_states).float()
40 return states, action_indexs, rewards, next_states
41

22

42 def train_batch(self):
43 self.optimizer.zero_grad()
44 states, action_indexs, rewards, next_states, dones = ...

self.replay_buffer.sample(self.batch_size)
45 states, action_indexs, rewards, next_states = self.to_tensor(states, ...

action_indexs, rewards, next_states)
46
47 q_a = self.q_network.forward(states, self.device).gather(1, ...

action_indexs.view(‐1, 1)).squeeze()
48
49 q_t = self.target_network.forward(next_states, self.device)
50
51 q_t_max = torch.max(q_t.detach(), dim=1)[0]
52 q_tar = rewards + self.gamma * q_t_max
53
54 loss = self.criterion(q_a, q_tar)
55 loss.backward()
56
57 # clamp
58 for para in self.q_network.parameters():
59 para.grad.data.clamp_(‐0.05, 0.05)
60
61 self.optimizer.step()
62
63 return loss.item()
64
65 def get_reward(self, target_goal, info):
66
67 positiona_error = np.linalg.norm(info['pos_ee'] ‐ target_goal)
68 reward_temp = ‐ positiona_error ** 2
69 if positiona_error < 0.3:
70 reward_temp += 10
71 # print('positiona_error', positiona_error)
72 if positiona_error < 0.1:
73 reward_temp += 10
74 # # print('positiona_error', positiona_error)
75 # elif positiona_error < 0.1:
76 # reward_temp += 10
77 # # print('positiona_error', positiona_error)
78 # elif positiona_error < 0.05:
79 # reward_temp += 10
80 # # print('wowowo_positiona_error', positiona_error)
81
82
83 return reward_temp
84
85
86 def train(self):
87 best_reawrd = ‐np.inf
88 deacied_epsilon = self.epsilon
89 loss_history = []
90 reward_history = []
91 for episode in range(self.num_episodes):
92
93 # goal = np.array([[0.5], [‐1.5]])
94 episode_reward = 0
95 state = self.env.reset()
96 # print(state)
97 target_goal = self.env.goal
98 # print(target_goal)
99 loss = 0
100
101 deacied_epsilon = np.max([self.epsilon_min, deacied_epsilon * ...

self.epsilon_dacay])
102 # print(deacied_epsilon)
103 while True:
104
105 if random.random() < deacied_epsilon:
106 index = np.random.randint(0, self.num_action)
107 else:

23

108 index = self.q_network.select_discrete_action(state, self.device)
109
110 action = self.q_network.action_discrete_to_continuous(index)
111
112 state_next, reward, done, info = self.env.step(action)
113 if done:
114 break
115
116 self.replay_buffer.put((state, index, reward, state_next, done))
117
118 reward_temp = self.get_reward(target_goal, info)
119
120 episode_reward += reward_temp
121
122 if len(self.replay_buffer.buffer) ≥1000:
123 loss += self.train_batch()
124 state = state_next
125
126 if episode % self.q_update_num == 0:
127 self.target_network.load_state_dict(self.q_network.state_dict()) # update num
128 self.save_model(episode)
129
130
131
132 loss_history.append(loss)
133
134 # print('loss', loss)
135 reward_history.append(episode_reward)
136 # if episode_reward > best_reawrd:
137 # best_reawrd = episode_reward
138 # print("Episode:", episode, " reward:", episode_reward)
139 # self.save_model(episode)
140
141 # if episode > (self.num_episodes ‐ 10):
142 # print("Episode:", episode, " reward:", episode_reward)
143 # self.save_model(episode)
144
145 # if episode % 5 == 0:
146 # self.save_model(episode)
147
148 # if episode_reward < 1500:
149 # print('bad point', target_goal)
150 # print("Episode:", episode, " reward:", episode_reward)
151
152 return loss_history, reward_history
153
154
155
156
157
158 def save_model(self, episode_num, save_dir='models'):
159
160 timestr = time.strftime("%Y‐%m‐%d_%H‐%M‐%S")
161 model_dir = os.path.join(save_dir)
162 if not os.path.exists(os.path.join(model_dir)):
163 os.makedirs(os.path.join(model_dir))
164 savepath = os.path.join(model_dir, f'q_network_ep_{episode_num:04d}.pth')
165 torch.save(self.q_network.state_dict(), savepath)
166 print(f'model saved to {savepath}\n')

PPO model:

1 # Default parameters
2 timesteps = 500000
3 nenv = 8
4 seed = 8
5 batch_size = 1024
6 save_interval = 500
7

24

8 save_dir = f'ppo_models_4'
9 set_random_seed(seed)
10
11 arm = make_arm()
12
13 vec_env = make_vec_env(arm=arm, nenv=nenv, seed=seed)
14
15 model = PPO("MlpPolicy", vec_env, n_steps=batch_size)
16
17 class SaveIntermediateModelCallback(BaseCallback):
18 def __init__(self, save_interval, save_dir):
19 super(SaveIntermediateModelCallback, self).__init__()
20 self.save_interval = save_interval
21 self.save_dir = save_dir
22
23 def _on_step(self) ‐> bool:
24 if self.n_calls % self.save_interval == 0:
25 save_path = os.path.join(self.save_dir, f"ppo_network_step_{self.n_calls}.zip")
26 self.model.save(save_path)
27 print(f"Saved model at time step {self.n_calls}")
28 return True
29
30 if not os.path.exists(save_dir):
31 os.makedirs(save_dir)
32
33 save_callback = SaveIntermediateModelCallback(save_interval, save_dir)
34
35 model.learn(total_timesteps=timesteps, callback=save_callback)

25

