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ABSTRACT

Federated Learning for Reinforcement Learning and
Control

Han Wang

Federated learning (FL), a novel distributed learning paradigm, has attracted significant attention in

the past few years. Federated algorithms take a client/server computation model, and provide scope

to train large-scale machine learning models over an edge-based distributed computing architecture.

In the paradigm of FL, models are trained collaboratively under the coordination of a central

server while storing data locally on the edge/clients. This thesis addresses critical challenges in FL,

focusing on supervised learning, reinforcement learning (RL), control systems, and personalized

system identification. By developing robust, efficient algorithms, our research enhances FL’s

applicability across diverse, real-world environments characterized by data heterogeneity and

communication constraints.

In the first part, we introduce an algorithm for supervised FL to address the challenges posed

by heterogeneous client data, ensuring stable convergence and effective learning, even with partial

client participation. In the federated reinforcement learning (FRL) part, we develop algorithms

that leverage similarities across heterogeneous environments to improve sample efficiency and

accelerate policy learning. Our setup involves N agents interacting with environments that share the

same state and action space but differ in their reward functions and state transition kernels. Through

rigorous theoretical analysis, we show that information exchange via FL can expedite both policy

evaluation and optimization in decentralized, multi-agent settings, enabling faster, more efficient,

and robust learning.

Extending FL into control systems, we propose the FedLQR algorithm, which enables agents

with unknown but similar dynamics to collaboratively learn stabilizing policies, addressing the

unique demands of closed-loop stability in federated control. Our method overcomes numerous

technical challenges, such as heterogeneity in the agents’dynamics, multiple local updates, and



stability concerns. We show that our proposed algorithm FedLQR produces a common policy

that, at each iteration, is stabilizing for all agents. We provide bounds on the distance between the

common policy and each agent’s local optimal policy. Furthermore, we prove that when learning

each agent’s optimal policy, FedLQR achieves a sample complexity reduction proportional to the

number of agents M in a low-heterogeneity regime, compared to the single-agent setting.

In the last part, we explore techniques for personalized system identification in FL, allowing

clients to obtain customized models suited to their individual environments. We consider the

problem of learning linear system models by observing multiple trajectories from systems with

differing dynamics. This framework encompasses a collaborative scenario where several systems

seeking to estimate their dynamics are partitioned into clusters according to system similarity.

Thus, the systems within the same cluster can benefit from the observations made by the others.

Considering this framework, we present an algorithm where each system alternately estimates its

cluster identity and performs an estimation of its dynamics. This is then aggregated to update the

model of each cluster. We show that under mild assumptions, our algorithm correctly estimates

the cluster identities and achieves an ϵ-approximate solution with a sample complexity that scales

inversely with the number of systems in the cluster, thus facilitating a more efficient and personalized

system identification.
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Chapter 1

Introduction

1.1 Overview

Recent years have seen machine learning (ML) techniques achieve spectacular success in

tackling complex problems across various domains, from image classification and speech recognition

to personalized recommendation engines. However, the performance of many ML algorithms

largely depends on the availability of large-scale datasets, which are often widely distributed

across different organizations under the protection of privacy restrictions. In response to this

need, collaborative/FL [96, 132] has emerged as a popular distributed learning paradigm that

leverages decentralized data sources while maintaining privacy and reducing data transfer costs. The

widespread application of FL can be primarily attributed to its capability of enabling multiple clients

(e.g. mobile devices or whole organizations) to collaboratively train models while keeping the raw

data on edge devices (i.e., client-side). Thus, FL embodies the seemingly disparate objectives of

collaboration and privacy-preservation.

Although a lot of progress has been made in applying FL in the context of supervised learning,

with examples of the most popular algorithms including FedAvg, FedNova, FedProx and

FedMA, challenges persist when confronted with client heterogeneity–a fundamental challenge in

FL. Specifically, variations in clients’ data distributions, hardware capabilities (CPU, memory), and
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power constraints (battery level) can lead to a severe degradation in performance. Additionally,

the incorporation of FL into reinforcement learning (RL) and control systems is still at a nascent

stage. It is still unknown how to quickly and reliably plan and control the behavior of autonomous

systems/intelligent agents in new or similar environments. My research aims to tackle these issues

by focusing on pushing the boundaries of FL into the realm of supervised learning and exploring

the challenges and potential of FL in RL and Control. In particular, the main focus of my thesis

includes:

• Developing effective, robust, and efficient algorithms for supervised FL.

• Leveraging FL to improve the sample efficiency in control and RL tasks.

• Examining the effect of heterogeneity in clients’ dynamical systems and environments.

• Designing personalized learning strategies for each client, tailoring the learning process to

individual needs.

Answers to such questions can not only deepen our understanding of modern FL systems but also

provide valuable insights into applications across diverse domains, including healthcare, finance,

and smart devices. Despite significant research progress in FL and related areas over the past few

years, many challenges remain unresolved, particularly concerning the impact of data heterogeneity,

communication efficiency, convergence stability, and its usage in RL and control tasks. Existing

literature offers partial solutions to these issues, but key questions still need further exploration.

This motivates our present work. In what follows, we provide a brief overview of each of these

problems, and then delve into our specific contributions.
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1.1.1 Efficient Algorithms for Supervised FL

FL addresses the challenge of decentralized data, where data across clients is often non-IID and

heterogeneous [96]. The most widely used algorithm for FL is FedAvg [132], which mitigates

communication costs by performing multiple local updates before aggregating them at a central

server. Although FedAvg has demonstrated success in some applications, its performance on

heterogeneous data remains a subject of ongoing research [66, 86, 110, 111, 236]. One significant

challenge posed by heterogeneity is the drift in client updates, which slows down convergence and

leads to instability.

To address the heterogeneity concern, in Chapter 3, we explore the impact of heterogeneity on

FL algorithms and offer a new federated learning algorithm, FedADMM, for solving non-convex

composite optimization problems with non-smooth regularizers. We establish the convergence of

FedADMM, demonstrating that it achieves optimal optimization and communication complexity,

under the case when not all clients are able to participate in a given communication round under a

very general sampling model.

1.1.2 Federated Learning for Reinforcement Learning (FRL)

The recent progress in RL, particularly in applications like video games [138] and robotic

manipulation [120], is notable. However, RL faces challenges in real-world applications. One

of the major problems is poor sample complexity of RL algorithms. To address this issue and

expedite the learning process, FL has emerged as a solution; by leveraging the wealth of data

available from numerous agents and enabling multiple similar agents to collectively learn a

shared policy without disclosing agents’ raw data. Federated Reinforcement Learning (FRL)

has empirically shown significant success in improving sample efficiency and learning performance
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in areas such as autonomous driving [116], Internet of Things (IoT) [117], and network resource

management [237]. Despite these practical achievements, the theoretical aspects of FRL remain

under-explored. Therefore, understanding the theoretical foundations of FRL is essential to fully

realize its real world potential.

In chapter 4, we focuses on a federated policy evaluation problem: whether agents in diverse

environments can collaboratively improve the efficiency of policy evaluation than if they were to

work in isolation, by leveraging similarities across environments. In chapter 4, we affirmatively

addressed this question through a federated policy evaluation problem. In our formation, each

agent’s environment has its own reward function and state transition kernel, but have identical state

and action spaces. We introduced FedTD(0), a federated temporal difference learning algorithm, to

facilitate agents to exchange their model estimates. We have rigorously demonstrated that FedTD(0)

can achieve an N -fold speed-up in convergence compared to independent learning, even with this

very general definition of environmental heterogeneity.

The key finding from this study highlights FRL’s ability to accelerate policy evaluation and

reduce sample complexity. In addition, we further expanded our framework to address policy

optimization problems [105, 210, 242]. In Chapter 5, we designed a provably efficient FRL

algorithm which can accommodate arbitrary levels of environmental heterogeneity among agents

in [210]. In summary, this body of work has substantially advanced the theoretical understanding

of FRL, showcasing its potential to facilitate faster learning and more robust policy development

across heterogeneous environments.

1.1.3 Federated Learning for Control

Inspired by FL’s success in RL, in Chapter 6, we have also explored its application in complex

control tasks through a multi-agent, model-free Linear Quadratic Regulator (LQR) problem using
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Policy Gradient (PG) methods. Our study in [193] involves multiple agents with unknown but

similar dynamics, collaboratively learning to minimize an average quadratic cost while maintaining

data privacy. The main focus in this project is to investigate: Can each agent learn its own optimal

policy faster by leveraging the similarities among the agents’ dynamics? A distinguishing challenge

in this control setting, compared to standard RL, is ensuring stability, as data heterogeneity might

impede the learning of stabilizing policies, leading to poor performances in control tasks.

Figure 1.1: Closeness between FedLQR’s

trajectory and PG’s trajectory: (Black): PG with

single system; (Blue): FedLQR with multiple

distinct systems.

Addressing this question has substantial

significance for applications in diverse fields,

such as recommendation systems and robotic

manipulation. For example, a fleet of identical

robots from the same manufacturer, each

learning from its own dynamics that may differ

due to variations in payload or manufacturing

defects, can collectively develop a versatile

and advanced skill set by aggregating data

from interactions with various environments

and tasks.

We have developed the FedLQR algorithm in Chapter 6 and proved that it not only converges

to a policy close to each agent’s optimal policy using fewer samples compared to independent

learning, but also addresses the unique challenge, encountered in control problems that of providing

closed-loop stability. To arrive these results, we first investigated the impact of heterogeneity across

systems, revealing the presence of bounded PG heterogeneity among similar systems. This finding

implies that the trajectory of FedLQR closely resembles that of a single system using PG (see

Figure 1.1). Secondly, we quantitatively characterized the heterogeneity requirement necessary for
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the existence of a universal policy capable of stabilizing all unique systems simultaneously. With

this requirement, our algorithm can output policies which are simultaneously stabilizing for each

distinct system. In sharp contrast to existing works, we are the first ones to quantify the gap between

the common/federated policy and locally optimal policies. This result has profound implications for

the field of meta-learning, particularly in how each agent can fine-tune its own optimal policy using

this common policy.

1.1.4 Personalized System Identification

In Chapter 7, we explore techniques for achieving personalization in federated learning. Rather

than using a common policy or model for all agents, we present methods for obtaining personalized

solutions for each agent. We leverage the system identification problem as an illustrative example.

The system identification problem revolves around the estimation of parameters for a dynamic

system based on observed data. Building upon our previous research, we introduced a FL

framework tailored for efficient system identification. Our problem in Chapter 7 assumes a central

server connected to M clients. Each client is observing data from a different dynamical system.

Our primary objective was to investigate how multiple clients collaboratively learn dynamical

models in the presence of heterogeneity. In [194], we quantitatively answered this question and

demonstrated that with an increasing number of agents, each client can achieve an improved

finite-time convergence rate than if a single agent uses its own data to learn the system. We also

provided a theoretical analysis of how the dissimilarity amongst those systems influences the non-

asymptotic convergence rate of the proposed technique. Based on [194], it was observed that the

collaboration benefits diminish with increasing system heterogeneity. This is primarily because the

approach described in [194] only provided a unified estimation for all systems, thereby limiting its

applicability in scenarios involving arbitrary levels of system heterogeneity.
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Figure 1.2: In [198], we have proposed an algorithm that iteratively identifies clusters of similar

agent from data, then locally learns their dynamics.

Addressing this gap, our latest research discussed in Chapter 7 harnessed clustering techniques to

attain personalized model estimations for each client. Our specific focus lies in exploring scenarios

where there are M dynamical systems, each of which falls into one of K distinct system types,

referred to as a “cluster”. Unlike conventional clustering problems, our challenge lies in dealing

with a data generation process in system identification that is inherently non-i.i.d. Overcoming this

challenge, our algorithms can simultaneously determine the correct cluster identities for each of the

M systems and achieve an approximate sample complexity that inversely scales with the number of

systems in the cluster. Ultimately, this clustered approach offers a more effective and personalized

strategy for system identification, enhancing the applicability and efficiency of learning diverse

dynamical systems.

1.2 Thesis Outline

In Chapter 3, we introduce an efficient supervised FL algorithm to address challenges related to

data heterogeneity and convergence stability, while achieving optimal convergence and communication

efficiency, even with partial client participation. In Chapter 4 and 5, we explore several FRL

problems under environmental heterogeneity. To address these problems, we develop efficient
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FRL algorithms that improve sample efficiency and facilitate robust policy learning across diverse

environments, supported by rigorous theoretical foundations. In Chapter 6, we extend FL to control

systems, proposing the FedLQR algorithm to enable multiple agents with unknown but similar

dynamics to collaboratively learn stabilizing policies, while quantifying the impact of system

heterogeneity on performance. In Chapter 7, we propose some techniques to do the personalized

system identification, enabling customized solutions for each agent in FL. Finally, Chapter 8

summarizes the contributions and future work.

1.3 Contributions

The work presented in this thesis have been published in the following conferences and journals:

• Wang, H., Marella, S. and Anderson, J., 2022, December. Fedadmm: A federated primal-dual

algorithm allowing partial participation. In 2022 IEEE 61st Conference on Decision and

Control (CDC) (pp. 287-294). IEEE.

• Wang, H., Mitra, A., Hassani, H., Pappas, G.J. and Anderson, J., 2024. Federated TD

learning with linear function approximation under environmental heterogeneity. Transactions

on Machine Learning Research.

• Wang, H., He, S., Zhang, Z., Miao, F. and Anderson, J., 2024. Momentum for the Win:

Collaborative Federated Reinforcement Learning across Heterogeneous Environments. In

2024 International Conference on Machine Learning.

• Wang, H., Toso, L.F., Mitra, A. and Anderson, J., 2023. Model-free learning with heterogeneous

dynamical systems: A federated LQR approach. arXiv preprint arXiv:2308.11743.
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• Toso, L.F., Wang, H. and Anderson, J., 2023, December. Learning personalized models with

clustered system identification. In 2023 62nd IEEE Conference on Decision and Control

(CDC) (pp. 7162-7169). IEEE.

In addition to these papers, the author have also published works on:

• Zhang, C., Wang, H., Mitra, A. and Anderson, J., Finite-Time Analysis of On-Policy

Heterogeneous Federated Reinforcement Learning. In The Twelfth International Conference

on Learning Representations.

• Toso, L.F., Zhan, D., Anderson, J. and Wang, H., 2024. Meta-Learning Linear Quadratic

Regulators: A Policy Gradient MAML Approach for the Model-free LQR. In 2024 Learning

for Dynamics and Control Conference [202]. (Best Paper Award)

• Lan, G., Wang, H., Anderson, J., Brinton, C. and Aggarwal, V., 2024. Improved Communication

Efficiency in Federated Natural Policy Gradient via ADMM-based Gradient Updates. Advances

in Neural Information Processing Systems, 36.

• Wang, H. and Anderson, J., 2022, June. Large-scale system identification using a randomized

svd. In 2022 American Control Conference (ACC) (pp. 2178-2185). IEEE [209].

• Wang, H., Toso, L.F. and Anderson, J., 2023, June. Fedsysid: A federated approach to

sample-efficient system identification. In Learning for Dynamics and Control Conference

(pp. 1308-1320). PMLR.

• Toso, L.F., Wang, H. and Anderson, J., 2024, July. Oracle Complexity Reduction for Model-

free LQR: A Stochastic Variance-Reduced Policy Gradient Approach. In 2024 American

Control Conference (ACC) (pp. 4032-4037). IEEE [201].
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• Toso, L.F., Wang, H. and Anderson, J., 2024. Asynchronous Heterogeneous Linear Quadratic

Regulator Design. In 2024 63rd IEEE Conference on Decision and Control (CDC) [200].
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Chapter 2

Background

2.1 Background on Federated Learning (FL)

FL is a collaborative machine learning framework in which multiple clients collaborate in

solving a machine learning problem, coordinated by a central server. Unlike traditional centralized

methods, FL does not require clients to share or transfer their raw data. Instead, each client retains

data locally, performing computations on-site to generate model updates, which are then sent to the

central server for aggregation.

This method addresses critical challenges in data privacy, security, and accessibility, making it

particularly well-suited for applications in industries such as healthcare, finance, and telecommunications

where data sensitivity is paramount.

2.1.1 A Typical Federated Training Process

To better understand the operational flow of FL, we consider a typical template for federated

training that includes the Federated Averaging algorithm (FedAvg)by [132], which is foundational

to many FL variations. Pseudocode of FedAvg is given in Algorithm 1. This iterative process,
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managed by a central server, involves the following steps:

Algorithm 1 FedAvg
1: Server executes:

2: initialize x0

3: for each round t = 1, 2, . . . , T do

4: St ← (random set of M clients)

5: for each client i ∈ St in parallel do

6: xi
t+1 ← ClientUpdate(i, xt)

7: end for

8: xt+1 ← 1
M

∑M
k=1 x

i
t+1

9: end for

10: ClientUpdate(i, x):

11: for local step j = 1, . . . , K do

12: x← x− η∇f(x; z) for z ∼ Pi

13: end for

14: return x to server

• Client Selection: The server selects a subset of clients that meet certain criteria for participation.

For instance, mobile devices might only connect if they are plugged in, connected to an

unmetered Wi-Fi network, and idle to avoid user disruption.

• Broadcast: The selected clients receive the current model parameters and a training program,

such as a TensorFlow graph, from the server.

• Client Computation/Local Update: Each client locally trains the model by executing

the training program, often through stochastic gradient descent (SGD) on its local data, as

implemented in FedAvg. This step allows each client to compute updates based on its unique

data.
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• Aggregation: The server gathers updates from the clients and combines them. For efficiency,

updates from slow or inactive clients (stragglers) may be omitted once a sufficient number

of updates have been received. This stage may incorporate additional techniques like

secure aggregation to enhance privacy, lossy compression for communication efficiency,

and differential privacy methods, such as noise addition and update clipping.

• Model Update: Based on the aggregated client updates, the server refines the shared global

model, which is then redistributed to clients in the next round.

This process repeats until the model reaches the desired level of performance or a stopping

criterion defined by the model engineer. Through this approach, FL allows for collaborative model

training without compromising the privacy of individual data sources.

2.1.2 Key Challenges in FL

In typical FL tasks, the objective is to train a single global model that minimizes the empirical

risk across the entire dataset, which consists of the combined data from all clients. Unlike standard

distributed training methods, federated optimization algorithms must address unique challenges, as

shown below:

• Privacy Concerns: Privacy in FL is a critical issue due to potential attacks that can expose

sensitive information from local client data. Although FL enhances privacy by sharing model

updates rather than raw data, it remains vulnerable to various privacy attacks, including

membership inference and model inversion attacks [134, 155, 176]. Recent methods aim to

strengthen privacy in FL systems using techniques such as differential privacy and secure

multi-party computation. However, these privacy-preserving techniques often come at the cost
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of reduced model performance or system efficiency. Balancing these trade-offs is essential

for achieving optimal privacy without compromising the effectiveness of the FL solution.

• Statistical Heterogeneity / Non-IID Data: In FL, clients often have data distributions that

differ significantly from each other (non-IID data). This heterogeneity can degrade the

performance of standard FL methods. In particular, heterogeneous settings can introduce a

drift in the updates of each client resulting in slow and unstable convergence.

• System Heterogeneity: In FL, there exist significant variations in hardware, network

connectivity, and computational resources across client devices, which can range from high-

performance servers to resource-constrained mobile phones. This variability poses challenges

such as inconsistent device availability, computational disparity, and network variability, all of

which can slow down model convergence and impact efficiency. Clients may be intermittently

unavailable due to battery constraints or connectivity issues, and slower devices can create

straggler problems, forcing the server to wait or drop updates, potentially losing valuable

information. Therefore, it is crucial to design efficient methods to mitigate these issues and

ensure robust and effective FL deployment across diverse environments.

• Communication Cost: Communication in FL is a major bottleneck, as resource-constrained

clients may find it costly to send and receive large model updates. Reducing the number of

communication rounds and the size of transmitted data packets is crucial to make FL more

efficient. However, this often involves a trade-off between communication cost and model

accuracy. For example, techniques designed to speed up convergence or compress the model

size may slightly reduce accuracy. Therefore, it is very important to design some efficient FL

algorithms which can manage this trade-off.

As discussed in [84], FedAvg suffers from the “client-drift” phenomenon and can not effectively
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address the aforementioned challenges. In Chapter 3, we will introduce our proposed methods to

enhance model accuracy, efficiency, and privacy in FL.

2.2 Background on the Linear Quadratic Regulator (LQR)

The Linear Quadratic Regulator (LQR) [6] is a foundational method in control theory for

designing optimal controllers for linear systems. The goal of an LQR controller is to determine

the control input that minimizes a cost function, balancing control effort with system performance.

This approach is particularly popular for systems where maintaining stability while minimizing

deviations and control effort is essential, such as in aerospace, robotics, and automotive applications.

In this thesis, we consider the following infinite horizon LQR problem:

minimize E

[
∞∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)]
subject to xt+1 = Axt +But, x0 ∼ D, (2.1)

where the initial state x0 ∼ D is randomly distributed according to a distribution D. The matrices

A ∈ Rd×d and B ∈ Rd×k represent the system (or transition) matrices, while Q ∈ Rd×d and

R ∈ Rk×k are positive definite matrices that parameterize the quadratic costs. Note that the infinite

horizon LQR problem (2.1) is a non-convex problem.

Throughout this thesis, we assume that the matrices A and B are chosen such that the optimal

cost remains finite—this condition is satisfied, for example, if the pair (A,B) is controllable.

According to optimal control theory [6, 45], the optimal control input can be represented as a linear

function of the state:

ut = −K∗xt,

where K∗ ∈ Rk×d. In what follows, we consider two settings–model-based and model free
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setting–to discuss how to find such K.

Model-based Setting: For the infinite-horizon LQR problem, if the system matrices A and B

are known (referred to as the model-based setting) the optimal controller can be achieved by solving

the Algebraic Riccati Equation (ARE):

P = ATPA+Q− ATPB(BTPB +R)−1BTPA, (2.2)

where P is a positive definite matrix that parameterizes the “cost-to-go” (the optimal cost from

a given state onward). The optimal control gain is then given by:

K∗ = −(BTPB +R)−1BTPA. (2.3)

Model-free Setting: If the system matrices A and B are unknown (referred to as the model-

free setting), [187] provided guarantees on the global convergence of policy gradient methods for

model-free LQR. This breakthrough has attracted considerable interest in model-free LQR methods,

leading to a series of subsequent works [65, 71, 80, 82, 102, 129, 140, 152] that further analyze

convergence guarantees and sample complexity within this setting. Notably, [35] provided a detailed

characterization of the sample complexity for the LQR problem.
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Chapter 3

An Efficient Algorithm for Supervised FL

3.1 Introduction

Federated learning (FL) [96, 132], a novel distributed learning paradigm, has attracted significant

attention in the past few years. Federated algorithms take a client/server computation model, and

provide scope to train large-scale machine learning models over an edge-based distributed computing

architecture. In the paradigm of FL, models are trained collaboratively under the coordination

of a central server while storing data locally on the edge/clients. Typically, clients (devices and

entities ranging from mobile phones to hospitals, to an internet of things [83, 141]) are assumed

to be heterogeneous; each client is subject to its own constraints on available computational and

storage resources. By allowing data to be stored client-side, the FL paradigm has many favorable

privacy properties.

In contrast to “traditional” distributed optimization, FL framework has its own unique challenges

and characteristics. First, communication becomes problematic when the number of edge devices/clients

is large, or the connection between the central server and a device is slow, e.g., when the mobile

phones have limited bandwidth. Second, datasets stored in each client may be highly heterogeneous
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in that they are sampled from different population distributions, or the amount of data belonging

to each client is unbalanced. Third, device/client heterogeneity can severely hinder algorithm

performance; differences in hardware, software, and power (connectivity) lead to varying computation

speeds among clients, leading to global performance being dominated by the slowest agent. This is

known as the “straggler” effect. Additionally, the server may lose control over the clients when they

power down or lose connectivity. It is thus common for only a fraction of clients to participate in

in each round of the training (optimization) process, and federated optimization algorithms must

accommodate this partial participation.

A wealth of algorithms have been developed to address the aforementioned challenges. Notably,

work in [132] proposed the now popular FedAvg algorithm, where each client performs multiple

stochastic gradient descent (SGD) steps before sending the model to the server for aggregation.

Subsequent efforts [96, 112, 161, 183, 213] provided theoretical analysis and further empirical

performance evaluations. Since the proposal of FedAvg, there has been a rich body of work

concentrating on developing federated optimization algorithms, such as; FedProx [166], FedSplit [149],

Scaffold [84], FedLin [136], FedDyn [1], FedDR [203] and FedPD [248].

We consider a general unconstrained, composite optimization models formulated as

1

n

n∑
i=1

fi(x) + g(x). (3.1)

No convexity assumptions on fi are made and g can be non-smooth. Of the previously mentioned

federated algorithms, we restrict our attention to FedDR and FedPD. These algorithms are designed

to alleviate the unrealistic assumptions required by FedAvg in order to realize desirable theoretical

convergence rates. As described in [203], FedDR combines the nonconvex Douglas-Rachford

splitting (DRS) algorithm [109] with a randomized block-coordinate strategy. FedDR provably

converges when only a subset of clients participate in any given communication round. In contrast,
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FedPD is a primal-dual algorithm which requires either full participation or no participation by all

clients at every per round. Unlike FedDR, FedPD cannot handle optimization problems of the form

of (3.1) for g ̸≡ 0.

The key observation of this paper is to note that the updating rules of FedPD share a similar

form to those of the alternating direction method of multipliers (ADMM) [57], but specifies how the

local models are updated to satisfy the flexibility need of FL. Motivated by the fact that ADMM is

the dual formulation of DRS [54, 234], we provide a new algorithm called FedADMM. Specifically,

our contributions are:

1. By applying FedDR to the dual formulation of problem (3.1), we propose a new algorithm

called FedADMM, which allows partial participation and solves the federated composite

optimization problems as in [239].

2. When g ≡ 0 in problem (3.1), we find that FedADMM reduces to FedPD but requires only

partial participation.

3. We prove equivalence between FedDR and FedADMM and provide a one-to-one and onto

mapping between the the iterates of both algorithms.

4. We provide convergence guarantees for FedADMM using the equivalence established in point

3.

Since FedADMM is the dual formulation of FedDR, it inherits all the desirable properties from

FedDR. First, it can handle both statistical and system heterogeneity. Second, it allows inexact

evaluation of users’ proximal operators as in FedProx and FedPD. Third, by considering g ̸≡ 0 in

(3.1), more general applications and problems with constraints can be considered [239].

Refer to [211] for all proofs in this Chapter.
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3.1.1 Related Work

ADMM and DRS: DRS was first proposed in [39] in the context of providing numerical

solutions to heat conduction partial differential equations. Subsequently, it found applications in the

solution of convex optimization problems [119, 173] and later non-convex problems [108, 109, 195].

ADMM [19, 63] is a very popular iterative algorithm for solving composite optimization problems.

The equivalence between DRS and ADMM has been subject of a lot of work [44, 56, 234, 250].

It was first established for convex problems where ADMM is equivalent to applying DRS to the

dual problem [44, 56]. Recently, these ideas were extended in [195] to show equivalence in the

non-convex regime. Inspired by the fact that FedDR can be viewed as a variant of nonconvex DRS

applied to the FL framework, we propose a new algorithm, FedADMM and further extend the

equivalence of these two algorithms to the FL paradigm.

Federated Learning: FedAvg was first proposed in [132]. However, it works well only

with a homogeneous set of clients. It is difficult to analyze the convergence of FedAvg for the

heterogeneous setting unless additional assumptions are made [87, 112, 114, 220]. The main

reason for this is that the algorithm suffers from client-drift [252] under objective heterogeneity. To

address the data and system heterogeneity, FedProx [166] was proposed by adding an extra proximal

term [148] to the objective. However, this extra term might degrade the training performance so that

FedProx doesn’t converge to the global or local stationery points unless the step-size is carefully

tuned. Another method called Scaffold [84] uses control variates (or variance reduction) to reduce

client-drift at the cost of increased communication incurred by sending extra variables to the server.

FedSplit [149] applied the operator splitting schemes to remedy the objective heterogeneity issues,

while it only considered the convex problems and required the full participation of clients. As

mentioned earlier, FedDR [203] was inspired from DRS, and allowed partial participation. From the
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primal-dual optimization perspective, FedPD [248] proposed a new concept of participation, which

restricted its potential application on real problems. It is also worthwhile to mention that FedDyn [1]

is equivalent to FedPD [248] from [247] under the full participation setting, but it allows partial

participation. Unlike [239], FedPD and FedDyn can’t solve non-smooth or constrained problems.

Finally, we refer readers to [83] for a comprehensive understanding of the recent advances in FL.

3.2 Preliminaries and Problem Formulation

We consider the canonical Federated learning optimization problem defined as

min
x∈Rd

{
F (x) = f(x) + g(x) ≡ 1

n

n∑
i=1

fi(x) + g(x)

}
(3.2)

where n is the number of clients, fi denotes the loss function associated to the i-th client. Each fi

is nonconvex and Lipschitz differentiable (see Assumptions 2.1 and 2.2 below), and g is a proper,

closed, and convex function and is not necessarily smooth. For example, g could be any ℓp norm or

an indicator function.

Assumption 1. F (x) is bounded below, i.e.,

inf
x∈Rd

F (x) > −∞ and dom(F ) ̸= ∅.

Assumption 2. (Lipschitz differentiability) Each fi(·) in (3.2) has L-Lipschitz gradient, i.e.,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥

for all i ∈ [n] and x, y ∈ Rd.

The notation [n] above defines the set {1, 2, . . . , n}. All the norms in the paper are ℓ2 norm. We

will frequently make use of the proximal operator [148]. Although typically defined for convex

functions, we make no such assumptions.
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Definition 1. (Proximal operator) Given an L-Lipschitz (possibly nonconvex and nonsmooth)

function f , then the proximal mapping Rd → (−∞,∞] is defined as

proxηf (x) = argmin
y

{
f(y) +

1

2η
∥x− y∥2

}
. (3.3)

where parameter η > 0.

If f is nonconvex but L-Lipschitz, proxηf (x) is still well-defined with 0 < η < 1/L.

Definition 2. (Conjugate function) Let f : Rd → R. The function f ∗ : Rd → R defined as

f ∗(y) ≜ sup
x∈dom f

(
yTx− f(x)

)
is called the conjugate function of f .

Note that the conjugate function is closed and convex even when f is not, since it is the piecewise

supremum of a set of affine functions.

Definition 3. (ε-stationarity) A vector x is said to be an ε-stationery solution to (3.2) if

E
[
∥∇F (x)∥2

]
≤ ε2,

where expectation is taken with respect to all random variables in the respective algorithm.

3.3 Douglas-Rachford Algorithm

3.3.1 Douglas-Rachford Splitting

Douglas-Rachford Splitting (DRS) [39] is an iterative splitting algorithm for solving the

optimization problems that can be written as

minimizex∈Rd f(x) + g(x). (3.4)
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Although originally used for solving convex problems, it has been shown to work well on certain

non-convex problems with additional structure. DRS solves problem (3.4) by producing a series of

iterates (yk, zk, xk) for k = 1, 2, . . . given by
yk = proxηf (xk)

zk = proxηg (2yk − xk)

xk+1 = xk + α (zk − yk)

(3.5)

where α is a relaxation parameter. When α = 1, (3.5) is the classical Douglas-Rachford splitting

and when α = 2, (3.5) is a related splitting algorithm called Peaceman-Rachford splitting [151].

If f in problem (3.4) can decomposed as f(x) = 1
n

∑n
i=1 fi(x), then (3.5) can be modified so

as to run in parallel if we include a global averaging step. The resulting algorithm is given below:

yk+1
i = yki + α

(
x̄k − xk

i

)
, ∀i ∈ [n]

xk+1
i = proxηfi

(
yk+1
i

)
, ∀i ∈ [n]

x̂k+1
i = 2xk+1

i − yk+1
i , ∀i ∈ [n]

x̃k+1 = 1
n

∑n
i=1 x̂

k+1
i ,

x̄k+1 = proxηg
(
x̃k+1

)
.

(3.6)

A full derivation is given in [203]. Equation (3.6) is called full parallel Douglas-Rachford splitting

(DRS).

3.3.2 FedDR

Implicit in the full parallel DRS (3.6), is the fact that all users are required to participate at every

iteration. Instead of requiring all users i ∈ [n] to participate as in (3.6), work in [203] proposed an

inexact randomized block-coordinate DRS algorithm, called FedDR. Here, a subset Sk of clients is

sampled from a “proper” sampling scheme Ŝ (See Definition 4 below for details) at each iteration.
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Each client, i ∈ Sk performs a local update (i.e., executes the first three steps in (3.6)), then sends

its local model to server for aggregation. Each client i /∈ Sk does noting. The complete FedDR

algorithm is shown in Alg 2.

Algorithm 2 FL with Randomized DR (FedDR) [203]

1: Initialize x0, η, α > 0, K, and tolerances ϵi,0 ≥ 0.

2: Initialize the server with x̄0 = x0 and x̃0 = x0

3: Initialize each client i ∈ [n] with y0i = x0, x0
i ≈ proxnfi (y

0
i ) , and x̂0

i = 2x0
i − y0i .

4: for k = 0, . . . , K do

5: Randomly sample Sk ⊆ [n] with size S.

6: ▷ User side

7: for each user i ∈ Sk do

8: receive x̄k from the server.

9: choose ϵi,k+1 ≥ 0 and update

10: yk+1
i = yki + α

(
x̄k − xk

i

)
,

11: xk+1
i ≈ proxηfi

(
yk+1
i

)
,

12: x̂k+1
i = 2xk+1

i − yk+1
i .

13: send ∆x̂k
i = x̂k+1

i − x̂k
i back to the server .

14: end for

15: ▷ Server side

16: aggregation x̃k+1 = x̃k + 1
n

∑
i∈Sk

∆x̂k
i

17: update x̄k+1 = proxηg
(
x̃k+1

)
18: end for

Convergence to an ϵ-stationary point of FedDR is guaranteed when the sampling scheme Ŝ is

proper and Assumption 1 and 2 hold [203].

Definition 4. Let p = (p1, p2, · · · , pn), where pi = P(i ∈ Ŝ). If pi > 0 for all i ∈ [n], we call the

sampling scheme Ŝ proper, i.e., every client has a nonzero probability to be selected.
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Assumption 3. All partial participation algorithms in this paper use a proper sampling scheme.

From the analysis in [164], this assumption includes a lot of sampling schemes such as non-

overlapping uniform and doubly uniform sampling as special cases. The intuition behind proper

sampling is to ensure that on average every client has a chance to be selected at every iteration.

In FedDR there are three variables that get updated: x̄k, xk
i and yki . The variable x̄k denotes the

consensus/average variable to minimize the global model F , xk
i denotes the local variable associated

to fi, while yki measures the distance between the global variable x̄k and local model xk
i . To account

for the limitations on computation resources for local users, FedDR allows the inexact calculation

of the proximal step, i.e.,

xk+1
i ≈ proxηfi

(
yk+1
i

)
⇐⇒

∥∥xk+1
i − proxηfi

(
yk+1
i

)∥∥ ≤ ϵi,k+1.

Thus ≈ defines an ϵ-close solution. After local clients i ∈ Sk update their model and send them

back to the server, the server aggregates the updates to update the global model by executing line 16

and 17 in Algorithm 2.

3.4 From FedDR to FedADMM

Our first contribution is to derive the FedADMM algorithm from FedDR.

3.4.1 An equivalent formulation

We begin by rewriting problem (3.2) as the equivalent constrained problem:

min
x∈Rnd,x̄

{
F (x) =

1

n

n∑
i=1

fi(xi) + g(x̄)

}
s.t. Indx = 1x̄

(3.7)
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where x =
[
xT
1 , x

T
2 , · · · , xT

n

]T ∈ Rnd, Id is the d× d identity matrix, and 1 = [Id · · · Id]T . Here x̄

should be interpreted as the global consensus variable.

Forming the Lagrangian of (3.7) and using the definition of the conjugate function, the dual

formulation of (3.7) is

max
z∈Rnd

{
F ∗(z) = −f ∗(−Indz)− g∗(1T z)

}
(3.8)

where z =
[
zT1 , z

T
2 , · · · , zTn

]T ∈ Rnd is the vector of dual variables. Problem (3.8) is clearly

equivalent to

min
z1,z2,···,zn

{
1

n

n∑
i=1

f ∗
i (−zi) + g∗

(
n∑
i

zi

)}
. (3.9)

Before proceeding to develop an algorithm for solving (3.9), we first rewrite the full parallel

DRS algorithm 3.6. Changing the execution order of (3.6) and choosing α = 1 give

x̂k
i = 2xk

i − yki , ∀i ∈ [n]

x̃k = 1
n

∑n
i=1 x̂

k
i , ∀i ∈ [n]

x̄k = proxηg
(
x̃k
)
,

xk+1
i = proxηfi

(
yki + x̄k − xk

i

)
, ∀i ∈ [n]

yk+1
i = yki + x̄k − xk

i , ∀i ∈ [n].

(3.10)

Introducing the change of variables wk
i = xk

i − yki , we have the following parallel DR algorithm

x̂k
i = xk

i + wk
i , ∀i ∈ [n]

x̃k = 1
n

∑n
i=1 x̂

k
i , ∀i ∈ [n]

x̄k = proxηg
(
x̃k
)
,

xk+1
i = proxηfi

(
x̄k − wk

i

)
, ∀i ∈ [n].

wk+1
i = wk

i + xk+1
i − x̄k, ∀i ∈ [n]

(3.11)

Remark 1. Note that (3.6),(3.10) and (3.11) are essentially the same parallel algorithm under a

change of execution order and variables.
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3.4.2 FedDR-II

From section 3.3, we observe that the only difference between full parallel DRS and FedDR

is that FedDR only requires a subset of clients to update their variables, while full parallel DRS

requires full participation. Similarly, by only considering partial participation in (3.11), we introduce

the intermediate FedDR-II algorithm. We now describe each step of a single epoch of FedDR-II:

1. Initialization: Given an initial vector x0 ∈ dom(F ) and tolerances ϵi,0 ≥ 0. Initialize the

server with x̄0 = x0. Initialize all users i ∈ [n] with w0
i = 0 and x0

i = x0.

2. The k-th iteration: (k ≥ 0) Sample a proper subset Sk ⊆ [n] so that Sk represents the subset

of active clients.

3. Client update (Local): For each client i ∈ Sk, update x̂k
i = xk

i + wk
i . Clients i /∈ Sk do

nothing, i.e. 
x̂k
i = x̂k−1

i

xk
i = xk−1

i

wk
i = wk−1

i

4. Communication: Each user i ∈ Sk sends only x̂k
i to the server.

5. Server update: The server aggregates x̃k = 1
n

∑n
i=1 x̂

k
i , and then compute x̄k = proxηg

(
x̃k
)
.

6. Communication (Broadcast): Each user i ∈ Sk receives x̄k from the server.

7. Client update (Local): For each user i ∈ Sk, given ϵi,k+1 ≥ 0, it updates xk+1
i ≈ proxηfi

(
x̄k − wk

i

)
wk+1

i = wk
i + xk+1

i − x̄k.

Each user i /∈ Sk does nothing, i.e.  wk+1
i = wk

i

xk+1
i = xk

i
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Remark 2. FedDR and FedDR-II are equivalent because they are partial participation version of

(3.6) and (3.11) respectively.

3.4.3 Solving the dual problem using FedDR-II

In this subsection, we use FedDR-II to solve the dual problem (3.9), introducing a new algorithm

called FedADMM. We call this algorithm FedADMM because it is derived from applying FedDR-II

to the dual problem (3.9). Let us define the augmented Lagrangian functions associated to (3.7) as

Li(xi, x̄
k, zi) = fi (xi) + g(x̄k) +

〈
zki , xi − x̄k

〉
+

η

2

∥∥xi − x̄k
∥∥2 (3.12)

where η denotes penalty parameter. Finally, we define ∆x̂k
i = x̂k+1

i − x̂k
i . With everything defined,

FedADMM is shown in Algorithm 3.

When g ≡ 0, the server-side steps 15-16 of FedADMM reduce to the single step:

x̄k+1 = x̃k+1 = x̃k +
1

n

∑
i∈Sk

∆x̂k
i =

1

n

n∑
i=1

x̂k+1
i .

In this case, the updating rules of FedADMM are essentially the same as FedPD in [248]. Both

compute the local model xk+1
i by first minimizing (3.12), followed by updating the dual variable

λk+1
i , and then aggregating x̂k+1

i to achieve the global model x̄k+1. However, FedADMM allows for

partial participation (only chooses a subset of clients to update) while FedPD requires all clients

to update at each communication rounds, making it less practical and applicable in real world

scenarios.

Note that FedADMM can handle the case where g ̸≡ 0 whereas FedPD didn’t consider this more

general formulation. Just like step 11 (approximately evaluating proxηfi) in FedDR, FedADMM

obtains the new local model xk+1
i by inexactly solving (3.12). Note that we do not specify how to

(approximately) solve the proximal steps or Langrangian minimization step in (either) algorithm.

Various oracles are specified in [248].
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Algorithm 3 Federated ADMM Algorithm (FedADMM)

1: Initialize x0, η > 0, K, and tolerances ϵi,0(i ∈ [n]).

2: Initialize the server with x̄0 = x0

3: Initialize all clients with z0i = 0 and x0
i = x̂0

i = x0.

4: for k = 0, . . . , K do

5: Randomly sample Sk ⊆ [n] with size S.

6: ▷ Client side

7: for each client i ∈ Sk do

8: receive x̄k from the server.

9: xk+1
i ≈ arg min

xi

Li

(
xi, x̄

k, zki
)

10: zk+1
i = zki + η

(
xk+1
i − x̄k

)
♢Dual updates

11: x̂k+1
i = xk+1

i + 1
η
zk+1
i

12: send ∆x̂k
i = x̂k+1

i − x̂k
i back to the server

13: end for

14: ▷ Server side

15: aggregation x̃k+1 = x̃k + 1
n

∑
i∈Sk

∆x̂k
i

16: update x̄k+1 = proxg/η
(
x̃k+1

)
17: end for
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3.5 Theoretical Analysis

We now present the main theoretical results of the paper. Namely, an equivalence between

FedDR and FedADMM. Based on this, we leverage the FedDR convergence results [203] to show

that FedADMM converges under partial participation.

We say that two iterative optimization algorithms are “equivalent” if they produce sequences

(xk)k≥0 and (yk)k≥0 such that there exists a unique linear mapping between the two sequences.

More general equivalence classes are defined and studied in [251].

Theorem 1. (Equivalence between FedDR and FedADMM) Let (xk
i , z

k
i , x̄

k)k≥0 be a sequence

generated by FedADMM with penalty parameter η, and (ski , u
k
i , û

k
i , v̄

k) a sequence generated by

FedDR with parameter 1
η
. Then FedADMM and FedDR are equivalent.

Proof. For each triplet (xk
i , z

k
i , x̄

k) at the k-th iteration of FedADMM with stepsize η, define

ski = xk
i − zki /η

uk
i = xk

i

ûk
i = xk

i + zki /η

v̄k = x̄k

and



sk+1
i = xk+1

i − zk+1
i /η

uk+1
i = xk+1

i

ûk+1
i = xk+1

i + zk+1
i /η

v̄k+1 = x̄k+1

Then (ski , u
k
i , û

k
i , v̄

k) and (sk+1
i , uk+1

i , ûk+1
i , v̄k+1) satisfy the updating rule of FedDR

sk+1
i = ski + (v̄k − uk

i ), ∀i ∈ Sk,

uk+1
i = proxrfi

(
sk+1
i

)
, ∀i ∈ Sk,

ûk+1
i = 2uk+1

i − sk+1
i , ∀i ∈ Sk,

v̄k+1 = proxrg(
1
n

∑n
i=1 û

k+1
i ),
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where r = 1/η and when i /∈ Sk 
sk+1
i = ski ,

uk+1
i = uk

i ,

ûk+1
i = ûk

i

where the same sampling realizations Sk are used at each iteration for both algorithm.

We have

ski + (v̄k − uk
i ) = xk

i − zki /η + (x̄k − xk
i )

= xk+1
i − zki /η + x̄k − xk+1

i

(a)
= xk+1

i − zk+1
i /η = sk+1

i

where (a) is due to the dual updates (line 10) in FedADMM algorithm. Moreover,

uk+1
i = xk+1

i = arg min
xi

Li

(
xi, x̄

k, zki
)

= proxrfi(x̄
k − zki /η)

(b)
= proxrfi(s

k+1
i )

where (b) uses the fact that x̄k − zki /η = ski + (v̄k − uk
i ) = sk+1

i .

Finally, note that

ûk+1
i = 2uk+1

i − sk+1
i = xk+1

i + zk+1
i /η,

which gives

v̄k+1 = x̄k+1 (c)
= proxrg

(
n∑

i=1

(
xk+1
i +

1

η
zk+1
i

))
= proxrg(

1

n

n∑
i=1

ûk+1
i ) (3.13)

where (c) comes from the FedADMM updating rule (line 11-16 in Alg 3).

Since we have proved the equivalence of FedDR and FedADMM for arbitrary (nonconvex)

problems, FedADMM will directly inherit the convergence properties of FedDR, specifically at rate
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O( 1
k
). The explicit convergence rate of FedADMM is characterized in the following theorem which

is a direct application of Theorem 3.1 in [203].

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold and γ1, γ2, γ3, γ4 > 0 are constants. Let(
xk
i , z

k
i , x̂

k
i , x̄

k
)
k≥0

be generated by Alg 3 (FedADMM) using penalty parameter η that satisfies

η >
4L (1 + 2γ4)√

9− 16γ4 (1 + 4γ4)− 1
.

Then when g ≡ 0, the following holds

1

K + 1

K∑
k=0

E
[∥∥∇f (x̄k

)∥∥2] ≤ C1 [F (x0)− F ⋆]

K + 1
+

1

n(K + 1)

K∑
k=0

n∑
i=1

(
C2ϵ

2
i,k + C3ϵ

2
i,k+1

)
where η̂ = 1/η, β, ρ1, and ρ2 are defined as

β =
p̂[2−(Lη̂+1)−2L2η̂2−4γ4(1+L2η̂2)]

2η̂(1+γ1)(1+L2η̂2)
> 0

ρ2 = 2(1+η̂L)2

γ4η̂
+

(1+η̂2L2)
η̂

+
[2−(Lη̂+1)−2L2η̂2−4γ4(1+L2η̂2)]

2η̂(1+L2η̂2)γ1

ρ1 = ρ2 +
(1+η̂2L2)

η̂

and the constants are

C1 =
2(1 + η̂L)2 (1 + γ2)

η̂2β
, C2 = ρ1C1, C3 = ρ2C1 +

(1 + η̂L)2 (1 + γ2)

η̂2γ2
.

and p̂ = min {pi : i ∈ [n]} > 0 in Assumption 3.

Corollary 1. If the accuracy sequence ϵi,k (for all i ∈ [n] and k > 0) at Step 8 in Alg 3 satisfies

1
n

∑n
i=1

∑K+1
k=0 ϵ2i,k ≤ D for a given constant D > 0 and all K ≥ 0. Then, FedADMM needs

K =

⌊
C1 [F (x0)− F ⋆] + (C2 + C3)D

ε2

⌋
≡ O

(
ε−2
)

iterations to achieve 1
K+1

∑K
k=0 E

[∥∥∇f (x̃k
)∥∥2] ≤ ε2, where x̃K is randomly selected from

{x̄0, x̄1, · · · , x̄K}. In other words, after K = O(ε−2) iterations, x̃K is an ε-stationary solution of

problem (3.2) when g ≡ 0.
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Remark 3. Our convergence analysis can be easily extended to g ̸≡ 0, as long as we change the

suboptimal condition into the gradient mapping as in [203]. To make 1
n

∑n
i=1

∑K+1
k=0 ϵ2i,k ≤ D hold,

interested readers could refer to Remark 3.1 in [203].

Remark 4. Although FedADMM is a partial participation version of FedPD when g ≡ 0, its

communication complexity is still O(ε−2), which matches the lower bound (up to constant factors)

in [248].

3.6 Numerical Simulations

To demonstrate the equivalence of FedDR and FedADMM, we conduct diverse simulations

on both synthetic and real datasets. It is worthwhile to mention that our goal is to show the

equivalence of the algorithms, not to compare their performance with other algorithms. Performance

profiling of FedPD and FedDR can be found in [203, 248]. We have not attempted to optimize any

hyperparameters. All the experiments run on Google Colab with default CPU setup.

Datasets: We first generate synthetic non-iid datasets by following the same setup as in [174] and

denote them as synthetic-(α, β). Here α controls how much local models differ from each other

and β controls how much the local data at each device differs from that of other devices. We run

the experiments by using the unbalanced datasets: synthetic-(0, 0), synthetic-(0.5,

0.5) and synthetic-(1, 1). We then compare FedADMM with FedDR on the FEMNIST

data set [20]. FEMNIST is a more complex 62-class Federated Extended MNIST dataset. It consists

of handwritten characters including: numbers 1-10, 26 upper-and lower-case letters A-Z and a-z

from different writers and is also separated by the writers, therefore the dataset is non-iid.

Models and Hyper-parameters: For all the synthetic datasets, we use the model described in [203]:

a neutral network with a single hidden layer. The network architecture is 60×32×10 corresponding
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to input layer× hidden layer × output layer size. For FEMNIST data, we use the same model

as [20], which consists of 2 convolutional layers and two fully connected layers, with 62 neurons in

the output layer matching the number of classes in the FEMNIST dataset. For all the experiments,

we use η = 1 and α = 1. As in [248], we choose stochastic gradient descent as a local solver with

300 local iterations to solve the step 11 in FedDR and the step 9 in FedADMM. The mini-batch

size in calculating the stochastic gradient is 2 and the learning rate is 0.01. We stress that we do not

attempt to optimize these parameters.

Implementation: We use the uniform sampling scheme to select the clients in each round. The

total number of clients is 30 and we set the number of active clients in each round as 10. To provide

a fair comparison, we use the same random seeds across all algorithms.

After running multiple experiments on different datasets and models, from figure 3.1 and 3.2,

we could observe that the training accuracy and loss of FedDR and FedADMM coincide at each

iteration, which verifies our theoretical analysis in section 3.5.
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Figure 3.1: Identical performance of FedDR and FedADMM in terms of training accuracy and

cross-entropy training loss of FEMNIST dataset



CHAPTER 3. AN EFFICIENT ALGORITHM FOR SUPERVISED FL 35

0 25 50 75 100 125 150 175 200
epochs

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

FedDR
FedPD

(a) synthetic(0,0)

accuracy

0 25 50 75 100 125 150 175 200
epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ac
cu

ra
cy

FedDR
FedPD

(b) synthetic(0.5,0.5)

accuracy

0 25 50 75 100 125 150 175 200
epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

ac
cu

ra
cy

FedDR
FedPD

(c) synthetic(1,1)

accuracy

0 25 50 75 100 125 150 175 200
epochs

4

6

8

10

12

14

16

lo
ss

FedDR
FedPD

(d) synthetic(0,0) loss

0 25 50 75 100 125 150 175 200
epochs

6

8

10

12

14
lo

ss
FedDR
FedPD

(e) synthetic(0.5, 0.5)

loss

0 25 50 75 100 125 150 175 200
epochs

6

8

10

12

14

16

18

lo
ss

FedDR
FedPD

(f) synthetic(1,1) loss

Figure 3.2: Identical performance of FedDR and FedADMM in terms of training accuracy and

cross-entropy training loss of synthetic datasets.

3.7 Chapter Summary

We have developed a new federated learning algorithm, FedADMM, for finding stationary

points in non-convex composite optimization problems. Current work is focused on incorporating

convex constraints into the algorithm, proposing an asynchronous algorithm, asyncFedADMM, and

applying it to non-localizable model predictive control problems where communication efficiency is

necessary [5].
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Chapter 4

Federated Learning for Policy Evaluation

4.1 Introduction

In the popular federated learning (FL) paradigm [95, 133], a set of agents aim to find a common

statistical model that explains their collective observations. The motivation to collaborate stems from

the fact that if the underlying distributions generating the agents’ observations are “similar”, then

each agent can end up learning a “better” model than if it otherwise used just its own data. This idea

has been formalized by the canonical FL algorithm FedAvg (and its many variants) where agents

communicate local models via a central server while keeping their raw data private. To achieve

communication-efficiency - a key consideration in FL - the agents perform multiple local model-

updates between two successive communication rounds. There is a rich literature that analyzes the

performance of FedAvg, focusing primarily on the aspect of statistical heterogeneity that originates

from differences in the agents’ underlying data distributions [23, 84, 89, 135, 137, 150, 226].

Notably, the above works focus on supervised learning problems that are modeled within the

framework of distributed optimization. However, for sequential decision-making with multiple

agents interacting with potentially different environments, little to nothing is known about the effect
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of heterogeneity. This is the gap we seek to fill with our work.

The recent survey paper by [157] describes a federated reinforcement learning (FRL) framework

which incorporates some of the key ideas from FL in reinforcement learning (RL); applications

of FRL in robotics [121], autonomous driving [25], and edge computing [221] are discussed in

detail in this paper. As RL algorithms often require many samples to achieve acceptable accuracy,

FRL aims to achieve sample-efficiency by leveraging information from multiple agents interacting

with similar environments. Importantly, as in standard FL, the FRL framework requires agents to

keep their personal experiences (e.g., rewards, states, and actions) private, and adhere to stringent

communication constraints. While FRL is a promising idea, to model realistic scenarios, one needs

to account for the crucial fact that different agents may interact with non-identical environments.

Indeed, just as statistical heterogeneity is a major challenge in FL, environmental heterogeneity is

identified as a key open challenge in FRL [157].

To tackle this challenge, we focus on a policy evaluation problem. Our setup involves N agents

where each agent interacts with an environment modeled as a MDP. The agents’ MDPs share the

same state and action space but have different reward functions and state transition kernels, thereby

capturing environmental heterogeneity. Each agent seeks to compute the discounted cumulative

reward (value function) associated with a common policy µ. Notably, the value functions induced by

µ may differ across environments. This leads to the central question we investigate: Can an agent

expedite the process of learning its own value function by leveraging information from potentially

different MDPs? This is a non-trivial question since the effect of combining data from non-identical

MDPs is poorly understood.

A typical application of the above FRL setup is that of an autonomous driving system where

vehicles in different geographical locations share local models capturing their learned experiences

to train a shared model that benefits from the collective exploration data of all vehicles. Although
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the vehicles (agents) essentially have the same operations (e.g., steering, braking, accelerating, etc.),

they can be exposed to different environments (e.g., road and weather conditions, routes, driving

regulations etc.). This is precisely what contributes to environmental heterogeneity.

Refer to [192] for all proofs in this Chapter.

4.1.1 Our Contributions

We study a federated version of the temporal difference (TD) learning algorithm TD(0) [188].

The structure of this algorithm, which we call FedTD(0), is as follows. At each iteration, each

agent plays an action according to the policy µ, observes a reward, and transitions to a new state

based on its own MDP. It then uses TD(0) with linear function approximation to update a local

model that approximates its own value function. To (potentially) benefit from other agents’ data

in a communication-efficient manner, each agent periodically synchronizes with a central server,

and performs multiple local updates in between. Notably, as in FL, agents only exchange models

but never their personal observations. We perform a comprehensive analysis of FedTD(0) under

environmental heterogeneity, and make the following contributions:

Effect of heterogeneity on TD(0) fixed points. Towards understanding the behavior of FedTD(0),

we start by asking: How does heterogeneity in the transition kernels and reward functions of MDPs

manifest into differences in the long-term behavior of TD(0) (with linear function approximation)

on such MDPs? Theorem 1 provides an answer by characterizing how perturbing a MDP perturbs

the TD(0) fixed point for that MDP. To arrive at this result, we combine results from the perturbation

theories of Markov chains and linear equations. Theorem 1 establishes the first perturbation result

for TD(0) fixed points, and complements results of a similar flavor in the RL literature such as the

Simulation Lemma [85].
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The Virtual MDP framework. In FL algorithms such as FedAvg, the average of the negative

gradients of the agents’ loss functions drives the iterates of FedAvg towards the minimizer of a

global loss function. In our setting, there is no such global loss function. So by averaging TD(0)

update directions of different MDPs, where do we end up? To answer this question, we construct a

virtual MDP in Section 4.3.2, and characterize several important properties of this fictitious MDP

that aid our subsequent analysis. Along the way, we derive a simple yet key result (Proposition 1)

pertaining to convex combinations of Markov matrices associated with aperiodic and irreducible

Markov chains; this result may be of independent interest.

Analysis under an i.i.d. assumption. To isolate the effect of heterogeneity and build intuition,

we start by analyzing FedTD(0) under a standard i.i.d. assumption in the RL literature [13, 34, 38].

After T communication rounds with K local model-updating steps per round, we prove that

FedTD(0) guarantees convergence at a rate of Õ(1/NKT ) to a neighborhood of each agent’s

optimal linear approximation parameter; see Theorem 2. The size of the neighborhood depends on

the level of heterogeneity in the agents’ MDPs. The key implication of this result is that in a low-

heterogeneity regime, each agent can enjoy an N -fold speed-up in convergence via collaboration.

To prove this result, we introduce a new analysis technique that combines the virtual MDP idea with

the optimization interpretation of TD(0) dynamics in [13]. An important benefit of this technique is

that it highlights the connections between the dynamics of FedTD(0) and standard FL algorithms,

allowing one to leverage existing FL optimization proofs for federated RL.

Bias introduced by Heterogeneity. Our convergence result in Theorem 2 features a bias term

due to heterogeneity that cannot be eliminated even by making the step-size arbitrarily small. Is

such a term unavoidable? We explore this question in Theorem 3 by studying a “steady-state”
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deterministic version of FedTD(0). Even for this simple case, we prove that a bias term depending

on a natural measure of heterogeneity shows up inevitably in the long-term dynamics of FedTD(0).

Moreover, unlike the standard FL setting where the effect of heterogeneity manifests itself only

when the number of local steps K is strictly greater than 1 [23], the bias term in Theorem 3 persists

even when K = 1. This reveals a key difference between our setting and federated optimization.

Analysis for the Markovian setting. Our most significant contribution is to provide the first

analysis of a federated RL algorithm (FedTD(0)) that simultaneously accounts for linear function

approximation, Markovian sampling, multiple local updates, and heterogeneity. The effect of

heterogeneity coupled with complex temporal correlations makes this setting challenging to analyze.

Nonetheless, in Theorem 4, we prove that one can essentially recover the same guarantees as in the

i.i.d. setting (Theorem 2). Our result complements the myriad of federated optimization results that

account for heterogeneity [89, 226].

We now briefly discuss most directly related work; a detailed description is given in the

Appendix.

Related Work. In [38, 122], the authors analyze multi-agent TD learning with linear function

approximation over peer-to-peer networks. Neither approach accounts for local steps nor Markovian

sampling. Very recently, the authors in [91] do study the effect of Markovian sampling for federated

TD learning. However, all of the above papers consider a homogeneous setting with identical MDPs

for all agents. The only paper we are aware of that performs any theoretical analysis of heterogeneity

in FRL is [78]. However, their analysis is limited to the much more simpler tabular setting with no

function approximation.
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4.2 Model and Problem Formulation

Our RL setting is based on a Markov Decision Process (MDP) [188] defined by the tuple

M = ⟨S,A,R,P , γ⟩, where S is a finite state space of size n, A is a finite action space, P is a

set of action-dependent Markov transition kernels, R is a reward function, and γ ∈ (0, 1) is the

discount factor. We consider the problem of evaluating the value function Vµ of a given policy

µ, where µ : S → A. The policy µ induces a Markov reward process (MRP) characterized by a

transition matrix Pµ, and a reward function Rµ. Under the action of the policy µ at an initial state

s, Pµ(s, s
′) is the probability of transitioning from state s to state s′, and Rµ(s) is the expected

instantaneous reward. The discounted expected cumulative reward obtained by playing policy µ

starting from initial state s is:

Vµ(s) = E

[
∞∑
t=0

γtRµ(st)|s0 = s

]
,

where st is the state of the Markov chain at time t. From [205], we know that Vµ is the fixed point

of the Bellman operator Tµ : Rn → Rn, i.e., TµVµ = Vµ, where for any V ∈ Rn,

(TµV )(s) = Rµ(s) + γ
∑
s′∈S

Pµ(s, s
′)V (s′), ∀s ∈ S.

TD learning with linear function approximation. We consider the setting where the number of

states is very large, making it practically infeasible to compute the value function Vµ directly. To

mitigate the curse of dimensionality, a common approach [188] is to consider a low-dimensional

linear function approximation of the value function Vµ. Let {Φk}dk=1 be a set of d linearly

independent basis vectors in Rn, and Φ ∈ Rn×d be a matrix with these basis vectors as its columns,

i.e., the k-th column of Φ is Φk. A parametric approximation V̂θ of Vµ in the span of {Φk}dk=1 is

then given by V̂θ = Φθ, where θ ∈ Rd is a parameter vector to be learned. Notably, this is tractable

since d≪ n. We denote the s-th row of Φ by ϕ(s) ∈ Rd, and refer to it as the fixed feature vector
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corresponding to state s. We write V̂θ(s) = ϕ(s)⊤θ and make the standard assumption [13] that

∥ϕ(s)∥2 ≤ 1,∀s ∈ S.

The objective is to find the best linear approximation of Vµ in the span of {Φk}dk=1. More

precisely, we seek a parameter vector θ∗ that minimizes the distance between V̂θ and Vµ (in a suitable

sense). When the underlying MDP is unknown, one of the most popular techniques to achieve this

goal is the classical TD(0) algorithm. TD(0) starts from an initial guess θ0 ∈ Rd. Subsequently, at

the t-th iteration, upon playing the given policy µ, a new data tuple Ot = (st, rt = Rµ(st), st+1)

comprising of the current state, the instantaneous reward, and the next state is observed. Let us

define the TD(0) update direction as

gt(θt) ≜
(
rt + γϕ (st+1)

⊤ θt − ϕ (st)
⊤ θt

)
ϕ (st) .

Using a step-size αt ∈ (0, 1), the parameter θt is then updated as θt+1 = θt + αtgt(θt). Under some

mild technical assumptions, it was shown in [205] that the TD(0) iterates converge asymptotically

almost surely to a vector θ∗, where θ∗ is the unique solution of the projected Bellman equation

ΠDTµ(Φθ
∗) = Φθ∗. Here, D is a diagonal matrix with entries given by the elements of the stationary

distribution π of the Markov matrix Pµ. Furthermore, ΠD(·) is the projection operator onto the

subspace spanned by {ϕk}dk=1 with respect to the inner product ⟨·, ·⟩D.1

Objective. We study a multi-agent RL problem where agents interact with similar, but non-

identical MDPs that share the same state and action space. All agents seek to evaluate the same

policy. Our goal is to understand: Can an agent evaluate the value function of its own MDP in

a more sample-efficient way by leveraging data from other agents? Answering this question is

non-trivial since one needs to (i) model heterogeneity in the agents’ MDPs; and (ii) understand

1We will use ∥·∥2D to denote the quadratic norm xTDx induced by the positive definite matrix D, and ∥·∥ to

represent the standard Euclidean norm for vectors and ℓ2 induced norm for matrices.
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the effects of such heterogeneity on the convergence of algorithms that combine information from

non-identical MDPs. Existing FL analyses that study statistical heterogeneity in supervised learning

fall short of resolving the above issues, since our problem does not involve minimizing a static loss

function. In the next section, we will formally introduce our setup and the key ideas needed for our

subsequent analysis.

4.3 Heterogeneous Federated RL

We consider a federated reinforcement learning setting comprising of N agents that interact

with potentially different environments. Agent i’s environment is characterized by the following

MDP:M(i) = ⟨S,A,R(i),P(i), γ⟩. While all agents share the same state and action space, the

reward functions and state transition kernels of their environments can differ. We focus on a

policy evaluation problem where all agents seek to evaluate a common policy µ that induces N

Markov reward processes characterized by the tuples {P (i)
µ , R

(i)
µ }i∈[N ].2 Agent i aims to find a

linearly parameterized approximation of its value function V
(i)
µ . Trivially, agent i can do so without

interacting with any other agent by employing the TD(0) algorithm. However, the key question

we ask is: By using data from other agents, can it achieve a desired level of approximation with

fewer samples relative to when it acts alone? Naturally, the answer to the above question depends

on the level of heterogeneity in the agents’ MDPs. Accordingly, inspired by notions of bounded

heterogeneity in federated supervised learning [167], we make the following assumptions.

Assumption 1. (Markov Kernel Heterogeneity) There exists an ϵ > 0 such that for all agents

i, j ∈ [N ], it holds that |P (i)(s, s′)−P (j)(s, s′)| ≤ ϵ|P (i)(s, s′)|,∀s, s′ ∈ S . Here, for each i ∈ [N ],

P (i)(s, s′) represents the (s, s′)-th element of the matrix P (i).

2For simplicity of notation, we will henceforth drop the dependence of P (i) and R(i) on the policy µ.
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Assumption 2. (Reward Heterogeneity) There exists an ϵ1 > 0 such that for all i, j ∈ [N ], it holds

that ∥R(i) −R(j)∥ ≤ ϵ1.

Clearly, smaller values of ϵ and ϵ1 capture more similarity in the agents’ MDPs. In line with the

standard communication architecture in FL [95, 133], suppose all agents can exchange information

via a central server. Via such communication, the standard FL task is to find one common model

that explains the data of all agents. In a similar spirit, our goal is to find one common parameter

θ such that V̂θ = Φθ approximates each V
(i)
µ , i ∈ [N ]. There is a natural tension here. While

using data from multiple agents can help find an approximate model quickly, such a model may

not accurately capture the value function of any agent if the agents’ MDPs are very dissimilar. So

does more data help or hurt? It turns out that to answer the above question, we need to carefully

understand how the structural heterogeneity assumptions on the MDPs (namely, Assumptions 1 and

2) manifest into differences in the long-term dynamics of TD(0) on these MDPs. In the sequel, we

will comprehensively explore this topic.

4.3.1 Impact of Heterogeneity on TD fixed points

Intuitively, if the MRPs induced by a common policy for two different environments are similar,

then the long-term behavior of TD(0) on these two MRPs should also be similar. In particular,

the TD(0) fixed points of these MRPs should be close. As we shall see later, characterizing

this “closeness” in TD(0) fixed points will play a key role in understanding how environmental

heterogeneity affects the behavior of a federated TD algorithm. To proceed, we make the following

standard assumption.

Assumption 3. For each i ∈ [N ], the Markov chain induced by the policy µ, corresponding to the

state transition matrix P (i), is aperiodic and irreducible.
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The above assumption implies the existence of a unique stationary distribution π(i) for each

i ∈ [N ]; let D(i) be a diagonal matrix with the entries of π(i) on its diagonal. For each agent i,

we then use θ∗i to denote the solution of the projected Bellman equation ΠD(i)T
(i)
µ (Φθ∗i ) = Φθ∗i for

agent i. In words, θ∗i is the best linear approximation of V (i)
µ in the span of {ϕk}dk=1. Based on

the discussion in Section 4.2, we know that the iterates of TD(0) on agent i’s MRP will converge

asymptotically (almost surely) to θ∗i . Our goal is to provide a bound on the gap ∥θ∗i − θ∗j∥ as a

function of the heterogeneity parameters ϵ and ϵ1 appearing in Assumptions 1 and 2. The key

observation we will exploit is that for each i ∈ [N ], θ∗i is the unique solution of the linear equation

Āiθ
∗
i = b̄i, where Āi = Φ⊤D(i)(Φ − γP (i)Φ) and b̄i = Φ⊤D(i)R(i). For an agent j ̸= i, viewing

Āj and b̄j as perturbed versions of Āi and b̄i, we can now appeal to results from the perturbation

theory of linear equations [73, Chapter 5.8] to bound ∥θ∗i − θ∗j∥. To that end, we first recall a result

from the perturbation theory of Markov chains [145] which shows that under Assumption 1, the

stationary distributions π(i) and π(j) are close for any pair i, j ∈ [N ].

Lemma 1. Suppose Assumption 1 holds. Then, for any pair of agents i, j ∈ [N ], the stationary

distributions π(i) and π(j) satisfy:

∥π(i) − π(j)∥1 ≤ 2(n− 1)ϵ+O(ϵ2). (4.1)

We will now use the bound on ∥π(i) − π(j)∥1 in Lemma 1 to bound ∥Āi − Āj∥ and ∥b̄i − b̄j∥.

To state our results, we make the standard assumption that for each i ∈ [N ], it holds that |R(i)(s)|≤

Rmax,∀s ∈ S , i.e., the rewards are uniformly bounded. In [205], it was shown that−Āi is a negative

definite matrix; thus, there exists some δ1 > 0 such that ∥Āi∥ ≥ δ1 holds for every agent i ∈ [N ].

We also assume that there exists a constant δ2 > 0 such that ∥b̄i∥ ≥ δ2,∀i ∈ [N ]. We have the

following result on the perturbation of TD(0) fixed points.

Theorem 1. (Perturbation bounds on TD(0) fixed points) For all i, j ∈ [N ], we have:
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(i) ∥Āi − Āj∥ ≤ A(ϵ) ≜ γ
√
nϵ+ (1 + γ)[2(n− 1)ϵ+O(ϵ2)].

(ii) ∥b̄i − b̄j∥ ≤ b(ϵ, ϵ1) ≜ Rmax (2(n− 1)ϵ+O(ϵ2)) +O(ϵ1).

(iii) Suppose ∃H > 0 such that ∥θ∗i ∥ ≤ H , ∀i ∈ [N ]. Let κ(Āi) denote the condition number of

Āi. Then:

∥θ∗i − θ∗j∥ ≤ Γ(ϵ, ϵ1) ≜ max
i∈[N ]

{
κ(Āi)H

1− κ(Āi)
A(ϵ)
δ1

(
A(ϵ)

δ1
+

b(ϵ, ϵ1)

δ2

)}
.

Discussion. Theorem 1 reveals how heterogeneity in the rewards and transition kernels of MDPs

can be mapped to differences in the limiting behavior of TD(0) on such MDPs from a fixed-point

perspective. It formalizes the intuition that if the level of heterogeneity - as captured by ϵ and ϵ1 - is

small, then so is the gap in the TD(0) limit points of the agents’ MDPs. This result is novel, and

complements similar perturbation results in the RL literature such as the Simulation Lemma [85].3

In what follows, we will introduce the key concept of a virtual MDP, and build on Theorem 1 to

relate properties of this virtual MDP to those of the agents’ individual MDPs.

4.3.2 Virtual Markov Decision Process

One of the main goals of our paper is to draw explicit parallels between federated optimization

and FRL. Doing so would enable us to apply the rich set of ideas and techniques developed in

standard FL to our setting. However, drawing such parallels requires some effort. In a standard

FL setting, the goal is to typically minimize a global loss function f(x) = (1/N)
∑

i∈[N ] fi(x)

composed of the local loss functions of N agents; here, fi(x) is the local loss function of agent i. In

FL, due to heterogeneity in the agents’ loss functions, there is a “drift” effect [21, 84]: the local

3The simulation lemma tells us that if two MDPs with the same state and action spaces are similar, then so are the

value functions induced by a common policy on these MDPs.
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iterates of each agent i drift towards the minimizer of fi(x). However, when the heterogeneity is

moderate, the average of the agents’ iterates converges towards the minimizer of f(x). To develop

an analogous theory for FRL, we need to first answer: When we average TD(0) update directions

from different MDPs, where does the average TD(0) update direction lead us? It is precisely to

answer this question that we introduce the concept of a virtual MDP.

To model a virtual environment that captures the “average” of the agents’ individual environments,

we construct MDP M̄ = ⟨S,A, R̄, P̄ , γ⟩, where

P̄ = (1/N)
N∑
i=1

P(i), and R̄ = (1/N)
N∑
i=1

R(i).

Note that the virtual MDP is a fictitious MDP that we construct solely for the purpose of analysis,

and it may not coincide with any of the agents’ MDPs, in general.

Properties of the Virtual MDP. When applied to M̄, let the policy µ that we seek to evaluate

induce a virtual MRP characterized by the tuple {P̄ , R̄}. It is easy to verify that P̄ = (1/N)
∑N

i=1 P
(i), and R̄ =

(1/N)
∑N

i=1R
(i). The following result shows how the virtual MRP inherits certain basic properties

from the individual MRPs; the result is quite general and may be of independent interest.

Proposition 1. Let {P (i)}Ni=1 be a set of Markov matrices associated with Markov chains that share

the same states, and are each aperiodic and irreducible. Then, for any set of weights {wi}Ni=1

satisfying wi ≥ 0,∀i ∈ [N ] and
∑

i∈[N ] wi = 1, the Markov chain corresponding to the matrix∑
i∈[N ] wiP

(i) is also aperiodic and irreducible.

The above result immediately tells us that the Markov chain corresponding to P̄ is aperiodic and

irreducible. Thus, there exists an unique stationary distribution π̄ of this Markov chain; let D̄ be the

corresponding diagonal matrix. As before, let us define Ā ≜ Φ⊤D̄(Φ − γP̄Φ), b̄ ≜ Φ⊤D̄R̄, and



CHAPTER 4. FEDERATED LEARNING FOR POLICY EVALUATION 48

use θ∗ to denote the solution to the equation Āθ∗ = b̄. Our next result is a consequence of Theorem

1, and characterizes the gap between θ∗i and θ∗, for each i ∈ [N ].

Proposition 2. Fix any i ∈ [N ]. Using the same definitions as in Theorem 1, we have ∥Āi − Ā∥ ≤

A(ϵ), ∥b̄i − b̄∥ ≤ b(ϵ, ϵ1) and ∥θ∗i − θ∗∥ ≤ Γ(ϵ, ϵ1).

We will later argue that the federated TD algorithm (to be introduced in Section 4.4) converges to

a ball centered around the TD(0) fixed point θ∗ of the virtual MRP. Proposition 2 is thus particularly

important since it tells us that in a low-heterogeneity regime, by converging close to θ∗, we also

converge close to the optimal parameter θ∗i that minimizes the projected Bellman error for MDP

M(i). This justifies studying the convergence behavior of FedTD(0) on the virtual MRP. We end

this section with a result which follows in part from Proposition 1.

Proposition 3. For the virtual MRP, the following hold: (i) λmax(Φ
⊤D̄Φ) ≤ 1; and (ii) ∃ ω̄ > 0 s.t.

λmin(Φ
⊤D̄Φ) ≥ ω̄.

4.4 Federated TD Algorithm

In this section, we describe the FedTD(0) algorithm, a federated version of TD(0). We outline its

steps in Algo. 4. The goal of FedTD(0) is to generate a model θ such that V̂θ is a good approximation

of each agent i’s value function V
(i)
µ , corresponding to the policy µ. In line with both standard FL

algorithms, and also works in MARL/FRL (in homogeneous settings) [38, 91], the agents keep their

raw observations (i.e., their rewards, states, and actions) private, and only exchange local models.

FedTD(0) starts from a common initial model and a common starting state for all agents.

Subsequently, in each round t, each agent i ∈ [N ] starts from a common model θ̄t and uses its local

data to perform K local updates of the following form: at each local iteration k, each agent i takes
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Algorithm 4 Description of FedTD(0)

1: Input: Policy µ, local step-size αl, global step-size α
(t)
g at t-th communication round

2: Initialize: θ̄0 = θ0 and s
(i)
0,0 = s0,∀i ∈ [N ]

3: for each round t = 0, . . . , T − 1 do

4: for each agent i ∈ [N ] do

5: for k = 0, . . . , K − 1 do

6: Agent i initializes θ(i)t,0 = θ̄t

7: Agent i plays µ(s(i)t,k), observes tuple O
(i)
t,k = (s

(i)
t,k, r

(i)
t,k, s

(i)
t,k+1),

8: and updates local model as θ(i)t,k+1 = θ
(i)
t,k + αlgi(θ

(i)
t,k),

9: where gi(θ
(i)
t,k) ≜

(
r
(i)
t,k + γϕ(s

(i)
t,k+1)

⊤θ
(i)
t,k − ϕ(s

(i)
t,k)

⊤θ
(i)
t,k

)
ϕ(s

(i)
t,k)

10: end for

11: send ∆
(i)
t = θ

(i)
t,K − θ̄t back to the server

12: end for

13: Server computes and broadcasts global model θ̄t+1 = Π2,H

(
θ̄t +

α
(t)
g

N

∑
i∈[N ] ∆

(i)
t

)
14: end for

action µ(s
(i)
t,k) and observes a data tuple O

(i)
t,k =

(
s
(i)
t,k, r

(i)
t,k, s

(i)
t+1,k

)
based on its own Markov reward

process, i.e., {P (i), R(i)}; we note here that observations are independent across agents. Using its

data tuple O
(i)
t,k, each agent i updates its own local model θ(i)t,k along the direction gi(θ

(i)
t,k); see line 7.

Since each agent seeks to benefit from the samples acquired by the other agents, there is

intermittent communication via the server. However, such communication needs to be limited as

communication-efficiency is a key concern in FL. As such, the agents upload their local models’

difference ∆
(i)
t to the server only once every K time-steps (line 11). On the server side, the model

differences {∆(i)
t } are averaged, and a projection is carried out (line 13) to construct a global model

θ̄t+1 that is then broadcast to all agents. Here, we use Π2,H(·) to denote the standard Euclidean

projection on to a convex compact subsetH ⊂ Rd that is assumed to contain each θ∗i , i ∈ [N ], and

also θ∗. Such a projection step on the server-side ensures that the global models do not blow up,
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and is common in the literature on stochastic approximation [15] and RL [13, 38]. Each agent then

resumes its local updating process from this global model. We note that the structure of FedTD(0)

mirrors that of FedAvg (and its many variants) where agents perform multiple local model-updates

in isolation using their own data (to save communication), and synchronize periodically via a server.

From another perspective, the FedTD(0) algorithm, which seeks to find the fixed point of the

average of the TD update directions, can be grouped into the class of problems that seek to find fixed

points using information from different sources [130]. However, there are significant differences

in the dynamics of standard FL algorithms and FedTD(0), making it quite challenging to derive

finite-time convergence results for the latter. We discuss some of these challenges below.

Challenges in Analysis. First, existing FL analyses are essentially distributed optimization proofs;

although our setting bears a cosmetic connection to optimization, federated TD learning does not

correspond to minimizing any fixed objective function. Second, unlike the FL setting where the data

seen by each agent are drawn i.i.d. from some distribution, the data tuples observed by each agent

in FedTD(0) are all part of one single Markovian trajectory. This creates complex time-correlations

that are challenging to deal with even in a centralized setting with just one agent. Thus, we cannot

directly appeal to standard FL proofs. Third, existing analyses in MARL/FRL that go beyond

the simple tabular setting all end up assuming that every agent interacts with the same MDP, i.e.,

there is no heterogeneity effect at all to contend with in these works. Concretely, the analysis for

FedTD(0) we provide in the subsequent sections is unique in that it simultaneously accounts for

several key aspects: linear function approximation, Markovian sampling, multiple local updates,

and heterogeneity in MDPs.
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4.5 Analysis of the I.I.D. Setting

To isolate the effect of heterogeneity and provide key insights regarding our main proof ideas,

we will analyze a simpler i.i.d. setting in this section. Specifically, we assume that for each

agent i ∈ [N ], the data tuples {O(i)
t,k} are sampled i.i.d. from the stationary distribution π(i) of

the Markov matrix P (i). Such an i.i.d assumption is common in the finite-time analysis of RL

algorithms [13, 34, 38]. To proceed, for a fixed θ and for each i ∈ [N ], let us define ḡi(θ) ≜

E
O

(i)
t,k∼π(i) [gi(θ)] as the expected TD(0) update direction at iterate θ when the Markov tuple O(i)

t,k hits

its stationary distribution π(i). We make the following standard bounded variance assumption [13];

similar assumptions are also made in FL analyses.

Assumption 4. E∥gi(θ) − ḡi(θ)∥2 ≤ σ2 holds for all agents i ∈ [N ], in each round t and local

update k, and ∀θ.

Let H denote the radius of the setH. Also, define G ≜ Rmax + 2H and ν = (1− γ)ω̄, where ω̄

is as in Proposition 3. We can now state our first main result for FedTD(0).

Theorem 2. (I.I.D. Setting) There exists a decreasing global step-size sequence {α(t)
g }, a fixed

local step-size αl, and a set of convex weights, such that a convex combination θ̃T of the global

models {θ̄t} satisfies the following for each i ∈ [N ] after T rounds:

E
∥∥∥Vθ̃T

−Vθ∗i

∥∥∥2
D̄
≤ Õ

( G2

K2T 2
+

σ2

ν2NKT
+

σ2

ν4KT 2
+Q(ϵ, ϵ1)

)
, (4.2)

where Q(ϵ, ϵ1) = Õ(B(ϵ,ϵ1)G
ν

+ Γ2(ϵ, ϵ1)), B(ϵ, ϵ1) = H (
√
nϵ+ 2(n− 1)ϵ+O(ϵ2) +O(ϵ1)), and

Γ(ϵ, ϵ1) is as defined in Theorem 1.

There are several important messages conveyed by Theorem 2 that we now discuss.
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Discussion. To parse Theorem 2, let us start by noting that the term Q(ϵ, ϵ1) in Eq. (4.2) captures

the effect of heterogeneity; we will comment on this term later. When T ≫ N , the dominant term

among the first three terms in Eq. (4.2) is the σ2/(ν2NKT ) term. To appreciate the tightness of

this term, we note that in a centralized setting (i.e., when N = 1), given access to KT samples, the

convergence rate of TD(0) is σ2/(ν2KT ) [13]. Our analysis thus reveals that by communicating

just T times in KT iterations, each agent i can reduce the noise variance σ2 further by a factor of

N , i.e., achieve a linear speedup w.r.t. the number of agents. In a low-heterogeneity regime, i.e.,

when Q(ϵ, ϵ1) is small, we note that by combining data from different MDPs, FedTD(0) guarantees

fast convergence to a model that is a good approximation of each agent’s value function; by fast, we

imply a N -fold speedup over the rate each agent would have achieved had it not communicated at

all. Thus with little communication, FedTD(0) quickly provides each agent with a good model that

it can then fine-tune for personalization. Theorem 2 is the first result to provide such a guarantee in

the context of MARL/FRL, and complements results of a similar flavor in FL [89, 226]. When all

the MDPs are identical, Q(ϵ, ϵ1) = 0. But when the MDPs are different, should we expect such a

heterogeneity term?

To further understand the effect of heterogeneity, it suffices to get rid of all the randomness

in our setting. As such, suppose we replace the random TD(0) direction gi(θ
(i)
t,k) of each agent i

in Algo. 4 by its steady-state deterministic version ḡi(θ
(i)
t,k) = b̄i − Āiθ

(i)
t,k, where Āi and b̄i are as

defined in Section 4.3.1. This leads to a deterministic version of FedTD(0) that we call mean-path

FedTD(0). For simplicity, we assume that there is no projection step in mean-path FedTD(0). In

our next result, we exploit the affine nature of the steady-state TD(0) directions to characterize the

effect of heterogeneity in the limiting behavior of FedTD(0).

Theorem 3. (Heterogeneity Bias) Suppose N = 2 and K = 1. Let the step-size α = αgαl be

chosen such that I−αÂ is Schur stable, where Â =
(
Ā1 + Ā2

)
/2. Define ei,t ≜ θ̄t−θ∗i , i ∈ {1, 2}.
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The output of mean-path FedTD(0) then satisfies:

lim
t→∞

e1,t =
1

2
Â−1Ā2(θ

∗
1 − θ∗2); lim

t→∞
e2,t =

1

2
Â−1Ā1(θ

∗
2 − θ∗1). (4.3)

Discussion: For the setting described in Theorem 3, the mean-path FedTD(0) updates follow the

deterministic recursion θ̄t+1 = (I − αÂ)θ̄t + αb̂, where b̂ = (1/2)(b̄1 + b̄2). This is a discrete-time

linear time-invariant system (LTI). The dynamics of this system are stable if and only if the state

transition matrix (I − αÂ) is Schur stable, justifying the choice of α in Theorem 3. The most

important message conveyed by this result is that the gap between the limit point of mean-path

FedTD(0) and the optimal parameter θ∗i of either of the two MRPs bears a dependence on the

difference in the optimal parameters of the MRPs - a natural indicator of heterogeneity between

the two MRPs. Furthermore, this term has no dependence on the step-size α, i.e., the effect of the

bias introduced by heterogeneity cannot be eliminated by making α arbitrarily small. Aligning

with this observation, notice that the heterogeneity term Q(ϵ, ϵ1) in Eq. (4.2) is also step-size

independent. The above discussion sheds some light on the fact that a term of the form Q(ϵ, ϵ1) is

to be expected in Theorem 2. Notably, the bias term in Eq. (4.3) persists even when the number

of local steps is just one, i.e., even when the agents communicate with the server at all time steps.

This is a crucial difference with the standard federated optimization setting where the effect of

statistical heterogeneity manifests itself only when the number of local steps K is strictly larger

than 1 [23, 84, 137].

We end this section with a proof sketch for Theorem 2.

Proof Sketch for Theorem 2. To make a connection to the existing FL optimization proofs, we

start with a key observation made in [13]. In this paper, the authors showed that for each i ∈ [N ],

the mean-path TD(0) direction ḡi(θ) acts like a pseudo-gradient and drives the iterates towards θ∗i .
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Unfortunately, however, the average (1/N)
∑N

i=1 ḡi(θ) of the agents’ mean-path TD(0) directions

may not exactly correspond to the mean-path TD(0) direction of any MDP. Nonetheless, using

Proposition 2, we prove the following key result that comes to our aid.

Lemma 2. (Expected pseudo-gradient heterogeneity) For each θ ∈ H, we have:

∥∥∥ḡ(θ)− 1

N

N∑
i=1

ḡi(θ)
∥∥∥ ≤ B(ϵ, ϵ1), (4.4)

where B(ϵ, ϵ1) is as in Theorem 2, and ḡ(θ) is the steady-state expected TD(0) direction of the

virtual MDP.

Lemma 2 is crucial to our analysis as it shows that at least in the steady-state, the resulting

FedTD(0) update direction can be closely approximated by the mean-path TD(0) direction of the

virtual MDP. Furthermore, the latter acts like a pseudo-gradient pointing towards θ∗ which is close

to each θ∗i based on Proposition 2. While this reasoning gives us hope, arriving at Eq. (4.2) requires

a lot of work as we still need to (i) establish a linear-speedup in reducing the variance σ2 in the

noisy setting; and (ii) analyze a “client-drift” effect for our setting akin to what shows up in FL due

to statistical heterogeneity and multiple local steps. In the Appendix, we provide a careful analysis

that accounts for each of these issues.

4.6 Analysis of the Markovian Setting

Although the i.i.d. setting we discussed in Section 4.5 helped build a lot of intuition about

the dynamics of FedTD(0), our main interest is in analyzing the setting where for each agent

i ∈ [N ], the data tuples {O(i)
t,k} are all part of a single Markovian trajectory generated by P (i). The

only assumption we will make is that these trajectories are independent across agents, i.e., the

agents’ observations are independent. Below, we briefly summarize some of the key difficulties that
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show up in the analysis for the Markovian setting, and that merit technical innovations on our part.

To that end, let us write gi(θ
(i)
t,k) more explicitly as gi(θ

(i)
t,k, O

(i)
t,k); this will make certain statistical

dependencies more transparent in our subsequent discussion.

Challenges in the Markovian analysis. First, our setting inherits all the difficulties in analyzing

Markovian behavior from the centralized case [13]; in particular, for each i ∈ [N ], the parameter

sequence {θ(i)t,k} and the data tuples {O(i)
t,k} are intricately coupled. Second, the synchronization

step in FedTD(0) creates complex statistical dependencies between the local parameter of any

given agent and the past observations of all other agents. Third, as in the centralized case, we need

to control the gradient bias (1/NK)
∑N

i=1

∑K−1
k=0 (gi(θ

(i)
t,k, O

(i)
t,k)− ḡi(θ

(i)
t,k)) and bound the gradient

norm E∥(1/NK)
∑N

i=1

∑K−1
k=0 gi(θ

(i)
t,k)∥2. However to achieve the O(1/NKT )-type rate, i.e., to

prove linear speedup w.r.t. the number of agents N , we need to provide an analog of the variance

reduction (i.e., the second term in Eq (4.2)) in the i.i.d. setting, which requires a much more delicate

analysis relative to [13], since the observations of each agent i are correlated at different local

steps. Indeed, naively bounding terms using the projection radius will not yield the linear speedup

property. Finally, we need to control the “client-drift” effect (due to environmental heterogeneity)

under the strong coupling between different random variables discussed above.

In our analysis, we will make use of the geometric mixing property of finite-state, aperiodic,

and irreducible Markov chains [106]. Specifically, under Assumption 3, for each i ∈ [N ], there

exists some mi ≥ 1 and ρi ∈ (0, 1), such that for all t ≥ 0 and 0 ≤ k ≤ K − 1,

dTV

(
P
(
s
(i)
t,k = · | s

(i)
0,0 = s

)
, π(i)

)
≤ miρ

tK+k
i ,∀s ∈ S,

holds, where we use dTV (P,Q) to denote the total-variation distance between two probability

measures P and Q. For any ϵ̄ > 0, let us define the mixing time for P (i) as τmix
i (ϵ̄) ≜ min {t ∈ N0 | miρ

t
i ≤ ϵ̄}.

Finally, let τ(ϵ̄) = maxi∈[N ] τ
mix
i (ϵ̄) represent the mixing time corresponding to the Markov chain
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that mixes the slowest. As one might expect, and as formalized in our main result below, it is this

slowest-mixing Markov chain that dictates certain terms in the convergence rate of FedTD(0).

Theorem 4. (Markovian Setting) There exists a decreasing global step-size sequence {α(t)
g }, a

fixed local step-size αl, and a set of convex weights, such that a convex combination θ̃T of the global

models {θ̄t} satisfies the following for each agent i ∈ [N ] after T rounds:

E
∥∥∥Vθ̃T

− Vθ∗i

∥∥∥2
D̄
≤ Õ

(
τ 2G2

K2T 2
+

cquad(τ)

ν2NKT
+

clin(τ)

ν4KT 2
+Q(ϵ, ϵ1)

)
,

where τ = ⌈ τ
mix(α2

T )
K
⌉, αT = Kαlα

(T )
g , cquad(τ) and clin(τ) are quadratic and linear functions in τ ,

respectively, and Q(ϵ, ϵ1) is as defined in Theorem 2.

Discussion: Other than the effect of the mixing time τ which also shows up in a centralized

setting [13], the rate in Theorem 4 mirrors that for the i.i.d. case in Theorem 2. Theorem 4 is

significant in that it marks the first comprehensive analysis of environmental heterogeneity in FRL

under Markovian sampling.

Proof Sketch for Theorem 4. As mentioned earlier, we cannot naively use a projection bound

of the form E∥(1/NK)
∑N

i=1

∑K−1
k=0 gi(θ

(i)
t,k)∥2 = O(G2) from the centralized analysis in [13]

since the local models may not belong to the setH. More importantly, going down that route will

obscure the linear speedup effect. As such, we depart from the analysis techniques in [13, 182] by

further decomposing the random TD direction of each agent i as gi(θ
(i)
t,k) = bi(O

(i)
t,k)− Ai(O

(i)
t,k)θ

(i)
t,k.

Since Ai(O
(i)
t,k) and bi(O

(i)
t,k) only depend on the randomness from the Markov chain, and O

(i)
t,k

and O
(j)
t,k are independent, we can show that the variances of (1/NK)

∑N
i=1

∑K−1
k=0 Ai(O

(i)
t,k) and

(1/NK)
∑N

i=1

∑K−1
k=0 bi(O

(i)
t,k) get scaled down by NK (up to higher order terms). Furthermore, to

account for the fact that Ai(O
(i)
t,k) and bi(O

(i)
t,k) differ across agents, we appeal to Lemma 2. Putting

these pieces together in a careful manner yields the final rate in Theorem 4.
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Figure 4.1: Performance of FedTD(0) under Markovian sampling with varying number of agents

N . The MDPM(1) of the first agent is randomly generated with a state space of size n = 100. The

remaining MDPs are perturbations ofM(1) with the heterogeneity levels ϵ = 0.05 and ϵ1 = 0.1.

We evaluate the convergence in terms of the running error et = ∥θ̄t − θ∗1∥2. Complying with theory,

increasing N reduces this error. We choose the number of local steps as K = 10.

4.7 Chapter Summary

In this work, we have studied the problem of federated reinforcement learning under environmental

heterogeneity and explored the question: Can an agent expedite the process of learning its own

value function by using information from agents interacting with different MDPs? To answer

this question, we studied the convergence of a federated TD(0) algorithm with linear function

approximation, where N agents under different environments collaboratively evaluate a common

policy. The main differences from the existing works are: (i) proposing a new definition of

environmental heterogeneity; (ii) characterizing the effect of heterogeneity on TD(0) fixed points;

(iii) introducing a virtual MDP to analyze the long-term behavior of the FedTD(0) algorithm;
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and (iv) making an explicit connection between federated reinforcement learning and federated

supervised learning/optimization by leveraging the virtual MDP. With these elements, we proved

that if the environmental heterogeneity between agents’ environments is small, then FedTD(0) can

achieve a linear speedup under both the i.i.d and the Markovian settings, and with multiple local

updates.

A few interesting extensions to this work are as follows. First, it is natural to study federated

variants of other RL algorithms beyond the TD(0) algorithm. Second, it would be interesting to

investigate whether the personalization techniques in the traditional FL optimization literature can

be applied to solve FedRL problems. Instead of learning a common value function/policy, can

we design personalized value functions/policies that might perform better in high-heterogeneity

regimes? We leave the exploration of this interesting question as future work.
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4.8 Omitted Proofs

4.8.1 Outline

This appendix provides a detailed literature survey, supporting results, and full proofs for all

theorems, lemmas, and propositions in the main text. A detailed survey of relevant works is

provided in Section 4.8.2. The proofs to Theorem 1, Propositions 1-3, and Lemma 2 are shown in

sections 4.8.3, 4.8.4, and 4.8.5 respectively. In Section a), we provide some lemmas that are used

in both the i.i.d. and Markovian sampling settings. In section 4.8.7, we introduce some notations

which are relevant to the proofs of the main theorems.

Our main result in the i.i.d. sampling regime is proven in Section 4.8.8 and involves several

key sub-results involving (amongst other things) a variance reduction result, and bounding the

“client-drift” term at each iteration. These results are provided in Section a) and the main result,

Theorem 2 is proven in Section b).

The heterogeneity bias theorem, Theorem 3, is proven in Section 4.8.9.

In Section 4.6, several key intermediate steps to proving Theorem 4 are given in subsections a)- a),

with the main result being proven in Section b). More simulation results are shown in Section 4.8.11.
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4.8.2 Detailed Literature Survey

Federated Learning Algorithms. The literature on algorithmic developments in federated

learning is vast; as such, we only cover some of the most relevant/representative works here.

The most popularly used FL algorithm, FedAvg, was first introduced in [133]. Several works

went on to provide a detailed theoretical analysis of FedAvg both in the homogeneous case when

all clients minimize the same objective function [67, 162, 180, 184, 214, 225], and also in the

more challenging heterogeneous setting [69, 88, 89, 93, 113]. In the latter scenario, it was soon

realized that FedAvg suffers from a “client-drift” effect that hurts its convergence performance

[21, 23, 84, 211].

Since then, a lot of effort has gone into improving the convergence guarantees of FedAvg via

a variety of technical approaches: proximal methods in FxedProx [167]; operator-splitting in

FedSplit [150]; variance-reduction in Scaffold [84] and S-Local-SVRG [64]; gradient-

tracking in FedLin [137]; and dynamic regularization in [2]. While these methods improved upon

FedAvg in various ways, they all fell short of providing any theoretical justification for performing

multiple local updates under arbitrary statistical heterogeneity. Very recently, [135] introduced the

ProxSkip algorithm, and showed that it can indeed lead to communication savings via multiple

local steps, despite arbitrary heterogeneity.

Some other approaches to tackling heterogeneous statistical distributions in FL include personalization [36,

47, 72, 190, 191], clustering [61, 76, 169, 185], representation learning [29], and the use of

quantiles [100].

Analysis of TD Learning Algorithms. The first work to provide a comprehensive asymptotic

analysis of the temporal difference learning algorithm with value function approximation was

[205]. In this work, the authors employed the ODE method [16] that is typically used to study
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asymptotic convergence rates of stochastic approximation algorithms. Providing finite-time bounds,

however, turns out to be a much harder problem. Some early efforts in this direction were [98],

[142], [34], and [101]. While these works were able to establish finite-time bounds for linear

stochastic approximation algorithms (that subsume the TD learning algorithm), their analysis was

limited to the i.i.d. sampling model. For the more challenging Markovian setting, finite-time

rates have been recently derived using various perspectives: (i) by making explicit connections to

optimization [13]; (ii) by taking a control-theoretic approach and studying the drift of a suitable

Lyapunov function [182]; and (iii) by arguing that the mean-path temporal difference direction acts

as a “gradient-splitting” of an appropriately chosen function [123]. Each of these interpretations

provides interesting new insights into the dynamics of TD algorithms.
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4.8.3 Perturbation bounds for TD(0) fixed points

a) Proof of Theorem 1

In this section, we prove the perturbation bounds on TD(0) fixed points shown in Theorem 1.

We start by observing that:

∥Āi − Āj∥ = ∥Φ⊤D(i)(Φ− γP (i)Φ)− Φ⊤D(j)(Φ− γP (j)Φ)∥

≤ ∥Φ⊤D(i)(Φ− γP (i)Φ)− Φ⊤D(i)(Φ− γP (j)Φ)+

Φ⊤D(i)(Φ− γP (j)Φ)− Φ⊤D(j)(Φ− γP (j)Φ)∥

≤ ∥Φ⊤D(i)(Φ− γP (i)Φ)− Φ⊤D(i)(Φ− γP (j)Φ)∥

+ ∥Φ⊤D(i)(Φ− γP (j)Φ)− Φ⊤D(j)(Φ− γP (j)Φ)∥
(a)

≤ γ∥Φ∥2∥D(i)∥∥P (i) − P (j)∥+ ∥Φ∥2∥D(i) −D(j)∥∥(I − γP (j))∥
(b)

≤ γ
√
nϵ+ (1 + γ)[2(n− 1)ϵ+O(ϵ2)], (4.5)

where (a) follows from the triangle inequality. The first term in (b) uses the fact that ∥Φ∥ ≤ 1,

∥D(i)∥ ≤ 1, and

∥P (i) − P (j)∥ ≤
√
n∥P (i) − P (j)∥∞ ≤ ϵ

√
n∥P (i)∥∞ = ϵ

√
n,

where we use Assumption 1 in the second inequality. The second term in (b) uses the the facts that

∥I − γP (j)∥ ≤ 1 + γ, ∥D(i) −D(j)∥ ≤ ∥D(i) −D(j)∥1 ≤ ∥π(i) − π(j)∥1, along with Lemma 1.

Next, we bound

∥b̄i − b̄j∥ = ∥ΦD(i)R(i) − ΦD(j)R(j)∥

≤ ∥ΦD(i)R(i) − ΦD(i)R(j)∥+ ∥ΦD(i)R(j) − ΦD(j)R(j)∥

≤ ∥Φ∥∥D(i)∥∥R(i) −R(j)∥+ ∥Φ∥∥D(i) −D(j)∥∥R(j)∥

≤ ϵ1 +Rmax

(
2(n− 1)ϵ+O(ϵ2)

)
, (4.6)
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where we use Assumption 2 in the last inequality and follow the same reasoning as we used to

bound ∥Āi − Āj∥ above.

We are now ready to bound the gap between fixed points as:

∥θ∗i − θ∗j∥
∥θ∗i ∥

≤ κ(Āi)

1− κ(Āi)
∥Āi−Āj∥

∥Āi∥

(
∥Āi − Āj∥
∥Āi∥

+
∥b̄i − b̄j∥
∥b̄i∥

)
. (4.7)

Here, we leveraged the perturbation theory of linear equations in [73] Section 5.8. Finally, for any

∥θ∗i ∥ ≤ H , we have

∥θ∗i − θ∗j∥ ≤ Γ(ϵ, ϵ1) ≜
κ(Āi)H

1− κ(Āi)
A(ϵ)
δ1

(
A(ϵ)

δ1
+

b(ϵ, ϵ1)

δ2

)
,

where we used the fact that δ1 and δ2 are positive constants that lower bound ∥Āi∥ and ∥b̄i∥,

respectively.
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4.8.4 Properties of the Virtual Markov Decision Process

a) Proof of Proposition 1

Before we prove this proposition, we present the following fact from [154]: a Markov matrix P

is irreducible and aperiodic if and only if there exists a positive integer k such that every entry of

the matrix P k is strictly positive, i.e., P k
s,s′ > 0, for all s, s′ ∈ S.

For every Markov matrix P (i), we know that there exists such an integer ki according to the

above fact and Assumption 3 in the paper. Then we define a set J = {i ∈ [N ]|wi > 0}. Since∑N
i=1 wi = 1, and wi ≥ 0 holds for all i ∈ [N ], we know that J is a non-empty set. If we define

k̄ = mini∈[J ]{ki} and j = argmini∈[J ]{ki}, then we have:∑
i∈[N ]

wiP
(i)

k̄

= wk̄
j

(
P (j)

)k̄︸ ︷︷ ︸
positive

+ · · · · · ·︸ ︷︷ ︸
nonnegative

, (4.8)

where each entry of wk̄
j

(
P (j)

)k̄ is strictly positive while the other matrices in the summation are

non-negative. Thus, we can conclude that the Markov chain associated with the Markov matrix∑
i∈[N ] wiP

(i) is also irreducible and aperiodic.

b) Proof of Proposition 2

Following similar arguments as in Theorem 1, we bound ∥Āi − Ā∥:

∥Āi − Ā∥ = ∥Φ⊤D(i)(Φ− γP (i)Φ)− Φ⊤D̄(Φ− γP̄Φ)∥
(a)

≤ γ∥Φ∥2∥D(i)∥∥P (i) − P̄∥+ ∥Φ∥2∥D(i) − D̄∥∥(I − γP̄ )∥
(b)

≤ γ
√
nϵ+ (1 + γ)[2(n− 1)ϵ+O(ϵ2)] = A(ϵ), (4.9)

where inequality (a) follows the same reasoning as (a) in Eq. (4.5), (b) uses the same fact as (b) in

Eq. (4.5), and ∥P (i) − P̄∥ ≤ 1
N

∑N
j=1∥P (i) − P (j)∥ ≤ ϵ

√
n and ∥D(i) − D̄∥ ≤ 2(n− 1)ϵ+O(ϵ2).
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Based on the above facts: (i) ∥R̄∥ ≤ 1
N

∑N
i=1∥R(i)∥ ≤ Rmax, (ii) ∥R(i)− R̄∥ ≤ 1

N

∑N
j=1∥R(i)−

R(j)∥ ≤ ϵ1 and (iii) ∥D(i) − D̄∥ ≤ 2(n − 1)ϵ + O(ϵ2), we finish the proof by showing that

∥b̄i − b̄∥ ≤ b(ϵ, ϵ1). To do so, we follow the same steps as Eq. (4.6), and prove the bound on

∥θ∗i − θ∗∥ by following the same analysis as Eq. (4.7).

c) Proof of Proposition 3

Since the virtual MDP is an average of the agents’ MDPs, i.e., P̄ = 1
N

∑N
i=1 P

(i), the virtual

Markov chain is irreducible and aperiodic from Proposition 1. The maximum eigenvalue of a

symmetric positive-semidefinite matrix is a convex function. Then we have λmax(Φ
⊤D̄Φ) ≤∑

s∈S π̄(s)λmax

(
ϕ(s)ϕ(s)⊤

)
≤
∑

s∈S π̄(s) = 1.

To show that there exists ω > 0 such that λmin(Φ
⊤D̄Φ) ≥ ω > 0, we will establish that Φ⊤D̄Φ

is a positive-definite matrix. Since Φ is full-column rank, this amounts to showing that D̄ is a positive

definite matrix. From the definition of D̄, establishing positive-definiteness of D̄ is equivalent to

arguing that every element of the stationary distribution vector π̄ is strictly positive; here, π̄⊤P̄ = π̄.

To that end, from Proposition 1, we know that the Markov chain associated with P̄ is aperiodic and

irreducible. From the Perron-Frobenius theorem [53], we conclude that indeed every entry of π̄ is

strictly positive. If we choose ω = mins∈S{π̄(s)} > 0, we have λmin(Φ
⊤D̄Φ) ≥ ω > 0.
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4.8.5 Pseudo-gradient heterogeneity: Proof of Lemma 2

For each θ ∈ H, we have:

∥∥∥ḡ(θ)− 1

N

N∑
i=1

ḡi(θ)
∥∥∥ =

∥∥∥ΦT D̄(T̄µΦθ − Φθ)− 1

N

( N∑
i=1

ΦTD(i)(T (i)
µ Φθ − Φθ)

)∥∥∥
(a)

≤ 1

N

N∑
i=1

∥∥∥ΦT D̄(T̄µΦθ − Φθ)− ΦTD(i)(T (i)
µ Φθ − Φθ)

∥∥∥
(b)

≤ 1

N

N∑
i=1

∥∥∥∥∥D̄[ 1N
N∑
j=1

R(j) + γ
1

N

N∑
j=1

P (j)Φθ − Φθ
]
−D(i)(T (i)

µ Φθ − Φθ)

∥∥∥∥∥
≤ 1

N

N∑
i=1

∥∥∥∥∥D̄[ 1N
N∑
j=1

R(j) + γ
1

N

N∑
j=1

P (j)Φθ − Φθ
]
− D̄(T (i)

µ Φθ − Φθ)

+ D̄(T (i)
µ Φθ − Φθ)−D(i)(T (i)

µ Φθ − Φθ)

∥∥∥∥∥
(c)

≤ 1

N

N∑
i=1

∥∥∥D̄[ 1
N

N∑
j=1

R(j) + γ
1

N

N∑
j=1

P (j)Φθ − Φθ
]
− D̄(T (i)

µ Φθ − Φθ)
∥∥∥

+
1

N

N∑
i=1

∥∥∥D̄(T (i)
µ Φθ − Φθ)−D(i)(T (i)

µ Φθ − Φθ)
∥∥∥

≤ 1

N

N∑
i=1

∥∥∥D̄∥∥∥∥∥∥ 1

N

N∑
j=1

R(j) −R(i)
∥∥∥+ γ

∥∥∥ 1

N

N∑
j=1

P (j) − P (i)
∥∥∥∥∥∥Φθ∥∥∥

+
1

N

N∑
i=1

∥∥∥D̄ −D(i)
∥∥∥∥∥∥T (i)

µ Φθ − Φθ
∥∥∥

(d)

≤ 1

N

N∑
i=1

∥∥∥ 1

N

N∑
j=1

R(j) −R(i)
∥∥∥
2
+ γ
∥∥∥ 1

N

N∑
j=1

P (j) − P (i)
∥∥∥∥∥∥Φθ∥∥∥

+
1

N

N∑
i=1

∥∥∥D̄ −D(i)
∥∥∥∥∥∥T (i)

µ Φθ − Φθ
∥∥∥

(e)

≤
[
ϵ1 + γ

√
nϵ∥Φθ∥+

[
2(n− 1)ϵ+O(ϵ2)

]
∥Φθ∥

≤ H
[
O(ϵ1) + γ

√
nϵ+ 2(n− 1)ϵ+O(ϵ2)

]
= B(ϵ, ϵ1). (4.10)
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Inequalities (a) and (c) follow from the triangle inequality, (b) is due to ∥Φ∥ ≤ 1; (d) is due to

the fact that ∥D̄∥ ≤ 1; and (e) uses the following facts: (i) ∥R(i) − R̄∥ ≤ ϵ1; (ii) ∥P (i) − P (j)∥ ≤
√
n∥P (i) − P (j)∥∞ ≤ ϵ

√
n∥P (i)∥∞ = ϵ

√
n, which, in turn, follows from the proof of Theorem 1;

(iii) ∥D(i) − D̄∥ ≤ 2(n − 1)ϵ + O(ϵ2), which, in turn, follows from the proof of Theorem 1 or

Eq (4.5); and (iv) ∥θ∥ ≤ H for any θ ∈ H.

4.8.6 Auxiliary results used in the I.I.D. and Markovian settings

We make repeated use throughout the appendix (often without explicitly stating so) of the

following inequalities:

• Given any two vectors x, y ∈ Rd, for any β > 0, we have

∥x+ y∥2≤ (1 + β)∥x∥2+
(
1 +

1

β

)
∥y∥2. (4.11)

• Given any two vectors x, y ∈ Rd, for any β > 0, we have

⟨x, y⟩ ≤ β

2
∥x∥2 + 1

2β
∥y∥2. (4.12)

This inequality goes by the name of Young’s inequality.

• Given m vectors x1, . . . , xm ∈ Rd, the following is a simple application of Jensen’s inequality:∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥
2

≤ m
m∑
i=1

∥xi∥2 . (4.13)

We prove the following result for the virtual MDP.

Lemma 3. For any θ1, θ2 ∈ Rd,

(θ2 − θ1)
⊤ [ḡ(θ1)− ḡ(θ2)] ≥ (1− γ)

∥∥∥V̂θ1 − V̂θ2

∥∥∥2
D̄
. (4.14)
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Proof. Consider a stationary sequence of states with random initial state s ∼ π̄ and subsequent

state s′, which, conditioned on s, is drawn from P̄ (· | s). Define ϕ ≜ ϕ(s) and ϕ′ ≜ ϕ (s′). Define

χ1 ≜ V̂θ2(s)− V̂θ1(s) = (θ2 − θ1)
⊤ ϕ and χ2 ≜ V̂θ2 (s

′)− V̂θ1 (s
′) = (θ2 − θ1)

⊤ ϕ′. By stationarity,

χ1 and χ2 are two correlated random variables with the same same marginal distribution. By

definition, E [χ2
1] = E [χ2

2] =
∥∥∥V̂θ2 − V̂θ2

∥∥∥2
D̄

since s, s′ are drawn from π̄. And we have,

ḡ(θ1)− ḡ(θ2) = E
[
ϕ (γϕ′ − ϕ)

⊤
(θ1 − θ2)

]
= E [ϕ (χ1 − γχ2)] .

Therefore,

(θ2 − θ1)
⊤ [ḡ(θ1)− ḡ(θ2)] = E [χ1 (χ1 − γχ2)]

= E
[
χ2
1

]
− γE [χ1χ2]

≥ (1− γ)E
[
χ2
1

]
= (1− γ)

∥∥∥V̂θ2 − V̂θ2

∥∥∥2
D̄
,

where we use the Cauchy-Schwartz inequality to conclude E [χ1χ2] ≤
√
E [χ2

1]
√
E [χ2

2] = E [χ2
1].

Lemma 4. For any θ1, θ2 ∈ Rd, we have

∥ḡ(θ1)− ḡ(θ2)∥≤ 2
∥∥∥V̂θ1 − V̂θ2

∥∥∥
D̄
. (4.15)

Proof. Following the analysis of Lemma 3, we have

∥ḡ(θ1)− ḡ(θ2)∥ = ∥E [ϕ (χ1 − γχ2)]∥

≤
√

E [∥ϕ∥2]
√
E
[
(χ1 − γχ2)

2]
≤
√
E [χ2

1] + γ
√
E [χ2

2]

= (1 + γ)
√
E [χ2

1], (4.16)
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where the second inequality is due to ∥ϕ∥≤ 1 and the final equality is due to E [χ2
1] = E [χ2

2]. We

finish the proof by using the fact that E [χ2
1] =

∥∥∥V̂θ2 − V̂θ2

∥∥∥2
D̄

and 1 + γ ≤ 2.

With this Lemma, we next show that the steady-state TD(0) update direction ḡ and ḡi are

2-Lipschitz.

Lemma 5. (2-Lipschitzness of steady-state TD(0) update direction) For any θ1, θ2 ∈ Rd, we have

∥ḡ(θ1)− ḡ(θ2)∥≤ 2 ∥θ1 − θ2∥ . (4.17)

And for each agent i ∈ [N ], we have

∥ḡi(θ1)− ḡi(θ2)∥≤ 2 ∥θ1 − θ2∥ . (4.18)

Proof. From Lemma 4, we can easily conclude that the steady-state TD(0) update direction ḡ for

the vitual MDP is 2-Lipschitz, i.e.,

∥ḡ(θ1)− ḡ(θ2)∥≤ 2 ∥θ1 − θ2∥ , (4.19)

based on the fact that λmax(Φ
⊤D̄Φ) ≤ 1. We can follow the same reasoning to prove Eq (4.18)

since ∥ḡi(θ1)− ḡi(θ2)∥≤ 2
∥∥∥V̂θ1 − V̂θ2

∥∥∥
Di

holds for each i ∈ [N ] from [13].

Next, we prove an analog of the Lipschitz property in Lemma 5 for the random TD(0) update

direction of each agent i.

Lemma 6. (2-Lipschitzness of random TD(0) update direction) For any θ1, θ2 ∈ Rd and i ∈ [N ],

we have

∥gi (θ1)− gi (θ2)∥ ≤ 2 ∥θ1 − θ2∥ .

Proof. In this proof, we will use the fact that the random TD(0) update direction of agent i at

the t-th communication round and k-th local update is an affine function of the parameter θ. In
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particular, we have gi(θ) = bi(O
(i)
t,k)−Ai(O

(i)
t,k)θ, where Ai(O

(i)
t,k) = ϕ(s

(i)
t,k)(ϕ

⊤(s
(i)
t,k)−γϕ⊤(s

(i)
t,k+1))

and bi(O
(i)
t,k) = r(s

(i)
t,k)ϕ(s

(i)
t,k). Thus, we have

∥gi (θ1)− gi (θ2)∥ =
∥∥∥Ai(O

(i)
t,k) (θ1 − θ2)

∥∥∥
≤
∥∥∥Ai(O

(i)
t,k)
∥∥∥ ∥θ1 − θ2∥

≤
(∥∥ϕ (sit,k)∥∥2 + γ

∥∥ϕ (sit,k)∥∥ ∥∥ϕ (sit,k+1

)∥∥) ∥θ1 − θ2∥

≤ 2 ∥θ1 − θ2∥ ,

where we used that ∥ϕ(s)∥≤ 1,∀s ∈ S in the last step.
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4.8.7 Notation

For our subsequent analysis, we will use F t
k to denote the filtration that captures all the

randomness up to the k-th local step in round t. We will also use F t to represent the filtration

capturing all the randomness up to the end of round t− 1. With a slight abuse of notation, F t
−1 is

to be interpreted as F t. Based on the description of FedTD(0), it should be apparent that for each

i ∈ [N ], θ(i)t,k is F t
k−1-measurable and θ̄t is F t-measurable. Furthermore, we use Et to represent the

expectation conditioned on all the randomness up to the end of round t− 1.

For simplicity, we define δt =
1

NK

∑N
i=1

∑K−1
k=0

∥∥∥θ(i)t,k − θ̄t

∥∥∥ and ∆t =
1

NK

∑N
i=1

∑K−1
k=0

∥∥∥θ(i)t,k −

θ̄t

∥∥∥2. The latter term is referred to as the drift term. Note that (δt)2 ≤ ∆t holds for all t via Jensen’s

inequality. Unless specified otherwise, ∥·∥ denotes the Euclidean norm.

Step-size: Throughout the paper, we encounter three kinds of step-sizes: local step-size αl, global

step-size αg, and the effective step-size α. Some of our results will rely on effective step-sizes that

decay as a function of the communication round t; we will use {αt} to represent such a decaying

effective step-size sequence. While the local step-size αℓ will always be held constant, the decay in

the effective step-size will be achieved by making the global step-size at the server decay with the

communication round. Accordingly, we will use {α(t)
g } to represent the decaying global step-size

sequence at the server. In what follows, unless specified in the subscript, all the step-sizes appearing

in the proofs refer to the effective step-size.
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4.8.8 Proof of the i.i.d. setting

a) Auxiliary lemmas for Theorem 2

• Variance reduction

Lemma 7. (Variance reduction in the i.i.d. setting). In the i.i.d. setting, under Assumption 4, at

each round t, we have E
∥∥∥ 1
NK

∑N
i=1

∑K−1
k=0

[
gi(θ

(i)
t,k)− ḡi(θ

(i)
t,k)
]∥∥∥2 ≤ σ2

NK
.

Proof. Define Y
(i)
t,k ≜ gi(O

(i)
t,k, θ

(i)
t,k) − ḡi(θ

(i)
t,k). Since {O(i)

t,k} is drawn i.i.d. over time from its

stationary distribution π(i), we have E[Y (i)
t,k ] = E

[
E[Y (i)

t,k | θ
(i)
t,k]
]
= 0. As we mentioned before,

for each i ∈ [N ], θ(i)t,k is F t
k−1-measurable. If we condition on F t

k−1, we know that θ(i)t,k and θ
(j)
t,k

are deterministic and the only randomness in Y
(i)
t,k and Y

(j)
t,k come from O

(i)
t,k and O

(j)
t,k , which are

independent. Therefore, Y (i)
t,k and Y

(j)
t,k are independent conditioned on F t

k−1.

For every i ̸= j ∈ [N ], we have

E
[〈

Y
(i)
t,k , Y

(j)
t,k

〉]
= E

[
E
[〈

Y
(i)
t,k , Y

(j)
t,k

〉
| F t

k−1

]]
(a)
= E

[〈
E[Y (i)

t,k | F
t
k−1],E[Y

(j)
t,k | F

t
k−1]

〉]
= 0,

(4.20)

where (a) follows from the fact that Y (i)
t,k and Y

(j)
t,k are independent conditioned on F t

k−1. For every

k < l and i, j ∈ [N ],

E
[〈

Y
(i)
t,k , Y

(j)
t,l

〉]
= E

[
E
[〈

Y
(i)
t,k , Y

(j)
t,l

〉 ∣∣∣∣ F t
l−1

]]
= E

[〈
Y

(i)
t,k ,E[Y

(j)
t,l | F

t
l−1]
〉]

= 0. (4.21)

Then,

E

∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
gi(θ

(i)
t,k)− ḡi(θ

(i)
t,k)
]∥∥∥∥∥

2

= E

∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Y
(i)
t,k

∥∥∥∥∥
2

=
1

N2K2

N∑
i=1

K−1∑
k=0

E∥Y (i)
t,k ∥

2 +
2

N2K2

∑
i<j

K−1∑
k=0

E[⟨Y (i)
t,k , Y

(j)
t,k ⟩]︸ ︷︷ ︸

0
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+
2

N2K2

N∑
i,j=1

∑
k<l

E[⟨Y (i)
t,k , Y

(j)
t,l ⟩]︸ ︷︷ ︸

0

≤ σ2

NK
,

where the second equality is due to Eq (4.20) and Eq (4.21) and the last inequality is due to

Assumption 4.

• Per Round Progress

First, we characterize the error decrease at each iteration in the following lemma.

Lemma 8. (Per Round Progress). If the local step-size αl satisfies αl ≤ (1−γ)ω̄
48K

, then the updates of

FedTD(0) with any global step-size αg satisfy

E∥θ̄t+1 − θ∗∥2 ≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩+ 6α2E
∥∥∥ḡ(θ̄t)∥∥∥2

+ 4α2

(
1

ζ1
+ 6

)
E[∆t] +

2α2σ2

NK
+ 2αB(ϵ, ϵ1)G+ 6α2B2(ϵ, ϵ1), (4.22)

where ζ1 is any positive constant, and α is the effective step-size, i.e., α = Kαlαg.

Proof.

E∥θ̄t+1 − θ∗∥2 = E
∥∥∥Π2,H

(
θ̄t +

α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)− θ∗

)∥∥∥2 (updating rule)

≤ E
∥∥∥θ̄t + α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)− θ∗

∥∥∥2 (projection is non-expansive)

= E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2E⟨ α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k), θ̄t − θ∗⟩+ E

∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)
∥∥∥2

= E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2α

NK

N∑
i=1

K−1∑
k=0

E⟨gi(θ(i)t,k)− ḡi(θ
(i)
t,k), θ̄t − θ∗⟩︸ ︷︷ ︸

C1=0

+
2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)t,k), θ̄t − θ∗⟩+ E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)
∥∥∥2
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= E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)t,k), θ̄t − θ∗⟩+ E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)
∥∥∥2

≤ E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)t,k), θ̄t − θ∗⟩

+ 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

[
gi(θ

(i)
t,k)− ḡi(θ

(i)
t,k)
] ∥∥∥2 + 2E

∥∥∥ α

NK

N∑
i=1

ḡi(θ
(i)
t,k)
∥∥∥2 (Young’s inequality (6.7))

(a)

≤ E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)t,k), θ̄t − θ∗⟩+ 2σ2

NK
+ 2E

∥∥∥ α

NK

N∑
i=1

ḡi(θ
(i)
t,k)
∥∥∥2

= E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)t,k)− ḡi(θ̄t) + ḡi(θ̄t)− ḡ(θ̄t) + ḡ(θ̄t), θ̄t − θ∗⟩ (4.23)

+ 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ
(i)
t,k)
∥∥∥2 + 2α2σ2

NK

≤ E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2α

NK

N∑
i=1

K−1∑
k=0

E⟨ḡi(θ(i)t,k)− ḡi(θ̄t), θ̄t − θ∗⟩+ 2α

N

N∑
i=1

E⟨ḡi(θ̄t)− ḡ(θ̄t), θ̄t − θ∗⟩

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩+ 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ
(i)
t,k)
∥∥∥2 + 2α2σ2

NK

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2 + 1

ζ1
E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

[
ḡi(θ

(i)
t,k)− ḡi(θ̄t)

] ∥∥∥2 + 2αB(ϵ, ϵ1)G

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩+ 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ
(i)
t,k)
∥∥∥2 + 2α2σ2

NK
(Eq (6.7) and Lemma 2)

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2 + 4α2

ζ1NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ(i)t,k − θ̄t

∥∥∥2 + 2αB(ϵ, ϵ1)G

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩+ 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ
(i)
t,k)
∥∥∥2 + 2α2σ2

NK
(2-Lipschitz of ḡi in Lemma 5)

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2 + 4α2

ζ1
E[∆t] +

2α2σ2

NK
+ 2αB(ϵ, ϵ1)G

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩+ 2E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

[
ḡi(θ

(i)
t,k)− ḡi(θ̄t) + ḡi(θ̄t)− ḡ(θ̄t) + ḡ(θ̄t)

] ∥∥∥2
≤ (1 + ζ1)E

∥∥∥θ̄t − θ∗
∥∥∥2 + 4α2

ζ1
E[∆t] +

2α2σ2

NK
+ 2αB(ϵ, ϵ1)G
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+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩+ 6E
∥∥∥ α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ
(i)
t,k)− ḡi(θ̄t)

∥∥∥2
+ 6E

∥∥∥ α
N

N∑
i=1

[
ḡi(θ̄t)− ḡ(θ̄t)

] ∥∥∥2 + 6E
∥∥∥αḡ(θ̄t)∥∥∥2 (Eq (6.7) and Lemma 2)

≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2 + 4α2

ζ1
E[∆t] +

2α2σ2

NK
+ 2αB(ϵ, ϵ1)G

+ 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩+ 24α2E[∆t] (2-Lipschitz of ḡi)

+ 6α2B2(ϵ, ϵ1) + 6α2E
∥∥∥ḡ(θ̄t)∥∥∥2 (Eq (6.7))

= (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩+ 6α2E
∥∥∥ḡ(θ̄t)∥∥∥2

+ 4α2

(
1

ζ1
+ 6

)
E[∆t] +

2α2σ2

NK
+ 2αB(ϵ, ϵ1)G+ 6α2B2(ϵ, ϵ1), (4.24)

where (a) is due to Lemma 7. Furthermore, the reason why C1 = 0 is as follows:

C1 =
N∑
i=1

K−1∑
k=0

E⟨gi(θ(i)t,k)− ḡi(θ
(i)
t,k), θ̄t − θ∗⟩

=
N∑
i=1

K−2∑
k=0

E⟨gi(θ(i)t,k)− ḡi(θ
(i)
t,k), θ̄t − θ∗⟩+

N∑
i=1

E⟨gi(θ(i)t,K−1)− ḡi(θ
(i)
t,K−1), θ̄t − θ∗⟩

=
N∑
i=1

K−2∑
k=0

E⟨gi(θ(i)t,k)− ḡi(θ
(i)
t,k), θ̄t − θ∗⟩+

N∑
i=1

E
[
E
[
⟨gi(θ(i)t,K−1)− ḡi(θ

(i)
t,K−1), θ̄t − θ∗⟩ | F t

K−1

]]

=
N∑
i=1

K−2∑
k=0

E⟨gi(θ(i)t,k)− ḡi(θ
(i)
t,k), θ̄t − θ∗⟩+

N∑
i=1

E

〈θ̄t − θ∗,E
[
gi(θ

(i)
t,k)− ḡi(θ

(i)
t,k) | F

t
K−1

]
︸ ︷︷ ︸

0

〉
=

N∑
i=1

K−2∑
k=0

E⟨gi(θ(i)t,k)− ḡi(θ
(i)
t,k), θ̄t − θ∗⟩.

We can keep repeating this procedure by iteratively conditioning on F t
K−2, · · · ,F t

1,F t
0.

• Drift Term Analysis

We now turn to bounding the drift term ∆t.
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Lemma 9. (Bounded Client Drift) The drift term ∆t at the t-th round can be bounded as

E[∆t] =
1

NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ(i)t,k − θ̄t

∥∥∥2 ≤ 27(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)
α2

Kα2
g

, (4.25)

provided the fixed local step-size αl satisfies αl ≤ min (1−γ)ω̄
48K

.

Proof.

E
∥∥∥θ(i)t,k − θ̄t

∥∥∥2 = E
∥∥∥θ(i)t,k−1 + αlgi(θ

(i)
t,k−1)− θ̄t

∥∥∥2 (updating rule)

= E
∥∥∥θ(i)t,k−1 + αlḡi(θ

(i)
t,k−1)− θ̄t + αl

(
gi(θ

(i)
t,k−1)− ḡi(θ

(i)
t,k−1)

)∥∥∥2
= E

∥∥∥θ(i)t,k−1 + αlḡi(θ
(i)
t,k−1)− θ̄t

∥∥∥2 + α2
lE
∥∥∥gi(θ(i)t,k−1)− ḡi(θ

(i)
t,k−1)

∥∥∥2
+ 2αl E

[
E
〈
gi(θ

(i)
t,k−1)− ḡi(θ

(i)
t,k−1), θ

(i)
t,k−1 + αlḡi(θ

(i)
t,k−1)− θ̄t

∣∣∣ F t
k−1

〉] ]
︸ ︷︷ ︸

C2=0

(a)

≤ (1 + ζ2)E
∥∥∥θ(i)t,k−1 + αlḡ(θ

(i)
t,k−1)− θ̄t

∥∥∥2 + (1 +
1

ζ2
)α2

lE
∥∥∥ḡ(θ(i)t,k−1)− ḡi(θ

(i)
t,k−1)

∥∥∥2
+ α2

lE
∥∥∥gi(θ(i)t,k−1)− ḡi(θ

(i)
t,k−1)

∥∥∥2
(b)

≤ (1 + ζ2)(1 + ζ3)E
∥∥∥θ(i)t,k−1 + αlḡ(θ

(i)
t,k−1)− θ̄t − αlḡ(θ̄t)

∥∥∥2 + (1 + ζ2)(1 +
1

ζ3
)α2

lE
∥∥∥ḡ(θ̄t)∥∥∥2

+ (1 +
1

ζ2
)α2

lE
∥∥∥ḡ(θ(i)t,k−1)− ḡ(θ̄t) + ḡ(θ̄t)− ḡi(θ̄t) + ḡi(θ̄t)− ḡi(θ

(i)
t,k−1)

∥∥∥2 + α2
l σ

2

(c)

≤ (1 + ζ2)(1 + ζ3)E
∥∥∥θ(i)t,k−1 + αlḡ(θ

(i)
t,k−1)− θ̄t − αlḡ(θ̄t)

∥∥∥2 + (1 + ζ2)(1 +
1

ζ3
)α2

lE
∥∥∥ḡ(θ̄t)∥∥∥2

+ 3(1 +
1

ζ2
)α2

lE
∥∥∥ḡ(θ(i)t,k−1)− ḡ(θ̄t)

∥∥∥2 + 3(1 +
1

ζ2
)α2

lE
∥∥∥ḡ(θ̄t)− ḡi(θ̄t)

∥∥∥2
+ 3(1 +

1

ζ2
)α2

lE
∥∥∥ḡi(θ̄t)− ḡi(θ

(i)
t,k−1)

∥∥∥2 + α2
l σ

2

(d)

≤ (1 + ζ2)(1 + ζ3)
[
1− (2αl(1− γ)− 4α2

l )ω̄
]
E
∥∥∥θ(i)t,k−1 − θ̄t

∥∥∥2 + (1 + ζ2)(1 +
1

ζ3
)α2

lE
∥∥∥ḡ(θ̄t)∥∥∥2

+ 12(1 +
1

ζ2
)α2

lE
∥∥∥θ(i)t,k−1 − θ̄t

∥∥∥2 + 3(1 +
1

ζ3
)α2

lB
2(ϵ, ϵ1) + 12(1 +

1

ζ3
)α2

lE
∥∥∥θ(i)t,k−1 − θ̄t

∥∥∥2 + α2
l σ

2

= (1 + ζ2)(1 + ζ3)

[
1− (2αl(1− γ)− 4α2

l )ω̄ +
24(1 + 1

ζ3
)α2

l

(1 + ζ2)(1 + ζ3)

]
E
∥∥∥θ(i)t,k−1 − θ̄t

∥∥∥2
+ (1 + ζ2)(1 +

1

ζ3
)α2

lE
∥∥∥ḡ(θ̄t)∥∥∥2 + 3(1 +

1

ζ3
)α2

lB
2(ϵ, ϵ1) + α2

l σ
2︸ ︷︷ ︸

D1

,
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where we used the inequality in Eq (6.6) with any positive constant ζ2 for (a); for (b), we used

Assumption 4 and the same reasoning as Eq (6.6) with any positive constant ζ3; for (c), we used

the inequality in Eq (6.8) to bound the third term; and for (d), we used Lemma 3 and Lemma 4

to bound the first term, the 2-Lipschitz property of ḡ, ḡi (i.e., Lemma 5) in the third term and the

fifth term, and the gradient heterogeneity bound from Lemma 2 in the fourth term. If we define

ζ4 ≜ (1 + ζ2)(1 + ζ3)

[
1− (2αl(1− γ)− 4α2

l )ω̄ +
24(1+ 1

ζ3
)α2

l

(1+ζ2)(1+ζ3)

]
and define D1 as above, we have

that

E
∥∥∥θ(i)t,k − θ̄t

∥∥∥2 ≤ ζ4E
∥∥∥θ(i)t,k−1 − θ̄t

∥∥∥2 +D1. (4.26)

Next, we set ζ2 = ζ3 =
1

K−1
, K ≥ 2, and choose the local step-size αl to satisfy

αl(1− γ)ω̄

2
≥ 4α2

l ω̄ &
αl(1− γ)ω̄

2
≥

24(1 + 1
ζ3
)α2

l

(1 + ζ2)(1 + ζ3)
,

so that
[
1− (2αl(1− γ)− 4α2

l )ω̄ +
24(1+ 1

ζ2
)α2

l

(1+ζ2)(1+ζ3)

]
≤ 1−αl(1− γ)ω̄. These inequalities hold when

αl ≤ min (1−γ)ω̄
48K

. Then, Eq (4.26) becomes

E
∥∥∥θ(i)t,k − θ̄t

∥∥∥2 ≤ (1 +
3

K − 1
) [1− αl(1− γ)ω̄]E

∥∥∥θ(i)t,k−1 − θ̄t

∥∥∥2 +D1.

If we unroll this recurrence above, using θ
(i)
r,0 = θ̄t, we have that

E
∥∥∥θ(i)t,k − θ̄t

∥∥∥2 ≤ k−1∑
s=0

D1

{
Πk−1

j=s+1(1 +
3

K − 1
) [1− α(1− γ)ω̄]

}
(e)

≤
k−1∑
s=0

[
α2
l σ

2 + 3Kα2
lB

2(ϵ, ϵ1),+2α2
lKE

∥∥∥ḡ(θ̄t)∥∥∥2]× Πk−1
j=s+1(1 +

3

K − 1
)[1− αl(1− γ)ω̄]

≤
k−1∑
s=0

[
α2
l σ

2 + 3α2
lKB2(ϵ, ϵ1) + 2α2

lKE
∥∥∥ḡ(θ̄t)∥∥∥2](1 + 3

K − 1
)K−1Πk−1

j=s+1[1− αl(1− γ)ω̄]

(f)

≤ 27(σ2 + 3KB2(ϵ, ϵ1) + 2KE
∥∥∥ḡ(θ̄t)∥∥∥2) k−1∑

s=0

α2
l × Πk−1

j=s+1[1− α(1− γ)ω̄]︸ ︷︷ ︸
≤1

≤ 27(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)Kα2
l (constant local step-size)
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where we used the fact that (1 + ζ2)(1 +
1
ζ3
) ≤ 2K for (e) and (1 + 3

K−1
)K−1 ≤ 27 for (f). we

finish the proof by substituting αl =
α

Kαg
.

If we incorporate Eq (4.25) into Eq (4.22), we have that

E
∥∥∥θ̄t+1 − θ∗

∥∥∥2 ≤ (1 + ζ1)E
∥∥∥θ̄r − θ∗

∥∥∥2 + 2αE⟨ḡ(θ̄r), θ̄r − θ∗⟩+ 6α2E
∥∥∥ḡ(θ̄r)∥∥∥2

+ 108
α4

Kα2
g

(6 +
1

ζ1
)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) +

2α2σ2

NK
+ 2αB(ϵ, ϵ1)G+ 6α2B2(ϵ, ϵ1)

(4.27)

• Parameter Selection

Lemma 10. Define ν ≜ (1− γ)ω̄. If we choose any effective step-size α = Kαgαl <
(1−γ)ω̄

96
, any

local step-size αl ≤ min (1−γ)ω̄
48K

, and choose the constant ζ1 = αν, the updates of FedTD(0) satisfy

ν1E
∥∥∥Vθ̄t−Vθ∗

∥∥∥2
D̄
≤ (

1

α
− ν1)E

∥∥∥θ̄t − θ∗
∥∥∥2 − 1

α
E
∥∥∥θ̄t+1 − θ∗

∥∥∥2 + 2ασ2

NK︸ ︷︷ ︸
O(α1)

+
1080α2

Kα2
gν

(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)︸ ︷︷ ︸
O(α2)

+2B(ϵ, ϵ1)G+ 6αB2(ϵ, ϵ1)︸ ︷︷ ︸
heterogeneity term

, (4.28)

where ν1 =
ν
4
= (1−γ)ω̄

4
.

Proof. From Eq (4.27) and ζ1 = αν, we know

E
∥∥∥θ̄t+1 − θ∗

∥∥∥2 ≤ (1 + ζ1)E
∥∥∥θ̄t − θ∗

∥∥∥2 + 2αE⟨ḡ(θ̄t), θ̄t − θ∗⟩+ 6α2E
∥∥∥ḡ(θ̄r)∥∥∥2

+ 108
α4

Kα2
g

(6 +
1

ζ1
)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) +

2α2σ2

NK
+ 2αB(ϵ, ϵ1)G+ 6α2B2(ϵ, ϵ1)

≤ (1 + αν − 2αν)E
∥∥∥θ̄t − θ∗

∥∥∥2 + 24α2E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
+

2α2σ2

NK
(Lemma 3 and 4)

+ 108
α4

Kα2
g

(6 +
1

αν
)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2αB(ϵ, ϵ1)G+ 6α2B2(ϵ, ϵ1)

≤ (1− αν

2
)E
∥∥∥θ̄t − θ∗

∥∥∥2 − αν

2
E
∥∥∥θ̄t − θ∗

∥∥∥2 + 24α2E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
+

2α2σ2

NK
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+ 108
α4

Kα2
g

(6 +
1

αν
)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2αB(ϵ, ϵ1)G+ 6α2B2(ϵ, ϵ1)

(a)

≤ (1− αν

2
)E
∥∥∥θ̄t − θ∗

∥∥∥2 − αν

2
E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
+

αν

4
E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
+

2α2σ2

NK

+ 108
α4

Kα2
g

(6 +
1

αν
)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2αB(ϵ, ϵ1)G+ 6α2B2(ϵ, ϵ1),

where (a) comes from λmax(Φ
T D̄Φ) ≤ 1 and 24α2 ≤ 24α (1−γ)w̄

96
= αν

4
. Moving E

∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄

(on the right-hand side of (a)) to the left hand side of the above inequality yields:

αν

4
E
∥∥∥Vθ̄t−Vθ∗

∥∥∥2
D̄
≤ (1− αν

2
)E
∥∥∥θ̄t − θ∗

∥∥∥2 − E
∥∥∥θ̄t+1 − θ∗

∥∥∥2 + 2α2σ2

NK

+ 108(
6α4

Kα2
g

+
α3

Kα2
gν

)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2αB(ϵ, ϵ1)G+ 6α2B2(ϵ, ϵ1).

Dividing by α on both sides of the inequality above and changing ν into ν1, we have:

ν1E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
≤ (

1

α
− ν1)E

∥∥∥θ̄t − θ∗
∥∥∥2 − 1

α
E
∥∥∥θ̄t+1 − θ∗

∥∥∥2 + 2ασ2

NK

+ 108(
6α3

Kα2
g

+
4α2

Kα2
gν1

)(σ2 + 3KB2(ϵ, ϵ1) + 2KG2) + 2B(ϵ, ϵ1)G+ 6αB2(ϵ, ϵ1)

≤ (
1

α
− ν1)E

∥∥∥θ̄t − θ∗
∥∥∥2 − 1

α
E
∥∥∥θ̄t+1 − θ∗

∥∥∥2 + 2ασ2

NK︸ ︷︷ ︸
O(α1)

+
1080α2

Kα2
gν1

(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)︸ ︷︷ ︸
O(α2)

+2B(ϵ, ϵ1)G+ 6αB2(ϵ, ϵ1)︸ ︷︷ ︸
heterogeneity term

,

where we used the fact that α ≤ 1 in the last inequality.

With these lemmas, we are now ready to prove Theorem 2, which we restate for clarity.

b) Proof of Theorem 2

Given a fixed local step-size αl =
1
2
(1−γ)ω̄
48K

, decreasing effective step-sizes αt =
8

ν(a+t+1)
=

8
(1−γ)ω̄(a+t+1)

, decreasing global step-sizes α(t)
g = αt

Kαl
, and weights wt = (a+ t), we have that

E
∥∥∥Vθ̃T

− Vθ∗i

∥∥∥2
D̄
≤ Õ

(
G2

K2T 2
+

σ2

ν4KT 2
+

σ2

ν2NKT
+

B(ϵ, ϵ1)G

ν
+ Γ2(ϵ, ϵ1)

)
(4.29)
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holds for any agent i ∈ [N ].

Proof. We take the effective step-size αt =
8

ν(a+t+1)
= 2

ν1(a+t+1)
for a > 0. In addition, we define

weights wt = (a+ t) and define

θ̃T =
1

W

T∑
t=1

wtθ̄t,

where W =
∑T

t=1wt ≥ 1
2
T (a+T ). By convexity of positive definite quadratic forms (λmin(Φ

T D̄Φ) ≥

ω̄ > 0), we have that

ν1E
∥∥∥Vθ̃T

− Vθ∗

∥∥∥2
D̄
≤ ν1

W

T∑
t=1

(a+ t)E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄

(4.28)
≤ ν1(a+ 1)(a+ 2)G2

2W
+

1

W

T∑
t=1

[
2(a+ t)αt

NK
σ2

]

+
1

W

T∑
t=1

[
1080(a+ t)α2

t

Kα2
gν1

(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)

]

+
1

W

T∑
t=1

(a+ t)
[
2B(ϵ, ϵ1)G+ 6αtB

2(ϵ, ϵ1)
]

≤ ν1(a+ 1)(a+ 2)G2

2W
+

2σ2

NKW

T∑
t=1

(a+ t)αt

+
1080(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)

Kα2
gν1W

T∑
t=1

(a+ t)α2
t + 2B(ϵ, ϵ1)G+

6B2(ϵ, ϵ1)

W

T∑
t=1

(a+ t)αt

≤ ν1(a+ 1)(a+ 2)G2

2W
+

4σ2

ν1NKW
· T

+
4320(σ2 + 3KB2(ϵ, ϵ1) + 2KG2)

Kα2
gν

3
1W

· (1 + log(a+ T )) + 2B(ϵ, ϵ1)G+
12B2(ϵ, ϵ1)

ν1W
· T,

where we used
∥∥∥Vθ̄0 − Vθ∗

∥∥∥2
D̄
≤ G2. Dividing by ν1 on both sides, changing ν1 into ν, and using

W ≥ T (a+T )
2

, we have:

E
∥∥∥Vθ̃T

− Vθ∗

∥∥∥2
D̄
≤ Õ

(
G2

K2T 2
+

σ2

ν4KT 2
+

σ2

ν2NKT
+

B(ϵ, ϵ1)G

ν

)
.

We finish the proof by using the following inequality: E
∥∥∥Vθ̃T

− Vθ∗i

∥∥∥2
D̄
≤ 2E

∥∥∥Vθ̃T
− Vθ∗

∥∥∥2
D̄
+

2E
∥∥∥Vθ∗i

− Vθ∗

∥∥∥2
D̄

, in tandem with the third point in Theorem 1.
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4.8.9 Heterogeneity bias: Proof of Theorem 3

In this section, we prove Theorem 3.

Proof of Theorem 3. As θ∗1 and θ∗2 are the TD(0) fixed points of agents 1 and 2, respectively, we

have θ∗1 = Ā−1
1 b̄1 and θ∗2 = Ā−1

2 b̄2 from Section 4.3.1. The output of mean-path FedTD(0) with

k = 1 and α = αgαl satisfies:

θ̄t+1 = θ̄t + α(−Âθ̄t + b̂)

=⇒ θ̄t+1 − θ∗1 = θ̄t − θ∗1 + α(−Â(θ̄t − θ∗1 + θ∗1) + b̂)

=⇒ e1,t+1 = (I − αÂ)e1,t − αÂθ∗1 + αb̂

=⇒ e1,t+1 = (I − αÂ)e1,t − α

(
Ā1 + Ā2

2

)
Ā−1

1 b̄1 + α
b̄1 + b̄2

2

=⇒ e1,t+1 = (I − αÂ)e1,t − α
Ā2Ā

−1
1 b̄1
2

+ α
b̄2
2

=⇒ e1,t+1 = (I − αÂ)e1,t −
αĀ2

2

(
Ā−1

1 b̄1 − Ā−1
2 b̄2

)
=⇒ e1,t+1 = (I − αÂ)︸ ︷︷ ︸

Ã

e1,t +
αĀ2

2
(θ∗2 − θ∗1)︸ ︷︷ ︸
Ỹ

. (4.30)

Let us now note that e1,t+1 = Ãe1,t + Ỹ can be viewed as a discrete-time linear time-invariant (LTI)

system where α is chosen s.t. Ã is Schur stable, i.e., |λmax(Ã)|< 1. At the t-th iteration, we have:

e1,t = Ãte1,0 +
t−1∑
k=0

ÃkỸ .

As t→∞, the small gain theorem tells us that because ρ(Ã) < 1 (where ρ(·) denotes the spectral

radius),
∑t−1

k=0 Ãk exists and is given by (I − Ã)−1. We can then conclude that

lim
t→∞

e1,t = (I − Ã)−1Ỹ

=
(
αÂ
)−1 αĀ2

2
(θ∗1 − θ∗2)
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=
1

2
Â−1Ā2 (θ

∗
1 − θ∗2) . (4.31)

The limiting expression for e2,t follows the same analysis.
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4.8.10 Proof of the Markovian setting

We now turn our attention to proving the main result of the paper, namely, Theorem 4.

a) Outline

As mentioned in the main body, one of the main obstacles to overcome in the analysis is

that in general, E[(1/N)
∑N

i=1 (gi(θ
(i)
t,k, O

(i)
t,k) − ḡi(θ

(i)
t,k))] ̸= 0. In order to show that a linear

speedup is achievable, we first decompose the random TD direction of each agent i as gi(θ
(i)
t,k) =

bi(O
(i)
t,k)−Ai(O

(i)
t,k)θ

(i)
t,k in subsection a) and show that the variances of (1/NK)

∑N
i=1

∑K−1
k=0 Ai(O

(i)
t,k)

and (1/NK)
∑N

i=1

∑K−1
k=0 bi(O

(i)
t,k) get scaled down by NK in subsection a). To decouple the

randomness between the parameter θ(i)t,k and the observations O(i)
t,k using the method called information

theoretic control of coupling in [13], we need to bound E
[∥∥θ̄t − θ̄t−τ

∥∥2] in subsection a). As

the analysis in the i.i.d. setting and traditional FL, we characterize the drift term, per-iteration

error decrease, and parameter selection in subsections a), a) and a), respectively. Finally, we prove

Theorem 4 in subsection b).

Additional Notation: Under Assumption 3, for each MDP i, there exists some mi ≥ 1 and some

ρi ∈ (0, 1), such that for all t ≥ 0 and 0 ≤ k ≤ K − 1, it holds that

dTV

(
P
(
s
(i)
t,k = · | s

(i)
0,0 = s

)
, π(i)

)
≤ miρ

tK+k
i ,∀s ∈ S.

Furthermore, we define ρ = maxi∈[N ]{ρi}, m = maxi∈[N ]{mi}.

• Auxiliary lemmas for Theorem 4

• Decomposition Form

The first step in our proof of Theorem 4 is to rewrite agent i’s update direction of FedTD(0) as:

gi(θ
(i)
t,k) = −Ai(O

(i)
t,k)θ

(i)
t,k + bi(O

(i)
t,k)
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where Ai(O
(i)
t,k) = ϕ(s

(i)
t,k)(ϕ

⊤(s
(i)
t,k) − γϕ⊤(s

(i)
t,k+1)) and bi(O

(i)
t,k) = r(s

(i)
t,k)ϕ(s

(i)
t,k). Note that the

steady-state value of E[bi(O(i)
t,k)] is not equal to 0. For convenience, we apply appropriate centering

to rewrite gi as:

gi(θ
(i)
t,k) = −Ai(O

(i)
t,k)(θ

(i)
t,k − θ∗i ) + bi(O

(i)
t,k)− Ai(O

(i)
t,k)θ

∗
i︸ ︷︷ ︸

Zi(O
(i)
t,k)

. (4.32)

Define Zi(O
(i)
t,k) ≜ bi(O

(i)
t,k)− Ai(O

(i)
t,k)θ

∗
i . As ḡi(θ) ≜ E

O
(i)
t,k∼π(i) [gi(θ)] , we have:

ḡi(θ
(i)
t,k) = −Āi(θ

(i)
t,k − θ∗i ). (4.33)

where Āi = Φ⊤D(i)(Φ− γP (i)Φ). Note that E
O

(i)
t,k∼π(i)

[
Zi(O

(i)
t,k)
]

equals to 0. Taking into account

the definitions above, we establish the following lemmas:

Lemma 11. (Uniform norm bound) There exist some constants c1, c2, c3 ≥ 0 such that
∥∥∥Ai

(
O

(i)
t,k

)∥∥∥ ≤
c1 := 1 + γ ,

∥∥∥Āi

∥∥∥ ≤ c2 := 1 + γ and
∥∥∥Zi

(
O

(i)
t,k

)∥∥∥ ≤ c3 := Rmax + c1H holds for all i ∈ [N ].

Proof. Based on the definition and the fact that ∥ϕ(s)∥ ≤ 1, we have∥∥∥Ai

(
O

(i)
t,k

)∥∥∥ =
∥∥∥ϕ(s(i)t,k)(ϕ

⊤(s
(i)
t,k)−γϕ⊤(s

(i)
t,k+1))

∥∥∥ ≤ ∥∥∥ϕ(s(i)t,k)
∥∥∥∥∥∥ϕ⊤(s

(i)
t,k)−γϕ⊤(s

(i)
t,k+1)

∥∥∥ ≤ 1+γ.

Similarly, making use of the fact that r(s) ≤ Rmax for any s ∈ S, we apply the same reasoning to

conclude that ∥∥∥Āi

∥∥∥ ≤ 1 + γ &
∥∥∥Zi

(
O

(i)
t,k

)∥∥∥ ≤ Rmax + c1H

.

Lemma 12. There exist some constants L1, L2 ≥ 0 such that∥∥∥Āi − E
[
Ai

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥ ≤ L1ρ
(t2−t1)K+k2−k1 &

∥∥∥Āi − Et1

[
Ai

(
O

(i)
t2,k2

)]∥∥∥ ≤ L1ρ
(t2−t1)K+k2 ,∥∥∥E [Zi

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥ ≤ L2ρ
(t2−t1)K+k2−k1 &

∥∥∥Et1

[
Zi

(
O

(i)
t2,k2

)]∥∥∥ ≤ L2ρ
(t2−t1)K+k2

hold for any i ∈ [N ], 0 ≤ k1, k2 ≤ K − 1 and t2 ≥ t1 ≥ 0.
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Proof. We have:

∥∥∥E [Zi

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥ =

∥∥∥∥E [Zi

(
O

(i)
t2,k2

)
| F t1

k1

]
− E

O
(i)
t2,k2

∼π(i)

[
Zi

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥∥
=

∥∥∥∥∥ ∑
s
(i)
t2,k2

,s
(i)
t2+1,k2+1

(
π(i)(s

(i)
t2,k2

)P (s
(i)
t2+1,k2+1 | s

(i)
t2,k2

)

−P (s
(i)
t2,k2

= · | s(i)t1,k1
)P (s

(i)
t2+1,k2+1 | s

(i)
t2,k2

)
)
Zi(O

(i)
t2,k2

)

∥∥∥∥∥
≤
∑
s
(i)
t2,k2

∣∣∣π(i)(s
(i)
t2,k2

)− P (s
(i)
t2,k2

= · | s(i)t1,k1
)
∣∣∣ ∥∥∥Zi(O

(i)
t2,k2

)
∥∥∥

(a)

≤
∑
s
(i)
t2,k2

∣∣∣π(i)(s
(i)
t2,k2

)− P (s
(i)
t2,k2

= · | s(i)t1,k1
)
∣∣∣ (Rmax + c1H)

= 2(Rmax + c1H)dTV

(
P
(
s
(i)
t2,k2

= · | s(i)t1,k1
= s
)
, π(i)

)
≤ 2(Rmax + c1H)miρ

(t2−t1)K+k2−k1
i

where (a) is due to Lemma 11 and the last step follows from Assumption 3. We finish the proof by

choosing L2 ≜ maxi∈[N ]{2(Rmax + c1H)mi} = 2c3m. And we follow the same analysis to bound:

∥∥∥Āi − E
[
Ai

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥ =

∥∥∥∥∥E [Ai

(
O

(i)
t2,k2

)
| F t1

k1

]
− E

O
(i)
t2,k2

∼π(i)

[
Ai

(
O

(i)
t2,k2

)
| F t1

k1

]∥∥∥∥
=

∥∥∥∥∥ ∑
s
(i)
t2,k2

,s
(i)
t2+1,k2+1

(
π(i)(s

(i)
t2,k2

)P (s
(i)
t2+1,k2+1 | s

(i)
t2,k2

)

−P (s
(i)
t2,k2

= · | s(i)t1,k1
)P (s

(i)
t2+1,k2+1 | s

(i)
t2,k2

)
)
Ai(O

(i)
t2,k2

)

∥∥∥∥∥
≤
∑
s
(i)
t2,k2

∣∣∣π(i)(s
(i)
t2,k2

)− P (s
(i)
t2,k2

= · | s(i)t1,k1
)
∣∣∣ ∥∥∥Ai(O

(i)
t2,k2

)
∥∥∥

(b)

≤ 2c1dTV

(
P
(
s
(i)
t2,k2

= · | s(i)t1,k1
= s
)
, π(i)

)
≤ 2c1miρ

(t2−t1)K+k2−k1
i
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We finish the proof by choosing L1 ≜ maxi∈[N ]{2c1mi} = 2c1m. We employ the same reasoning

to prove the remaining three inequalities.

• Variance Reduction

We are now ready to present the variance reduction Lemma in the Markov setting. The following

Lemma establishes an analog of the variance reduction Lemma 7 in the i.i.d. setting. Based on the

assumption that trajectories are independent across agents, it is easy to understand that the variance

of (1/NK)
∑N

i=1

∑K−1
k=0 Ai(O

(i)
t,k) and (1/NK)

∑N
i=1

∑K−1
k=0 bi(O

(i)
t,k) can be scaled by the number

of agents N . However, it is not obvious that the variances can be scaled by K (the number of local

iterations), since the observations of each agent O(i)
t,k1

and O
(i)
t,k2

are correlated at different local steps

k1, k2. Due to the geometric mixing property of the Markov chain, the correlation between O
(i)
t,k1

and

O
(i)
t,k2

will geometrically decay after the mixing time. Based on this fact, we show that the variances

of (1/NK)
∑N

i=1

∑K−1
k=0 Ai(O

(i)
t,k) and (1/NK)

∑N
i=1

∑K−1
k=0 bi(O

(i)
t,k) get scaled down by NK with

an additional additive, higher order term dependent on the mixing time τ , which is formally stated

as follows:

Lemma 13. (Variance reduction in the Markovian setting) For any 0 < τ < t, there exists d1, d2 > 0

such that:

Et−τ

[∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
Ai(O

(i)
t,k)− Āi

]∥∥∥∥∥
]
≤ d1√

NK
+ 2L1ρ

τK , (4.34)

Et−τ

∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
Ai(O

(i)
t,k)− Āi

]∥∥∥∥∥
2
 ≤ d21

NK
+ 4L2

1ρ
2τK , (4.35)

Et−τ

[∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)

∥∥∥∥∥
]
≤ d2√

NK
+ 2L2ρ

τK , and (4.36)

Et−τ

∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)

∥∥∥∥∥
2
 ≤ d22

NK
+ 4L2

2ρ
2τK , (4.37)



CHAPTER 4. FEDERATED LEARNING FOR POLICY EVALUATION 87

where d1 ≜
√

(c1 + c2)2 +
2(c1+c2)L1ρ

1−ρ
and d2 ≜

√
c23 +

2c3L2ρ
1−ρ

.

Proof.

Et−τ

[∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)

∥∥∥∥∥
]
= Et−τ


√√√√( 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)

)⊤(
1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)

)
(a)

≤

√√√√√Et−τ

( 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)

)⊤(
1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)

)

=

Et−τ

 1

N2K2

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)

⊤Zi(O
(i)
t,k) +

2

N2K2

N∑
i=1

∑
k<l

Zi(O
(i)
t,k)

⊤Zi(O
(i)
t,l )︸ ︷︷ ︸

T1

+
2

N2K2

∑
i<j

K−1∑
k=0

Zi(O
(i)
t,k)

⊤Zj(O
(j)
t,k )︸ ︷︷ ︸

T2

+
2

N2K2

∑
i<j

∑
k<l

Zi(O
(i)
t,k)

⊤Zj(O
(j)
t,l )︸ ︷︷ ︸

T3




1
2

(4.38)

where (a) is due to the concavity of square root and Jensen’s inequality. Furthermore, the term T1

can be further bounded by:

Et−τ [T1] = Et−τ

[
2

N2K2

N∑
i=1

∑
k<l

Zi(O
(i)
t,k)

⊤Zi(O
(i)
t,l )

]

= Et−τ

[
2

N2K2

N∑
i=1

∑
k<l

Zi(O
(i)
t,k)

⊤E
[
Zi(O

(i)
t,l ) | F

t
k

]]

≤ Et−τ

[
2

N2K2

N∑
i=1

∑
k<l

∥∥∥Zi(O
(i)
t,k)
∥∥∥∥∥∥E [Zi(O

(i)
t,l ) | F

t
k

]∥∥∥] (Cauchy–Schwarz inequality)

≤ Et−τ

[
2

N2K2

N∑
i=1

∑
k<l

c3L2ρ
(l−k)

]
( Lemma 11 and 12)

≤ Et−τ

[
2

N2K2

N∑
i=1

K−1∑
k=0

∞∑
m=1

c3L2ρ
m

]

=
2c3L2NK

N2K2

ρ

1− ρ
=

2c3L2ρ

NK(1− ρ)
.
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And T2 can be bounded by:

Et−τ [T2] =
2

N2K2

∑
i<j

K−1∑
k=0

Et−τ

[
Zi(O

(i)
t,k)
]⊤

Et−τ

[
Zj(O

(j)
t,k )
]
(O

(i)
t,k and O

(j)
t,k are independent)

≤ 2

N2K2

∑
i<j

K−1∑
k=0

L2
2ρ

2τK+2k (Lemma 12)

≤ 2

K
L2
2ρ

2τK .

Meanwhile, T3 can be bounded by:

Et−τ [T3] =
2

N2K2

∑
i<j

∑
k<l

Et−τ

[
Zi(O

(i)
t,k)
]⊤

Et−τ

[
Zj(O

(j)
t,l )
]
(O

(i)
t,k and O

(j)
t,l are independent)

≤ 2

N2K2

∑
i<j

∑
k<l

L2
2ρ

2τK+k+l (Lemma 12)

≤ 2L2
2ρ

2τK

Substituting the upper bound of T1, T2 and T3 into Eq (4.38), we have:

Et−τ

[∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)

∥∥∥∥∥
]
≤

(
1

N2K2

N∑
i=1

K−1∑
k=0

Et−τ

[
Zi(O

(i)
t,k)

⊤Zi(O
(i)
t,k)
]

+
2c3L2ρ

NK(1− ρ)
+

2

K
L2
2ρ

2τK + 2L2
2ρ

2τK

) 1
2

(a)

≤

√
NK

N2K2
c23 +

2c3Lρ

NK(1− ρ)
+

2

K
L2
2ρ

2τK + 2L2
2ρ

2τK

≤

√
1

NK

(
c23 +

2c3L2ρ

1− ρ

)
+ 4L2

2ρ
2τK (K ≥ 1)

≤

√
1

NK

(
c23 +

2c3L2ρ

1− ρ

)
+
√

4L2
2ρ

2τK

=

√
1

NK

(
c23 +

2c3L2ρ

1− ρ

)
+ 2L2ρ

τK .

where (a) used the fact that
∥∥∥Zi

(
O

(i)
t,k

)∥∥∥ ≤ c3 mentioned in Lemma 11. The proof of other

inequalities follows the same reasoning.
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• Bounding E
[∥∥θ̄t − θ̄t−τ

∥∥2]
Lemma 14. (Bounding ∥θt − θt−τ∥2) Consider τ = ⌈ τ

mix(α2
T )

K
⌉ and choose the effective step-size

α ≤ min
{ 1

30c4(τ + 1)
,

1

96c24τ
, 1
}

where c4 = 3c1. For any t ≥ 2τ , we have the following bound:

Et−2τ

[∥∥θ̄t − θ̄t−τ

∥∥2] ≤ 8α2τ 2c24Et−2τ

[∥∥θ̄t − θ∗
∥∥2]+ 14α2τ 2

d22
NK

+
52L2

2α
4τ

1− ρ2

+ 4α2c24τ
τ∑

s=0

Et−2τ [∆t−s] + 3200α2c24c
2
1τ

3Γ2(ϵ, ϵ1) + 4α2c21τ
2Γ2(ϵ, ϵ1).

(4.39)

Proof. For any l ≥ 2τ , we have∥∥∥θ̄l+1 − θ̄l

∥∥∥2 = ∥∥∥Π2,H

(
θ̄l +

α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
l,k)

)
− θ̄l

∥∥∥2
≤
∥∥∥θ̄l + α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
l,k)− θ̄l

∥∥∥2
= α2

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
−Ai(O

(i)
l,k)
(
θ
(i)
l,k − θ∗i

)
+ Zi(O

(i)
l,k)
] ∥∥∥2

≤ 2α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
−Ai(O

(i)
l,k)
(
θ
(i)
l,k − θ∗

)
+ Zi(O

(i)
l,k)
] ∥∥∥2

+ 2α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
−Ai(O

(i)
l,k)
(
θ∗ − θ∗i

)] ∥∥∥2
(a)

≤ 2α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
−Ai(O

(i)
l,k)
(
θ
(i)
l,k − θ∗

)
+ Zi(O

(i)
l,k)
] ∥∥∥2 + 2α2c21Γ

2(ϵ, ϵ1)

= 6α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Ai(O
(i)
l,k)
(
θ
(i)
l,k − θ̄l

)∥∥∥2 + 6α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Ai(O
(i)
l,k)
(
θ̄l − θ∗

)∥∥∥2
+ 6α2

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2 + 2α2c21Γ

2(ϵ, ϵ1)

≤ 6α2

(
c1
NK

N∑
i=1

K−1∑
k=0

∥∥∥θ(i)l,k − θ̄l

∥∥∥)2

+ 6α2c21

∥∥∥θ̄l − θ∗
∥∥∥2
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+ 6α2
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2 + 2α2c21Γ

2(ϵ, ϵ1), (4.40)

where (a) comes from the upper bound of fixed points distance in Theorem 1 and the fact that∥∥∥Ai

(
O

(i)
t,k

)∥∥∥ ≤ c1 in Lemma 11. Taking square root on both sides of the inequality above, we get:

∥∥∥θ̄l+1 − θ̄l

∥∥∥ ≤ 3

√√√√α2

(
c1
NK

N∑
i=1

K−1∑
k=0

∥∥∥θ(i)l,k − θ̄l

∥∥∥)2

+ 3

√
α2c21

∥∥∥θ̄l − θ∗
∥∥∥2

+ 3

√√√√α2

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2 +√2α2c21Γ

2(ϵ, ϵ1)

≤ 3αc1
NK

N∑
i=1

K−1∑
k=0

∥∥∥θ(i)l,k − θ̄l

∥∥∥+ 3αc1

∥∥∥θ̄l − θ∗
∥∥∥+ 3α

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥+ 2αc1Γ(ϵ, ϵ1).

(4.41)

By using the fact that
∥∥∥θ̄l+1 − θ∗

∥∥∥ ≤ ∥∥∥θ̄l − θ∗
∥∥∥+ ∥∥∥θ̄l+1 − θ̄l

∥∥∥, we have:∥∥∥θ̄l+1 − θ∗
∥∥∥ ≤ (1 + 3αc1)

∥∥∥θ̄l − θ∗
∥∥∥

+
3αc1
NK

N∑
i=1

K−1∑
k=0

∥∥∥θ(i)l,k − θ̄l

∥∥∥+ 3α
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥+ 2αc1Γ(ϵ, ϵ1).

For simplicity, we define c4 ≜ 3c1 and δl ≜ 1
NK

∑N
i=1

∑K−1
k=0

∥∥∥θ(i)l,k − θ̄l

∥∥∥. Taking the square on both

sides of Eq (4.42), we have:∥∥∥θ̄l+1 − θ∗
∥∥∥2 ≤ (1 + αc4)

2
∥∥∥θ̄l − θ∗

∥∥∥2 + α2c24δ
2
l + 9α2

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2 + 4α2c21Γ

2(ϵ, ϵ1)

+ 6α(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥︸ ︷︷ ︸

H1

+2αc4(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥δl︸ ︷︷ ︸
H2

+ 6α2c4δl

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥︸ ︷︷ ︸

H3

+4α2c1c4δlΓ(ϵ, ϵ1)︸ ︷︷ ︸
H4

+4αc1(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥Γ(ϵ, ϵ1)︸ ︷︷ ︸
H5

+ 12α2c1

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥Γ(ϵ, ϵ1)︸ ︷︷ ︸

H6

. (4.42)
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We can further bound H1 as:

H1 = 6α(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥

= 2
√
3α(1 + αc4)

∥∥∥θ̄l − θ∗
∥∥∥ ·√3α(1 + αc4)

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥

≤ 3α(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥2 + 3α(1 + αc4)
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2

≤ 6α
∥∥∥θ̄l − θ∗

∥∥∥2 + 6α
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2. (4.43)

where we use the fact 1 + αc4 ≤ 2 in the last inequality. Similary, we can bound H2 as:

H2 = 2αc4(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥δl ≤ 2α
∥∥∥θ̄l − θ∗

∥∥∥2 + 2αc24δ
2
l . (4.44)

And we bound H3 as:

H3 = 6α2c4δl

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥ ≤ 3α2

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2 + 3α2c24δ

2
l . (4.45)

For H4, H5, H6, we have:

H4 = 4α2c1c4δlΓ(ϵ, ϵ1) ≤ 2α2c24δ
2
l + 2α2c21Γ

2(ϵ, ϵ1),

H5 = 4αc1(1 + αc4)
∥∥∥θ̄l − θ∗

∥∥∥Γ(ϵ, ϵ1) ≤ 4α
∥∥∥θ̄l − θ∗

∥∥∥2 + 4αc21Γ
2(ϵ, ϵ1),

H6 = 12α2c1

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥Γ(ϵ, ϵ1) ≤ 6α2

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2 + 6α2c21Γ

2(ϵ, ϵ1),

Substituting the upper bound of H1, H2, . . . , H6 into Eq (4.42) and noting that (1+αc4)
2 ≤ 1+3αc4

because αc4 ≤ 1, we have:

∥∥∥θ̄l+1 − θ∗
∥∥∥2 ≤ (1 + α(3c4 + 12))

∥∥∥θ̄l − θ∗
∥∥∥2 + (6α2 + 2α)c24δ

2
l
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+ (18α2 + 6α)
∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2 + (12α2 + 4α)c21Γ

2(ϵ, ϵ1)

≤ (1 + αh1)
∥∥∥θ̄l − θ∗

∥∥∥2 + 8αc24δ
2
l + 24α

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2 + 16αc21Γ

2(ϵ, ϵ1),

(4.46)

where we denote h1 ≜ 3c4 + 12 for simplicity. For any t− τ ≤ l ≤ t, conditioning on Ft−2τ on

both sides of the above inequality, we have:

Et−2τ

∥∥∥θ̄l+1 − θ∗
∥∥∥2 ≤ (1 + αh1)Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2 + 24αEt−2τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
l,k)
∥∥∥2

+ 8αc24Et−2τ

[
δ2l
]
+ αM3(ϵ, ϵ1)

≤ (1 + αh1)Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2 + 24α

[
d22
NK

+ 4L2
2ρ

2(l−t+2τ)K

]
(Lemma 13)

+ 8αc24Et−2τ

[
δ2l
]
+ αM3(ϵ, ϵ1)

(a)

≤ (1 + αh1)Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2 + 24α

[
d22
NK

+ 4L2
2α

2ρ2(l−t+τ)K

]
+ 8αc24Et−2τ

[
δ2l
]
+ αM3(ϵ, ϵ1)

≤ (1 + αh1)Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2 + αct(l) + 8αc24Et−2τ

[
δ2l
]
+ αM3(ϵ, ϵ1),

(4.47)

where we denote M3(ϵ, ϵ1) ≜ 16c21Γ
2(ϵ, ϵ1) and ct(l) = 24

[
d22
NK

+ 4L2
2α

2ρ2(l−t+τ)K
]

for simplicity.

Inequality (a) is due to ρ2τK ≤ α4
T ≤ α2

t . In the following steps, we try to map Et−2τ

∥∥∥θ̄l+1 − θ∗
∥∥∥2

to Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 for any t− τ ≤ l ≤ t. By applying Eq (4.47) recursively, we have:

Et−2τ

∥∥∥θ̄l+1 − θ∗
∥∥∥2 ≤ (1 + αh1)

l+1−t+τ Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + α

l∑
k=t−τ

(1 + αh1)
l−k (ct(k) +M3(ϵ, ϵ1))

+ 8αc24Et−2τ

[
l∑

k=t−τ

(1 + αh1)
l−k δ2k

]
(b)

≤ (1 + αh1)
τ+1 Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + α

t∑
k=t−τ

(1 + αh1)
l−k (ct(k) +M3(ϵ, ϵ1))︸ ︷︷ ︸

H7
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+ 8αc24Et−2τ

[
t∑

k=t−τ

(1 + αh1)
l−k δ2k

]
︸ ︷︷ ︸

H8

(4.48)

where (b) is due to l ≤ t. For H7, we have:

H7 ≤
t∑

k=t−τ

(1 + αh1)
t−k (ct(k) +M3(ϵ, ϵ1)) (l ≤ t)

=
τ∑

k′=0

(1 + αh1)
τ−k′ (ct(k

′ + t− τ) +M3(ϵ, ϵ1)) ( changing index k into k′ with k′ = k + τ − t)

(a)

≤ 24
τ∑

k′=0

(1 + αh1)
τ−k′

[
d22
NK

+ 4L2
2α

2ρ2k
′K +M3(ϵ, ϵ1)

]

= 24

[(
d22
NK

+M3(ϵ, ϵ1)

)
(1 + αh1)

τ+1 − 1

αh1

+ 4L2
2α

2 (1 + αh1)
τ

τ∑
k′=0

(
ρ2K

1 + αh1

)k′
]

≤ 24

[(
d22
NK

+M3(ϵ, ϵ1)

)
(1 + αh1)

τ+1 − 1

αh1

+ 4L2
2α

2 (1 + αh1)
τ

τ∑
k′=0

ρ2k
′K

]
(1 + αh1 ≥ 1)

≤ 24

[(
d22
NK

+M3(ϵ, ϵ1)

)
(1 + αh1)

τ+1 − 1

αh1

+ 4L2
2α

2 (1 + αh1)
τ 1

1− ρ2

]
.

where (a) is due to the definition of ct(k′). Here we follow the analysis in [91]. Notice that for

x ≤ log 2
τ

, we have (1 + x)τ+1 ≤ 1 + 2x(τ + 1). If α ≤ 1
4h1τ
≤ log 2

h1τ
and α ≤ 1

2h1(τ+1)
, we have

(1 + αh1)
τ+1 ≤ 1 + 2αh1(τ + 1) ≤ 2 and (1 + αh1)

τ ≤ 1 + 2αh1τ ≤ 1 + 1/2 ≤ 2. Hence, we

have

H7 ≤ 24

[(
d22
NK

+M3(ϵ, ϵ1)

)
2(τ + 1) +

8L2
2α

2

1− ρ2

]
.

We apply the similar analysis to bound H8 as:

H8 =
τ∑

k=0

(1 + αh1)
τ−k δ2t−τ+k ≤

τ∑
k=0

(1 + αh1)
τ δ2t−τ+k ≤

τ∑
k=0

(1 + 2αh1τ) δ
2
t−τ+k ≤ 2

τ∑
k=0

δ2t−k.

Substituting the upper bound of H7 and H8 into Eq (4.48), we have:

Et−2τ

∥∥∥θ̄l+1 − θ∗
∥∥∥2 ≤ 2Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + 24α

[(
d22
NK

+M3(ϵ, ϵ1)

)
2(τ + 1) +

8L2
2α

2

1− ρ2

]
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+ 16αc24

τ∑
k=0

Et−2τ [δ
2
t−k].

Then it is straightforward to bound Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2 as:

Et−2τ

∥∥∥θ̄l − θ∗
∥∥∥2 ≤ 2Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + 24α

[(
d22
NK

+M3(ϵ, ϵ1)

)
4τ +

8L2
2α

2

1− ρ2

]
+ 16αc24

τ∑
k=0

Et−2τ [δ
2
t−k]. (4.49)

Furthermore, based on the triangle inequality, we have:

∥∥∥θ̄t − θ̄t−τ

∥∥∥2 ≤ ( t−1∑
s=t−τ

∥∥∥θ̄s+1 − θ̄s

∥∥∥)2

≤ τ
t−1∑

s=t−τ

∥∥∥θ̄s+1 − θ̄s

∥∥∥2
≤ τ

t−1∑
s=t−τ

[
α2c24

∥∥∥θ̄s − θ∗
∥∥∥2 + α2c24δ

2
s + 6α2

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
s,k)
∥∥∥2 + 2α2c21Γ

2(ϵ, ϵ1)

]

where the last inequality is due to Eq (4.40) with c4 = 3c1. If we take the expectation on both sides,

we have:

Et−2τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2 ≤ τ
t−1∑

s=t−τ

[
α2c24Et−2τ

∥∥∥θ̄s − θ∗
∥∥∥2 + α2c24δ

2
s

+6α2Et−2τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
s,k)
∥∥∥2 + 2α2c21Γ

2(ϵ, ϵ1)

]

≤ τα2c24

t−1∑
s=t−τ

[
2Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + 24α

[(
d22
NK

+M3(ϵ, ϵ1)

)
4τ +

8L2
2α

2

1− ρ2

]

+16αc24

τ∑
k=0

Et−2τ [δ
2
t−k]

]
(Eq (4.49))

+ 6α2τ
t−1∑

s=t−τ

(
d22
NK

+ 4L2
2ρ

2(s−t+2τ)K

)
(Lemma 13)

+ α2c24τ
t−1∑

s=t−τ

Et−2τ [δ
2
s ] + 2α2c21τ

2Γ2(ϵ, ϵ1)

(a)

≤ τ 2α2c24

[
2Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + 96

(
d22
NK

ατ +
2L2

2α
3

1− ρ2

)]
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+ 6α2τ

[
d22
NK

τ +
4L2

2α
2

1− ρ2K

]
+ α2c24τ(1 + 16ατc24)

τ∑
s=0

Et−2τ [δ
2
t−s]

+ 96α2c24τ
3M3(ϵ, ϵ1) + 2α2c21τ

2Γ2(ϵ, ϵ1)

(b)

≤ 2τ 2α2c24Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + d22

NK
α2τ 2

(
96ατc24 + 6

)
+

12L2
2α

4τ

1− ρ2
(
16αc24τ + 2

)
+ α2c24τ(1 + 16ατc24)

τ∑
s=0

Et−2τ [∆t−s] + 96α2c24τ
3M3(ϵ, ϵ1) + 2α2c21τ

2Γ2(ϵ, ϵ1) (4.50)

Where we used the fact that ρ2τK ≤ α2 for (a) and (b), and that δ2t ≤ ∆t (via Jensens’ inequality)

for all t ≥ 0 in the last inequality. Let us choose α such that 96ατc24 + 6 ≤ 7, 16αc24τ + 2 ≤ 13
6

and

1 + 16ατc24 ≤ 2, this holds when

α ≤ min
{ 1

96τc24
,

1

96c24τ
,

1

16τc24
, 1
}
.

Based on the fact that ∥θ̄t−τ − θ∗∥2 ≤ 2∥θ̄t − θ̄t−τ∥2 + 2∥θ̄t − θ∗∥2 and the requirement on α, we

have

2α2τ 2c24Et−2τ∥θ̄t−τ − θ∗∥2 ≤ 4α2τ 2c24Et−2τ∥θ̄t − θ̄t−τ∥2 + 4α2τ 2c24Et−2τ∥θ̄t − θ∗∥2

(a)

≤ 0.5Et−2τ∥θ̄t − θ̄t−τ∥2 + 4α2τ 2c24Et−2τ∥θ̄t − θ∗∥2

(b)

≤ τ 2α2c24Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + 7d22

2NK
α2τ 2 +

13L2
2α

4τ

(1− ρ2)

+ α2c24τ
τ∑

s=0

Et−2τ [∆t−s] + 48α2c24τ
3M3(ϵ, ϵ1) + α2c21τ

2Γ2(ϵ, ϵ1)

+ 4α2τ 2c24Et−2τ∥θ̄t − θ∗∥2 (4.51)

where (a) is due to 4α2τ 2c24 ≤ 0.5, and (b) is due to Eq (4.50) and the choice of α. Putting the term

τ 2α2c24Et−2τ

∥∥∥θ̄t−τ − θ∗
∥∥∥2 together by rearranging the terms, we have:

α2τ 2c24Et−2τ∥θ̄t−τ − θ∗∥2 ≤ 7d22
2NK

α2τ 2 +
13L2

2α
4τ

(1− ρ2)

+ α2c24τ

τ∑
s=0

Et−2τ [∆t−s] + 48α2c24τ
3M3(ϵ, ϵ1) + α2c21τ

2Γ2(ϵ, ϵ1)
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+ 4α2τ 2c24Et−2τ∥θ̄t − θ∗∥2 (4.52)

The proof is completed by substituting this inequality into Eq (4.50) and the definition of M3(ϵ, ϵ1).

Note that we require the effective step-size

α ≤ min
{ 1

4h1τ
,

1

2h1(τ + 1)
,

1

96c24τ
, 1
}

in this proof, which holds when α ≤ min
{

1
30c4(τ+1)

, 1
96c24τ

, 1
}

since c4 = 3c1 ≥ 1.

• Drift Term Analysis.

Now we bound the drift term as follows:

Lemma 15. (Bounded Client Drift) If αl ≤ 1
2
√
2c1(K−1)

, the drift term satisfies

E[∆t] =
1

NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ(i)t,k − θ̄t

∥∥∥2 ≤ 4α2

Kα2
g

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
. (4.53)

Proof.

1

NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ(i)t,k − θ̄t

∥∥∥2 = 1

NK

N∑
i=1

K−1∑
k=0

E
∥∥∥θ̄t + αl

k−1∑
s=0

gi(θ
(i)
t,s)− θ̄t

∥∥∥2
= α2

l

1

NK

N∑
i=1

K−1∑
k=0

E
∥∥∥ k−1∑

s=0

−Ai(O
(i)
t,s)
(
θ
(i)
t,s − θ∗i

)
+ Zi(O

(i)
t,s)
∥∥∥2

≤ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

E
∥∥∥ k−1∑

s=0

−Ai(O
(i)
t,s)
(
θ
(i)
t,s − θ∗i

)∥∥∥2 + 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

E
∥∥∥ k−1∑

s=0

Zi(O
(i)
t,s)
∥∥∥2

≤ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

k

k−1∑
s=0

E
∥∥∥Ai(O

(i)
t,s)
(
θ
(i)
t,s − θ∗i

)∥∥∥2 + 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

k−1∑
s=0

E
∥∥∥Zi(O

(i)
t,s)
∥∥∥2

+ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s ̸=s′

E
〈
Zi(O

(i)
t,s), Zi(O

(i)
t,s′)
〉

≤ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc21

k−1∑
s=0

E
∥∥∥θ(i)t,s − θ∗i

∥∥∥2 + 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc23 (Lemma 11)
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+ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s ̸=s′

E
[
E
〈
Zi(O

(i)
t,s), Zi(O

(i)
t,s′)
〉
| F t

s

]

≤ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc21

k−1∑
s=0

E
∥∥∥θ(i)t,s − θ∗i

∥∥∥2 + 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc23

+ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s ̸=s′

E
[〈

Zi(O
(i)
t,s),E

[
Zi(O

(i)
t,s′) | F

t
s

] 〉]

≤ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc21

k−1∑
s=0

E
∥∥∥θ(i)t,s − θ∗i

∥∥∥2 + 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc23

+ 4α2
l

1

NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s<s′

E
[∥∥∥Zi(O

(i)
t,s)
∥∥∥∥∥∥E [Zi(O

(i)
t,s′) | F

t
s

] ∥∥∥]

≤ 4α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc21

k−1∑
s=0

E
∥∥∥θ(i)t,s − θ̄t

∥∥∥2 + 4α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc21

k−1∑
s=0

E
∥∥∥θ̄t − θ∗i

∥∥∥2 (Eq (6.6))

+ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc23 + 4α2
l

1

NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s<s′

c3L2ρ
s′−s (Lemma 12)

≤ 4α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc21

k−1∑
s=0

E
∥∥∥θ(i)t,s − θ̄t

∥∥∥2 + 4α2
l

1

NK

N∑
i=1

K−1∑
k=0

4kc21(K − 1)H2

+ 2α2
l

1

NK

N∑
i=1

K−1∑
k=0

kc23 + 4α2
l

1

NK

N∑
i=1

K−1∑
k=0

k−1∑
s,s′=0
s<s′

c3L2ρ
s′−s

︸ ︷︷ ︸
M1

(4.54)

where we used the property that θ̄t, θ∗i ∈ H in the last inequality, i.e., ∥θ̄t∥ ≤ H2 and ∥θ∗i ∥ ≤ H2.

We now boundM1 as:

k−1∑
s,s′=0
s<s′

c3L2ρ
s′−s = c3L2

k−1∑
s=0

k−1∑
s′=s+1

ρs
′−s = c3L2

k−1∑
s=0

ρ− ρs−s′

1− ρ
≤ c3L2

ρk

1− ρ
(4.55)

DefineRK ≜
∑N

i=1

∑K−1
k=0 E

∥∥∥θ(i)t,k − θ̄t

∥∥∥2 and note thatRK is monotonically increasing in K. With
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this definition, if we plug in the upper bound ofM1 into Eq (4.54), we have:

RK ≤ 4α2
l

N∑
i=1

K−1∑
k=0

kc21

k−1∑
s=0

E
∥∥∥θ(i)t,s − θ̄t

∥∥∥2 + 4α2
l

N∑
i=1

K−1∑
k=0

4kc21(K − 1)H2

+ 2α2
l

N∑
i=1

K−1∑
k=0

kc23 + 4α2
l

N∑
i=1

K−1∑
k=0

c3L2
ρk

1− ρ

≤ 2α2
l (K − 1)NK

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4α2

l c
2
1(K − 1)

K−1∑
k=1

N∑
i=1

k−1∑
s=0

E
∥∥∥θ(i)t,s − θ̄t

∥∥∥2︸ ︷︷ ︸
Rk

= 2α2
l (K − 1)NK

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4α2

l c
2
1(K − 1)

K−1∑
k=1

Rk (4.56)

By the monotonicity ofRk, we have

RK ≤ 2α2
l (K − 1)NK

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4α2

l c
2
1(K − 1)2RK−1

Let us choose αl such that 4α2
l c

2
1(K − 1)2 ≤ 1

2
, i.e., αl ≤ 1

2
√
2c1(K−1)

, the following recursion holds:

RK ≤
1

2
RK−1 + 2α2

l (K − 1)NK

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
(4.57)

for all k ∈ [K]. Next, we unroll the recurrence, go back K − 1 steps and use the fact thatR1 = 0,

we have:

RK ≤

{
∞∑
l=1

(
1

2

)l
}(

2α2
l (K − 1)NK

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

])
= 4α2

l (K − 1)NK

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
(4.58)

We finish the proof by dividing NK on both sides and substituting αl =
α

Kαg
.

• Per Round Progress
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Lemma 16. (Per Round Progress). If the local step-size αl ≤ 1
2
√
2c1(K−1)

, and the effective step-size

α = Kαlαg satisfies:

α ≤ min{ ξ1
24(c1 + c2)2 + 24ξ21 + 16

, 1,
ξ1(c1 + c2)

2L1 + 8τ 2c24
,

1

30c4(τ + 1)
,

1

96c24τ
,X}, 4

where

X =
2B(ϵ, ϵ1)G+ 3ξ1(c1 + c2)Γ

2(ϵ, ϵ1)

4B2(ϵ, ϵ1) + 24(c1 + c2)2Γ2(ϵ, ϵ1) + 2L1Γ(ϵ, ϵ1)G+ 6400c21c
2
4τ

3Γ2(ϵ, ϵ1) + 8c21τ
2Γ2(ϵ, ϵ1)

,

and choose τ = ⌈ τ
mix(α2

T )
K
⌉, then we have,

Et−2τ∥θ̄t+1 − θ∗∥2 ≤ (1 + 32αξ1(c1 + c2))Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)∥∥∥2︸ ︷︷ ︸
Expected progress for the virtual MDP

+
9 + 28τ 2

NK
α2d22︸ ︷︷ ︸

Linear speedup

+α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
︸ ︷︷ ︸

High order terms: O(α3)

+
4α3

Kα2
g

(
14

ξ1
+ 14ξ1)(c1 + c2)

[
c23 +

2c3L2ρ

1− ρ
+ 4c21(K − 1)H2

]
︸ ︷︷ ︸

drift term

+ 4αB(ϵ, ϵ1)G+ 6αξ1(c1 + c2)Γ
2(ϵ, ϵ1)︸ ︷︷ ︸

heterogeneity term

. (4.59)

where ξ1 is any universal positive constant.

Proof. According to the updating rule and the fact that the projection operator is non-expansive, we

have:

Et−τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 = Et−τ

∥∥∥Π2,H

(
θ̄t +

α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)

)
− θ∗

∥∥∥2
≤Et−τ

∥∥∥θ̄t + α

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)− θ∗

∥∥∥2
4This requirement is very easy to satisfy since the denominator in X is composed by the heterogeneity terms, which

is quite small and thereby makes X large. Overall, the feasible set of the step-sizes is not empty.
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=Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2Et−τ

〈 α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ
(i)
t,k), θ̄t − θ∗

〉
+ 2Et−τ

〈 α

NK

N∑
i=1

K−1∑
k=0

[gi(θ
(i)
t,k)− ḡi(θ

(i)
t,k)], θ̄t − θ∗

〉
+ α2Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)
∥∥∥2

≤Et−τ

{∥∥∥θ̄t − θ∗
∥∥∥2 + 2

〈 α

N

N∑
i=1

ḡi(θ̄t), θ̄t − θ∗
〉
+ 2
〈 α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ
(i)
t,k)− ḡi(θ̄t), θ̄t − θ∗

〉}
︸ ︷︷ ︸

B1

+2αEt−τ

〈 1

NK

N∑
i=1

K−1∑
k=0

[gi(θ
(i)
t,k)− ḡi(θ

(i)
t,k)], θ̄t − θ∗

〉
︸ ︷︷ ︸

B2

+α2Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)
∥∥∥2︸ ︷︷ ︸

B3

(4.60)

We now begin to bound the gradient bias term B2 by decomposing this term into three terms:

〈 1

NK

N∑
i=1

K−1∑
k=0

[gi(θ
(i)
t,k)− ḡi(θ

(i)
t,k)], θ̄t − θ∗

〉
=
〈 1

NK

N∑
i=1

K−1∑
k=0

[gi(θ
(i)
t,k)− ḡi(θ

(i)
t,k)], θ̄t − θ̄t−τ

〉
︸ ︷︷ ︸

B21

+
〈 1

NK

N∑
i=1

K−1∑
k=0

[gi(θ
(i)
t,k)− gi(θ

(i)
t−τ,k)− ḡi(θ

(i)
t,k) + ḡi(θ

(i)
t−τ,k)], θ̄t−τ − θ∗

〉
︸ ︷︷ ︸

B22

+
〈 1

NK

N∑
i=1

K−1∑
k=0

[gi(θ
(i)
t−τ,k)− ḡi(θ

(i)
t−τ,k)], θ̄t−τ − θ∗

〉
︸ ︷︷ ︸

B23

. (4.61)

Next, we bound Et−τ [B21] as:

Et−τ

〈 1

NK

N∑
i=1

K−1∑
k=0

[gi(θ
(i)
t,k)− ḡi(θ

(i)
t,k)], θ̄t − θ̄t−τ

〉
≤ Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

gi(θ
(i)
t,k)− ḡi(θ

(i)
t,k)
∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥
(a)
= Et−τ

[∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

(−Ai(O
(i)
t,k) + Āi)(θ

(i)
t,k − θ∗i ) + Zi(O

(i)
t,k)
∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥]

≤ Et−τ

[∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

(Ai(O
(i)
t,k)− Āi)(θ

(i)
t,k − θ∗i )

∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥]+ Et−τ

[∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥]
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≤ 1

NK

N∑
i=1

K−1∑
k=0

Et−τ

[∥∥∥(Ai(O
(i)
t,k)− Āi)(θ

(i)
t,k − θ∗i )

∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥]+
α

2
Et−τ

[∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2]+ 1

2α
Et−τ

[∥∥∥θ̄t − θ̄t−τ

∥∥∥2]
(b)

≤ (c1 + c2)

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ(i)t,k − θ∗i

∥∥∥∥∥∥θ̄t − θ̄t−τ

∥∥∥+ α

2
Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2 + 1

2α
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
≤ ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ(i)t,k − θ∗i

∥∥∥2 + (c1 + c2)

2ξ1NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2 (Young’s inequality (6.7))

+
α

2
Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2 + 1

2α
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
(c)

≤ 3ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ(i)t,k − θ̄t

∥∥∥2 + 3ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+
3ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ∗ − θ∗i

∥∥∥2
+

(c1 + c2)

2ξ1NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2 + α

2
Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2 + 1

2α
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
=

3ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ(i)t,k − θ̄t

∥∥∥2 + 3ξ1(c1 + c2)

2
Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 3ξ1(c1 + c2)

2
Γ2(ϵ, ϵ1)

+
(c1 + c2)

2ξ1
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2 + α

2
Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2 + 1

2α
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
(d)

≤ 3ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ(i)t,k − θ̄t

∥∥∥2 + 3ξ1(c1 + c2)

2
Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 3ξ1(c1 + c2)

2
Γ2(ϵ, ϵ1)

+
c1 + c2
2ξ1

Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2 + α

2

[
d22
NK

+ 4L2
2ρ

2τK

]
+

1

2α
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
=

3ξ1(c1 + c2)

2NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ(i)t,k − θ̄t

∥∥∥2 + 3ξ1(c1 + c2)

2
Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 3ξ1(c1 + c2)

2
Γ2(ϵ, ϵ1)

+

(
c1 + c2
2ξ1

+
1

2α

)
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2 + α

2

 d22
NK

+ 4L2
2ρ

2τK︸ ︷︷ ︸
≤4L2

2α
2

 , (4.62)

where (a) is due to gi(θ
(i)
t,k) = −Ai(O

(i)
t,k)(θ

(i)
t,k − θ∗i ) + Zi(O

(i)
t,k), (b) is due to Lemma 12 (the upper
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bound of Ai(O
(i)
t,k) and Āi), (c) is due to Eq (6.8) and (d) is due to Lemma 13.

And we bound B22 as:

B22 =
〈 1

NK

N∑
i=1

K−1∑
k=0

[gi(θ
(i)
t,k)− gi(θ

(i)
t−τ,k)− ḡi(θ

(i)
t,k) + ḡi(θ

(i)
t−τ,k)], θ̄t−τ − θ∗

〉
≤ 1

NK

N∑
i=1

K−1∑
k=0

∥∥∥gi(θ(i)t,k)− gi(θ
(i)
t−τ,k)− ḡi(θ

(i)
t,k) + ḡi(θ

(i)
t−τ,k)

∥∥∥∥∥∥θ̄t−τ − θ∗
∥∥∥ (Cauchy-Schwarz inequality)

≤ 1

NK

N∑
i=1

K−1∑
k=0

[∥∥∥gi(θ(i)t,k)− gi(θ
(i)
t−τ,k)

∥∥∥+ ∥∥∥ḡi(θ(i)t,k)− ḡi(θ
(i)
t−τ,k)

∥∥∥] ∥∥∥θ̄t−τ − θ∗
∥∥∥

(a)

≤ 1

NK

N∑
i=1

K−1∑
k=0

[
2
∥∥∥θ(i)t,k − θ

(i)
t−τ,k

∥∥∥+ 2
∥∥∥θ(i)t,k − θ

(i)
t−τ,k

∥∥∥] ∥∥∥θ̄t−τ − θ∗
∥∥∥

≤ 1

NK

N∑
i=1

K−1∑
k=0

[
4
∥∥∥θ(i)t,k − θ̄t

∥∥∥+ 4
∥∥∥θ̄t − θ̄t−τ

∥∥∥+ 4
∥∥∥θ̄t−τ − θ

(i)
t−τ,k

∥∥∥] ∥∥∥θ̄t−τ − θ∗
∥∥∥ (Triangle inequality)

≤ 4δt

∥∥∥θ̄t−τ − θ∗
∥∥∥+ 4

∥∥∥θ̄t − θ̄t−τ

∥∥∥∥∥∥θ̄t−τ − θ∗
∥∥∥+ 4δt−τ

∥∥∥θ̄t−τ − θ∗
∥∥∥

(b)

≤ 2

ξ2
∆t +

2

ξ2
∆t−τ + (2ξ2 + 4ξ2)

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + 2

ξ2

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
≤ 2

ξ2
∆t +

2

ξ2
∆t−τ + 12ξ2

∥∥∥θ̄t − θ∗
∥∥∥2 + (12ξ2 +

2

ξ2
)
∥∥∥θ̄t − θ̄t−τ

∥∥∥2 (Eq 6.8) (4.63)

where (a) is due to the 2-Lipschitz property of steady-state ḡ (i.e., Lemma 5) and random direction

gi (i.e., Lemma 6), δt = 1
NK

∑N
i=1

∑K−1
k=0

∥∥∥θ(i)t,k− θ̄t

∥∥∥ and ∆t ≜ 1
NK

∑N
i=1

∑K−1
k=0 E

∥∥∥θ(i)t,k− θ̄t

∥∥∥2, and

(b) is due to Young’s inequality (6.7) with constants ξ2 and δ2t ≤ ∆t.

Now, we bound B23 as:

Et−τ [B23] =
〈 1

NK

N∑
i=1

K−1∑
k=0

Et−τ [gi(θ
(i)
t−τ,k)− ḡi(θ

(i)
t−τ,k)], θ̄t−τ − θ∗

〉
≤ 1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥∥∥∥Et−τ

[
gi(θ

(i)
t−τ,k)− ḡi(θ

(i)
t−τ,k)

] ∥∥∥ (Cauchy-Schwarz inequality)

=
1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥∥∥∥Et−τ

[
−Ai(O

(i)
t,k)(θ

(i)
t−τ,k − θ∗i ) + Zi(O

(i)
t,k) + Āi(θ

(i)
t−τ,k − θ∗i )

] ∥∥∥
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≤ 1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥{∥∥∥Et−τ (Ai(O

(i)
t,k)− Āi)(θ

(i)
t−τ,k − θ∗i )

∥∥∥+ ∥∥∥Et−τ

[
Zi(O

(i)
t,k)
] ∥∥∥}

(a)

≤ 1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥{L1ρ

τK+k
∥∥∥θ(i)t−τ,k − θ∗i

∥∥∥+ L2ρ
τK+k

}
≤ 1

NK

N∑
i=1

K−1∑
k=0

∥∥∥θ̄t−τ − θ∗
∥∥∥{L1ρ

τK+k
[∥∥∥θ(i)t−τ,k − θ̄t−τ

∥∥∥+ ∥∥∥θ̄t−τ − θ∗
∥∥∥+ ∥∥∥θ∗ − θ∗i

∥∥∥]+ L2ρ
τK+k

}
(b)

≤ α2L1

∥∥∥θ̄t−τ − θ∗
∥∥∥δt−τ + α2L1

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + α2L1Γ(ϵ, ϵ1)G+ α2L2G

≤ α2L1

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + α2L1∆t−τ + α2L1

∥∥∥θ̄t−τ − θ∗
∥∥∥2 + α2L1Γ(ϵ, ϵ1)G+ α2L2G

(c)

≤ 2α2L1G
2 + α2L2G+ α2L1∆t−τ + α2L1Γ(ϵ, ϵ1)G, (4.64)

where (a) is due to Lemma 12, (b) is due to the fact that θ̄t−τ , θ
∗ ∈ H, which radius is H ≤ G

2
, and

τ = ⌈ logρ(α
2
T )

K
⌉ (i.e., ρτK ≤ α2) and (c) is due to the fact that θ̄t−τ , θ

∗ ∈ H. Then, the term B2 can

be bounded as:

Et−τ [B2] = Et−τ [B21 + B22 + B23]

≤ 3ξ1(c1 + c2)

2
Et−τ [∆t] +

3ξ1(c1 + c2)

2
Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 3ξ1(c1 + c2)

2
Γ2(ϵ, ϵ1)

+

(
c1 + c2
2ξ1

+
1

2α

)
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2 + α

2

[
d22
NK

+ 4L2
2ρ

2τK

]
+

2

ξ2
Et−τ [∆t] +

2

ξ2
Et−τ [∆t−τ ] + 12ξ2Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + (12ξ2 +

2

ξ2
)Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
+ 2α2L1G

2 + α2L2G+ α2L1Et−τ [∆t−τ ] + α2L1Γ(ϵ, ϵ1)G

≤
(
3ξ1(c1 + c2)

2
+ 12ξ2

)
Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + (c1 + c2

2ξ1
+

1

2α
+ 12ξ2 +

2

ξ2

)
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
+

(
3ξ1(c1 + c2)

2
+

2

ξ2

)
Et−τ [∆t] +

(
2

ξ2
+ α2L1

)
∆t−τ +

α

2

[
d22
NK

+ 4L2
2α

2

]
+ 2α2L1G

2 + α2L2G+
3ξ1(c1 + c2)

2
Γ2(ϵ, ϵ1) + α2L1Γ(ϵ, ϵ1)G (4.65)

Next, we bound B3 as:

Et−τ [B3] = Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[
gi(θ

(i)
t,k)− ḡi(θ

(i)
t,k) + ḡi(θ

(i)
t,k)− ḡi(θ̄t) + ḡi(θ̄t)− ḡ(θ̄t) + ḡ(θ̄t)

] ∥∥∥2
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≤ 4Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

(
gi(θ

(i)
t,k)− ḡi(θ

(i)
t,k)
)∥∥∥2 + 4Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ

(i)
t,k)− ḡi(θ̄t)

)∥∥∥2
+ 4Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ̄t)− ḡ(θ̄t)

) ∥∥∥2 + 4Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

ḡ(θ̄t)
∥∥∥2 (Eq 6.8)

= 4Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

[(
Āi − Ai(O

(i)
t,k)
)
(θ

(i)
t,k − θ∗i ) + Zi(O

(i)
t,k)
] ∥∥∥2

+ 4Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ

(i)
t,k)− ḡi(θ̄t)

)∥∥∥2 + 4Et−τ

∥∥∥ 1

N

N∑
i=1

(
ḡi(θ̄t)− ḡ(θ̄t)

) ∥∥∥2︸ ︷︷ ︸
Lemma 2

+4Et−τ

∥∥∥ḡ(θ̄t)∥∥∥2

(a)

≤ 8Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

(
Āi − Ai(O

(i)
t,k)
)
(θ

(i)
t,k − θ∗i )

∥∥∥2 + 8Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2

+ 16
1

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ(i)t,k − θ̄t

∥∥∥2 + 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)∥∥∥2
≤ 8

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥Āi − Ai(O
(i)
t,k)
∥∥∥2∥∥∥θ(i)t,k − θ∗i

∥∥∥2 + 8Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2

+ 16Et−τ [∆t] + 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)∥∥∥2
≤ 8(c1 + c2)

2

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ(i)t,k − θ∗i

∥∥∥2 + 8Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2

+ 16Et−τ [∆t] + 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)∥∥∥2
≤ 24(c1 + c2)

2

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ(i)t,k − θ̄t

∥∥∥2 + 24(c1 + c2)
2

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+
24(c1 + c2)

2

NK

N∑
i=1

K−1∑
k=0

Et−τ

∥∥∥θ∗i − θ∗
∥∥∥2 + 8Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2

+ 16Et−τ [∆t] + 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)∥∥∥2
= 24(c1 + c2)

2Et−τ [∆t] + 24(c1 + c2)
2Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 24(c1 + c2)

2Γ2(ϵ, ϵ1)

+ 8Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

Zi(O
(i)
t,k)
∥∥∥2 + 16Et−τ [∆t] + 4B2(ϵ, ϵ1) + 4Et−τ

∥∥∥ḡ(θ̄t)∥∥∥2
(b)

≤ (24(c1 + c2)
2 + 16)Et−τ [∆t] + 8(

d22
NK

+ 4L2
2ρ

τK︸ ︷︷ ︸
≤4L2

2α
2

) + 24(c1 + c2)
2Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2
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+ 4Et−τ

∥∥∥ḡ(θ̄t)∥∥∥2 + 4B2(ϵ, ϵ1) + 24(c1 + c2)
2Γ2(ϵ, ϵ1), (4.66)

where (a) is due to 2-Lipschitz of ḡi (i.e., Lemma 5) and the gradient heterogeneity (i.e., Lemma 2)

and (b) is due to Lemma 13.

Next, we bound B1 as:

Et−τ [B1] = Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2Et−τ

〈 α

N

N∑
i=1

ḡi(θ̄t), θ̄t − θ∗
〉
+ 2Et−τ

〈 α

NK

N∑
i=1

K−1∑
k=0

ḡi(θ
(i)
t,k)− ḡi(θ̄t), θ̄t − θ∗

〉
≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−τ

〈 1

N

N∑
i=1

ḡi(θ̄t)− ḡ(θ̄t), θ̄t − θ∗
〉
+ 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 2αEt−τ

〈 1

NK

N∑
i=1

K−1∑
k=0

ḡi(θ
(i)
t,k)− ḡi(θ̄t), θ̄t − θ∗

〉
≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−τ

∥∥∥ 1

N

N∑
i=1

ḡi(θ̄t)− ḡ(θ̄t)
∥∥∥∥∥∥θ̄t − θ∗

∥∥∥+ 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+

α

ξ3
Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ

(i)
t,k)− ḡi(θ̄t)

)∥∥∥2 + αξ3Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

(Young’s inequality Eq (6.7) with constant ξ3)
(a)

≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αB(ϵ, ϵ1)G+ 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+

α

ξ3
Et−τ

∥∥∥ 1

NK

N∑
i=1

K−1∑
k=0

(
ḡi(θ

(i)
t,k)− ḡi(θ̄t)

)∥∥∥2 + αξ3Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

(b)

≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αB(ϵ, ϵ1)G+ 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+

4α

ξ3
Et−τ [∆t] + αξ3Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2,

(4.67)

where (a) is due to the fact that θ̄t, θ∗ ∈ H and the gradient heterogeneity; (b) is due to 2-Lipschitz

property of function ḡ in Lemma 5.

Incorporating the upper of B1 from Eq (4.67), B2 from Eq (4.65) and B3 from Eq (4.66) into

Eq (4.60), we have:

Et−τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 ≤ Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−τ

∥∥∥ḡ(θ̄t)∥∥∥2
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+
(
αξ3 + α(3ξ1(c1 + c2) + 24ξ2) + 24α2(c1 + c2)

2
)
Et−τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ α

(
c1 + c2

ξ1
+

1

α
+ 24ξ2 +

4

ξ2

)
Et−τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2
+

9d22
NK

α2 + 36L2
2α

4 + 4α3L1G
2 + 2α3L2G+

(
4α

ξ2
+ 2α3L1

)
∆t−τ

+ α

(
4

ξ3
+ 3ξ1(c1 + c2) +

4

ξ2
+ α2

(
24(c1 + c2)

2 + 16
))

Et−τ [∆t]

+ 2αB(ϵ, ϵ1)G+ 4α2B2(ϵ, ϵ1) + 24α2(c1 + c2)
2Γ2(ϵ, ϵ1)

+ 3αξ1(c1 + c2)Γ
2(ϵ, ϵ1) + 2α3L1Γ(ϵ, ϵ1)G (4.68)

Conditioned on Ft−2τ and using Lemma 14 to give an upper bound of Et−2τ

∥∥∥θ̄t − θ̄t−τ

∥∥∥2, we

have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 ≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)∥∥∥2
+
(
αξ3 + α(3ξ1(c1 + c2) + 24ξ2) + 24α2(c1 + c2)

2
)︸ ︷︷ ︸

E1

Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ α

(
c1 + c2

ξ1
+

1

α
+ 24ξ2 +

4

ξ2

)
︸ ︷︷ ︸

E2

{
8α2τ 2c24Et−2τ

[∥∥θ̄t − θ∗
∥∥2]+ 14α2τ 2

d22
NK

+
52L2

2α
4τ

1− ρ2

+4α2c24τ
τ∑

s=0

Et−2τ [∆t−s] + 3200α2c21c
2
4τ

3Γ2(ϵ, ϵ1) + 4α2c21τ
2Γ2(ϵ, ϵ1)

}

+
9d22
NK

α2 + 36L2
2α

4 + 4α3L1G
2 + 2α3L2G+

(
4α

ξ2
+ 2α3L1

)
Et−2τ [∆t−τ ]

+ α

(
4

ξ3
+ 3ξ1(c1 + c2) +

4

ξ2
+ α2

(
24(c1 + c2)

2 + 16
))

︸ ︷︷ ︸
E3

Et−2τ [∆t]

+ 2αB(ϵ, ϵ1)G+ 4α2B2(ϵ, ϵ1) + 24α2(c1 + c2)
2Γ2(ϵ, ϵ1)

+ 3αξ1(c1 + c2)Γ
2(ϵ, ϵ1) + 2α3L1Γ(ϵ, ϵ1)G (4.69)

If we choose step-size α such that αE2 = α
(

c1+c2
ξ1

+ 1
α
+ 24ξ2 +

4
ξ2

)
≤ 2, ξ1 = ξ2 = ξ3, E1 =

αξ3+α(3ξ1(c1+c2)+24ξ2)+24α2(c1+c2)
2 ≤ 28αξ1(c1+c2)+24α2(c1+c2)

2 ≤ 30αξ1(c1+c2)
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(c1, c2 > 1) and E3 = 4
ξ3
+ 3ξ1(c1 + c2) +

4
ξ2
+ α2 (24(c1 + c2)

2 + 16) ≤ ( 9
ξ1
+ 9ξ1)(c1 + c2), i.e.,

α ≤ 1(
c1+c2
ξ1

+ 24ξ2 +
4
ξ2

) =
ξ1

(c1 + c2 + 24ξ21 + 4)

α ≤ min{ ξ1
12(c1 + c2)

, 1,
( 5
ξ1
+ 5ξ1)(c1 + c2)

24(c1 + c2)2 + 16
},

which is sufficient to hold when α ≤ min{ ξ1
24(c1+c2)2+24ξ21+16

, 1}, then we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 ≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)∥∥∥2
+ 30αξ1(c1 + c2)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+ 2

{
8α2τ 2c24Et−2τ

[∥∥θ̄t − θ∗
∥∥2]+ 14α2τ 2

d22
NK

+
52L2

2α
4τ

1− ρ2

+4α2c24τ
τ∑

s=0

Et−2τ [∆t−s] + 3200α2c21c
2
4τ

3Γ2(ϵ, ϵ1) + 4α2c21τ
2Γ2(ϵ, ϵ1)

}

+
9d22
NK

α2 + 36L2
2α

4 + 4α3L1G
2 + 2α3L2G+

(
4α

ξ2
+ 2α3L1

)
Et−2τ [∆t−τ ]

+ α

(
4

ξ3
+ 3ξ1(c1 + c2) +

4

ξ2
+ α2

(
24(c1 + c2)

2 + 16
))

Et−2τ [∆t]

+ 2αB(ϵ, ϵ1)G+ 4α2B2(ϵ, ϵ1) + 24α2(c1 + c2)
2Γ2(ϵ, ϵ1)

+ 3αξ1(c1 + c2)Γ
2(ϵ, ϵ1) + 2α3L1Γ(ϵ, ϵ1)G

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)∥∥∥2
+
(
30αξ1(c1 + c2) + 16α2τ 2c24

)
Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+
9 + 28τ 2

NK
α2d22 + 36

(
1 +

3τ

1− ρ2

)
L2
2α

4 + 4α3L1G
2 + 2α3L2G

+

(
4α

ξ1
+ 2α3L1

)
Et−2τ [∆t−τ ] + α(

9

ξ1
+ 9ξ1)(c1 + c2)Et−2τ [∆t] + 8α2c24τ

τ∑
s=0

Et−2τ [∆t−s]

+ 2αB(ϵ, ϵ1)G+ 4α2B2(ϵ, ϵ1) + 24α2(c1 + c2)
2Γ2(ϵ, ϵ1)

+ 3αξ1(c1 + c2)Γ
2(ϵ, ϵ1) + 2α3L1Γ(ϵ, ϵ1)G

+ 6400α2c21c
2
4τ

3Γ2(ϵ, ϵ1) + 8α2c21τ
2Γ2(ϵ, ϵ1) (4.70)
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if we choose the step-size α such that the high order O(α2) terms are dominanted by the first order

terms O(α), i.e., 4α2B2(ϵ, ϵ1)+24α2(c1+c2)
2Γ2(ϵ, ϵ1)+2α3L1Γ(ϵ, ϵ1)G+6400α2c21c

2
4τ

3Γ2(ϵ, ϵ1)+

8α2c21τ
2Γ2(ϵ, ϵ1) ≤ 2αB(ϵ, ϵ1)G+ 3αξ1(c1 + c2)Γ

2(ϵ, ϵ1), i.e.,

α ≤ min{ 2B(ϵ, ϵ1)G+ 3ξ1(c1 + c2)Γ
2(ϵ, ϵ1)

4B2(ϵ, ϵ1) + 24(c1 + c2)2Γ2(ϵ, ϵ1) + 2L1Γ(ϵ, ϵ1)G+ 6400c21c
2
4τ

3Γ2(ϵ, ϵ1) + 8c21τ
2Γ2(ϵ, ϵ1)

, 1}

we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 ≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)∥∥∥2
+
(
30αξ1(c1 + c2) + 16α2τ 2c24

)
Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+
9 + 28τ 2

NK
α2d22 + 36

(
1 +

3τ

1− ρ2

)
L2
2α

4 + 4α3L1G
2 + 2α3L2G

+

(
4α

ξ1
+ 2α3L1

)
Et−2τ [∆t−τ ] + α(

9

ξ1
+ 9ξ1)(c1 + c2)Et−2τ [∆t] + 8α2c24τ

τ∑
s=0

Et−2τ [∆t−s]

+ 4αB(ϵ, ϵ1)G+ 6αξ1(c1 + c2)Γ
2(ϵ, ϵ1) (4.71)

With Lemma (15), we have the upper bound of Et−2τ [∆t], Et−2τ [∆t−τ ] and τ
∑τ

s=0Et−2τ [∆t−s].

Then we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 ≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)∥∥∥2
+
(
30αξ1(c1 + c2) + 16α2τ 2c24

)︸ ︷︷ ︸
E4

Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+
9 + 28τ 2

NK
α2d22 + α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

4α2

Kα2
g

(
4α

ξ1
+ 2α3L1 + α(

9

ξ1
+ 9ξ1)(c1 + c2) + 8α2c24τ

2

)
︸ ︷︷ ︸

E5

[
c23 +

2c3L2ρ

1− ρ
+ 4c21(K − 1)H2

]

+ 4αB(ϵ, ϵ1)G+ 6αξ1(c1 + c2)Γ
2(ϵ, ϵ1) (4.72)

If we choose step-size such that E4 = 30αξ1(c1 + c2) + 16α2τ 2c24 ≤ 32αξ1(c1 + c2) and E5 =
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4α
ξ1

+ 2α3L1 + α( 9
ξ1
+ 9ξ1)(c1 + c2) + 8α2c24τ

2 ≤ α(14
ξ1

+ 14ξ1)(c1 + c2), i.e.,

α ≤ min{ξ1(c1 + c2)

8τ 2c24
, 1,

( 1
ξ1
+ ξ1)(c1 + c2)

2L1 + 8c24τ
2
},

which is sufficient to hold when α ≤ ξ1(c1+c2)

2L1+8τ2c24
, then we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 ≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)∥∥∥2
+ 32αξ1(c1 + c2)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+
9 + 28τ 2

NK
α2d22 + α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

4α3

Kα2
g

(
14

ξ1
+ 14ξ1)(c1 + c2)

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4αB(ϵ, ϵ1)G+ 6αξ1(c1 + c2)Γ

2(ϵ, ϵ1). (4.73)

• Parameter Selection

With Lemma 16, we have:

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 ≤ (1 + 32αξ1(c1 + c2))Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)∥∥∥2
+

9 + 28τ 2

NK
α2d22 + α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

4α3

Kα2
g

(
14

ξ1
+ 14ξ1)(c1 + c2)

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4αB(ϵ, ϵ1)G+ 6αξ1(c1 + c2)Γ

2(ϵ, ϵ1). (4.74)

Proposition 4. If α satisfies the requirement as Lemma 16, choose ξ1 = (1−γ)ω̄
32(c1+c2)

and τ =

⌈ τ
mix(α2

T )
K
⌉, we have:

ν1Et−2τ

∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
≤ (

1

α
− ν1)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 − 1

α
Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 + 9 + 28τ 2

NK
αd22
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+ α2

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

α2c6
K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4B(ϵ, ϵ1)G+ ν1Γ

2(ϵ, ϵ1)

(4.75)

where ν1 =
ν
4
= (1−γ)ω̄

4
and c6 ≜ 4

α2
g
(14
ξ1

+ 14ξ1)(c1 + c2).

Proof. Incorporating ξ1 = (1−γ)ω̄
32(c1+c2)

, c6 ≜ 4
α2
g
(14
ξ1

+ 14ξ1)(c1 + c2) and 6ξ1(c1 + c2) ≤ ν1 into

Eq (4.74), we have

Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 ≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 2αEt−2τ

〈
ḡ(θ̄t), θ̄t − θ∗

〉
+ 4α2Et−2τ

∥∥∥ḡ(θ̄t)∥∥∥2
+ α(1− γ)ω̄Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+
9 + 28τ 2

NK
α2d22 + α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

α3c6
K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4αB(ϵ, ϵ1)G+ αν1Γ

2(ϵ, ϵ1)

(a)

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 − 2α(1− γ)ω̄Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 16α2Et−2τ

∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄

+ α(1− γ)ω̄Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

+
9 + 28τ 2

NK
α2d22 + α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

α3c6
K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4αB(ϵ, ϵ1)G+ αν1Γ

2(ϵ, ϵ1)

= Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 − α(1− γ)ω̄

2
Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 (4.76)

− α(1− γ)ω̄

2
Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 + 16α2Et−2τ

∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄

+
9 + 28τ 2

NK
α2d22 + α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

α3c6
K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
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+ 4αB(ϵ, ϵ1)G+ αν1Γ
2(ϵ, ϵ1)

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 − α(1− γ)ω̄

2
Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2

− α(1− γ)ω̄

2
Et−2τ

∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
+ 16α2Et−2τ

∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄

+
9 + 28τ 2

NK
α2d22 + α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

α3c6
K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4αB(ϵ, ϵ1)G+ αν1Γ

2(ϵ, ϵ1)

(b)

≤ Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 − α(1− γ)ω̄

2
Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 − α(1− γ)ω̄

4
Et−2τ

∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄

+
9 + 28τ 2

NK
α2d22 + α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

α3c6
K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4αB(ϵ, ϵ1)G+ αν1Γ

2(ϵ, ϵ1)

≤ (1− 2αν1)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 − αν1Et−2τ

∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
+

9 + 28τ 2

NK
α2d22

+ α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

α3c6
K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4αB(ϵ, ϵ1)G+ αν1Γ

2(ϵ, ϵ1) (4.77)

where (a) is due to Lemma 3 and the selection of parameter; (b) is due to 16α2 ≤ α(1−γ)ω̄
4

.

Rearranging the terms and using the fact 1− 2αν1 ≤ 1− αν1, we have:

αν1Et−2τ

∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
≤ (1− αν1)Et−2τ

∥∥∥θ̄t − θ∗
∥∥∥2 − Et−2τ

∥∥∥θ̄t+1 − θ∗
∥∥∥2 + 9 + 28τ 2

NK
α2d22

+ α3

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

α3c6
K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4αB(ϵ, ϵ1)G+ αν1Γ

2(ϵ, ϵ1)

(4.78)

Then we finish the proof by dividing α on both sides.
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With these Lemmas, we are now ready to prove Theorem 4.

b) Proof of Theorem 4.

Given a fixed local step-size αl ≤ 1
4
√
2c1(K−1)

, decreasing effective step-sizes αt =
8

ν(a+t+1)
=

8
(1−γ)ω̄(a+t+1)

, decreasing global step-sizes α(t)
g = αt

Kαl
and weights wt = (a+ t), we have:

E
∥∥∥Vθ̃T

− Vθ∗i

∥∥∥2
D̄
≤ Õ

(
τ 2G2

K2T 2
+

cquad(τ)

ν2NKT
+

clin(τ)

ν4KT 2
+

B(ϵ, ϵ1)G

ν
+ Γ2(ϵ, ϵ1)

)
(4.79)

Proof. We take the step-size αt =
8

ν(a+t+1)
= 2

ν1(a+t+1)
for a > 0. In addition, we define weights

wt = (a+ t) and define

θ̃T =
1

W

T∑
t=1

wtθ̄t

where W =
∑T

t=1wt ≥ 1
2
T (a+T ). By convexity of positive definite quadratic forms (λmin(Φ

T D̄Φ) ≥

ω̄ > 0), we have

ν1E
∥∥∥Vθ̃T

− Vθ∗

∥∥∥2
D̄
≤ ν1

W

T∑
t=1

(a+ t)E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄

≤ ν1
W

2τ−1∑
t=1

(a+ t)E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄
+

ν1
W

T∑
t=2τ

(a+ t)E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄

≤ ν1
(2τ − 1)(a+ 2τ − 1)G2

W
+

ν1
W

T∑
t=2τ

(a+ t)E
∥∥∥Vθ̄t − Vθ∗

∥∥∥2
D̄

(4.75)
≤ ν1

(2τ − 1)(a+ 2τ − 1)G2

W
+

ν1(a+ 2τ)(a+ 2τ + 1)G2

2W

+
1

W

T∑
t=2τ

[
(9 + 28τ 2)d22

NK
(a+ t)αt + (a+ t)α2

t

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)]

+
1

W

T∑
t=2τ

(a+ t)α2c6
K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
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+
1

W

T∑
t=2τ

[
4(a+ t)B(ϵ, ϵ1)G+ (a+ t)ν1Γ

2(ϵ, ϵ1)
]

(4.80)

where
∥∥∥Vθ̄2τ−Vθ∗

∥∥∥2
D̄
≤ G2. We know that 1

W

∑T
t=2τ (a+t)α2

t ≤ 1
W

∑T
t=1(a+t) 4

ν21 (a+t)2
≤ 8 log(a+T )

ν21T
2

and that 1
W

∑T
t=2τ (a+ t)αt ≤ 4

ν1T
. Plugging in these inequalities into Eq (4.80), we have:

ν1E
∥∥∥Vθ̄ − Vθ∗

∥∥∥2
D̄
≤ 3ν1(a+ 2τ)(a+ 2τ + 1)G2

2W
+

4(9 + 28τ 2)d22
ν1NKT

+
8 log(a+ T )

ν2
1T
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(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+

8c6 log(a+ T )

ν2
1T

2K

[
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

]
+ 4B(ϵ, ϵ1)G+ ν1Γ

2(ϵ, ϵ1)

=
3ν1(a+ 2τ)(a+ 2τ + 1)G2

2W
+

4(9 + 28τ 2)d22
ν1NKT

+
8 log(a+ T )

ν2
1T

2K

[
K

(
36L2

2 +
108τ

1− ρ2
L2
2 + 4L1G

2 + 2L2G

)
+ c6

(
c23 +

2c3L2ρ

1− ρ
+ 8c21(K − 1)H2

)]
︸ ︷︷ ︸

clin(τ)

+ 4B(ϵ, ϵ1)G+ ν1Γ
2(ϵ, ϵ1) (4.81)

where cquad(τ) = 4d22(9 + 28τ 2). Dividing ν1 on the both sides, changing ν1 into ν (ν = (1− γ)ω̄)

and noting that c6 = 4
α2
g
(14
ξ1

+ 14ξ1)(c1 + c2) = O( 1ν ), we have:

E
∥∥∥Vθ̃T

− Vθ∗

∥∥∥2
D̄
≤ Õ

(
τ 2G2

K2T 2
+

cquad(τ)

ν2NKT
+

clin(τ)

ν4KT 2
+

B(ϵ, ϵ1)G

ν
+ Γ2(ϵ, ϵ1)

)
. (4.82)

We finish the proof by using the inequality, E
∥∥∥Vθ̃T

−Vθ∗i

∥∥∥2
D̄
≤ 2E

∥∥∥Vθ̃T
−Vθ∗

∥∥∥2
D̄
+2E

∥∥∥Vθ∗i
−Vθ∗

∥∥∥2
D̄

and combining with the third point in Theorem 1.
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4.8.11 Additional Simulation Results

a) Simulation results for the I.I.D. setting

In this subsection, we provide numerical results for FedTD(0) under the i.i.d. sampling setting

to verify the theoretical results of Theorem 2. In particular, the MDPM(1) of the first agent is

randomly generated with a state space of size n = 100. The remaining MDPs are perturbations

ofM(1) with the heterogeneity levels ϵ = 0.1 and ϵ1 = 0.1. The number of local steps is chosen

as K = 20. We evaluate the convergence in terms of the running error et = ∥θ̄t − θ∗1∥2. Each

experiment is run 10 times. We plot the mean and standard deviation across the 10 runs in Figure 4.2.

Figure 4.2: Performance of FedTD(0) with i.i.d. sampling with varying number of agents N . Solid

lines denote the mean and shaded regions indicate the standard deviation over ten runs.

As shown in Fig 4.2, FedTD(0) converges for all choices of N . Larger values of N decreases

the error, which is consistent with our theoretical analysis in Theorem 2.
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b) Simulation results for the Markovian setting

In this subsection, we provide numerical results for FedTD(0) under the Markovian sampling

setting to verify the theoretical results of Theorem 4. Here we generate all MDPs in the same way

as the i.i.d setting and choose the number of local steps as K = 20. All the remaining parameters

are kept the same as those in the subsection a).

Figure 4.3: Performance of FedTD(0) with the Markovian sampling with varying number of agents

N . Solid lines denote the mean and shaded regions indicate the standard deviation over ten runs.

As shown in Fig 4.3, FedTD(0) converges for all choices of N . Larger values of N decreases

the error, which is consistent with our theoretical analysis in Theorem 4.
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Chapter 5

Federated Learning for Policy Optimization

5.1 Introduction

Recently, there has been a lot of interest applying Federated Learning (FL) algorithms to

reinforcement learning (RL) problems in order to solve complex sequential decision-making

tasks [26, 79, 120, 158, 222]. Federated reinforcement learning (FRL) has been widely applied as it

provides the following advantages: First, FRL protects each agent’s privacy by only allowing the

model to be shared between the server and agent, while keeping the raw data localized. Secondly,

by sharing the model with the server, FRL can reduce the sample complexity and produce a better

policy than if each agent learns individually with its own limited data. However, existing work in the

FRL framework is limited to either multiple agents interacting with the same environment [48, 92]

or multiple agents with distinct, yet similar environments [79, 192, 228]. It remains an open

problem to formally characterize how FRL performs when multiple agents from completely different

environments, i.e., with arbitrarily large heterogeneity levels, are allowed to collaborate. In this

chapter, we provide an answer to the following question: what is the best achievable sample

complexity when considering severely heterogeneous environments?
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We focus on developing FRL algorithms that compute an optimal universal policy that ensures

uniformly good performance for N agents, despite their operation in disparate environments. The

motivation for a shared policy stems from practical applications necessitating uniform approaches

for distinct agents. For instance, Spotify, a leading audio streaming company, intends to design

a uniform pricing plan that suits the listening habits of all users. Given the substantial variations

in listening habits among users, establishing a pricing strategy that aligns with the preferences of

all users is of great importance. Similarly, autonomous vehicles navigating diverse settings like

urban streets, rural areas, and highways must adapt to varied challenges. A uniform policy that

adjusts to this environmental heterogeneity ensures consistent, safe decision-making across all

terrains, highlighting the need for robust algorithms capable of handling dynamic driving conditions

efficiently. Moreover, a universally optimal policy could serve as a foundational model that can

be individually fine-tuned, a concept that has gained a lot of attention in meta- and few-shot RL

research [52, 165, 238]. This approach underscores the broader necessity of designing a uniform

and adaptable policy for heterogeneous settings.

In this chapter, the environment heterogeneity refers to the fact that each agent has a different

reward function, state transition kernel, or initial state distribution, while they share common state

and action spaces. Notably, compared with the existing work [79, 192], we do not assume that all

the environments are similar, i.e., environmental heterogeneity does not need to be bounded by

small constants. Instead, we consider a more general setting where the magnitude of heterogeneity

can be arbitrary. With this setup, we aim to answer the following question:

Is it possible to design a provably efficient FRL algorithm which can accommodate

arbitrary levels of environmental heterogeneity among agents?

We answer this question affirmatively. Our main contributions are listed below.
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• New momentum-powered federated reinforcement learning algorithms: We propose

two new algorithms FEDSVRPG-M and FEDHAPG-M for solving heterogeneous FRL problems

(formally specified in Eq. (5.3)). Leveraging momentum, we prove that our algorithms, even

with constant local step-sizes, converge to the exact stationary point of the heterogeneous FRL

problem, regardless of the magnitude of environment heterogeneity. This stands in contrast to the

state-of-the-art work, which only show convergence to a ball around the stationary point whose

radius depends on the environmental heterogeneity levels. Importantly, our results hold even when

different notions of environment heterogeneity are considered such as the heterogeneity in Markov

decision processes (MDPs) or policy advantage heterogeneity [228].

• State-of-the-art convergence rates: By integrating variance-reduction techniques and

curvature information into the policy gradient estimation, our algorithms achieve sample-efficiency

improvement over prior work [48]. In particular, we reduce the sample complexity fromO
(
ϵ−

5
3/N

2
3

)
to O

(
ϵ−

3
2/N

)
when finding the ϵ-approximate first order stationary point1 (ϵ-FOSP) [143]. When

only a single agent is included, i.e., N = 1, our results align with the best known sample complexity

of O
(
ε−

3
2

)
from [49].

• Practical algorithm structures: Our algorithms are easy to implement because: (1) Constant

local step-sizes. This feature reduces the amount of algorithm tuning. In contrast, many FL

optimization algorithms [84, 218, 235] require diminishing local step-sizes preset according to

complex schedules in order to counteract the effects of heterogeneity. (2) Sampling one trajectory

per local iteration. This means our algorithms can address the challenge of poor sample efficiency

in RL. Unlike existing variance-reduced policy gradient (PG) algorithms for the single agent

setting [58, 147, 231], our approach avoids the need for large batch sizes during certain iterations.

1Finding a parameter θ such that ∥∇J(θ)∥2≤ ϵ, where J is defined in Eq. (5.3). Note that in work such as [49, 175],

the notion ∥∇J(θ)∥2≤ ϵ2 is applied instead.
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Table 5.1: Comparision of the results for policy-based methods in FRL. LU and HETER denote the

multiple local updates and environment heterogeneity, respectively.

ALGORITHM CONVERGENCE SPEEDUP LU HETER

PAVG [79] finite but inexact No speedup ! !

FEDKL [228] asymptotic No speedup % !

FEDPG-BR [48] finite and exact Sublinear: N
2
3 % %

FAPI [227] asymptotic and inexact No speedup % !

FEDSVRPG-M (Ours) finite and exact Linear: N ! !

FEDHAPG-M (Ours) finite and exact Linear: N ! !

(3) Accommodating multiple local updates. With this feature, our algorithms become more suitable

for real-world applications, where communication latency causes serious bottlenecks.

• Linear speedup: Analysis of FEDSVRPG-M and FEDHAPG-M shows that they can

converge N -times faster than the scenario where each agent learns a policy on its own. Essentially,

by adopting the FL approach, the sample complexity of our algorithms can be linearly scaled by

the number of agents N , i.e., collaboration always helps. To our knowledge, we are the first to

achieve a linear speedup for finding a stationary point of FRL problems using policy-based methods.

Importantly, the linear speedup is established even when considering multiple local updates and

without making any assumptions about environment heterogeneity. Compared to prior work, our

result outperforms that of [48, 79], which at best achieves sublinear speedup, see Table 5.1.

Refer to [210] for all proofs in this Chapter.



CHAPTER 5. FEDERATED LEARNING FOR POLICY OPTIMIZATION 120

5.2 Background and Preliminaries

5.2.1 Relative Work

Federated RL A comprehensive overview of techniques and open problems in FRL was offered

by [158]. Much of the work in FRL has focused on developing federated versions of value-based

methods [92, 192, 224]. Notably, [92] and [224] established the benefits of FL in terms of linear

speedup, assuming all agents operate in identical environment. Wang et al. [192] introduced

the FEDTD(0) algorithm to address the FRL problem with distinct yet similar environments

demonstrated linear speed up was achievable. On the other hand, [243] proposed the FEDSARSA

algorithm to solve the on-policy FRL problem, but it is applicable only in similar environments.

Another major area of FRL research studies federated policy-based algorithms [48, 79, 103, 105,

193, 228]. However, [48] only consider uniform environments and only one local update step.

While [228] explored diverse environments, they only showed an asymptotic convergence. Most

relevant to our work, [79] studied heterogeneous environments. Nevertheless, the algorithms from

[79] were saddled with a non-vanishing convergence error. This non-vanishing error depended

on the environmental heterogeneity levels. Note that none of these papers investigated the FRL

problems with arbitrary environment heterogeneity. To bridge this gap, our proposed algorithms,

FEDSVRPG-M and FEDHAPG-M, utilize policy-based techniques and can converge exactly. See

Table 5.1 for a comparison of our results with the existing work in FRL policy-based methods.

Federated Learning. Federated learning (FL) is a machine learning approach where a model is

trained across multiple clients. Each client runs several iterations of a learning algorithm on its own

dataset. Periodically, clients send their local models to the server. The server aggregates the models

and then broadcasts the resulting model to all clients and the process repeats. By performing multiple

local updates with its own data, FL can substantially reduce communication costs. Our proposed
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algorithms align with the structure of standard FL algorithms such as FEDAVG [132]: an agent

performs multiple local updates (using SGD) between two communication rounds. Nonetheless,

such local updates will introduce “client-drift” problems [24, 84, 211], presenting a key challenge in

FL regarding the trade-off between communication cost and model accuracy. Additionally, handling

data that is not identically distributed across devices, affecting both data modeling and convergence

analysis, presents another challenge. These challenges are further amplified in the context of FRL.

5.2.2 Centralized Reinforcement Learning

A centralized reinforcement learning task2 is generally modeled as a discrete-time Markov

Decision Process (MDP): M = {S,A,P ,R, γ, ρ}, where S is the state space, A is the action

space and ρ denotes the initial state distribution. Here, P (s′ | s, a) denotes the probability that

the agent transitions from the state s to s′ when taking the action a ∈ A. The discount factor is

γ ∈ (0, 1), and R(s, a) : S × A → [0, Rmax] is the reward function for taking action a at state s

for some constant Rmax > 0. A policy π : S → ∆(A) is a mapping from the state space S to the

probability distribution over the action space A.

Under any stationary policy, the agent can collect a trajectory

τ ≜ {s0, a0, s1, a1, . . . , sH−1, aH−1, sH} ,

which is the collection of state-action pairs, where H is the maximum length of all trajectories.

Once a trajectory τ is obtained, a cumulative discounted reward can be observed; R(τ) ≜∑H−1
h=0 γhR (sh, ah) .

2To distinguish from the federated setting, we refer to the single-agent case as centralized RL or when it’s clear

from context, simply reinforcement learning.
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5.2.3 Policy Gradients

Given finite state and action spaces, the policy π(a|s) can be stored in a |S|×|A| table. However,

in practice, both the state and action spaces are large and the tabular approach becomes intractable.

Alternatively, the policy is parameterized by an unknown parameter θ ∈ Rd, the resulting policy is

denoted by πθ. Given the initial distribution ρ, p(τ | θ) denotes the probability distribution over

trajectory τ , which can be calculated as

p(τ | θ) = ρ (s0)
H−1∏
h=0

πθ (ah | sh)P (sh+1 | sh, ah) .

The goal of RL is to find the optimal policy parameter θ that maximizes the expected discounted

trajectory reward:

max
θ∈Rd

J(θ) ≜ Eτ∼p(τ |θ)[R(τ)] =
∫
R(τ)p(τ | θ)dτ. (5.1)

Note that the underlying distribution p in Eq. (5.1) depends on the variable θ which varies through

the whole optimization procedure. This property, referred to as non-obliviousness, highlights a

unique challenge in RL and creates a notable distinction from supervised learning problems, where

the distribution p is stationary.

To deal with the non-oblivious and non-convex problem (5.1), a standard approach is to use the

policy gradient (PG) method [189, 223]. PG takes the first-order derivative of the objective (5.1)

where∇J(θ) can be expressed as∫
R(τ)∇p(τ | θ)dτ = Eτ∼p(τ |θ)[∇ log p(τ | θ)R(τ)].

Then, the policy θ can be optimized by running gradient ascent-based algorithms. However, since

the distribution p(τ | θ) is unknown, it is impossible to calculate the full gradient. To address this

issue, stochastic gradient ascent is typically used, producing a sequence of the form:

θ ← θ + η · 1
B

B∑
i=1

g(τi | θ)



CHAPTER 5. FEDERATED LEARNING FOR POLICY OPTIMIZATION 123

where η > 0 denotes the stepsize, B is the number of trajectories, and g(τi | θ) is an estimate of

the full gradient ∇J(θ) using the trajectory τi. The most common unbiased estimators of PG are

REINFORCE [223] and GPOMDP [10]. In this paper, g(τ | θ) is defined as

g(τ | θ) =
H−1∑
t=0

(
H−1∑
h=t

γhR (sh, ah)

)
∇ log πθ (at | st) .

Importance Sampling Since problem 5.1 is non-oblivious, we have

Eτ∼p(τ |θ) [g(τ | θ)− g (τ | θ′)] ̸= ∇J(θ)−∇J (θ′)

. To address this issue of distribution shift, we introduce an importance sampling (IS) weight,

denoted by

w (τ | θ′, θ) ≜ p (τ | θ′)
p(τ | θ)

=
H−1∏
h=0

πθ′ (ah | sh)
πθ (ah | sh)

. (5.2)

With the definition of the IS weight, we can ensure that

Eτ∼p(τ |θ) [g(τ | θ)− w (τ | θ′, θ) g (τ | θ′)] = ∇J(θ)−∇J (θ′) .

5.3 Problem Formulation

We are now ready to characterize heterogeneity in our N -agent FRL problem. Environmental

heterogeneity is modeled by allowing each agent to have its own state transition kernel P(i), reward

function R(i), or the initial state distribution ρ(i). However, all agents share the same state and

action space. These environments are characterized by the MDPs,Mi =
〈
S,A,R(i),P(i), γ, ρ(i)

〉
,

for i = 1, · · · , N .

The objective of FRL is to enable N agents to collaboratively learn a common policy function

or a value function that uniformly performs well across all environments. To preserve privacy,
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agents are not allowed to exchange their raw observations (i.e., their rewards, states, or actions). In

particular, we consider solving the following optimization problem:

max
θ

{
J(θ) ≜

1

N

N∑
i=1

Ji(θ)

}

where Ji(θ) ≜ E

[
H−1∑
h=0

γhR(i) (sh, ah) | s0 ∼ ρ(i),

ah ∼ πθ (· | sh) , sh+1 ∼ P(i) (· | sh, ah)
]
. (5.3)

Objective. For solving the optimization problem (5.3), we aim to find the ϵ-FOSP, i.e., a parameter

θ such that ∥∇J(θ)∥2≤ ε. There exists work that leverages the “gradient domination” condition

[3, 37, 49, 124] for finding a global optimal policy in the centralized RL setting. The gradient

domination condition is useful as it guarantees that every stationary policy is globally optimal.

However, as shown in Zeng et al. [241], we cannot expect this condition to hold in general for

FL or multi-agent problems. Specifically, even if a single performance function, Ji(θ), satisfies

the “gradient domination” condition, the average function J(θ) = 1
N

∑N
i=1 Ji(θ) might not. [241]

resolved this issue by introducing strong assumptions into the problem. For instance, Assumption 2

in their paper requires that the joint states between the environments are equally explored, which is

difficult to verify in real-world applications.

Difference in the problem setup. Our setting is more general than existing work [79, 192]. In

our work, each MDP can have a distinct initial state distribution, a feature not addressed in [79].

Furthermore, our framework does not require the bounded heterogeneity assumption of [192] and

thus can handle arbitrary environment heterogeneity.
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5.4 Algorithms

To solve problem (5.3), we present two federated momentum-based algorithms: FEDSVRPG-M

and FEDHAPG-M. FEDSVRPG-M is based on a variance reduction method, while FEDHAPG-M

leverages a fast Hessian-aided technique. Since FEDSVRPG-M only uses the first-order information

(gradient), it is computationally cheaper than FEDHAPG-M, which aims to approximate second-

order information (Hessians). Conversely, FEDHAPG-M, with its use of second-order information,

is more robust than FEDSVRPG-M.

In the centralized RL setting, momentum-based PG methods [75, 240] are proposed to reduce the

variance of stochastic gradients. In contrast, our algorithms integrate momentum within a federated

context, achieving dual benefits: it not only accelerates the convergence and stabilizes oscillations,

but also mitigates the impact of environment heterogeneity. Consequently, our algorithms can exactly

converge to the ϵ-FOSP of problem (5.3), no matter how large the environment heterogeneity is.

This represents a significant improvement upon [79, 227], which only show the convergence to the

neighborhood around the stationary point of problem. The size of the neighborhood in their papers

is determined by the environment heterogeneity.

5.4.1 FEDSVRPG-M

We now describe the federated stochastic variance-reduced PG with momentum algorithm

(FEDSVRPG-M for short). We outline its steps in Algorithm 5.

FEDSVRPG-M initializes all agents and the server with a common model θ0. In Algorithm 5,

we use the superscript (i) to index the i-th agent and the subscript r and k to denote the r-th

communication round and k-th local iteration. In each communication round r, each agent i ∈ [N ]

is initiated from a common model θr and samples a single trajectory from its own environment to
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perform K local iterations. At each local iteration k, instead of using PG, FEDSVRPG-M uses the

following momentum-based variance-reduced stochastic PG estimator:

u
(i)
r,k = βgi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

[
ur + gi

(
τ
(i)
r,k | θ

(i)
r,k

)
−w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr−1

)]
, (5.4)

where β ∈ (0, 1] and w(i) is the importance sampling weight, which is defined as:

w(i)
(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
≜

p(i)
(
τ
(i)
r,k | θr−1

)
p(i)
(
τ
(i)
r,k | θ

(i)
r,k

) .

When β = 1, Eq. (5.4) reduces to the stochastic PG direction. When β = 0, it reduces to the

variance-reduced PG direction. Notably, compared to the IS-MBPG algorithm of [75] for the

centralized RL setting, the local updating rule in Algorithm 5 differs in that we estimate the PG

directions locally, θ(i)r,k, and globally θr−1, instead of two consecutive local policies. Furthermore,

FEDSVRPG-M only requires constant local step-sizes, in contrast to the decreasing step-sizes

in [75]. Moreover, FEDSVRPG-M only samples one trajectory per iterate, i.e., not does not

require very large batch sizes, which is often necessary for centralized variance-reduced PG

methods [231, 240]. For more discussion on the variance-reduced PG-type algorithms, we refer

readers to [58].

A notable feature of FEDSVRPG-M is communication efficiency and data locality. To save

the communication costs and preserve privacy, all agents upload their local model’s difference

∆
(i)
r , instead of the raw trajectories, to the server only after K local iterations (line 10). Following

this step, the server aggregates all the differences to update the global model θr+1 using the global

step-size λ and then broadcasts it to all agents. Note that FEDSVRPG-M follows the same structure

of the vanilla FEDAVG and achieves the same communication cost per communication round as

FEDAVG.
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Comparison with prior work. Note that the algorithms in [48] require the server to own its

own environment (an MDP). They utilized the variance-reduced PG method for updating global

models on the server side and applied the stochastic PG method to update the local model only

once on the agent side. In contrast, our algorithms eliminate the need for the server to own its

environment, enhancing its applicability in real-world scenarios. This is crucial as, in numerous

cases, the server may function as a third-party entity without access to the environment.

Challenges. Most importantly, our algorithms accommodate multiple local updates, a crucial

step for reducing the communication costs in FL. Thus, it is important for us to mitigate the

common “client-drift” problems due to heterogeneity among agents. Notably, even for the standard

FL algorithms in the supervised setting, it takes a substantial effort for the FL community to tackle

this problem, such as FEDPROX [110], FEDNOVA [216], SCAFFOLD [84] and FEDLIN [136].

This challenge is further exacerbated in FRL, where the non-oblivious nature of problems makes

it uncertain whether the bounded gradient heterogeneity assumption, commonly employed in

FL optimization literature, remains applicable. Consequently, achieving a balance between

communication cost and convergence rate is challenging. We analyze the performance of FEDSVRPG-

M in Section 5.5.

5.4.2 FEDHAPG-M

Recently, HAPG [175] has been proposed for the centralized RL to reduce the sample complexity

from O (1/ϵ4) to O (1/ϵ3) to obtain the ϵ-FOSP. The main success of HAPG comes from that it

utilizes the stochastic approximation of the second-order policy differential. While HAPG uses

curvature information, the computation cost of HAPG is still linear per iteration with respect to the

parameter dimension d, as it avoids computing the Hessian explicitly.

We now provide a federated variant of HAPG; Federated Hessian Aided Policy Gradient
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Algorithm 5 Description of FEDSVRPG-M
Input: initial model θ−1 = θ0, gradient estimate u0, local step-size η, global step-size λ and

momentum β.

for r = 0, 1, . . . , R− 1 do

▷ Agent side

for each agent i ∈ [N ] do

Initial local model θ(i)r,0 = θr

for k = 0, 1, . . . , K − 1 do

Sample a trajectory τ
(i)
r,k ∼ p(i)

(
τ | θ(i)r,k

)
and compute u

(i)
r,k using Eq. (5.4).

Update local model θ(i)r,k+1 = θ
(i)
r,k + ηu

(i)
r,k

end for

Send ∆
(i)
r = θ

(i)
r,K − θr to the server

end for

▷ Server side

Aggregate ur+1 =
1

ηNK

∑N
i=1∆

(i)
r

Update global model θr+1 = θr + λur+1

end for

with Momentum (FEDHAPG-M). As discussed in FEDSVRPG-M, the usage of momentum in

FEDHAPG-M primarily serves to offer an “anchoring” direction that encodes PG estimates from

all agents. Consequently, it eliminates the need for bounded environment heterogeneity assumption

in existing FRL literature [79, 192, 228]. Moreover, FEDHAPG-M employs a second-order

approximation instead of computing the difference between two consecutive stochastic gradients.

As a result, FEDHAPG-M obtains an improved sample complexity akin to that of FEDSVRPG-M.

Note that FEDHAPG-M follows the same structure of the vanilla FEDAVG and FEDSVRPG-

M, differing only in the local update procedure. In FEDHAPG-M, we replace the local update

direction in FEDAVG with a variant of HAPG, see line 7 ∼ 9 in Algorithm 6. It is worth
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noting that the uniform sampling step in line 7 guarantees that Λ(i)
r,k is an unbiased estimator of

∇J(θ(i)r,k)−∇J(θr−1). To estimate the term Λ
(i)
r,k, as in [55, 175], we first assume that the function

Ji(θ) is twice differentiable for all i ∈ [N ]. Then we compute it as:

Λ
(i)
r,k ≜

〈
∇ log p

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
, v

(i)
r,k

〉
gi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
+∇

〈
gi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
, v

(i)
r,k

〉
(5.5)

where v
(i)
r,k ≜ θ

(i)
r,k − θr−1. The variable θr−1 represents the last-iterate global policy maintained in

the server. As mentioned in [49], the computation of the second term in Eq (5.5) can be simplified

through via automatic differentiation of the scalar quantity g
(
τ
(i)
r,k | θ

(i)
r,k(α)

)
. Thus, the computation

cost of FEDHAPG-M does not increase and remains at O(Hd).

Discussion. Same as FEDSVRPG-M, FEDHAPG-M enjoys the following favorable features:

(1) Only sampling one trajectory per local iteration; (2) No need for the server to have its own

environment; (3) Multiple local updates. Such features were not simultaneously addressed in

[48, 227].

5.5 Convergence Analysis

First, we introduce some standard assumptions.

Assumption 4. Let π(i)
θ (a | s) be the policy of the i-th agent at state s. There exist constants

G,M > 0 such that the log-density of the policy function satisfies

∥∥∥∇θ log π
(i)
θ (a | s)

∥∥∥ ≤ G,
∥∥∥∇2

θ log π
(i)
θ (a | s)

∥∥∥
2
≤M,

for all a ∈ A and s ∈ S and i ∈ [N ].
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Algorithm 6 Description of FEDHAPG-M
Input: initial model θ−1 = θ0 and gradient estimate u0, local step-size η, global step-size λ and

momentum β.

for r = 0, · · · , R− 1 do

▷ Agent side

for each agent i ∈ [N ] do

Initial local model θ(i)r,0 = θr

for k = 0, · · · , K − 1 do

Choose α uniformly at random from [0, 1], and compute θ(i)r,k(α) = αθr−1+(1−α)θ(i)r,k

Sample a trajectory τ
(i)
r,k from the density p(i)

(
τ | θ(i)r,k(α)

)
and compute u

(i)
r,k =

βw(i)
(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

[
ur + Λ

(i)
r,k

]
, where Λ

(i)
r,k can be computed

by using Eq. (5.5)

Update local model θ(i)r,k+1 = θ
(i)
r,k + ηu

(i)
r,k

end for

Send ∆
(i)
r = θ

(i)
r,K − θr back to the server

end for

▷ Server side

Aggregate ur+1 =
1

ηNK

∑N
i=1∆

(i)
r

Update global model θr+1 = θr + λur+1

end for

Assumption 5. For each agent i ∈ [N ], the variance of stochastic gradient gi(τ | θ) is bounded, i.e.,

there exists a constant σ > 0, for all policies πθ such that Var(gi(τ | θ)) = E∥gi(τ | θ)−∇Ji(θ)∥2≤

σ2.

Assumption 6. For each agent i ∈ [N ], the variance of importance sampling weight w(i) (τ | θ1, θ2)

is bounded, i.e., there exists a constant W > 0 such that

Var
(
w(i) (τ | θ1, θ2)

)
≤ W
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holds for any θ1, θ2 ∈ Rd and τ ∼ p(i) (· | θ2).

Assumption 4, 5 and 6 are commonly made in the convergence analysis of PG algorithms and

their variance-reduced variants [124, 147, 175, 231]. They can be easily verified for Gaussian

policies [33, 147, 153]. With these assumptions, we are ready to present the convergence guarantees

for our FEDSVRPG-M algorithms.

Theorem 5. (FEDSVRPG-M) Under Assumption 4–6, let u0 =
1

NB

∑N
i=1

∑B
b=1 gi

(
τ
(i)
b |θ0

)
with

B =
⌈

K
Rβ2

⌉
and

{
τ
(i)
b

}B

b=1

iid∼ p(i)(τ |θ0). There exists a constant local step-size η, a proper global

step-size λ and momentum coefficient β, such that the output of FEDSVRPG-M after R rounds

satisfies:

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

(
L̄∆σ

NKR

)2/3

+
L̄∆

R
(5.6)

where ∆ ≜ J (θ∗)− J(θ0), G0 ≜ 1
N

∑N
i=1 ∥∇Ji (θ0)∥

2.

Note that L̄ in Theorem 5 is a constant depending on the constants G,M,W,H,Rmax and 1
(1−γ)2

.

See Appendix for details. The notation ≲ denotes that inequalities hold up to some numeric number.

Comparison with prior work in FRL. FEDSVRPG-M surpasses all existing results in FRL

in convergence, as shown in Table 5.1. Specifically, the results in Theorem 6 from [79] achieve

only inexact convergence to a suboptimal solution, depending on the heterogeneity levels among

N agents. In contrast, FEDSVRPG-M exactly converges to the ϵ-FOSP of Problem (5.3), with no

heterogeneity term observed in Eq. (5.6). [48] exclusively considered the homogeneous environment.

However, their results are limited to the sublinear result. i.e., the stationary point optimality can

be scaled by N
2
3 . In contrast, the dominant term

(
L̄∆σ
NKR

)2/3
in the right-hand side of FiEq. (5.6)

demonstrates that our algorithm provides a N -fold linear speedup over the single-agent scenario.

Unique to our algorithm is the fact that this speed up is agnostic to the heterogeneity levels,

unlike [224] and [192] which obtain a speedup in the no and low heterogeneity regimes respectively.
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Table 5.2: Impact of environment heterogeneity κ and momentum coefficient β. We evaluate

FEDSVRPG-M with various κ and various momentum coefficient β in {0.1, 0.2, 0.5, 0.8}. The

baseline method is denoted by β = 1. Larger κ denotes larger environment heterogeneity. Each

setting was run with 16,000 random seeds.

RANDOM MDPS

κ = 0 κ = 0.2 κ = 0.4 κ = 0.6 κ = 0.8 κ = 1.0

β = 0.1 8.013±0.07 7.957±0.07 7.968±0.06 7.961±0.06 7.964±0.07 7.981±0.06

β = 0.2 7.876±0.06 7.877±0.06 7.851±0.06 7.837±0.06 7.841±0.06 7.824±0.07

β = 0.5 7.561±0.07 7.208±0.06 7.529±0.07 7.525±0.06 7.536±0.07 7.525±0.06

β = 0.8 7.211±0.07 7.203±0.07 7.201±0.06 7.192±0.06 7.193±0.06 7.184±0.06

β = 1.0 6.965±0.07 6.951±0.06 6.955±0.06 6.936±0.06 6.940±0.06 6.937±0.07

Comparison with prior work in RL. Compared to the centralized RL, i.e., N = 1, FEDSVRPG-

M exhibits a convergence rate of O
(
1/(KR)

2
3

)
, which aligns with the near-optimal convergence

rate in [49]. In contrast, [75], utilizing diminishing step-sizes, achieves a slower convergence rate

of O
(
log(KR)/(KR)

2
3

)
.

Comparison with prior work in FL optimization. To appreciate the tightness of our results, we

note that our results align with the state-of-the-art convergence rates [28, 77] in the FL optimization

literature. However, our results are established for a more complex RL setting. In contrast to the

supervised learning scenario, where the distribution of τ is fixed over all iterations, our problem is

non-oblivious. Furthermore, FEDSVRPG-M allows for the constant local step-sizes. In contrast,

many FL optimization algorithms [92, 235] require the decreasing local step-sizes to mitigate

heterogeneity among agents.
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Now, we analyze the convergence of FEDHAPG-M.

Theorem 6. (FEDHAPG-M) Under Assumption 4–6, choose the same u0 as Theorem 5. There

exists a constant local step-size η, a proper global step-size λ and momentum coefficient β, such

that the output of FEDHAPG-M after R rounds satisfies

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

(
L̂∆σ

NKR

)2/3

+
L̂∆

R
(5.7)

where ∆ ≜ J (θ∗)− J(θ0), G0 ≜ 1
N

∑N
i=1 ∥∇Ji (θ0)∥

2

From Theorem 6, we remark that FEDHAPG-M enjoys the same worst-case convergence

rate, i.e., O(1/(NKR)2/3), as FEDSVRPG-M, except for the differences in the constant L̂ and

parameter selection. Interested readers are referred to Appendix for details.

Based on Theorem 5 and 6, we can now translate the convergence results to the total sample

complexity of each agent, which is shown in the following corollary.

Corollary 1. Under Assumption 4–6, the sample complexity of FEDSVRPG-M and FEDHAPG-M

is O
(
ϵ−

3
2/N

)
per agent to find an ϵ-FOSP.

5.6 Experiments

We first use tabular environments to verify our theories on the proposed FEDSVRPG-M

algorithm. It is important to note that FEDHAPG-M algorithm can not be assessed in the tabular

setting due to the objective function Ji(θ) not being twice differentiable. We then evaluate both

FEDSVRPG-M and FEDHAPG-M’s performance on MuJoCo [197] with a deep RL extension.

The baseline algorithm is the PAVG algorithm [79].

Tabular Case. We evaluate the performance of our algorithms in the environment of random

MDPs, where both state transitions and reward functions are generated randomly. We use the same
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Figure 5.1: Mean rewards over global iterations for the CartPole and HalfCheetah tasks: (Top):

FEDSVRPG-M; (Bottom): FEDHAPG-M.

method as [79] to control the environment heterogeneity. First, we randomly sample a nominal state

transition kernel P0 and then generate the environments
{
P(i) = κPi + (1− κ)P0

}N
i=1

. Each entry

of the kernels {Pi}Ni=1 are uniformly sampled between 0 and 1 and then normalized. Then, we can

evaluate the impact of environment heterogeneity by varying κ. We compare the performance of

FEDSVRPG-M with the existing baseline algorithm (PAVG). The results are shown in Table 5.2.

The performance is measured by the average performance function in Eq. (5.3). We observe that

FEDSVRPG-M with β = 0.1 outperforms the baseline algorithm (β = 1). Furthermore, the

performance of FEDSVRPG-M is agnostic to the environment heterogeneity level κ. These trends

are expected and consistent with theoretical analysis in Sec. 5.5.

Deep RL Case. We evaluate the performance of our algorithms across two benchmark RL

tasks: CartPole and HalfCheetah. While CartPole is a classic control task with discrete actions,

HalfCheetah represents a continuous RL task. Both are widely recognized tasks in the MuJoCo
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simulation environment [197]. Comprehensive details of the experimental setups can be found in

the appendix. To introduce environment heterogeneity, we change the initial state distribution

parameters in both tasks. We use Categorical Policy for CartPole, and Gaussian Policy for

HalfCheetah. All policies are parameterized by the fully connected neural network which has

two hidden layers and a hyperbolic tangent activation function. The hidden layers neural network

sizes are 32 for Gaussian policies and 8 for Categorical policies. In Figure 5.1, we show how the

mean rewards change over the global iterations for our proposed algorithms and baseline algorithm.

In both tasks, as the number of iterations increases, all algorithms exhibit a rising trend in mean

rewards. There exist a β ̸= 1 that our proposed algorithms outperform the baseline algorithm. In

particular, FEDSVRPG-M exhibits optimal performance at β = 0.2 for CartPole and β = 0.5

for HalfCheetah. In contrast, FEDHAPG-M performs optimally with β = 0.8 for CartPole and

β = 0.5 for HalfCheetah. FEDHAPG-M, which uses second-order information, shows smaller

variance than FEDSVRPG-M, as indicated by the narrower color-shaded regions in the figure.

Overall, our algorithms demonstrated superior performance compared to the baseline. See Appendix

in [210] for more experiments evaluating the linear speedup in the number of agents N .

5.7 Chapter Summary

We introduced FEDSVRPG-M and FEDHAPG-M, overcoming the limitation of bounded

environment heterogeneity assumed in prior FRL research. Our results demonstrate the best

known convergence for these algorithms and highlight the benefits of collaboration in FRL, even in

scenarios with conflicting rewards across different environments. In the future, we plan to focus

on algorithms that facilitate downstream fine-tuning or personalization, aiming to discover each

MDP’s optimal policy through FRL, rather than seeking a universally optimal policy.
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5.8 Omitted Proofs

5.8.1 Notation

We denote F0 = ∅ and F (i)
r,k := σ

({
θ
(i)
r,j

}
0≤j≤k

∪ Fr

)
and Fr+1 := σ

(
∪iF (i)

r,K

)
for all r ≥ 0

where σ(·) indicates the σ-algebra. Let Er[·] := E [· | Fr] be the expectation, conditioned on the

filtrationFr, with respect to the random variables
{
τ
(i)
r,k

}
1≤i≤N,0≤k<K

in the r-th iteration. Moreover,

we use E[·] to denote the global expectation over all randomness in algorithms. For all r ≥ 0, we

define the following notations to simpify the proof:

Σr := E
[
∥∇J (θr)− ur+1∥2

]
,

Dr :=
1

NK

∑
i

∑
k

E
[∥∥∥θ(i)r,k − θr

∥∥∥]2 ,
c
(i)
r,k := E

[
θ
(i)
r,k+1 − θ

(i)
r,k | F

(i)
r,k

]
,

Mr :=
1

N

N∑
i=1

E
[∥∥∥c(i)r,0

∥∥∥2] .
Throughout the appendix, we denote

∆ := J (θ∗)− J(θ0), G0 :=
1

N

∑
∥∇Ji (θ0)∥2 , θ−1 := θ0 and Σ−1 := E

[
∥∇J (θ0)− u0∥2

]
.

and θ∗ denotes the optimal policy of the optimization problem (3).

5.8.2 Useful Lemmas and Inequalities

We make repeated use throughout the appendix (often without explicitly stating so) of the

following inequalities:

• Given any two vectors x, y ∈ Rd, for any a > 0, we have

∥x+ y∥2≤ (1 + a)∥x∥2+
(
1 +

1

a

)
∥y∥2. (5.8)
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• Given any two vectors x, y ∈ Rd, for any constant a > 0, we have

⟨x, y⟩ ≤ a

2
∥x∥2 + 1

2a
∥y∥2. (5.9)

This inequality goes by the name of Young’s inequality.

• Given m vectors x1, . . . , xm ∈ Rd, the following is a simple application of Jensen’s inequality:∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥
2

≤ m

m∑
i=1

∥xi∥2 . (5.10)

Proposition 1. (Proposition 5.2 in [232]) Under Assumption 1, both J(θ) and {Ji(θ)}Ni=1 are

L-smooth with L = HRmax (M +HG2) /(1− λ). In addition, for all θ1, θ2 ∈ Rd, we have

∥gi (τ | θ1)− gi (τ | θ2)∥2 ≤ Lg ∥θ1 − θ2∥2

and ∥gi(τ | θ)∥2≤ Cg for all θ ∈ Rd and i ∈ [N ], where Lg = HMRmax/(1 − λ), Cg =

HGRmax/(1− λ).

Lemma 17. If λL ≤ 1
24

, the following inequality holds for all r ≥ 0 :

E [J (θr+1)] ≥ E [J (θr)] +
11λ

24
E
[
∥∇J (θr)∥2

]
− 13λ

24
Σr.

Proof. Since J is L-smooth, we have

J (θr+1) ≥ J (θr) + ⟨∇J (θr) , θr+1 − θr⟩ −
L

2
∥θr+1 − θr∥2

= J (θr) + λ ∥∇J (θr)∥2 + λ ⟨∇J (θr) , ur+1 −∇J (θr)⟩ −
Lλ2

2
∥ur+1∥2 .
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where we use the fact that θr+1 = θr + ηur+1. By using Young’s inequality, we have

J (θr+1)

≥J (θr) +
λ

2
∥∇J (θr)∥2 −

λ

2
∥∇J (θr)− ur+1∥2 − Lλ2

(
∥∇J (θr)∥2 + ∥∇J (θr)− ur+1∥2

)
≥J (θr) +

11λ

24
∥∇J (θr)∥2 −

13λ

24
∥∇J (θr)− ur+1∥2 ,

where the last inequality holds due to λL ≤ 1
24

. Taking the global expectation completes the

proof.

Lemma 18. (Lemma 6.1 in [232]) Under Assumptions 4 and 6, we have

Var
(
w(i)(τ | θ1, θ2)

)
≤ Cw ∥θ1 − θ2∥2

holds for any θ1, θ2 ∈ Rd and any i ∈ [N ], where Cω = H (2HG2 +M) (W + 1).

5.8.3 Federated Stochastic Variance-Reduced Policy Gradient with Momentum

According to the updating rule of FEDSVRPG-M, we have

E[ur+1] =
1

NK

∑
i,k

E
[
∇Ji(θ(i)r,k) + (1− β) (ur −∇Ji(θr))

]
.

Lemma 19. If λ ≤
√

16βNK

L̃2
2 , we have

Σr ≤ (1− 8β

9
)Σr−1 +

L̃1

2

β
Dr +

3β2σ2

NK
+ 18λ2 L̃2

2

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2
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holds for r ≥ 1, where L̃1

2
:= L2 + 24CwC

2
g + 6L2

g and L̃2

2
:= L2

g + 2CwC
2
g . When r = 0, we

have

Σ0 ≤ (1− β)Σ−1 +
L̃1

2

β
D0 +

3β2σ2

NK

Proof.

Σr = E
[
∥ur+1 −∇J(θr)∥2

]
= E

[∥∥∥ 1

NK

∑
i,k

βgi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

[
ur + gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr−1

)]
−∇J(θr)

∥∥∥2]
= E

[∥∥∥(1− β)(ur −∇J(θr−1)) +
1

NK

∑
i,k

[
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
−∇J(θr)

]
−(1− β)

[
1

NK

∑
i,k

w(i)
(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr−1

)
−∇J(θr−1)

]∥∥∥2]

= (1− β)2Σr−1 + 2E

[〈
(1− β)(ur −∇J(θr−1)),

1

NK

∑
i,k

[
∇Ji(θ(i)r,k)−∇J(θr)

] 〉]
︸ ︷︷ ︸

T1

+
E
∥∥∥ 1
NK

∑
i,k

[
gi

(
τ
(i)
r,k|θ

(i)
r,k

)
−∇J(θr)

]
−(1−β)

[
1

NK

∑
i,k w(i)

(
τ
(i)
r,k|θr−1,θ

(i)
r,k

)
gi

(
τ
(i)
r,k|θr−1

)
−∇J(θr−1)

]∥∥∥2︸ ︷︷ ︸
T2

Using Young’s inequality to bound T1, we have

T1 ≤ β(1− β)2E
∥∥∥ur −∇J(θr−1)

∥∥∥2 + 1

β
E
∥∥∥ 1

NK

∑
i,k

∇Ji(θ(i)r,k)−∇J(θr)
∥∥∥2

≤ β(1− β)2Σr−1 +
L2

β

1

NK

∑
i,k

E
∥∥∥θ(i)r,k − θr

∥∥∥2︸ ︷︷ ︸
Dr

(5.11)

Further bounding T2, we have

T2 ≤ E
∥∥∥∥ 1

NK

∑
i,k

(
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr

))
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+ β

(
1

NK

∑
i,k

w(i)
(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr

)
−∇J(θr)

)

+ (1− β)
( 1

NK

∑
i,k

(
w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr)− w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr−1)

)
−∇J(θr) +∇J(θr−1)

)∥∥∥∥2
≤ 3E

∥∥∥∥ 1

NK

∑
i,k

(
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr

))∥∥∥∥2︸ ︷︷ ︸
T21

+3
β2σ2

NK

+ 3(1− β)2 E

∥∥∥∥∥ 1

NK

∑
i,k

w(i)
(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr)− w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr−1)

∥∥∥∥∥
2


︸ ︷︷ ︸
T22

(5.12)

where we use the Young’s inequality in the last equality and the fact that E[∥X−E[X]∥2] ≤ E[∥X∥2]

holds for any random variable X .

To precede, we continue to bound T21 and have that

T21 = E
∥∥∥∥ 1

NK

∑
i,k

(
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr

))∥∥∥∥2
≤ 2E

∥∥∥∥ 1

NK

∑
i,k

(
1− w(i)(τ

(i)
r,k | θr, θ

(i)
r,k)
)
gi(τ

(i)
r,k | θr)

∥∥∥∥2
+ 2E

∥∥∥∥ 1

NK

∑
i,k

[
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− gi(τ

(i)
r,k | θr)

] ∥∥∥∥2
≤

2CwC
2
g

NK

∑
i,k

E
∥∥∥∥θ(i)r,k − θr

∥∥∥∥2 + 2
L2
g

NK

∑
i,k

E
∥∥∥∥θ(i)r,k − θr

∥∥∥∥2
= (2CwC

2
g + 2L2

g)Dr (5.13)

where we use the fact that ∥g(i)(τ | θ)∥2≤ Cg for all θ ∈ Rd and i ∈ [N ].

To bound T22, we have

T22 = E

∥∥∥∥∥ 1

NK

∑
i,k

w(i)
(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr)− w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr−1)

∥∥∥∥∥
2
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≤ 3E

∥∥∥∥∥ 1

NK

∑
i,k

[
w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
− 1
]
gi(τ

(i)
r,k | θr)

∥∥∥∥∥
2


+ 3
1

N2K2

∑
i,k

E
∥∥∥gi(τ (i)r,k | θr)− gi(τ

(i)
r,k | θr−1)

∥∥∥2

+ 3E

∥∥∥∥∥ 1

NK

∑
i,k

[
w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
− 1
]
gi(τ

(i)
r,k | θr−1)

∥∥∥∥∥
2


≤ 3C2
gCw

1

N2K2

∑
i,k

E
∥∥∥∥θ(i)r,k − θr

∥∥∥∥2 + 3
L2
g

NK
E
∥∥∥∥θr−1 − θr

∥∥∥∥2 + 3C2
gCw

1

N2K2

∑
i,k

E
∥∥∥∥θ(i)r,k − θr−1

∥∥∥∥2
≤ 6C2

gCw
1

NK
Dr +

3L2
g + 6CwC

2
g

NK
E
∥∥∥∥θr−1 − θr

∥∥∥∥2 (5.14)

Combining the upper bound of T21 and T22 (i.e., (5.13) and (5.14)) into T2 in Eq. (5.12), we

have

T2 ≤ (24CwC
2
g + 6L2

g)Dr +
3β2σ2

NK
+ 9(1− β)2

L2
g + 2CwC

2
g

NK
E
∥∥∥∥θr−1 − θr

∥∥∥∥2 (5.15)

Therefore, for r ≥ 1, we have

Σr ≤ (1− β)Σr−1 +
L2 + 24CwC

2
g + 6L2

g

β
Dr +

3β2σ2

NK
+ 9(1− β)2

L2
g + 2CwC

2
g

NK
E
∥∥∥∥θr−1 − θr

∥∥∥∥2
(5.16)

≤ (1− β)Σr−1 +
L2 + 24CwC

2
g + 6L2

g

β
Dr +

3β2σ2

NK

+ 18λ2
L2
g + 2CwC

2
g

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2 + 18λ2
L2
g + 2CwC

2
g

NK
E
∥∥∥∥∇J(θr−1)− ur

∥∥∥∥2
=

(
1− β + 18λ2

L2
g + 2CwC

2
g

NK

)
Σr−1 + 18λ2

L2
g + 2CwC

2
g

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2
+

L2 + 24CwC
2
g + 6L2

g

β
Dr +

3β2σ2

NK
(5.17)

By choosing λ such that 18λ2L
2
g+2CwC2

g

NK
≤ 8β

9
, which holds when λ ≤

√
16βNK

L2
g+2CwC2

g
, we have

Σr ≤ (1− 8β

9
)Σr−1 +

L2 + 24CwC
2
g + 6L2

g

β
Dr +

3β2σ2

NK
+ 18λ2

L2
g + 2CwC

2
g

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2
(5.18)
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holds for r > 0. When r = 0, we have that

Σ0 ≤ (1− β)Σ−1 +
L2 + 24CwC

2
g + 6L2

g

β
D0 +

3β2σ2

NK
(5.19)

which can be derived from Eq.(5.16).

Lemma 20. (Bounding drift-term) If the local step-size satisfies η ≤ min{ L

32e2L̃3
2
K
, 1
KL
}, the

drift-term can be upper bounded as:

Dr ≤ 4eK2Mr + (16η4K4L2 + 8η2K)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
where L̃3

2
:= 2CwC

2
g + 2L2

g.

Proof. Define c
(i)
r,k := −η

(
∇Ji(θ(i)r,k) + (1− β)(ur −∇Ji(θr−1))

)
. For any 1 ≤ j ≤ k − 1 ≤

K − 2, we have:

E
∥∥∥c(i)r,j − c

(i)
r,j−1

∥∥∥2 ≤ η2L2E
∥∥∥θ(i)r,j − θ

(i)
r,j−1

∥∥∥2
= η2L2

(
E
∥∥∥c(i)r,j−1

∥∥∥2 + E
[
Var

[
θ
(i)
r,j − θ

(i)
r,j−1 | F

(i)
r,j−1

]])
. (5.20)

where we use the bias-variance decomposition in the last inequality.

E
[
Var

[
θ
(i)
r,j − θ

(i)
r,j−1 | F

(i)
r,j−1

]]
= η2E

∥∥∥∥gi (τ (i)r,j−1 | θ
(i)
r,j−1

)
−∇Ji(θ(i)r,j−1)

− (1− β)
[
w(i)

(
τ
(i)
r,j−1 | θr−1, θ

(i)
r,j−1

)
gi

(
τ
(i)
r,j−1 | θr−1

)
−∇Ji(θr−1)

] ∥∥∥∥2
= η2E

∥∥∥∥β [gi (τ (i)r,j−1 | θ
(i)
r,j−1

)
−∇Ji(θ(i)r,j−1)

]
+ (1− β)

[
gi

(
τ
(i)
r,j−1 | θ

(i)
r,j−1

)
− w(i)

(
τ
(i)
r,j−1 | θr−1, θ

(i)
r,j−1

)
gi

(
τ
(i)
r,j−1 | θr−1

)
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−
(
∇Ji(θ(i)r,j−1)−∇Ji(θr−1)

)] ∥∥∥∥2
≤ 2η2β2σ2

+ 2η2(1− β)2 E
∥∥∥∥gi (τ (i)r,j−1 | θ

(i)
r,j−1

)
− w(i)

(
τ
(i)
r,j−1 | θr−1, θ

(i)
r,j−1

)
gi

(
τ
(i)
r,j−1 | θr−1

)∥∥∥∥2︸ ︷︷ ︸
T3

(5.21)

where Eq.(5.21) holds due to the Young’s inequality and the fact that E[∥X − E[X]∥2] ≤ E[∥X∥2].

To precede, we bound T3 as

T3 = E
∥∥∥∥gi (τ (i)r,j−1 | θ

(i)
r,j−1

)
− w(i)

(
τ
(i)
r,j−1 | θr−1, θ

(i)
r,j−1

)
gi

(
τ
(i)
r,j−1 | θr−1

)∥∥∥∥2
≤ 2E

∥∥∥∥(1− w(i)(τ
(i)
r,j−1 | θr, θ

(i)
r,j−1)

)
gi(τ

(i)
r,j−1 | θr)

∥∥∥∥2
+ 2E

∥∥∥∥gi (τ (i)r,j−1 | θ
(i)
r,j−1

)
− gi(τ

(i)
r,j−1 | θr−1)

∥∥∥∥2
≤ 2CwC

2
gE
∥∥∥∥θ(i)r,j−1 − θr−1

∥∥∥∥2 + 2L2
gE
∥∥∥∥θ(i)r,j−1 − θr−1

∥∥∥∥2
= (2CwC

2
g + 2L2

g)E
∥∥∥∥θ(i)r,j−1 − θr−1

∥∥∥∥2 (5.22)

where we use the fact that ∥g(i)(τ | θ)∥2≤ Cg for all θ ∈ Rd and i ∈ [N ].

With the upper bound of T3 and L̃3

2
:= 2CwC

2
g + 2L2

g, we have

E
∥∥∥c(i)r,j − c

(i)
r,j−1

∥∥∥2 ≤ η2L2

(
E
∥∥∥c(i)r,j−1

∥∥∥2 + 2η2β2σ2 + 2η2(1− β)2L̃3

2
E
∥∥∥θ(i)r,j−1 − θr−1

∥∥∥2)
≤ η2L2

(
E
∥∥∥c(i)r,j−1

∥∥∥2 + 2η2β2σ2 + 4η2L̃3

2
E
∥∥∥θ(i)r,j−1 − θr

∥∥∥2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2). (5.23)

Then we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ (1 +
1

q
)E
∥∥∥c(i)r,j−1

∥∥∥2 + (1 + q)E
∥∥∥c(i)r,j − c

(i)
r,j−1

∥∥∥2
≤ (1 +

2

q
)E
∥∥∥c(i)r,j−1

∥∥∥2 + (1 + q)η2L2

(
2η2β2σ2 + 4η2L̃3

2
E
∥∥∥θ(i)r,j−1 − θr

∥∥∥2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
(5.24)
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where we use the fact that ηL ≤ 1
K
≤ 1

q+1
and let q = k − 1. By unrolling this recurrence, we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ (1 +
2

k − 1
)jE
∥∥∥c(i)r,0

∥∥∥2 + kη2L2

j−1∑
i=0

(2η2β2σ2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)Πj−1
j′=i+1(1 +

2

k − 1
)

+ kη2L2

j−1∑
s=0

(4η2L̃3

2
E
∥∥∥θ(i)r,s − θr

∥∥∥2)Πj−1
j′=s+1(1 +

2

k − 1
)

≤ (1 +
2

k − 1
)k−1E

∥∥∥c(i)r,0

∥∥∥2 + kη2L2

k−1∑
i=0

(2η2β2σ2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)(1 + 2

k − 1
)k−1

+ kη2L2

j−1∑
j′=0

(4η2L̃3

2
E
∥∥∥θ(i)r,j′ − θr

∥∥∥2)(1 + 2

k − 1
)k−1 (5.25)

Based on the inequality (1 + 2
K−1

k−1
) ≤ e2 ≤ 8, we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ e2E
∥∥∥c(i)r,0

∥∥∥2 + 8k2η4L2

(
2β2σ2 + 4L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)+ 4e2kη4L2L̃3

2
j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2
(5.26)

By Lemma A.3, we have

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤ 2E

∥∥∥∥∥
k−1∑
j=0

c
(i)
r,j

∥∥∥∥∥
2

+ 2
k−1∑
j=0

E
[
Var

[
θ
(i)
r,j+1 − θ

(i)
r,j | F

(i)
r,j

]]
(a)

≤ 2k
k−1∑
j=0

E
∥∥∥c(i)r,j

∥∥∥2 + 2
k−1∑
j=0

(
2β2η2σ2 + 4η2L̃3

2
E
∥∥∥θ(i)r,j − θr

∥∥∥2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
(5.27)

where (a) is due to Eq.(5.21) and Eq.(5.22). Plugging Eq.(5.26) into Eq.(5.27), we have

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤
2k

k−1∑
j=0

{
e2E

∥∥∥c(i)r,0

∥∥∥2 + 8k2η4L2

(
2β2σ2 + 4L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)+ 4e2kη4L2L̃3

2
j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2}

+ 2
k−1∑
j=0

(
2β2η2σ2 + 4η2L̃3

2
E
∥∥∥θ(i)r,j − θr

∥∥∥2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2) (5.28)

Summing up the above equation over k = 0, · · · , K − 1, we have
K−1∑
k=0

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤ K−1∑
k=0

{
2k2e2E

∥∥∥c(i)r,0

∥∥∥2 + 16k4η4L2

(
2β2σ2 + 4L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)}
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+
K−1∑
k=0

8e2k2η4L2L̃3

2
k−1∑
j=0

j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2
+

K−1∑
k=0

(
4kβ2η2σ2 + 8kη2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2 + 8η2L̃3

2
k−1∑
j=0

E
∥∥∥θ(i)r,j − θr

∥∥∥2)

≤ 2eK3E
∥∥∥c(i)r,0

∥∥∥2 + (8η4K5L2 + 4η2K2)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
+K2

K−1∑
k=0

8e2η4L2L̃3

2
K−1∑
j=0

K−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2 + K−1∑
k=0

8η2L̃3

2
K−1∑
j=0

E
∥∥∥θ(i)r,j − θr

∥∥∥2
= 2eK3E

∥∥∥c(i)r,0

∥∥∥2 + (8η4K5L2 + 4η2K2)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
+ (8e2η4K4L2L̃3

2
+ 8η2L̃3

2
K)

K−1∑
j=0

E
∥∥∥θ(i)r,j − θr

∥∥∥2 (5.29)

With the choice of step-size η satisfying 8e2η4K4L2L̃3

2
+8η2L̃3

2
K ≤ 1

2
, after some rearrangement,

we have

1

2K

K−1∑
k=0

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤ 2eK2E
∥∥∥c(i)r,0

∥∥∥2 + (8η4K4L2 + 4η2K)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
In summary, we can bound the drift-term as

Dr ≤ 4eK2 1

N

N∑
i=1

E
∥∥∥c(i)r,0

∥∥∥2︸ ︷︷ ︸
Mr

+(16η4K4L2 + 8η2K)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)

Lemma 21. If λL ≤ 1
24

and η2
[
289
72
(1− β)2 + 8e(λβLR)2

]
≤ β2

288eK2L̃1
2 , we have

R−1∑
r=0

Mr =
1

N

R−1∑
r=0

N∑
i=1

E
∥∥∥c(i)r,0

∥∥∥2 ≤ β2

288eK2L̃1

2

R−2∑
r=−1

(
Σr + E

[
∥∇J (θr)∥2

])
+ 4η2β2eRG0.

(5.30)

where G0 :=
1
N

∑N
i=1 E

[
∥∇Ji (θ0)∥2

]
and L̃1

2
is defined in Lemma 19.
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Proof. Recall that c(i)r,0 := −η (∇Ji(θr) + (1− β)(ur −∇Ji(θr−1))) . Then, it is straightforward to

have

∥∥∥c(i)r,0

∥∥∥2 ≤ 2η2
(
(1− β)2 ∥ur∥2 + ∥∇Ji (θr)− (1− β)∇Ji(θr−1)∥2

)
≤ 2η2(1− β)2 ∥ur∥2 + 4η2(1− β)2 ∥∇Ji (θr)−∇Ji(θr−1)∥2 + 4η2β2 ∥∇Ji(θr)∥2

≤ 2η2(1− β)2
(
1 + 2(λL)2

)
∥ur∥2 + 4η2β2 ∥∇Ji (θr)∥2

(a)

≤ 289

144
η2(1− β)2 ∥ur∥2 + 4η2β2 ∥∇Ji (θr)∥2 . (5.31)

where (a) is due to the choice of λ such that λL ≤ 1
24

.

Using the Young’s inequality, we have that for any ζ > 0,

E
[
∥∇Ji (θr)∥2

]
≤ (1 + ζ)E

[
∥∇Ji (θr−1)∥2

]
+

(
1 +

1

ζ

)
E ∥∇Ji (θr)−∇Ji (θr−1)∥2

≤ (1 + ζ)E
[
∥∇Ji (θr−1)∥2

]
+

(
1 +

1

ζ

)
L2E ∥θr − θr−1∥2

≤ (1 + ζ)E
[
∥∇Ji (θr−1)∥2

]
+ 2

(
1 +

1

ζ

)
(λL)2

(
E ∥ur −∇J(θr−1)∥2 + E ∥∇J(θr)∥2

)
= (1 + ζ)E

[
∥∇Ji (θr−1)∥2

]
+ 2

(
1 +

1

ζ

)
(λL)2

(
Σr−1 + E ∥∇J(θr)∥2

)
By unrolling the recursive bound, we have

E
[
∥∇Ji (θr)∥2

]
≤ (1 + ζ)rE

[
∥∇Ji (θ0)∥2

]
+

2

ζ
(λL)2

r−1∑
j=0

(
Σj + E

[
∥∇J (θj)∥2

])
(1 + ζ)r−j

By choosing ζ = 1
r
, we have

E
[
∥∇Ji (θr)∥2

]
≤ eE

[
∥∇Ji (θ0)∥2

]
+ 2e(r + 1)(λL)2

r−1∑
j=0

(
Σj + E

[
∥∇J (θj)∥2

])
(5.32)

Summing up Eq. (5.31) over r = 0, 1, · · · , R− 1 and then averaing Eq. (5.31) over all i ∈ N , we

have

R−1∑
r=0

Mr ≤
R−1∑
r=0

E

[
289

144
η2(1− β)2∥ur∥2+4η2β2 1

N

N∑
i=1

∥∇Ji (θr)∥2
]
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≤
R−1∑
r=0

289

72
η2(1− β)2

(
Σr−1 + E[∥∇J(θr−1)∥2]

)
(b)

+ 4η2β2

R−1∑
r=0

(
e

N

N∑
i=1

E
[
∥∇Ji (θ0)∥2

]
+ 2e(r + 1)(λL)2

r−1∑
j=0

(
Σj + E

[
∥∇J (θj)∥2

]))
(5.33)

≤ 289

72
η2(1− β)2

R−1∑
r=0

(
Σr−1 + E

[
∥∇J (θr−1)∥2

])
+ 4η2β2

(
eRG0 + 2e(λLR)2

R−2∑
r=0

(
Σr + E

[
∥∇J (θr)∥2

]))
(c)

≤ β2

288eK2L̃1

2

R−2∑
r=−1

(
Σr + E

[
∥∇J (θr)∥2

])
+ 4η2β2eRG0.

where (b) is due to the upper bound of E
[
∥∇Ji (θr)∥2

]
in Eq.(5.32) and (c) is due to the choice of

η such that η2
[
289
72
(1− β)2 + 8e(λβLR)2

]
≤ β2

288eK2L̃1
2 .

• Proof of Theorem 5

Theorem 7. (Complete version of Theorem 5) Under Assumptions 4–6, by setting

u0 =
1

NB

N∑
i=1

B∑
b=1

gi

(
τ
(i)
b |θ0

)

with
{
τ
(i)
b

}B

b=1

iid∼ p(i)(τ |θ0) and choosing β = min

{
1,
(

NKL̄2∆2

σ4R2

)1/3}
, λ = min

{
1

24L̄
,
√

βNK
162L̄2

}
,

B =
⌈

K
Rβ2

⌉
, and

ηKL̄ ≲ min

{(
L̄∆

G0λL̄R

)1/2

,

(
β

N

)1/2

,

(
β

NK

)1/4
}

in Algorithm 5, then the output of FEDSVRPG-M after R rounds satisfies:

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

(
L̄∆σ

NKR

)2/3

+
L̄∆

R
, (5.34)
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where L̄ := max{L, L̃1, L̃2, L̃3} and L, L̃1, L̃2, L̃3 are defined in Proposition 1, Lemma 19 and

Lemma 20, respectively.

Proof. Based on Lemma 19, we have for any r ≥ 1

Σr ≤ (1− 8β

9
)Σr−1 +

L̃1

2

β
Dr +

3β2σ2

NK
+ 18λ2 L̃2

2

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2
≤ (1− 8β

9
)Σr−1 + 18λ2 L̃2

2

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2 + 3β2σ2

NK

+
L̃1

2

β

(
4eK2Mr + (16η4K4L2 + 8η2K)

)(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2) (5.35)

where the last inequality is due to Lemma 20. When r = 0, we have

Σ0 ≤ (1− β)Σ−1 +
3β2σ2

NK
+

L̃1

2

β

(
4eK2M0 + (16η4K4L2 + 8η2K)

)
β2σ2

Summing up the above equation over r from 0 to R− 1, we have

R−1∑
r=0

Σr ≤
(
1− 8β

9

) R−2∑
r=−1

Σr +
18(λL̃2)

2

NK
E

[
R−2∑
r=0

∥∇J (θr)∥2
]
+

3β2σ2

NK
R

+
L̃1

2

β

(
4eK2

R−1∑
r=0

Mr + 8(ηK)2
(
2(ηKL)2 +

1

K

)(
Rβ2σ2 + 2L2

R−1∑
r=0

E
[
∥θr − θr−1∥2

]))

By incorporating Lemma 21 into the inequality above, we have

R−1∑
r=0

Σr ≤
(
1− 8β

9

) R−2∑
r=−1

Σr +
18(λL̃2)

2

NK
E

[
R−2∑
r=0

∥∇J (θr)∥2
]
+

3β2σ2

NK
R

+
L̃1

2

β
8(ηK)2

(
2(ηKL)2 +

1

K

)(
Rβ2σ2 + 2L2

R−1∑
r=0

E
[
∥θr − θr−1∥2

])

+
L̃1

2

β
4eK2

{
β2

288eK2L̃1

2

R−2∑
r=−1

(
Σr + E

[
∥∇J (θr)∥2

])
+ 4η2β2eRG0

}

≤

[
1− 8β

9
+

β

72
+

32(ηKL̃1)
2

β
(2(ηKL)2 +

1

K
)(λL)2

]
R−2∑
r=−1

Σr

+

[
18(λL̃2)

2

NK
+

32(ηKL̃1)
2

β
(2(ηKL)2 +

1

K
)(λL)2 +

β

72

]
R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
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+

[
8βL̃1

2
(ηK)2(2(ηKL)2 +

1

K
) +

3β2

NK

]
Rσ2 + 16β(eηKL̃1)

2RG0 (5.36)

Where the last inequality is derived by ∥θr − θr−1∥2 ≤ 2λ2
(
∥∇J (θr−1)∥2 + ∥ur −∇J (θr−1)∥2

)
.

We require the following inequalities to hold,
32(ηKL̃1)2

β
(2(ηKL)2 + 1

K
)(λL)2 ≤ β

18

8L̃1

2
(ηK)2(2(ηKL)2 + 1

K
) ≤ β2

NK

λL̃2 ≤
√

βNK
162

.

(5.37)

Then, we have that

R−1∑
r=0

Σr ≤
[
1− 8β

9
+

β

72
+

β

18

] R−2∑
r=−1

Σr +

[
β

9
+

β

18
+

β

72

] R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

[
β2

NK
+

3β2

NK

]
Rσ2 + 16β(eηKL̃1)

2RG0

≤ (1− 7β

9
)

R−2∑
r=−1

Σr +
2β

9

R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

4Rβ2σ2

NK
+ 16β(eηKL̃1)

2RG0

After some rearrangement, we have

R−1∑
r=0

Σr ≤
9

7β
Σ−1 +

2

7

R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

36Rβσ2

7NK
+

144

7
(eηKL̃1)

2RG0

Based on Lemma 17, we have

1

λ
E[J(θR)− J(θ0)] ≥

2

7

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
− 1

35β
Σ−1 −

39Rβσ2

14NK
− 78

7
(eηKL̃1)

2RG0

Notice that u0 = 1
NB

∑
i

∑B
b=1 gi

(
τ
(i)
b |θ0

)
implies Σ−1 = E∥u0 − ∇J(θ0)∥2≤ σ2

NB
≤ β2σ2R

NK
.

Define L̄ := max{L, L̃1, L̃2, L̃3} and after some rearrangement, we have

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

L̄∆

λL̄R
+

Σ−1

βR
+ (ηKL̃1)

2G0 +
βσ2

NK

(a)

≲
L̄∆

λL̄R
+

βσ2

NK
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(b)

≲
L̄∆

R
+

L̄∆√
βNK

+
βσ2

NK

(c)

≲
L̄∆

R
+

(
L̄∆σ

NKR

)2/3

where (a) is due to the fact ηKL̄ ≲
(

L̄∆
G0λLR

) 1
2
; For (b), it holds because λL̄ ≤ min{ 1

24
,
√

βNK
162
};

For (c), it holds because β = min

{
1,
(

NKL̄2∆2

σ4R2

)1/3}
.
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5.8.4 Federated Hessian Aided Policy Gradient with Momentum

According to the updating rule of FEDHAPG-M, we can rewrite Λ
(i)
r,k as

Λ
(i)
r,k =

(
∇ log p(i)

(
τ
(i)
r,k | θ

(i)
r,k(α)

)T
v
(i)
r,k

)
∇Φi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
+∇2Φi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
v
(i)
r,k

(5.38)

where Φi(τ | θ) =
∑H−1

h=0

∑H−1
i=h λiR(i) (si, ai) log πθ (ah, sh) and v

(i)
r,k = θ

(i)
r,k − θr−1. Note that

E
α∼U [0,1],τ∼p(i)

(
τ |θ(i)r,k(α)

) [Λ(i)
r,k

]
= ∇J

(
θ
(i)
r,k

)
−∇J (θr−1) .

Moreover, we have Λ
(i)
r,k := ∇̂2

i

(
θ
(i)
r,k(α), τ

(i)
r,k

)
v
(i)
r,k where

∇̂2
i

(
θ
(i)
r,k(α), τ

(i)
r,k

)
=∇Φi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
∇ log p(i)

(
τ
(i)
r,k | θ

(i)
r,k(α)

)T
+∇2Φi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
.

and E
τ∼p(i)

(
τ |θ(i)r,k(α)

) [∇̂2
(
θ
(i)
r,k(α), τ

)]
= ∇2Ji

(
θ
(i)
r,k(α)

)
.

Proposition 2. (Lemma 4.1 in [175]) Under Assumption 4, we have for all θ and i ∈ [N ]∥∥∥∇̂2
i (θ, τ)

∥∥∥2 ≤ H2G4R2
max +M2R2

(1− λ)4
= L̃4

2
.

where τ is a trajectory sampled according to p(i)(τ |θ).

Lemma 22. If the step-size satisfies λ ≤
√

βNK

72L̃4
2 , we have

Σr ≤ (1− 8β

β
)Σr−1 +

2L2 + 4L̃4

2

β
Dr +

2β2σ2

NK
+

8λ2L̃4

2

NK
E ∥∇J(θr−1)∥2 (5.39)

holds for r ≥ 1. When r = 0, we have

Σr ≤ (1− 8β

β
)Σr−1 +

2L2 + 4L̃4

2

β
Dr +

2β2σ2

NK
. (5.40)
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Proof.

Σr = E
[
∥ur+1 −∇J(θr)∥2

]
= E

[∥∥∥ 1

NK

∑
i,k

βw(i)
(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

[
ur + Λ

(i)
r,k

]
−∇J(θr)

∥∥∥2]

= E

[∥∥∥∥(1− β)(ur −∇J(θr−1))

+
1

NK

∑
i,k

{
βw(i)

(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

(
Λ

(i)
r,k +∇J(θr−1

)
−∇J(θ(i)r,k)

}
+

1

NK

∑
i,k

[
∇J(θ(i)r,k)−∇J(θr)

] ∥∥∥∥2
]

= (1− β)2Σr−1 + E

∥∥∥∥∥ 1

NK

∑
i,k

[
∇J(θ(i)r,k)−∇J(θr)

]∥∥∥∥∥
2

︸ ︷︷ ︸
H1

+ 2E

[〈
(1− β)(ur −∇J(θr−1)),

1

NK

∑
i,k

[
∇Ji(θ(i)r,k)−∇J(θr)

] 〉]
︸ ︷︷ ︸

H2

+ E

∥∥∥∥∥ 1

NK

∑
i,k

{
βw(i)

(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

(
Λ

(i)
r,k +∇J(θr−1)

)
−∇J(θ(i)r,k)

}∥∥∥∥∥
2

︸ ︷︷ ︸
H3

(5.41)

To precede, we bound H1 as

H1 = E

∥∥∥∥∥ 1

NK

∑
i,k

[
∇J(θ(i)r,k)−∇J(θr)

]∥∥∥∥∥
2

≤ L2

NK

∑
i,k

E
∥∥∥θ(i)r,k − θr

∥∥∥2 = L2Dr (5.42)

Using Young’s inequality to bound H2, we have

H2 ≤ β(1− β)2E
∥∥∥ur −∇J(θr−1)

∥∥∥2 + 1

β
E
∥∥∥ 1

NK

∑
i,k

∇Ji(θ(i)r,k)−∇J(θr)
∥∥∥2
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≤ β(1− β)2Σr−1 +
L2

β

1

NK

∑
i,k

E
∥∥∥θ(i)r,k − θr

∥∥∥2︸ ︷︷ ︸
Dr

(5.43)

For H3, we bound it as

H3 = E

∥∥∥∥∥ 1

NK

∑
i,k

{
βw(i)

(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

(
Λ

(i)
r,k +∇J(θr−1)

)
−∇J(θ(i)r,k)

}∥∥∥∥∥
2

≤ 2β2 σ2

NK
+ 2(1− β)2

1

N2K2

∑
i,k

E
∥∥∥Λ(i)

r,k +∇J(θr−1)−∇J(θ(i)r,k)
∥∥∥2

(a)

≤ 2β2σ2

NK
+ 2(1− β)2

1

N2K2

∑
i,k

E
∥∥∥Λ(i)

r,k

∥∥∥2
(b)
=

2β2σ2

NK
+ 2(1− β)2

1

N2K2

∑
i,k

E
∥∥∥∇̂2

(
θ
(i)
r,k, τ

(i)
r,k

)
v
(i)
r,k

∥∥∥2 (b)

≤ 2β2σ2

NK
+ 2(1− β)2

1

N2K2

∑
i,k

L̃4

2
E
∥∥∥v(i)r,k

∥∥∥2
≤ 2β2σ2

NK
+ 4(1− β)2L̃4

2 1

NK

∑
i,k

E
∥∥∥θ(i)r,k − θr

∥∥∥2︸ ︷︷ ︸
Dr

+4(1− β)2
L̃4

2

NK
E ∥θr−1 − θr∥2 (5.44)

where we use the fact that E[∥X −E[X]∥2] ≤ E[∥X∥2] for (a); for (b), it holds due to Proposition 2.

Plugging the upper bound of H1 (Eq. (5.42)), H2(Eq. (5.43)) and H3 (Eq. (5.44))into Eq.(5.41),

we have

Σr ≤ (1− β)Σr−1 +
2L2 + 4L̃4

2

β
Dr +

2β2σ2

NK
+ 4

L̃4

2

NK
E ∥θr−1 − θr∥2

= (1− β)Σr−1 +
2L2 + 4L̃4

2

β
Dr +

2β2σ2

NK
+ 4

λ2L̃4

2

NK
E ∥ur∥2

≤ (1− β)Σr−1 +
2L2 + 4L̃4

2

β
Dr +

2β2σ2

NK
+ 8

λ2L̃4

2

NK
E ∥ur −∇J(θr−1)∥2 + 8

λ2L̃4

2

NK
E ∥∇J(θr−1)∥2

(a)

≤ (1− 8β

β
)Σr−1 +

2L2 + 4L̃4

2

β
Dr +

2β2σ2

NK
+

8λ2L̃4

2

NK
E ∥∇J(θr−1)∥2 (5.45)

where (a) is due to the choice of λ such that 8λ2L̃4
2

NK
≤ β

9
, which holds when λ ≤

√
βNK

72L̃4
2 .
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Lemma 23. (Bounding drift-term) If the local step-size satisfies η ≤ min{ L

32e2L̃4
2
K
, 1
KL
}, the

drift-term can be upper bounded as:

Dr ≤ 4eK2Mr + (16η4K4L2 + 8η2K)

(
β2σ2 + 2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)
Proof. Define c

(i)
r,k := −η

(
∇Ji(θ(i)r,k) + (1− β)(ur −∇Ji(θr−1))

)
. For any 1 ≤ j ≤ k − 1 ≤

K − 2, we have:

E
∥∥∥c(i)r,j − c

(i)
r,j−1

∥∥∥2 ≤ η2L2E
∥∥∥θ(i)r,j − θ

(i)
r,j−1

∥∥∥2
= η2L2

(
E
∥∥∥c(i)r,j−1

∥∥∥2 + E
[
Var

[
θ
(i)
r,j − θ

(i)
r,j−1 | F

(i)
r,j−1

]])
. (5.46)

where we use the bias-variance decomposition in the last inequality. To precede, we bound the

variance term as:

E
[
Var

[
θ
(i)
r,j − θ

(i)
r,j−1 | F

(i)
r,j−1

]]
= η2E

∥∥∥∥β [w(i)
(
τ
(i)
r,j−1 | θ

(i)
r,j−1, θ

(i)
r,j−1(α)

)
gi

(
τ
(i)
r,j−1 | θ

(i)
r,j−1

)
−∇Ji(θ(i)r,j−1)

]
+ (1− β)

[
Λ

(i)
r,j−1 −∇Ji(θ

(i)
r,j−1) +∇Ji(θr−1)

] ∥∥∥∥2
≤ 2η2β2σ2 + 2η2(1− β)2E

∥∥∥∥Λ(i)
r,j−1 −∇Ji(θ

(i)
r,j−1) +∇Ji(θr−1)

∥∥∥∥2
(a)

≤ 2η2β2σ2 + 2η2(1− β)2E
∥∥∥∥Λ(i)

r,j−1

∥∥∥∥2
≤ 2η2β2σ2 + 2η2(1− β)2E

∥∥∥∇̂2
i

(
θ
(i)
r,j−1, τ

(i)
r,j−1

)
v
(i)
r,j−1

∥∥∥2
≤ 2η2β2σ2 + 4η2(1− β)2L̃4

2
E
∥∥∥θ(i)r,j−1 − θr

∥∥∥2 + 4η2(1− β)2L̃4

2
E ∥θr−1 − θr∥2 (5.47)

where we use the fact that E[∥X − E[X]∥2] ≤ E[∥X∥2] for (a). Plugging the upper bound of

variance into Eq.(5.46), we have

E
∥∥∥c(i)r,j − c

(i)
r,j−1

∥∥∥2 ≤ η2L2

(
E
∥∥∥c(i)r,j−1

∥∥∥2 + 2η2β2σ2 + 4η2L̃4

2
E
∥∥∥θ(i)r,j−1 − θr

∥∥∥2 + 4η2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2).
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Then for any 1 ≤ j ≤ k − 1 ≤ K − 2, we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ (1 +
1

q
)E
∥∥∥c(i)r,j−1

∥∥∥2 + (1 + q)E
∥∥∥c(i)r,j − c

(i)
r,j−1

∥∥∥2
≤ (1 +

2

q
)E
∥∥∥c(i)r,j−1

∥∥∥2 + (1 + q)η2L2

(
2η2β2σ2 + 4η2L̃4

2
E
∥∥∥θ(i)r,j−1 − θr

∥∥∥2 + 4η2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)
(5.48)

where we use the fact that ηL ≤ 1
K
≤ 1

q+1
and let q = k − 1. By unrolling this recurrence, for any

1 ≤ j ≤ k − 1 ≤ K − 2, we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ (1 +
2

k − 1
)jE
∥∥∥c(i)r,0

∥∥∥2 + kη2L2

j−1∑
i=0

(2η2β2σ2 + 4η2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)Πj−1
j′=i+1(1 +

2

k − 1
)

+ kη2L2

j−1∑
s=0

(4η2L̃4

2
E
∥∥∥θ(i)r,s − θr

∥∥∥2)Πj−1
j′=s+1(1 +

2

k − 1
)

≤ (1 +
2

k − 1
)k−1E

∥∥∥c(i)r,0

∥∥∥2 + kη2L2

k−1∑
i=0

(2η2β2σ2 + 4η2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)(1 + 2

k − 1
)k−1

+ kη2L2

j−1∑
j′=0

(4η2L̃4

2
E
∥∥∥θ(i)r,j′ − θr

∥∥∥2)(1 + 2

k − 1
)k−1 (5.49)

Based on the inequality (1 + 2
K−1

k−1
) ≤ e2 ≤ 8, we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ e2E
∥∥∥c(i)r,0

∥∥∥2 + 8k2η4L2

(
2β2σ2 + 4L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)+ 4e2kη4L2L̃4

2
j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2
(5.50)

By Lemma A.3, we have

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤ 2E

∥∥∥∥∥
k−1∑
j=0

c
(i)
r,j

∥∥∥∥∥
2

+ 2
k−1∑
j=0

E
[
Var

[
θ
(i)
r,j+1 − θ

(i)
r,j | F

(i)
r,j

]]
(a)

≤ 2k
k−1∑
j=0

E
∥∥∥c(i)r,j

∥∥∥2 + 2
k−1∑
j=0

(
2β2η2σ2 + 4η2L̃4

2
E
∥∥∥θ(i)r,j − θr

∥∥∥2 + 4η2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)
(5.51)

where (a) is due to Eq.(5.47). Plugging Eq.(5.50) into Eq.(5.51), we have

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤
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2k
k−1∑
j=0

{
e2E

∥∥∥c(i)r,0

∥∥∥2 + 8k2η4L2

(
2β2σ2 + 4L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)+ 4e2kη4L2L̃4

2
j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2}

+ 2
k−1∑
j=0

(
2β2η2σ2 + 4η2L̃4

2
E
∥∥∥θ(i)r,j − θr

∥∥∥2 + 4η2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2) (5.52)

Summing up the above equation over k = 0, · · · , K − 1, we have

K−1∑
k=0

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤ K−1∑
k=0

{
2k2e2E

∥∥∥c(i)r,0

∥∥∥2 + 16k4η4L2

(
2β2σ2 + 4L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)}

+
K−1∑
k=0

8e2k2η4L2L̃4

2
k−1∑
j=0

j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2
+

K−1∑
k=0

(
4kβ2η2σ2 + 8kη2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2 + 8η2L̃4

2
k−1∑
j=0

E
∥∥∥θ(i)r,j − θr

∥∥∥2)

≤ 2eK3E
∥∥∥c(i)r,0

∥∥∥2 + (8η4K5L2 + 4η2K2)

(
β2σ2 + 2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)
+K2

K−1∑
k=0

8e2η4L2L̃4

2
K−1∑
j=0

K−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2 + K−1∑
k=0

8η2L̃4

2
K−1∑
j=0

E
∥∥∥θ(i)r,j − θr

∥∥∥2
= 2eK3E

∥∥∥c(i)r,0

∥∥∥2 + (8η4K5L2 + 4η2K2)

(
β2σ2 + 2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)
+ (8e2η4K4L2L̃4

2
+ 8η2L̃4

2
K)

K−1∑
j=0

E
∥∥∥θ(i)r,j − θr

∥∥∥2 (5.53)

With the choice of step-size η satisfying 8e2η4K4L2L̃4

2
+8η2L̃4

2
K ≤ 1

2
, after some rearrangement,

we have

1

2K

K−1∑
k=0

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤ 2eK2E
∥∥∥c(i)r,0

∥∥∥2 + (8η4K4L2 + 4η2K)

(
β2σ2 + 2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)
(5.54)

In summary, we can bound the drift-term as

Dr ≤ 4eK2Mr + (16η4K4L2 + 8η2K)

(
β2σ2 + 2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2) (5.55)
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Lemma 24. If λL ≤ 1
24

and η2
[
289
72
(1− β)2 + 8e(λβLR)2

]
≤ β2

288eK2
(
2L2+4̃L4

2
) , we have

R−1∑
r=0

Mr =
1

N

R−1∑
r=0

N∑
i=1

E
∥∥∥c(i)r,0

∥∥∥2 ≤ β2

288eK2
(
2L2 + 4̃L4

2
) R−2∑

r=−1

(
Σr + E

[
∥∇J (θr)∥2

])
+ 4η2β2eRG0.

(5.56)

where G0 :=
1
N

∑N
i=1 E

[
∥∇Ji (θ0)∥2

]
.

Proof. The proof is the same as that of Lemma 21.

• Proof of Theorem 6

Theorem 8. (Complete version of Theorem 6) Under Assumption 4–6, by setting u0 =
1

NB

∑N
i=1

∑B
b=1 gi

(
τ
(i)
b |θ0

)
with

{
τ
(i)
b

}B

b=1

iid∼ p(i)(τ |θ0) and choosing β = min

{
1,
(

NKL̂2∆2

σ4R2

)1/3}
, λ = min

{
1

24L̂
,
√

βNK

72L̂2

}
,

B =
⌈

K
Rβ2

⌉
, and

ηKL̂ ≲ min


(

L̂∆

G0λL̂R

)1/2

,

(
β

N

)1/2

,

(
β

NK

)1/4


in Algorithm 6, then the output of FEDHAPG-M after R rounds satisfies

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

(
L̂∆σ

NKR

)2/3

+
L̂∆

R
(5.57)

where L̂ :=

√
2L2 + 4̃L4

2
and L, L̃4 are defined in Proposition 1 and Proposition 2, respectively.

Proof. Based on Lemma 22, we have for any r ≥ 1

Σr ≤ (1− 8β

β
)Σr−1 +

2L2 + 4L̃4

2

β
Dr +

2β2σ2

NK
+

8λ2L̃4

2

NK
E ∥∇J(θr−1)∥2
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≤ (1− 8β

β
)Σr−1 +

2β2σ2

NK
+

8λ2L̃4

2

NK
E ∥∇J(θr−1)∥2 (5.58)

+
2L2 + 4L̃4

2

β

[
4eK2Mr + (16η4K4L2 + 8η2K)

(
β2σ2 + 2L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)] (5.59)

where the last inequality is due to Lemma 23. When r = 0, we have

Σ0 ≤ (1− β)Σ−1 +
2β2σ2

NK
+

2L2 + 4L̃4

2

β

[
4eK2M0 + (16η4K4L2 + 8η2K)

]
β2σ2

Summing up the above equation over r from 0 to R− 1, we have

R−1∑
r=0

Σr ≤
(
1− 8β

9

) R−2∑
r=−1

Σr +
8(λL̃4)

2

NK
E

[
R−2∑
r=0

∥∇J (θr)∥2
]
+

2β2σ2

NK
R

+
2L2 + 4L̃4

2

β

[
4eK2

R−1∑
r=0

Mr + 8(ηK)2(2(ηKL)2 +
1

K
)

](
Rβ2σ2 + 2L2

R−1∑
r=0

E
∥∥∥θr − θr−1

∥∥∥2)

By incorporating Lemma 24 into the inequality above, we have

R−1∑
r=0

Σr ≤
(
1− 8β

9

) R−2∑
r=−1

Σr +
8(λL̃4)

2

NK
E

[
R−2∑
r=0

∥∇J (θr)∥2
]
+

2β2σ2

NK
R

+
2L2 + 4L̃4

2

β
8(ηK)2

(
2(ηKL)2 +

1

K

)(
Rβ2σ2 + 2L2

R−1∑
r=0

E
[
∥θr − θr−1∥2

])

+
2L2 + 4L̃4

2

β
4eK2

 β2

288eK2
(
2L2 + 4̃L4

2
) R−2∑

r=−1

(
Σr + E

[
∥∇J (θr)∥2

])
+ 4η2β2eRG0


≤

[
1− 8β

9
+

β

72
+

32(ηK)2(2L2 + 4̃L4)
2

β
(2(ηKL)2 +

1

K
)(λL)2

]
R−2∑
r=−1

Σr

+

[
8(λL̃4)

2

NK
+

32(ηK)2(2L2 + 4̃L4)
2

β
(2(ηKL)2 +

1

K
)(λL)2 +

β

72

]
R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

[
8β
(
2L2 + 4̃L4

2
)
(ηK)2(2(ηKL)2 +

1

K
) +

2β2

NK

]
Rσ2 + 16β

(
2L2 + 4̃L4

2
)
(eηK)2RG0

(5.60)

Where the last inequality is derived by ∥θr − θr−1∥2 ≤ 2λ2
(
∥∇J (θr−1)∥2 + ∥ur −∇J (θr−1)∥2

)
.
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Note that L̂2 = 2L2 + 4̃L4

2
. We require the following inequalities to hold,

32(ηKL̂)2

β
(2(ηKL)2 + 1

K
)(λL)2 ≤ β

18

8L̂2(ηK)2(2(ηKL)2 + 1
K
) ≤ β2

NK

λL̂ ≤
√

βNK
72

.

(5.61)

Then, we have that

R−1∑
r=0

Σr ≤
[
1− 8β

9
+

β

72
+

β

18

] R−2∑
r=−1

Σr +

[
β

9
+

β

18
+

β

72

] R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

[
β2

NK
+

2β2

NK

]
Rσ2 + 16β(eηKL̃1)

2RG0

≤ (1− 7β

9
)

R−2∑
r=−1

Σr +
2β

9

R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

4Rβ2σ2

NK
+ 16β(eηKL̂)2RG0

After some rearrangement, we have

R−1∑
r=0

Σr ≤
9

7β
Σ−1 +

2

7

R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

36Rβσ2

7NK
+

144

7
(eηKL̂)2RG0

Based on Lemma 17, we have

1

λ
E[J(θR)− J(θ0)] ≥

2

7

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
− 1

35β
Σ−1 −

39Rβσ2

14NK
− 78

7
(eηKL̂)2RG0

Notice that u0 =
1

NB

∑
i

∑B
b=1 gi

(
τ
(i)
b |θ0

)
implies Σ−1 = E∥u0−∇J(θ0)∥2≤ σ2

NB
≤ β2σ2R

NK
. After

some rearrangement, we have

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

L̂∆

λL̂R
+

Σ−1

βR
+ (ηKL̂)2G0 +

βσ2

NK

(a)

≲
L̂∆

λL̂R
+

βσ2

NK
(b)

≲
L̂∆

R
+

L̂∆√
βNK

+
βσ2

NK

(c)

≲
L̂∆

R
+

(
L̂∆σ

NKR

)2/3
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where (a) is due to the fact ηKL̂ ≲
(

L̂∆

G0λL̂R

) 1
2
; For (b), it holds because λL̂ ≤ min{ 1

24
,
√

βNK
72
};

For (c), it holds because β = min

{
1,
(

NKL̂2∆2

σ4R2

)1/3}
.
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5.8.5 Additional Experiments and Implementation Details

a) Details of Tabular Case.

Random MDPs consist of N = 20 environments. In each MDP, both the state and action spaces

have a size of 5. We choose Rmax = 1. The discounted factor λ is 0.9. The state transition kernel is

generated randomly (element-wisely Bernoulli distributed). The number of local updates is set as

K = 32. Additionally, the local step-size is chosen to be η = 0.05.

b) Details of DRL Case

Experiments Setup We adopted a local step-size of 0.75 and a global step-size of 0.6. We

experimented with momentum coefficients, denoted as β, ranging from 0.2, 0.5, to 0.8. Additional

parameters were set as follows: N = 5, Rmax = 120, and K = 10. All experiments are conducted

in a host machine that is equipped with an Intel(R) Core(TM) i9-10900X CPU that operates at a

base frequency of 3.70GHz. This processor boasts 10 cores and 20 threads, with a maximum turbo

frequency of 4300 MHz. It has a total of 125GB of RAMA and 4 NVIDIA GeForce RTX 2080

GPU, compatible with CUDA Version 11.0. The source code is provided in the supplementary

materials.

Experimental Environments The CartPole environment, often referred to as the ”inverted

pendulum” problem, is a classic task in the field of reinforcement learning. In this environment,

a pole is attached to a cart, which moves along a frictionless track. The primary objective is to

balance the pole upright by moving the cart left or right, without the pole falling over or the cart

moving too far off the track. At the start of the experiment, the pole is slightly tilted, and the goal is

to prevent it from falling over by applying force to the cart. The environment provides a reward at

each time step for keeping the pole upright. The episode ends when the pole tilts beyond a certain
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angle from the vertical or the cart moves out of a defined boundary on the track.

The HalfCheetah environment is another popular benchmark in reinforcement learning, especially

within the continuous control domain. It’s designed to emulate the challenges of agile and efficient

locomotion. The agent in this environment is a two-dimensional, simplified robotic model inspired

by the anatomy of a cheetah, albeit it only represents the ”half” body, often from the waist down, thus

the name ”HalfCheetah.” The robotic agent comprises multiple joints and segments, representing the

limbs of the cheetah. The primary goal in the HalfCheetah environment is to control and coordinate

the movements of these joints to make the robot run as fast as possible on a flat surface. At each

timestep, the agent receives a reward based on how fast it’s moving forward minus a small cost

for the actions taken (to prevent erratic behaviors). The challenge lies in efficiently propelling the

HalfCheetah forward, optimizing for speed and stability.

The Walker environment is a more complex task that simulates a bipedal agent which needs

to learn to walk. Unlike CartPole, where the challenge is to balance a single pole, the Walker

environment involves controlling multiple joints and limbs of a simulated agent to achieve locomotion.

The agent receives rewards based on its forward movement and is penalized for falling or performing

awkward movements. More information about these environments can be found in (author?) [197].
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Figure 5.2: Mean rewards over global iterations for the CartPole task under different values of N

(agent number): (Left): FEDSVRPG-M; (Right): FEDHAPG-M. The shaded areas represent

the variance of rewards. Complying with theory, increasing N will increase the rewards. For both

algorithms, the local step-size η is 0.05, global step-size λ satisfies λ = ηK and the number of local

updates K is 10.

Ablation Study on Agent Number N . We further provide the ablation study of our FEDSVRPG-

M and FEDHAPG-M algorithms on N (agent number). With large N , environment heterogeneity

level increases. We choose β = 0.2 to train policies in the ablation study. Figure 5.2 illustrates

how different N values (N = 4, 5, and 8) influence the average rewards in the CartPole task as

the number of iterations increases. We find that all policies with larger N values report better

performance throughout the iterations. The color-shaded regions indicate the variance in rewards.

Such phenomenon observed in Figure 5.2 complies with our theoretical analysis about linear

speedup.

Experiments on FEDHAPG-M Algorihtm The table 5.3 presents the mean testing rewards

and variances for the policies trained by the FedHAPG-M algorithm with various β values and the

baseline algorithm [79] across two tasks: CartPole and Walker. For both tasks, the FedHAPG-M

algorithm with β = 0.8 outperforms the other configurations in terms of mean rewards.
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Table 5.3: Mean Rewards and Variances of Policy Trained by FEDHAPG-M with Different Beta

Values and Baseline Algorithm

Algorithms CartPole Walker

FEDHAPG-M with β = 0.2 83.46± 7.92 130.93± 7.72

FEDHAPG-M with β = 0.5 86.54± 12.99 287.14± 72.26

FEDHAPG-M with β = 0.8 86.58± 11.21 301.57± 28.04

Baseline algorithm 85.92± 12.17 299.69± 3.02
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Chapter 6

Federated Learning for Control

6.1 Introduction

In recent years, there has been significant progress in the application of model-free reinforcement

learning (RL) methods to fields such as video games [138] and robotic manipulation [107, 159,

196]. Although RL has shown impressive results in simulation, it often suffers from poor sample

complexity, thereby limiting its effectiveness in real-world applications [42]. To resolve the sample

complexity issue and accelerate the learning process, federated learning (FL) has emerged as a

popular paradigm [96, 132], where multiple similar agents collaboratively learn a common model

without sharing their raw data. The incentive for collaboration arises from the fact that these

agents are “similar” in some sense and hence end up learning a “superior” model than if they

were to learn alone. In the RL setting, Federated Reinforcement Learning (FRL) aims to learn a

common value function [192] or produce a better policy from multiple RL agents interacting with

similar environments. In the recent survey paper [158], FRL has empirically shown great success in

reducing the sample complexity for autonomous driving [116, 139], IoT devices [117], and resource

management in networking [104, 237].
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Lately, there has been a lot of interest in applying RL techniques to classical control problems

such as the Linear Quadratic Regulaor (LQR) problem [6]. In the standard control setting, the

dynamical model of the system is known and one seeks to obtain a controller that stabilizes the

closed-loop system and provides optimal performance. RL approaches such as policy gradient [189,

223] (which we pursue here) differ in that they are “model-free”, i.e., a control policy is obtained

despite not having access to the model of the dynamics. Despite the lack of convexity in even simple

problems, policy gradient (PG) methods have been shown to be globally convergent for certain

structured settings such as the LQR problem [50]. While this is promising, a major challenge in

applying PG methods is that in general, one does not have access to exact deterministic policy

gradients. Instead, one relies on estimating such gradients via sampling based approaches. This

typically leads to noisy gradients that can suffer from high variance. As such, reducing the variance

in PG estimates to achieve “good performance” may end up requiring several samples.

Motivation. The main premise of this paper is to draw on ideas from the FL literature to

alleviate the high sample-complexity burden of PG methods [4, 124, 219], with the focus being on

model-free control. As a motivating example, consider a fleet of identical robots produced by the

same manufacturer. Each robot can collect data from its own dynamics and learn its own optimal

policy using, for instance, PG methods. Since the fleet of robots shares similar dynamics, and more

data can potentially lead to improved policy performance (via more accurate PG estimates), it is

natural to ask: Can a robot accelerate the process of learning its own optimal policy by leveraging

the data of the other robots in the fleet? The answer is not as obvious as one might expect since

in reality, it is unlikely that any two robots will have exactly the same underlying dynamics, i.e.,

heterogeneity in system dynamics is inevitable. The presence of such heterogeneity makes the

question posed above both interesting and non-trivial. In particular, when the heterogeneity across

agents’ dynamics is large, leveraging data from other agents might degrade the performance of a
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single agent. Indeed, large heterogeneity may make it impossible to learn a common stabilizing

policy1. Moreover, even when such a stabilizing policy exists, it may deviate from each agent’s

local optimal policy, rendering poor performance and discouraging participation in the FL process.

Thus, to understand whether more data2 helps or hurts, it is crucial to characterize the effects of

heterogeneity in the federated control setting.

With this aim in mind, we study a multi-agent model-free LQR problem based on policy gradient

methods. Specifically, there are M agents in our setup, each with its own distinct yet similar linear

time-invariant (LTI) dynamics. Inspired by the typical objective in FL, our goal is to find a common

policy which can minimize the average of the LQR costs of all the agents. With this setup, we seek

to answer the following questions.

Q1. Is this common policy stabilizing for all the systems? If so, under what conditions?

Q2. How far is the learned common policy from each agent’s locally optimal policy?

Q3. Can an agent use the common policy as an initial guess to fine-tune and learn its own

optimal policy faster (i.e., with fewer overall samples) than if it acted alone?

Challenges: There are several challenges to answering the above questions. First, even for

the single agent setting, the policy gradient-based LQR problem is non-convex, and requires a

fairly intricate analysis [50]. Second, a key distinction relative to standard federated supervised

learning stems from the need to maintain stability – this problem is amplified in the heterogeneous

multi-agent scenario we consider. It remains an open problem to design an algorithm ensuring that

policies are simultaneously stabilizing for each distinct system. Third, to reduce the communication

cost, FL algorithms rely on the agents performing multiple local update steps between successive

1See Section 6.9.3 for more details on the underlying intuition and necessity behind the low heterogeneity regime.

2In accordance with both FL & FRL frameworks, the agents in our problem do not exchange their private data (e.g.,

rewards, states, etc.). Instead, each agent only transmits its policy gradient.
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communication rounds. When agents have non-identical loss functions, these local steps lead to a

“client-drift” effect where each agent drifts towards its own local minimizer [21, 23]. While several

works in FL have investigated this phenomenon [2, 64, 84, 88, 90, 100, 110, 113, 135, 136, 150, 217],

the effect of “client-drift” on stability remains completely unexplored. Unless accounted for, such

drift effects can potentially produce unstable controllers for some systems.

Our Contributions: In response to the above challenges, we propose a policy gradient method

called FedLQR to solve the (model-based and model-free) federated LQR problem, and provide

a rigorous finite-time analysis of its performance that accounts for the interplay between system

heterogeneity, multiple local steps, client-drift effects, and stability. Our specific contributions in

this regard are as follows.

• Iterative stability guarantees. We show via a careful inductive argument that under suitable

requirements on the level of heterogeneity across systems, the learning rate schedule can be designed

to ensure that FedLQR provides a stabilizing controller at every iteration for all systems. Theorem 9

provides a proof in the model-based setting, and Theorem 10 provides the model-free result.

• Bounded policy gradient heterogeneity in the LQR problem. We prove in Lemma 27 that,

for each pair of agents i, j ∈ [M ], the policy gradient direction (in the model-based setting) of agent

i is close to that of agent j, if their dynamics are similar (i.e., Definition 1). This is the first result to

observe and characterize this bounded gradient heterogeneity phenomenon in the multi-agent LQR

setting.

• Quantifying the gap between the FedLQR’s output and each system’s optimal policy.

Building on Lemma 27, we prove that when the agents’ dynamics are similar, the common policy

returned by FedLQR is close to each agent’s optimal policy; see Theorem 9. In other words, we

can leverage the federated formulation to help each agent find its own optimal policy up to some

accuracy depending on the level of heterogeneity. Our work is the first to provide a result of this
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flavor.

• Linear speedup. As our main contribution, we prove that in the model-free setting, FedLQR

converges to a solution that is in a neighborhood of each agent’s optimal policy, using M -times

fewer samples relative to when each agent just uses its own data (see Theorem 10). The radius of this

neighborhood captures the level of heterogeneity across the agents’ dynamics. The key implication

of this result is that in a low-heterogeneity regime, FedLQR (in the model-free setting) reduces

the sample-complexity by a factor of M w.r.t. the centralized setting [50, 129], highlighting the

benefit of collaboration.3 Simply put, FedLQR enables each agent to quickly find an approximate

locally optimal policy; as in standard FL [31], the agent can then use this policy as an initial guess

to fine-tune based on its own data.

In summary, we provide a new theoretical framework that quantitatively characterizes the

interplay between the price of heterogeneity and the benefit of collaboration for model-free control.

Refer to [193] for all proofs in this Chapter.

6.2 Background and Preliminaries

6.2.1 Related Work

There has been a line of work [50, 65, 71, 80, 82, 129, 140] that explores various RL algorithms

for solving the model-free LQR problem. However, their analysis is limited to the single-agent

setting. Most recently, [163] solves the model-free LQR tracking problem in a federated manner

and achieves a linear convergence speedup with respect to the number of agents. However, they

consider a simplified setting where all agents follow the same dynamics. As such, the stability

analysis of [163] follows from arguments for the centralized setting. In sharp contrast, to establish

3Throughout this paper, we use the terms “centralized” and “single-agent” interchangeably.
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the linear speedup for FedLQR, we need to address the key technical challenges arising from the

effect of heterogeneity and local steps on the stability of distinct systems. This requires new analysis

tools that we develop. For related work on multi-agent RL (that do not specifically look at the

control setting) we point the reader to [118, 244] and the references therein. Below we highlight the

topics and the corresponding relevant work related to our problem setting.

• Policy Gradient (PG): The policy gradient (PG) approach is a fundamental component of

the success of reinforcement learning (RL) and plays a crucial role in policy optimization

(PO). This approach directly optimizes the policy to improve system-level performances

through gradient ascent steps. The concept of policy optimization has been influential in

RL [189] with some well-known algorithms such as REINFORCE [223], trust-region policy

optimization TRPO [171], actor-critic methods [94], and proximal policy optimization PPO

[172]. We highlight an important difference between standard MDP models and control

models in RL. In control, one requires the policy to provide closed-loop stability, i.e., all

trajectories of the system must converge for a given policy. In contrast, convergence in the

MDP setting requires irreducibly and aperiodicity properties that are assumed before a policy

is selected. As a result, the control task is significantly more challenging.

The extensive body of literature on policy optimization for reinforcement learning (RL) and

its adaptability to the model-free setting paves the way for leveraging policy gradient methods

in the pursuit of learning optimal control policies for classical control problems [74, 152].

Despite the non-convex nature of the formulation involved in policy gradient methods, recent

work [50, 65, 71, 80, 82, 102, 129, 140, 152] has demonstrated global convergence in solving

the model-free LQR problem via policy gradient methods. This convergence is achieved due

to certain properties of the quadratic cost function inherent in the LQR problem as introduced



CHAPTER 6. FEDERATED LEARNING FOR CONTROL 171

in [50]. In contrast to the aforementioned work, which exclusively focus on the centralized

control setting, our paper offers convergence guarantees for the multi-agent setting. In this

context, each agent follows similar, but not identical, dynamics, thereby distinguishing it from

the simpler scenario in [163].

• Model-free Linear Quadratic Control: The linear quadratic regulator (LQR) problem is

a well-studied classical control problem that has gained significant attention due to its wide

applicability and its role as a baseline for more complex control strategies [6]. Recently, to

address the non-convex nature of the policy gradient LQR, [187] has proposed convexifying

the corresponding optimal control problem to efficiently solve the model-based LQR problem

via policy gradient. Furthermore, the model-free LQR has attracted considerable interest

after [50] provided guarantees on the global convergence of policy gradient methods for both

model-based and model-free LQR settings. This breakthrough paved the way for subsequent

works [65, 71, 80, 82, 102, 129, 140, 152] that analyze convergence guarantees and sample

complexity in the context of the model-free LQR problem. Notably, [35] characterizes the

sample complexity of the LQR problem.

Another line of work explores certainty equivalent control [131, 178], providing regret bounds

to demonstrate the quality of the designed linear quadratic regulator in terms of the accuracy of

the estimated system model. However, the key distinction between these works and the present

paper lies in the consideration of multiple and heterogeneous systems. Moreover, [131, 178]

use the regret framework, which is different from the PAC learning-based framework [51]

exploited in our paper.
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6.2.2 Notation

Given a set of matrices {S(i)}Mi=1, we denote ||S||max:= maxi||S(i)||, and ||S||min:= mini||S(i)||.

All vector norms are Euclidean and matrix norms are spectral, unless otherwise stated.

6.3 Problem Formulation

Classical control approaches aim to design optimal controllers from a well-defined dynamical

system model. The model-based LQR is a well-studied problem that admits a convex solution. In

this work, we consider the LQR problem but in the model-free setting. Moreover, we consider a

federated model-free LQR problem in which there are M agents, each with their own distinct but

“similar’ dynamics. Our goal is to collaboratively learn an optimal controller that minimizes an

average quadratic cost. We seek to characterize the optimality of our solution as a function of the

“difference” across the agent’s dynamics. In what follows, we formally describe our problem of

interest.

Federated LQR: Consider a system with M agents. Associated with each agent is a linear

time-invariant (LTI) dynamical system of the form

x
(i)
t+1 = A(i)x

(i)
t +B(i)u

(i)
t , x

(i)
0 ∼ D, i = 1, . . . ,M,

with A(i) ∈ Rnx×nx , B(i) ∈ Rnx×nu . We assume each initial state x
(i)
0 is randomly generated from

the same distribution D. In the single-agent setting, the optimal LQR control policy u
(i)
t = −K∗

i x
(i)
t

for each agent is given by the solution to

K∗
i = argmin

K

{
C(i)(K) := E

[
∞∑
t=0

x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

]}
s.t. x

(i)
t+1 = A(i)x

(i)
t +B(i)u

(i)
t , u

(i)
t = −Kx

(i)
t , x

(i)
0 ∼ D, (6.1)
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where Q ∈ Rnx×nx and R ∈ Rnu×nu are known positive definite matrices. In our federated setting,

the objective is to find an optimal common policy {ut}∞t=0 to minimize the average cost of all the

agents Cavg(K) := 1
M

∑M
i=1 C

(i)(K) without knowledge of the system dynamics, i.e., (A(i), B(i)).

Classical results [6] from optimal control theory show that, given the system matrices A(i), B(i), Q

and R, the optimal policy can be written as a linear function of the current state. Thus, we consider

a common policy of the form u
(i)
t = −Kx

(i)
t . The objective of the federated LQR problem can be

written as:

K∗ =argmin
K

{
Cavg(K) :=

1

M

M∑
i=1

E

[
∞∑
t=0

x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

]}
s.t. x

(i)
t+1 = A(i)x

(i)
t +B(i)u

(i)
t , u

(i)
t = −Kx

(i)
t , x

(i)
0 ∼ D. (6.2)

The rationale for finding K∗ is as follows. Intuitively, when all agents have similar dynamics,

K∗ will be close to each K∗
i . Thus, K∗ will serve to provide a good common initial guess from

which each agent i can then fine-tune/personalize (using only its own data) to converge exactly to its

own locally optimal controller K∗
i . The key here is that the initial guess K∗ can be obtained quickly

by using the collective data of all the agents. We will formalize this intuition in Theorem 10.

We make the standard assumption that for each agent, (A(i), B(i)) is stabilizable. In addition,

we make the following assumption on the distribution of the initial state:

Assumption 7. Let µ := σmin

(
E

x
(i)
0 ∼Dx

(i)
0 x

(i)⊤
0

)
and assume µ > 0. For each i ∈ [M ], the initial

state x
(i)
0 ∼ D and distribution D satisfy

E
x
(i)
0 ∼D[x

(i)
0 ] = 0, E

x
(i)
0 ∼D[x

(i)
0 x

(i)⊤
0 ] ≻ µIdx , and ∥x(i)

0 ∥ ≤ H almost surely.

We quantify the heterogeneity in the agent’s dynamics through the following definition:

Definition 1. (Bounded system heterogeneity) There exist positive constants ϵ1 and ϵ2 such that

max
i,j∈[M ]

∥A(i) − A(j)∥ ≤ ϵ1, and max
i,j∈[M ]

∥B(i) −B(j)∥ ≤ ϵ2.
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We assume that ϵ1 and ϵ2 are finite. Similar bounded heterogeneity assumptions are commonly

made in FL [84, 90, 160]. However, unlike typical FL works where one directly imposes heterogeneity

assumptions on the agents gradients, in our setting, we need to carefully characterize how heterogeneity

in the system parameters (A(i), B(i)) translates to differences in the policy gradients; see Lemma 27.

Before providing our solution to the federated LQR problem, we first recap existing results on

model-free LQR in the single-agent setting.

The single-agent setting: When there is only one agent, i.e., M = 1, let us denote the system

matrix as (A,B). If (A,B) is known, the optimal controller K∗ can be computed by solving the

discrete-time Algebraic Riccati Equation (ARE) [6].

Strikingly, [50] show that policy gradient methods can find the globally optimal LQR policy

K∗ despite the non-convexity of the problem. Tthe policy gradient of the LQR problem can be

expressed as:

∇C(K) = 2EKΣK = 2
((
R +B⊤PKB

)
K −B⊤PKA

)
ΣK ,

where PK is the positive definite solution to the Lyapunov equation: PK = Q+K⊤RK + (A−

BK)⊤PK(A − BK), EK :=
(
R +B⊤PKB

)
K − B⊤PKA, and ΣK := Ex0∼D

∑∞
t=0 xtx

⊤
t . The

policy gradient method K ← K−η∇C(K) will find the global optimal LQR policy, i.e., K → K∗,

provided that Ex0∼D[x0x
⊤
0 ] is full rank and an initial stabilizing policy is used. When the model is

unknown, the analysis technique employed by [50] is to construct near-exact gradient estimates from

reward samples and show that the sample complexity of such a method is bounded polynomially in

the parameters of the problem.

In contrast to the single-agent setting, the heterogeneous, multi-agent scenario we consider

here is considerably more difficult to analyze. First, designing an algorithm satisfying the iterative

stability guarantees becomes a complex task. Second, since each agent in the system has its own
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unique dynamics and gradient estimates, it can be difficult to aggregate these directions in a manner

that ensures the updating direction moves toward the average optimal policy K∗. Nonetheless, in

the sequel, we will overcome these challenges and provide a finite-time analysis of FedLQR.

6.4 Necessity of the Low Heterogeneity Requirement

In our main theorems, we require certain bounds on the parameters ϵ1 and ϵ2 that define the

heterogeneity of the M dynamical systems we work with. Here, we point out that, unlike standard

federated learning settings, these bounds are necessary for convergence. From a control and

dynamical systems viewpoint, these bounds are perhaps intuitive: if the systems are too different,

then there is no reason to believe there exists a stabilizing controller, i.e., there is no solution to the

problem (6.2). In what follows, we will formalize this point. To do so, let us define an “instance” of

our FedLQR problem via a parameter M that characterizes the number of agents/systems and the

set of corresponding system matrices {A(i), B(i)}i∈[M ].4

We now prove a couple of simple impossibility results. Our first result shows that even when the

input matrices are identical across agents, heterogeneity in the state transition matrices can lead to

the non-existence of simultaneously stabilizing controllers, thereby rendering the FedLQR problem

infeasible.

Proposition 5. There exists an instance of the FedLQR problem with M = 2 and ϵ2 = 0, such that

if ϵ1 > 2, then it is impossible to find a common linear state-feedback gain K that simultaneously

stabilizes all systems.

4Although technically the cost matrices Q and R are also part of a FedLQR problem formulation, they are not

needed to establish the necessity of a low-heterogeneity requirement. As such, we do not include them here in our

definition of an instance.
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Proof: Consider an instance with just two scalar systems defined by:

x
(1)
t+1 = αx

(1)
t + u

(1)
t and x

(2)
t+1 = −αx

(2)
t + u

(2)
t ,

for some α > 0. By simple inspection, note that in this case ϵ1 = 2α and ϵ2 = 0. Thus, ϵ1 > 2⇒

α > 1. Now for a controller u(i)
t = −kx(i)

t to stabilize both systems, the spectral radius conditions

are |α−k|< 1 and |α+k|< 1. Trivially, there exists no gain k that satisfies both these requirements

when α > 1. This completes the proof.

To complement the above result, we now show that the effect of heterogeneity is not just

limited to the state transition matrices. In particular, even when the state transition matrices are

identical across agents, (arbitrarily small) heterogeneity in the input matrices can also lead to the

non-existence of simultaneously stabilizing control gains. We formalize this below.

Proposition 6. There exists an instance of the FedLQR problem with M = 2 and ϵ1 = 0, such that

if ϵ2 > 0, then it is impossible to find a common linear state-feedback gain K that simultaneously

stabilizes all systems.

Proof: Consider an instance with two scalar systems defined by:

x
(1)
t+1 = x

(1)
t + βu

(1)
t and x

(2)
t+1 = x

(2)
t − βu

(2)
t ,

for some β. By simple inspection, note that in this case ϵ1 = 0 and ϵ2 = 2β. Thus, ϵ2 > 0⇒ β > 0.

Now for a controller u(i)
t = −kx(i)

t to stabilize both systems, the spectral radius conditions are

|1− βk|< 1 and |1 + βk|< 1. Trivially, there exists no gain k that satisfies both these requirements

when β > 0. This concludes the proof.

The above example suggests that in certain settings, we can tolerate no heterogeneity whatsoever

in the input matrices. More generally, the main take-home message from this section is that the

requirement of a “low-heterogeneity regime” is fundamental to the problem and not merely an

artifact of our analysis.
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6.5 The FedLQR algorithm

In this section, we introduce our algorithm FedLQR, formally described by Algorithm 7, to

solve for K∗ in (6.2) . First, we impose the following assumption regarding the algorithm’s initial

condition K0:

Assumption 8. We can access an initial stabilizing controller, K0, which stabilizes all systems

{(A(i), B(i))}Mi=1, i.e., the spectral radius ρ(A(i) −B(i)K0) < 1 holds for all i ∈ [M ].

Algorithm description: At a high level, FedLQR follows the standard FL algorithmic template:

a server first initializes a global policy, K0, which it sends to the agents. Each agent proceeds

to execute multiple PG updates using their local data. Once the local training is finished, agents

transmit their model update to the server. The server aggregates the models and broadcasts an

averaged model to the clients. The process repeats until a termination criterion is met. Prototypical

FL algorithms that adhere to this structure include, for instance, FedAvg [90] and FedProx [110].

With this template in mind, we now dive into the details: FedLQR initializes the server and

all agents with K
(i)
0,0 = K0 – a controller that stabilizes all agent’s dynamics. In each round n,

starting from a common global policy Kn, each agent i independently samples ns trajectories from

its own system at each local iteration l and performs approximate policy gradient updates using the

zeroth-order optimization procedure [50] which we denote ZO; see line 7. For clarity, we present

the explicit steps of using the zeroth-order method to estimate the true gradient in Algorithm 8,

which will be discussed shortly. Between every communication round, each agent updates their

local policy L times. Such an L is chosen to balance between the benefit of information sharing and

the cost of communication. After L local iterations, each agent i uploads its local policy difference

∆
(i)
n (line 10) to the server. Once all differences are received, the server averages these differences

{∆(i)
n } (line 12) to construct a new global policy Kn+1. The whole process is repeated N times.
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Algorithm 7 Model-free Federated Policy Learning for the LQR (FedLQR)
1: Input: initial policy K0, local step-size ηl, and global step-size ηg

2: Initialize the server with K0 and ηg

3: for n = 0, . . . , N − 1 do

4: for each system i ∈ [M ] do

5: for l = 0, . . . , L− 1 do

6: Agent i initializes K(i)
n,0 = Kn

7: Agent i estimates ∇̂C(i)(K
(i)
n,l) = ZO(K(i)

n,l, i) and updates the local policy as

8: K
(i)
n,l+1 = K

(i)
n,l − ηl∇̂C(i)(K

(i)
n,l)

9: end for

10: Agent i sends ∆(i)
n = K

(i)
n,L −Kn back to the server

11: end for

12: Server computes and broadcasts the global model Kn+1 = Kn +
ηg
M

∑M
i=1 ∆

(i)
n

13: end for

Zeroth-order optimization [32, 144] provides a method of optimization that only requires oracle

access to the function being optimized. Here, we briefly describe the details of our zeroth-order

gradient estimation step5 in Algorithm 8. To get a gradient estimator at a given policy K, we sample

trajectories from the i-th system ns times. At each time s, we use the perturbed policy K̂s (line 3)

and a randomly generated initial point x0 ∼ D to simulate the i-th closed-loop system for τ steps.

Thus, we can approximately calculate the cost by adding the stage cost from the first τ time steps

on this trajectory (line 4), and then estimating the gradient as in line 6.

Discussion of Assumption 8: Assumption 8 is commonly adopted in the LQR [4, 35, 50, 163]

and robust control literature [18, 40, 126]. In addition, there exist efficient ways to find such a

stabilizing policy K0; [18, 152, 249] each address the model-based setting, while [81] address this

5See Appendix in [193] for more details on zeroth-order optimization.
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problem in the RL setting of heterogeneous multi-agent systems, and [102] in the single-agent,

model-free setting. Moreover, it is well-known that the sample complexity of finding an initial

stabilizing policy only adds a logarithmic factor to that for solving the LQR problem [140, 249].

Challenges in FedLQR analysis: Although FedLQR is similar in spirit to FedAvg [112, 132]

(in the supervised learning setting), it is significantly more difficult to analyze the convergence of

FedLQR for the following reasons.

• First, the problem we study is non-convex. Unlike most existing non-convex FL optimization

results [84] which only guarantee convergence to stationary points, our work investigates whether

FedLQR can find a globally optimal policy.

• Second, standard convergence analyses in FL [84, 110, 132, 216] rely on a “bounded gradient-

heterogeneity” assumption. For the LQR problem, it is not clear a priori whether similar bounded

policy gradient dissimilarity still holds. In fact, this is something we prove in Lemma 27.

• Third, the randomness in FL usually comes from only one source: the data obtained by each

agent are drawn i.i.d. from some distribution; we call this randomness from samples. However, in

FedLQR, there are three distinct sources of randomness: sample randomness, initial condition

randomness, and randomness from the smoothing matrices. To reason about these different forms

of randomness (that are intricately coupled), we provide a careful martingale-based analysis.

• Finally, we need to determine whether the solution given by FedLQR is meaningful, i.e., to decide

whether the policy generated at each (local or global) iteration will stabilize all the systems.

To tackle these difficulties, we first define a stability region in our setting comprising of M

heterogeneous systems as:
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Definition 2. (The stabilizing set) The stabilizing set is defined as G0 := ∩Mi=1G(i) where

G(i) := {K : C(i)(K)− C(i)(K∗
i ) ≤ β

(
C(i)(K0)− C(i)(K∗

i )
)
}.

As in [129], G0 is defined as the intersection of sub-level sets containing points K whose cost

gap is at most β times the initial cost gap for all systems. It was shown in [74] that this is a compact

set. Each sub-level set corresponds to a cost gap to agent i’s optimal policy K∗
i , which is at most β

times the initial cost gap C(i)(K0)−C(i)(K∗
i ). Note that β can be any positive finite constant. Since

any finite cost function indicates that K is a stabilizing controller, we conclude that any K ∈ G0

stabilizes all the systems. Following from Assumption 8, there exists a constant β such that G0 is

nonempty. Moreover, it is worth remarking that the LQR cost function in the single-agent setting is

coercive. That is, the cost acts as a barrier function, ensuring that the policy gradient update remains

within the feasible stabilizing set G(i). By defining the stabilizing set G0 as above, the cost function

C(i)(K) retains its coerciveness on G0 for the federated setting considered in this paper.

In order to solve the federated LQR problem and provide convergence guarantees for FedLQR,

we first need to recap some favorable properties of the LQR problem in the single-agent setting that

enables PG to find the globally optimal policy.

6.5.1 Background on the centralized LQR using PG

In the single-agent setting, it was shown that policy gradient methods (i.e., model-free) can

produce the global optimal policy despite the LQR problem being non-convex [50]. We summarize

the properties that make this possible and which we also exploit in our analysis.

Lemma 25. (Local Cost and Gradient Smoothness) Suppose K ′ is such that ∥K ′−K∥≤ h∆(K) <
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Algorithm 8 Zeroth-order gradient estimation (ZO)
1: Input: K, number of trajectories ns, trajectory length τ , smoothing radius r, dimensions nx

and nu, system index i.

2: for s = 1, . . . , ns do

3: Sample a policy K̂s = K + Us, with Us drawn uniformly at random over matrices with

(Frobenius) norm r.

4: Simulate the i-th system for τ steps starting from x0 ∼ D using policy K̂s. Let Ĉs be the

empirical estimate:

Ĉs =
τ∑

t=1

ct, where ct := x⊤
t

(
Q+ K̂⊤

s RK̂s

)
xt

5: end for

6: Return the estimate:

∇̂C(K) =
1

ns

ns∑
s=1

nxnu

r2
ĈsUs.

∞. Then, the cost and gradient function satisfy:

|C (K ′)− C(K)| ≤ hcost(K)∥K ′ −K∥,

∥∇C (K ′)−∇C(K)∥ ≤ hgrad (K)∥∆∥ and ∥∇C (K ′)−∇C(K)∥F ≤ hgrad(K)∥∆∥F ,

respectively, where h∆(K), hcost(K) and hgrad(K) are positive scalars depending on C(K).

Lemma 26. (Gradient Domination) Let K∗ be an optimal policy. Then,

C(K)− C (K∗) ≤ ∥ΣK∗∥
4µ2σmin(R)

∥∇C(K)∥2F

holds for any stabilizing controller K, i.e., any K satisfying the spectral radius ρ(A−BK) < 1.

For simplicity, we skip the explicit expressions in these lemmas for h∆(K), hcost(K), and

hgrad(K) as functions of the parameters of the LQR problem. Interested readers are referred to

the Appendix for full details. With Definition 2 of the stabilizing set in hand, we can define the
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following quantities:

h̄grad := sup
K∈G0

hgrad(K), h̄cost := sup
K∈G0

hcost(K), and h∆ := inf
K∈G0

h∆(K).

With these quantities, we can transform the local properties of the LQR problem discussed in

Lemmas 25–26 into properties that hold over the global stabilizing set G0. For convenience, we use

letters with bar such as h̄grad to denote the global parameters. We are now ready to present our main

results of FedLQR in the next section.

6.6 Main results

To analyze the performance of FedLQR in the model-free case, we first need to examine its

behavior in the model-based case. Although this is not our end goal, these results are of independent

interest.

6.6.1 Model-based setting

When (A(i), B(i)) are available, exact gradients can be computed, and so the ZO scheme is no

longer needed. In this case, the updating rule of FedLQR reduces to

Kn+1 = Kn −
η

ML

M∑
i=1

L−1∑
l=0

∇C(K
(i)
n,l),

where η := Lηgηl. Intuitively, if two systems are similar, i.e., satisfy Assumption 1, their exact

policy gradient directions should not differ too much. We formalize this intuition as follows.

Lemma 27. (Policy gradient heterogeneity) For any i, j ∈ [M ] and K ∈ G0, we have:

||∇C(i)(K)−∇C(j)(K)||≤ ϵ1h
1
het(K) + ϵ2h

2
het(K), (6.3)
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where h1
het(K) and h2

het(K) are positive bounded functions depending on the parameters of the LQR

problem.6

By Lemma 27, if K belongs to a bounded set, the right-hand side of Eq. (6.3) is of the order

O(ϵ1 + ϵ2). In other words, the exact gradient direction of agent i can be well-approximated by the

gradient direction of agent j when the heterogeneity constants ϵ1 and ϵ2 are small. This justifies

why it is beneficial to use other agents’ data under the low-heterogeneity setting. Moreover, we

can immediately conclude that the exact update direction of our FedLQR algorithm is also close to

each agent’s policy gradient direction based on Lemma 27. This fact is crucial for analyzing the

convergence of FedLQR since we can map the convergence of FedLQR to that of the centralized

LQR problem (with only one agent). However, Lemma 27 alone is not sufficient to provide the

final guarantees since we still need to consider the impact of multiple local updates and stability

concerns with heterogeneous systems. Nevertheless, by overcoming these difficulties, we establish

the convergence of FedLQR in the model-based setting as follows:

Theorem 9. (Optimality in each agent’s cost function) When the heterogeneity level satisfies7

(ϵ1h̄
1
het + ϵ2h̄

2
het)

2 ≤ h̄3
het , there exist constant step-sizes ηg and ηl such that FedLQR enjoys the

following performance guarantees over N rounds:

C(i)(KN)−C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i )) + cuni,1 × B(ϵ1, ϵ2),

with B(ϵ1, ϵ2) :=
υ
∥∥∥ΣK∗

i

∥∥∥
4µ2σmin(R)

(ϵ1h
1
het + ϵ2h

2
het)

2, where h̄1,2
het := supK∈G0 h

1,2
het (K), υ := min{nx, nu},

and cuni,1 is a universal constant. Moreover, we have Kn ∈ G0 for all n = 0, · · · , N .

6For simplicity, we write h1
het, h

2
het as a function of only K since only K changes during the iterations while other

parameters remain fixed.

7The notation h̄3
het is a positive scalar depending on the parameters of the LQR problem; see Appendix in [193] for

full details.
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Main Takeaways: Theorem 9 reveals that the output Kn of FedLQR can stabilize all M

systems at each round n. However, FedLQR can only converge to a ball of radius B(ϵ1, ϵ2) around

each system’s optimal controller K∗
i , regardless of the choice of the step-sizes. The term B(ϵ1, ϵ2)

captures the effect of heterogeneity and becomes zero when each agent follows the same system

dynamics, i.e., ϵ1 = ϵ2 = 0. When there is no heterogeneity, the convergence rate matches the rate

of the centralized setting [50] up to a constant factor. But, since there is no noise introduced by the

zeroth-order gradient estimate, there is no expectation of obtaining a benefit from collaboration.

Nonetheless, understanding the model-based setting provides valuable insights for exploring the

model-free setting. With this theorem, now we are ready to provide the convergence guarantees

for our algorithm FedLQR in solving Eq. (6.2). Next, we will elaborate these guarantees in the

following corollary.

Corollary 2. (Optimality in average cost function) When the heterogeneity level satisfies8 (ϵ1h̄
1
het +

ϵ2h̄
2
het)

2 ≤ h̄3
het, after N rounds, FedLQR enjoys the following optimality gap in average cost

function across all M agents:

Cavg(KN)− Cavg(K
∗) ≤

(
1− ηµ2σmin(R)σmin(Q)

C̄max

)N

sup
i∈[M ]

(C(i)(K0)− C(i)(K∗
i ))

+ cuni,1 × B(ϵ1, ϵ2)

where C̄max := supK∈G0,i∈[M ] C
(i)(K) and ν is as defined in Theorem 9.

The main message conveyed by Corollary 2 is that FedLQR can converge to a ball around the

average optimal controller K∗ with a linear convergence rate. The size of the ball depends on

the system heterogeneity level, i.e., ϵ1 and ϵ2. Combining Theorem 9 and Corollary 2, we infer

8The notation h̄3
het is a positive scalar depending on the parameters of the LQR problem; see Appendix in [193] for

full details.
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that FedLQR not only approximates each system’s optimal controller K∗
i but also approximately

converges toward the average optimal controller K∗ when the underlying M systems are close. The

primary distinction between converging to K∗
i and K∗ lies in the linear convergence rate. Compared

to converging to K∗
i , where the linear converge rate depends only on system i’s parameter

∥∥ΣK∗
i

∥∥,

the rate in converging to K∗ depends on all systems’ parameters, i.e.,
{∥∥ΣK∗

i

∥∥}N
i=1

. Note that

these parameters
{∥∥ΣK∗

i

∥∥}N
i=1

are bounded by a universal upper bound C̄max

σmin(Q)
in Corollary 2. See

appendix in [193] for a comprehensive proof.

How to ensure FedLQR’s stability? We briefly discuss our proof technique for ensuring the

iterative stability guarantees. The main idea is to leverage an inductive argument. We start from a

stabilizing global policy Kn ∈ G0. We aim to show that the next global policy Kn+1 is stabilizing.

This is achieved by demonstrating that Kn+1 can reduce each system’s cost function compared to

Kn. To achieve this goal, we take the following steps: (1) at each iteration, initiate from the globally

stabilizing controller computed at the previous iterate, (2) determine a small global step-size such

that inequalities in Section 6.5.1 can be applied; (3) use Lemma 27 to provide a descent direction to

reduce each system’s cost function; (4) bound the drift term 1
ML

∑M
i=1

∑L−1
l=0 ∥K

(i)
n,l −Kn∥2. Step

(4) can be accomplished using a small local step-size ηl such that each local policy is a small

perturbation of the global policy Kn. Equipped with these results, we are ready to present our main

results of the model-free setting.

6.6.2 Model-free setting

We now analyze FedLQR’s convergence in the model-free setting, where the policy gradient

steps are approximately computed using zeroth-order optimization (Algorithm 8), without knowing

the true dynamics, i.e., A(i), B(i) are not available and so ∇C(i)(K(i)) can’t be directly computed) .

The key point in this setting is to bound the gap between the estimated gradient and the true gradient.
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In the centralized setting [50], the gap can [can be made arbitrarily accurate with enough trajectory

samples ns, sufficiently long trajectory length τ , and small smoothing radius r.

We aim to achieve a sample complexity reduction for each agent by utilizing data from other

similar but non-identical systems with the help of the server. This presents a significant challenge, as

averaging gradient estimates from multiple agents may not necessarily reduce the variance even for

homogeneous systems due to the high correlation between local gradient estimates. This challenge

is compounded in our case as the gradient estimates are not only correlated but also come from

non-identical systems. As a result, the variance reduction and sample complexity reduction for the

FedLQR algorithm is not obvious a priori. After addressing these challenges using a martingale-

type analysis, we show that one can establish variance reduction for our our setting as well. This is

formalized in the next result:

Lemma 28. (Variance Reduction Lemma) Suppose the smoothing radius r and trajectory length

τ from Algorithm 8 satisfy r ≤ hr

(
ϵ
4

)
and τ ≥ hτ

(
rϵ

4nxnu

)
, respectively.9 Moreover, suppose the

sample size satisfies:10

ns ≥
hsample,trunc

(
ϵ
4
, δ
ML

, H
2

µ

)
ML

. (6.4)

Then, when Kn ∈ G0, with probability 1− δ, the estimated gradients satisfy:∥∥∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K

(i)
n,l)−∇C

(i)(K
(i)
n,l)
]∥∥∥∥∥

F

≤ ϵ.

The most important information conveyed by our variance reduction lemma is that each agent

at each local step only needs to sample 1
ML

fraction of samples required in the centralized setting.

Notably, this lemma plays an important role in showing that FedLQR can help improve the sample

9The notation hr, hτ , hsample,trunc and h′
r in Lemma 28 and Theorem 10 are polynomial functions of the LQR

problem, depending on ϵ. For simplicity, we defer their definition to the Appendix.

10For the convenience of comparison with existing literature, we use the same notation as [50, 65].



CHAPTER 6. FEDERATED LEARNING FOR CONTROL 187

efficiency. Equipped with Lemma 28, we now present the main convergence guarantees for

FedLQR:

Theorem 10. (Model-free) Suppose the trajectory length satisfies τ ≥ hτ

(
rϵ′

4nxnu

)
, the smoothing

radius satisfies r ≤ h′
r

(
ϵ′

4

)
, and the sample size of each agent ns satisfies Eq. (6.4) with ϵ′ =√

cuni,3µ2σmin(R)

4
∥∥∥ΣK∗

i

∥∥∥ · ϵ. When the heterogeneity level satisfies (ϵ1h̄1
het + ϵ2h̄

2
het)

2 ≤ h̄3
het, then, given any

δ ∈ (0, 1), with probability 1− δ, there exist constant step-sizes ηg and ηl, which are independent

of ϵ′, such that FedLQR enjoys the following performance guarantees:

1. (Stability of the global policy) The global policy at each round n is stabilizing, i.e., Kn ∈ G0;

2. (Stability of the local policies) The local policies satisfy K
(i)
n,l ∈ G0 for all i and l;

3. (Convergence rate) After N ≥
cuni,4

∥∥∥ΣK∗
i

∥∥∥
ηµ2σmin(R)

log
(

2(C(i)(K0)−C(i)(K∗
i ))

ϵ′

)
rounds, we have

C(i)(KN)− C(i)(K∗
i ) ≤ ϵ′ + cuni,2 × B(ϵ1, ϵ2),∀i ∈ [M ], (6.5)

where cuni,2, cuni,3, cuni,4 are universal constants and B(ϵ1, ϵ2) is defined in Theorem 9.

This theorem establishes the finite-time convergence guarantees for FedLQR. The first two

points in Theorem 10 provide the iterative stability guarantees of FedLQR, i.e., the trajectories

of FedLQR will always stay inside the stabilizing set G0. The third point implies that when

heterogeneity is small, i.e., B(ϵ1, ϵ2) is negligible, FedLQR converges to each system’s optimal

policy with a linear speedup w.r.t. the number of agents M , which we discuss further next.

Discussion: For a fixed desired precision ϵ, we denote N to be the number of rounds such

that the first term ϵ′ in Eq (6.5) is smaller than ϵ. In what follows, we focus on analyzing the total

sample complexity of FedLQR for each agent, which can be calculated by N × L× ns. Note that

N , in our case, is in the same order as the centralized setting. However, in terms of the sample
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size ns requirement at each local step, it is only a 1
ML

-fraction of that needed in the centralized

setting, as presented in the variance reduction Lemma 28. Therefore, in a low-heterogeneity regime,

where B(ϵ1, ϵ2) is negligible, our FedLQR algorithm reduces the sample complexity of learning

the optimal LQR policy by Õ( 1
M
) of the centralized setting [50, 129].11 Specifically, FedLQR

improves the sample cost required by each agent from Õ( 1
ϵ2
) to Õ( 1

Mϵ2
) up to a small heterogeneity

bias term. This result is highly desirable since the number of agents in FL is usually large; leading

to a significant speedup due to collaboration.

It is important to mention that our results also capture the cost of federation embedded in the

term B(ϵ1, ϵ2). That is when two systems exhibit significant differences from each other, leveraging

data across them may not be beneficial in finding a common stabilizing policy that applies to both.

In a summary, Eq. (6.4)–(6.5) provide an explicit interplay between the price of heterogeneity

and the benefit of collaboration. The trade-off in Theorem 10 is explored in the simulation study

presented in the next section.

6.7 Numerical Results

The following section describes the experimental setup and results when applying FedLQR in

the model-free setting.12

6.7.1 System Generation

Numerical experiments are conducted to illustrate and evaluate the effectiveness of FedLQR

(Algorithm 7). The simulations involve different and unstable dynamical systems described by

11In [50], the sample complexity of policy gradient method is Õ( 1
ϵ4 ), this was later improved to Õ( 1

ϵ2 ) by [129]. We

compare our results to the refined analysis in [129].

12Code can be downloaded from https://github.com/jd-anderson/FedLQR

https://github.com/jd-anderson/FedLQR
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discrete-time linear time-invariant (LTI) models, as in (6.3), where each system has nx = 3 states

and nu = 3 inputs. To generate different systems while respecting the bounded heterogeneity

assumption (Assumption 1), the following steps are followed:

1. Given nominal system matrices (A0, B0), generate random variables γ
(i)
1 ∼ U(0, ϵ1) and

γ
(i)
2 ∼ U(0, ϵ2), ∀i ∈ [M ], with ϵ1 and ϵ2 being predefined dissimilarity parameters.

2. The random variables generated above are combined with modification masks Z1 ∈ R3×3 and

Z2 ∈ R3×3 to generate the different systems matrices (A(i), B(i)) for all i ∈ [M ].

3. The systems (A(i), B(i)) for 0 < i ≤ M are then constructed by perturbing the nominal

systems according to: A(i) = A0 + γ
(i)
1 Z1 and B(i) = B0 + γ

(i)
2 Z2, where Z1 and Z2 are

defined in step 2.

4. The nominal matrices are included in the set of generated systems as (A(1), B(1)) = (A0, B0).

In particular, we consider

A0 =


1.20 0.50 0.40

0.01 0.75 0.30

0.10 0.02 1.50

 , B0 = I3, Q = 2I3, and R =
1

2
I3,

for the nominal system matrices and cost matrices respectively.

The optimal controller for the nominal system (A(1), B(1)) is

K∗
1 =


1.0056 0.4293 0.3570

0.0262 0.6239 0.2657

0.1003 0.0298 1.2960

 ,

and was obtained by solving the discrete algebraic Riccati equation (DARE).
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6.7.2 Algorithm Parameters

For the gradient estimation step in the zeroth-order algorithm (Algorithm 8), we set the initial

state for cost computation as a random sample from a standard normal distribution, denoted as

D d
= N (0, I3), for all systems i ∈ [M ]. Additionally, we consider ns = 5 trajectories, where

each trajectory has a rollout length of τ = 15, and we set the smoothing radius r = 0.1 for the

zeroth-order gradient estimation.

Throughout our simulations, we consider the following initial stabilizing controller K0 = 1.62I3

(Line 1 in Algorithm 7). Note that although the control action u
(i)
t = −K0x

(i)
t may not be optimal

for any of the M systems. For example, the suboptimality of K0 applied to the nominal system is

evidenced by its cost of C(1)(K0) = 18.4049, compared to the optimal cost of C(1)(K∗
1) = 9.5220,

when computed from an initial state x
(1)
0 = [1 1 1]⊤ and time horizon T = 500. However, it is

important to note that K0 is still stabilizing all M systems. Note that we will use K0 as the initial

controller for all of the experiments in this paper.

6.7.3 Experiments

To assess the performance of FedLQR, we evaluate the normalized gap between the current

cost C(1)(Kn) of the nominal system when using the common stabilizing controller Kn and its

corresponding optimal cost C(1)(K∗
1). This metric is represented as C(1)(Kn)−C(1)(K∗

1 )

C(1)(K∗
1 )

for each global

iteration n ∈ [N ]. In our experiments, we set the step sizes as ηg = 1 × 10−2, with an adaptive

decrease of 0.05% per global iteration, and η = 1× 10−4, and employ a single local iteration L = 1

for each communication round between the systems and the server. Further details regarding other

parameters, such as the number of systems M , heterogeneity levels (ϵ1, ϵ2), and modification masks

Z1 and Z2, will be provided in the figures and the subsequent discussion.
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(a) Varying M with ϵ1 = ϵ2 = 0.5.
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(b) Varying ϵ1, ϵ2, with M = 10.

Figure 6.1: Gap between the current and optimal cost with respect to the number of global iterations.

Figures 6.1-(a,b) present the normalized distance between the current cost associated with the

common stabilizing controller and the optimal cost for the nominal system, plotted with respect

to the number of global iterations. These figures demonstrate the impact of varying the number

of systems M and the heterogeneity parameters (ϵ1, ϵ2) on the convergence and performance of

Algorithm 7.

In Figure 6.1-(a), we specifically investigate the effect of the number of systems M participating

in the collaboration to compute a common controller K∗ on the convergence of our algorithm.

In this analysis, we set the heterogeneity parameters as ϵ1 = 0.5 and ϵ2 = 0.5 and consider

modification masks Z1 = Z2 = I3. The figure reveals a noticeable reduction in the gap between the

current and optimal cost as the number of participating systems M increases. This numerical result

aligns with our theoretical findings, which indicate that the number of samples required to achieve

reliable estimation for the cost function’s gradient can be scaled down with the number of systems

participating in the collaboration. Consequently, as the number of systems involved increases, there

is a considerable reduction in the gap between the common computed controller and the optimal

one.

Figure 6.1-(b) illustrates the influence of the heterogeneity parameters (ϵ1, ϵ2) on the convergence
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rate of Algorithm 7. In this analysis, we set the number of systems as M = 10, and the modification

masks Z1 = diag([3.5 1 0.1]) and Z2 = diag([1.5 0.1 1]). Consistent with our theoretical

findings, we observe that an increase in the dissimilarity among the systems results in a significant

gap between the common and optimal controller. This discrepancy arises due to the additive effect

of system heterogeneity on the convergence rate of our algorithm, as elaborated in Theorem 10.

6.8 Chapter Summary and Future Work

We investigated the problem of learning a common and optimal LQR policy with the objective

of minimizing an average quadratic cost. The primary focus of this paper was to thoroughly examine

and provide comprehensive answers to the following questions: (i) Is the learned common policy

stabilizing for all agents? (ii) How close is the learned common policy to each agent’s own optimal

policy? (iii) Can each agent learn its own optimal policy faster by leveraging data from all agents?

To address these questions, we proposed a federated and model-free approach, FedLQR, where M

heterogenous systems collaborate to learn a common and optimal policy while keeping the system’s

data private. Our analysis tackles numerous technical challenges, including system heterogeneity,

multiple local gradient descent updates, and stability. We have demonstrated that FedLQR produces

a common policy that stabilizes all systems and converges to the optimal policy (Theorem 10) of

each agent up to a heterogeneity bias term. Furthermore, FedLQR achieves a reduction in sample

complexity proportional to the number of participating agents M (Lemma 28). We also have

provided numerical results to effectively showcase and evaluate the performance of our FedLQR

approach in a model-free setting. Future work will address the assumption of requiring full-state

information to extend our results to the Linear Quadratic Gaussian (LQG) problem in a federated

setting. We are currently investigating data-driven and system-theoretic metrics for heterogeneity, as
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well as personalization-based methods to mitigate the impact of heterogeneity on the performance

of the proposed approach.
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6.9 Omitted Proofs

6.9.1 SUPPLEMENTARY ROADMAP

This appendix is organized as follows. Section 6.9.2 offers a comprehensive and detailed

overview of the relevant literature related to this paper. Section 6.9.3 discusses the underlying

intuition and necessity behind the low heterogeneity regime. In Section 6.9.4, we present numerical

results that illustrate and evaluate the performance of the proposed FedLQR algorithm (Algorithm

7). Sections 6.9.5 and 6.9.6 present important auxiliary norm inequalities and lemmas that play a

key role in proving the main results of this paper. The proof of our main results related to the model-

based setting is provided in Section 6.9.7, while Section 6.9.9 is dedicated to the corresponding

results in the model-free setting. Additional details on the zeroth-order optimization method are

provided in Section 6.9.8.

a) Notation Recap

For convenience we briefly recap and summarize our notation. We use ∥S∥max to denote the

maximum spectral norm taken over the family of matrices S(1), . . . , S(M). All norms for matrices

and vectors are spectral and Euclidean respectively, unless otherwise stated. The integer sequence

1, 2, . . . , N is denoted as [N ]. The spectral radius of a square matrix is denoted by ρ(·).

6.9.2 RELATED WORK

This section provides a more detailed and comprehensive literature survey on the key topics

closely related to the subject matter of this paper. We aim to explore and summarize the main

ideas presented in the existing literature pertaining to federated learning (FL), policy gradient (PG),

federated reinforcement learning (FRL), as well as model-based and model-free linear quadratic



CHAPTER 6. FEDERATED LEARNING FOR CONTROL 195

Symbol Meaning

M number of systems

L number of local updates (counter: l)

N number of rounds of averaging (counter: n)

Kn averaged controller at round n

K∗
i optimal controller for system (A(i), B(i))

K
(i)
n,l controller for system i after l local iterations and n averaging rounds

control.

• Federated Learning (FL):

In this work, we employ the federated learning (FL) paradigm to facilitate collaborative

learning among systems without the need to share raw data with other participants or a

server [14, 96, 97, 132]. Despite FL being a relatively recent creation, it has already garnered

significant attention and boasts a wealth of literature. Below we highlight work that is most

relevant to our problem setting.

Federated averaging (FedAvg) stands as the pioneering and most widely adopted algorithm

in FL. Originally proposed by McMahan et al. in [132], FedAvg has demonstrated its

effectiveness in homogeneous settings [68, 161, 181, 183, 215] where all participating clients

aim to minimize the same objective function. However, ensuring convergence guarantees for
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FedAvg becomes notably more challenging in the presence of heterogeneity [70, 87, 90, 112],

thus necessitating additional assumptions on the gradient and Hessian dissimilarity bounds [84,

87, 112, 115]. This difficulty arises primarily due to a ”client-drift” effect, which is inherent to

the FedAvg algorithm and has a detrimental impact on its convergence performance [22, 24].

As a result of the challenges posed by FedAvg, several alternative algorithms have been

proposed to address its limitations. Notable examples of these algorithms include FedProx

[110], Scaffold [84], FedSplit [149], FedDR [203], FedADMM [211], FedLin [136],

and S-Local-SVRG [64]. Each of them introduces unique techniques and modifications to

the original FedAvg algorithm, aiming to enhance convergence guarantees while handling

communication cost concerns, statistical heterogeneity, client dropout, and sample complexity

more effectively.

Applying federated learning (FL) to control systems introduces a novel research direction that

comes with its own set of challenges. Control systems exhibit unique characteristics, such as

non-iid and non-isotropic data, as well as system instability, which arise due to the dynamic

nature of the systems. These characteristics pose specific challenges when attempting to

leverage data from multiple systems for tasks such as system identification [212] or control

synthesis [163].

Although [163] addresses the model-free LQR tracking problem in a federated manner, it

focuses on a significantly simpler scenario where all agents follow identical dynamics (i.e., no

heterogeneity). In contrast, our present work introduces new analysis techniques to achieve

linear speedup in FedLQR when dealing with heterogeneous dynamical systems and multiple

local updates per communication round.

• Policy Gradient (PG):
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The policy gradient (PG) approach is a fundamental component of the success of reinforcement

learning (RL) and plays a crucial role in policy optimization (PO). This approach directly

optimizes the policy to improve system-level performances through gradient ascent steps.

The concept of policy optimization has been influential in RL [127, 128, 189] with some

well-known algorithms such as REINFORCE [223], trust-region policy optimization TRPO

[171], actor-critic methods [94], and proximal policy optimization PPO [172]. We highlight

an important difference between standard MDP models and control models in RL. In control,

one requires the policy to provide closed-loop stability, i.e., all trajectories of the system must

converge for a given policy. In contrast, convergence in the MDP setting requires irreducibly

and aperiodicity properties that are assumed before a policy is selected. As a result, the

control task is significantly more challenging.

The extensive body of literature on policy optimization for reinforcement learning (RL) and

its adaptability to the model-free setting paves the way for leveraging policy gradient methods

in the pursuit of learning optimal control policies for classical control problems [74, 152].

Despite the non-convex nature of the formulation involved in policy gradient methods, recent

work [50, 65, 71, 80, 82, 102, 129, 140, 152] has demonstrated global convergence in solving

the model-free LQR problem via policy gradient methods. This convergence is achieved due

to certain properties of the quadratic cost function inherent in the LQR problem as introduced

in [50]. In contrast to the aforementioned work, which exclusively focus on the centralized

control setting, our paper offers convergence guarantees for the multi-agent setting. In this

context, each agent follows similar, but not identical, dynamics, thereby distinguishing it from

the simpler scenario in [163].

• Federated Reinforcement Learning (FRL):



CHAPTER 6. FEDERATED LEARNING FOR CONTROL 198

The flexibility of policy gradient methods in the model-free RL setting has paved the way

for a relatively recent research direction known as federated reinforcement learning (FRL),

which aims to address practical implementation challenges of RL through the use of federated

learning [158]. FRL focuses on learning a common value function [46, 192] or improving the

policy by leveraging multiple RL agents interacting with similar environments. The empirical

evidence presented in the survey paper [158] demonstrates the significant success of FRL in

reducing sample complexity across various applications such as autonomous driving [116],

IoT devices [117], resource management in networking [237], and communication efficiency

[59]. However, it is important to note that existing recent works in this field do not specifically

tackle the challenge of finding a common and stabilizing optimal policy that is suitable for all

RL agents in a heterogeneous setting.

• Model-free Linear Quadratic Control:

The linear quadratic regulator (LQR) problem is a well-studied classical control problem

that has gained significant attention due to its wide applicability and its role as a baseline for

more complex control strategies [6]. Recently, to address the non-convex nature of the policy

gradient LQR, [187] has proposed convexifying the corresponding optimal control problem to

efficiently solve the model-based LQR problem via policy gradient. Furthermore, the model-

free LQR has attracted considerable interest after [50] provided guarantees on the global

convergence of policy gradient methods for both model-based and model-free LQR settings.

This breakthrough paved the way for subsequent works [65, 71, 80, 82, 102, 129, 140, 152]

that analyze convergence guarantees and sample complexity in the context of the model-free

LQR problem. Notably, [35] characterizes the sample complexity of the LQR problem.

Another line of work explores certainty equivalent control [131, 178], providing regret bounds
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to demonstrate the quality of the designed linear quadratic regulator in terms of the accuracy of

the estimated system model. However, the key distinction between these works and the present

paper lies in the consideration of multiple and heterogeneous systems. Moreover, [131, 178]

use the regret framework, which is different from the PAC learning-based framework [51]

exploited in our paper.

6.9.3 NECESSITY OF THE LOW HETEROGENEITY REQUIREMENT

In our main theorems, we require certain bounds on the parameters ϵ1 and ϵ2 that define the

heterogeneity of the M dynamical systems we work with. Here, we point out that, unlike standard

federated learning settings, these bounds are necessary for convergence. From a control and

dynamical systems viewpoint, these bounds are perhaps intuitive: if the systems are too different,

then there is no reason to believe there exists a stabilizing controller, i.e., there is no solution to the

problem (6.2). In what follows, we will formalize this point. To do so, let us define an “instance” of

our FedLQR problem via a parameter M that characterizes the number of agents/systems and the

set of corresponding system matrices {A(i), B(i)}i∈[M ].13

We now prove a couple of simple impossibility results. Our first result shows that even when the

input matrices are identical across agents, heterogeneity in the state transition matrices can lead to

the non-existence of simultaneously stabilizing controllers, thereby rendering the FedLQR problem

infeasible.

Proposition 7. There exists an instance of the FedLQR problem with M = 2 and ϵ2 = 0, such that

if ϵ1 > 2, then it is impossible to find a common linear state-feedback gain K that simultaneously

13Although technically the cost matrices Q and R are also part of a FedLQR problem formulation, they are not

needed to establish the necessity of a low-heterogeneity requirement. As such, we do not include them here in our

definition of an instance.
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stabilizes all systems.

Proof: Consider an instance with just two scalar systems defined by:

x
(1)
t+1 = αx

(1)
t + u

(1)
t and x

(2)
t+1 = −αx

(2)
t + u

(2)
t ,

for some α > 0. By simple inspection, note that in this case ϵ1 = 2α and ϵ2 = 0. Thus, ϵ1 > 2⇒

α > 1. Now for a controller u(i)
t = −kx(i)

t to stabilize both systems, the spectral radius conditions

are |α−k|< 1 and |α+k|< 1. Trivially, there exists no gain k that satisfies both these requirements

when α > 1. This completes the proof.

To complement the above result, we now show that the effect of heterogeneity is not just

limited to the state transition matrices. In particular, even when the state transition matrices are

identical across agents, (arbitrarily small) heterogeneity in the input matrices can also lead to the

non-existence of simultaneously stabilizing control gains. We formalize this below.

Proposition 8. There exists an instance of the FedLQR problem with M = 2 and ϵ1 = 0, such that

if ϵ2 > 0, then it is impossible to find a common linear state-feedback gain K that simultaneously

stabilizes all systems.

Proof: Consider an instance with two scalar systems defined by:

x
(1)
t+1 = x

(1)
t + βu

(1)
t and x

(2)
t+1 = x

(2)
t − βu

(2)
t ,

for some β. By simple inspection, note that in this case ϵ1 = 0 and ϵ2 = 2β. Thus, ϵ2 > 0⇒ β > 0.

Now for a controller u(i)
t = −kx(i)

t to stabilize both systems, the spectral radius conditions are

|1− βk|< 1 and |1 + βk|< 1. Trivially, there exists no gain k that satisfies both these requirements

when β > 0. This concludes the proof.

The above example suggests that in certain settings, we can tolerate no heterogeneity whatsoever

in the input matrices. More generally, the main take-home message from this section is that the
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requirement of a “low-heterogeneity regime” is fundamental to the problem and not merely an

artifact of our analysis.

6.9.4 NUMERICAL RESULTS

The following section describes the experimental setup and results when applying FedLQR in

the model-free setting.14

a) System Generation

Numerical experiments are conducted to illustrate and evaluate the effectiveness of FedLQR

(Algorithm 7). The simulations involve different and unstable dynamical systems described by

discrete-time linear time-invariant (LTI) models, as in (6.3), where each system has nx = 3 states

and nu = 3 inputs. To generate different systems while respecting the bounded heterogeneity

assumption (Assumption 1), the following steps are followed:

1. Given nominal system matrices (A0, B0), generate random variables γ
(i)
1 ∼ U(0, ϵ1) and

γ
(i)
2 ∼ U(0, ϵ2), ∀i ∈ [M ], with ϵ1 and ϵ2 being predefined dissimilarity parameters.

2. The random variables generated above are combined with modification masks Z1 ∈ R3×3 and

Z2 ∈ R3×3 to generate the different systems matrices (A(i), B(i)) for all i ∈ [M ].

3. The systems (A(i), B(i)) for 0 < i ≤ M are then constructed by perturbing the nominal

systems according to: A(i) = A0 + γ
(i)
1 Z1 and B(i) = B0 + γ

(i)
2 Z2, where Z1 and Z2 are

defined in step 2.

4. The nominal system matrices are included in the set of generated systems as (A(1), B(1)) =

(A0, B0).

14Code can be downloaded from https://github.com/jd-anderson/FedLQR

https://github.com/jd-anderson/FedLQR
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In particular, we consider

A0 =


1.20 0.50 0.40

0.01 0.75 0.30

0.10 0.02 1.50

 , B0 = I3, Q = 2I3, R =
1

2
I3,

for the nominal system matrices and cost matrices respectively. The optimal controller for the

nominal system (A(1), B(1)) is

K∗
1 =


1.0056 0.4293 0.3570

0.0262 0.6239 0.2657

0.1003 0.0298 1.2960

 ,

and was obtained by solving the discrete algebraic Riccati equation (DARE).

b) Algorithm Parameters

For the gradient estimation step in the zeroth-order algorithm (Algorithm 8), we set the initial

state for cost computation as a random sample from a standard normal distribution, denoted as

D d
= N (0, I3), for all systems i ∈ [M ]. Additionally, we consider ns = 5 trajectories, where

each trajectory has a rollout length of τ = 15, and we set the smoothing radius r = 0.1 for the

zeroth-order gradient estimation.

Throughout our simulations, we consider the following initial stabilizing controller K0 = 1.62I3

(Line 1 in Algorithm 7). Note that although the control action u
(i)
t = −K0x

(i)
t may not be optimal

for any of the M systems. For example, the suboptimality of K0 applied to the nominal system is

evidenced by its cost of C(1)(K0) = 18.4049, compared to the optimal cost of C(1)(K∗
1) = 9.5220,

when computed from an initial state x
(1)
0 = [1 1 1]⊤ and time horizon T = 500. However, it is

important to note that K0 is still stabilizing all M systems. Note that we will use K0 as the initial

controller for all of the experiments in this paper.
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c) Experiments

To assess the performance of FedLQR, we evaluate the normalized gap between the current

cost C(1)(Kn) of the nominal system when using the common stabilizing controller Kn and its

corresponding optimal cost C(1)(K∗
1). This metric is represented as C(1)(Kn)−C(1)(K∗

1 )

C(1)(K∗
1 )

for each global

iteration n ∈ [N ]. In our experiments, we set the step sizes as ηg = 1 × 10−2, with an adaptive

decrease of 0.05% per global iteration, and η = 1× 10−4, and employ a single local iteration L = 1

for each communication round between the systems and the server. Further details regarding other

parameters, such as the number of systems M , heterogeneity levels (ϵ1, ϵ2), and modification masks

Z1 and Z2, will be provided in the figures and the subsequent discussion.
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Figure 6.2: Gap between the current and optimal cost with respect to the number of global iterations.

Varying the number of systems for a fixed heterogeneity level ϵ1 = 0.5, ϵ2 = 0.5.

Figures 6.2 and 6.3 present the normalized distance between the current cost associated with the
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Figure 6.3: Gap between the current and optimal cost with respect to the number of global iterations.

Varying the heterogeneity level among the systems, with a fixed number of systems M = 10.
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common stabilizing controller and the optimal cost for the nominal system, plotted with respect

to the number of global iterations. These figures demonstrate the impact of varying the number

of systems M and the heterogeneity parameters (ϵ1, ϵ2) on the convergence and performance of

Algorithm 7.

In Figure 6.2, we specifically investigate the effect of the number of systems M participating

in the collaboration to compute a common controller K∗ on the convergence of our algorithm.

In this analysis, we set the heterogeneity parameters as ϵ1 = 0.5 and ϵ2 = 0.5 and consider

modification masks Z1 = Z2 = I3. The figure reveals a noticeable reduction in the gap between the

current and optimal cost as the number of participating systems M increases. This numerical result

aligns with our theoretical findings, which indicate that the number of samples required to achieve

reliable estimation for the cost function’s gradient can be scaled down with the number of systems

participating in the collaboration. Consequently, as the number of systems involved increases, there

is a considerable reduction in the gap between the common computed controller and the optimal

one.

Figure 6.3 illustrates the influence of the heterogeneity parameters (ϵ1, ϵ2) on the convergence

rate of Algorithm 7. In this analysis, we set the number of systems as M = 10, and the modification

masks Z1 = diag([3.5 1 0.1]) and Z2 = diag([1.5 0.1 1]). Consistent with our theoretical

findings, we observe that an increase in the dissimilarity among the systems results in a significant

gap between the common and optimal controller. This discrepancy arises due to the additive effect

of system heterogeneity on the convergence rate of our algorithm, as elaborated in Theorem 10.
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6.9.5 Useful Norm Inequalities

• Given any two matrices A,B of the same dimensions, for any ξ > 0, we have

∥A+B∥2F≤ (1 + ξ)∥A∥2F+
(
1 +

1

ξ

)
∥B∥2F . (6.6)

• Given any two matrices A,B of the same dimensions, for any ξ > 0, we have

⟨A,B⟩ ≤ ξ

2
∥A∥2F +

1

2ξ
∥B∥2F . (6.7)

This inequality goes by the name of Young’s inequality.

• Given m matrices A1, . . . , Am of the same dimensions, the following is a simple application

of Jensen’s inequality: ∥∥∥∥∥
m∑
i=1

Ai

∥∥∥∥∥
2

≤ m
m∑
i=1

∥Ai∥2 ,∥∥∥∥∥
m∑
i=1

Ai

∥∥∥∥∥
2

F

≤ m
m∑
i=1

∥Ai∥2F . (6.8)

• Given any two vectors x, y ∈ Rd, for any constant ζ > 0, we have

∥x+ y∥2≤ (1 + ζ)∥x∥2+
(
1 +

1

ζ

)
∥y∥2. (6.9)

• Given any two vectors x, y ∈ Rd, for any constant ζ > 0, we have

⟨x, y⟩ ≤ ζ

2
∥x∥2 + 1

2ζ
∥y∥2. (6.10)

6.9.6 Useful Lemmas and Constants

Lemma 29. For each i ∈ [M ], we have that:

||Σ(i)
K ||≤

C(i)(K)

σmin(Q)
, ||P (i)

K ||≤
C(i)(K)

µ
. (6.11)
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Proof: The proof of this lemma is explained in detail in the proof of Lemma 13 of the

supplemental materials in [50]. □

Lemma 30. (Uniform bounds for ∇C(K) and ||K||) For each agent i ∈ [M ], the gradient

∇C(i)(K) and ∥K∥ can be bounded as follows:

∥∇C(i)(K)∥≤ ∥∇C(i)(K)∥F≤ h1(K) and ∥K∥≤ h2(K),

where h1(K), and h2(K) are some positive scalars depending on the function C(K).

Proof: In this Lemma, h1(K), and h2(K) are the functions defined as:

h0(K) :=

√
∥RK∥max (Cmax(K)− Cmin (K))

µ
,

h1(K) :=
Cmax(K)h0(K)

σmin(Q)
, h2(K) :=

h0(K) +
∥∥B⊤PKA

∥∥
max

σmin(R)
,

where ∥RK∥max:= maxi

∥∥∥R +B(i)⊤P
(i)
K B(i)

∥∥∥ . By using Lemma 13 of [50], we have

∥∇C(i)(K)∥2 ≤ Tr
(
Σ

(i)
K E

(i)⊤
K E

(i)
K Σ

(i)
K

)
≤
∥∥∥Σ(i)

K

∥∥∥2Tr(E(i)⊤
K E

(i)
K

)
≤
(
C(i)(K)

σmin(Q)

)2

Tr
(
E

(i)⊤
K E

(i)
K

)
.

By Lemma 11 of [50], we obtain

Tr
(
E

(i)⊤
K E

(i)
K

)
≤

∥∥∥R +B(i)⊤P
(i)
K B(i)

∥∥∥ (C(i)(K)− C(i) (K∗
i )
)

µ
,

which proves the first claim:

∥∇C(i)(K)∥ ≤ C(i)(K)

σmin(Q)

√√√√∥∥∥R +B(i)⊤P
(i)
K B(i)

∥∥∥ (C(i)(K)− C(i) (K∗
i ))

µ
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≤ Cmax(K)

σmin(Q)

√√√√∥∥∥R +B(i)⊤P
(i)
K B(i)

∥∥∥
max

(Cmax(K)− Cmin (K))

µ
.

On the other hand, by exploiting Lemma 11 of [50] we can also write

∥K∥ ≤
∥∥∥∥(R +B(i)⊤P

(i)
K B(i)

)−1
∥∥∥∥∥∥∥(R +B(i)⊤P

(i)
K B(i)

)
K
∥∥∥

≤ 1

σmin(R)

∥∥∥(R +B(i)⊤P
(i)
K B(i)

)
K
∥∥∥

≤ 1

σmin(R)

(∥∥∥(R +B(i)⊤P
(i)
K B(i)

)
K −B(i)⊤P

(i)
K A(i)

∥∥∥+ ∥∥∥B(i)⊤P
(i)
K A(i)

∥∥∥)
=

∥∥∥E(i)
K

∥∥∥
σmin(R)

+

∥∥∥B(i)⊤P
(i)
K A(i)

∥∥∥
σmin(R)

≤

√
Tr
(
E

(i)⊤
K E

(i)
K

)
σmin(R)

+

∥∥∥B(i)⊤P
(i)
K A(i)

∥∥∥
σmin(R)

=

√
(C(i)(K)− C(i) (K∗

i ))
∥∥∥R +B(i)⊤P

(i)
K B(i)

∥∥∥
√
µσmin(R)

+

∥∥∥B(i)⊤P
(i)
K A(i)

∥∥∥
σmin(R)

,

which completes the proof for the second claim. □

It is worth noting that the local cost and gradient smoothness, and gradient domination properties

in Lemma 25 and Lemma 26 not only hold for the single-agent setting but also hold for the multi-

agent setting. Moreover, we will make use of the following matrix Martingale concentration

inequality:

Lemma 31. (Rectangular Matrix Freedman [204]). Consider a matrix martingale

{Yk : k = 0, 1, 2, . . .}

whose values are matrices with dimension d1 × d2, and let {Xk : k = 1, 2, 3, . . .} be the difference

sequence. Assume that the difference sequence is uniformly bounded:

∥Xk∥ ≤ R almost surely for k = 1, 2, 3, . . . .
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Define two predictable quadratic variation processes for this martingale:

Wcol,k :=
k∑

j=1

Ej−1

(
XjX

∗
j

)
and

Wrow ,k :=
k∑

j=1

Ej−1

(
X∗

jXj

)
for k = 1, 2, 3, . . .

Then, for all t ≥ 0 and σ2 > 0,

P
{
∃k ≥ 0 : ∥Yk∥ ≥ t and max {∥Wcol ,k∥ , ∥Wrow ,k∥} ≤ σ2

}
≤ (d1 + d2) ·exp

{
− −t2/2
σ2 +Rt/3

}
.

a) Proof of Lemma 25

Proof: In this proof, we aim to show∣∣C(i) (K ′)− C(i)(K)
∣∣ ≤ hcost(K)∥K ′ −K∥,∥∥∇C(i) (K ′)−∇C(i)(K)

∥∥ ≤ hgrad (K)∥∆∥ and
∥∥∇C(i) (K ′)−∇C(i)(K)

∥∥
F
≤ hgrad(K)∥∆∥F ,

hold for all agents i ∈ [M ] and K ′ satisfying ∥K ′ −K∥≤ h∆(K) <∞.

The term h∆(K) is the polynomial defined as

h∆(K) :=
σmin(Q)µ

4||B||maxCmax(K) (∥A−BK∥max + 1)
,

the term hcost (K) and hgrad(K) are defined as

hcost (K) :=
4Tr (Σ0)Cmax(K)∥R∥

µσmin (Q)

(
∥K∥+h∆(K)

2
+ ∥B∥max∥K∥2(∥A−BK∥max + 1)

Cmax(K)

µσmin(Q)

)

hgrad (K) := 4

(
Cmax(K)

σmin(Q)

)[
∥R∥+∥B∥max(∥A∥max+||B||max(∥K∥+h∆(K)))

×
(
hcost (K)Cmax(K)

Tr (Σ0)

)
+ ∥B∥2max

Cmax(K)

µ

]
+ 8

(
Cmax(K)

σmin(Q)

)2(∥B∥max(∥A−BK∥max + 1)

µ

)
h0(K).
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For the single-agent (i.e., M = 1) setting, the proof is explained in detail in the proof of Lemma 24

and Lemma 25 of the supplemental materials in [50]. For the multi-agent setting (i.e., M > 1), we

can complete the proof by taking the maximum over the clients i ∈ [M ] of all the system-dependent

parameters, such as ∥B∥max. □

b) Proof of Lemma 26

Proof: For the single-agent (i.e., M = 1) setting, the proof is explained in the proof of Lemma

11 of the supplemental materials in [50]. For the multi-agent setting (i.e., M > 1), it is easy to see

that

C(i)(K)− C(i) (K∗
i ) ≤

∥∥ΣK∗
i

∥∥
4µ2σmin(R)

∥∇C(i)(K)∥2F

holds for any stabilizing controller K and any agent i ∈ [M ]. □
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6.9.7 The model-based setting

We first introduce the following operators on a symmetric matrix X ,

T (i)
K (X) :=

∞∑
t=0

(A(i) −B(i)K)tX
[
(A(i) −B(i)K)⊤

]t
,

F (i)
K (X) := (A(i) −B(i)K)X(A(i) −B(i)K)⊤. (6.12)

We also define the induced norms of T and F as

∥TK∥ = sup
X

∥TK(X)∥
∥X∥

, ∥FK∥ = sup
X

∥FK(X)∥
∥X∥

.

Lemma 32. When (A(i) −B(i)K) has spectral radius smaller than 1, we have

T (i)
K =

(
I−F (i)

K

)−1

holds for each i ∈ [M ].

Proof: The proof is explained in detailed in the proof of Lemma 18 in [50]. □

Lemma 33. If 15

∥∥∥T (i)
K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥ ≤ 1

2
(6.13)

holds for any system i, j ∈ [M ], then we have∥∥∥(T (i)
K − T

(j)
K

)
(X)

∥∥∥ ≤ 2
∥∥∥T (i)

K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥∥∥∥T (i)
K (X)

∥∥∥
≤ 2

∥∥∥T (i)
K

∥∥∥2 ∥∥∥F (i)
K −F

(j)
K

∥∥∥ ∥ X∥.
15This lemma has a similar flavor to that of Lemma 20 in [50]. It is worthwhile to mention that the inequality (6.13)

imposes certain conditions on heterogeneity. Note that the constant 1
2 can be changed into any finite constant. Thus,

this heterogeneity requirement can be subsumed by that in Eq.(6.21).



CHAPTER 6. FEDERATED LEARNING FOR CONTROL 212

Proof: DefineA = I−F (i)
K , and B = F (i)

K −F
(j)
K . In this caseA−1 = T (i)

K and (A−B)−1 = T (j)
K .

Hence, the condition
∥∥∥T (i)

K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥ ≤ 1
2

translates to the condition ∥A−1∥ ∥B∥≤ 1
2
.

First, we observe that

(
A−1 − (A− B)−1

)
(X) =

(
I−
(
I−A−1 ◦ B

)−1
) (
A−1(X)

)
=
(
I−
(
I−A−1 ◦ B

)−1
)(
T (i)
K (X)

)
,

(6.14)

where f◦g denotes the composition f(g(x)). Since (I−A−1 ◦ B)−1
= I+A−1◦B◦(I−A−1 ◦ B)−1,

we have:

∥∥∥(I−A−1 ◦ B
)−1
∥∥∥ ≤ 1 +

∥∥A−1 ◦ B
∥∥∥∥∥(I−A−1 ◦ B

)−1
∥∥∥ ≤ 1 +

1

2

∥∥∥(I−A−1 ◦ B
)−1
∥∥∥ (6.15)

Now rearranging terms in Eq.(6.15), we obtain
∥∥∥(I−A−1 ◦ B)−1

∥∥∥ ≤ 2. Therefore, we have

∥∥∥I− (I−A−1 ◦ B
)−1
∥∥∥ =

∥∥∥A−1 ◦ B ◦
(
I−A−1 ◦ B

)−1
∥∥∥ ≤ ∥∥A−1

∥∥ ∥B∥∥∥∥(I−A−1 ◦ B
)−1
∥∥∥

≤ 2
∥∥A−1

∥∥ ∥B∥,
and so ∥∥∥I− (I−A−1 ◦ B

)−1
∥∥∥ ≤ 2

∥∥A−1
∥∥ ∥B∥= 2

∥∥∥T (i)
K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥ . (6.16)

Then, we have

∥∥∥(T (i)
K − T

(j)
K

)
(X)

∥∥∥ =
∥∥(A−1 − (A− B)−1

)
(X)

∥∥
(a)

≤
∥∥∥(I− (I−A−1 ◦ B

)−1
)∥∥∥∥∥∥T (i)

K (X)
∥∥∥

(b)

≤ 2
∥∥∥T (i)

K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥∥∥∥T (i)
K (X)

∥∥∥
≤ 2

∥∥∥T (i)
K

∥∥∥∥∥∥F (i)
K −F

(j)
K

∥∥∥∥∥T (i)
∥∥ ∥X∥ ,

where (a) is due to Eq.(6.14) and (b) is due to Eq.(6.16). This completes the proof of Lemma 33.

□.
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a) Proof of Lemma 27

Proof: First, we know that∇C(i)(K) and ∇C(j)(K) are given by,

∇C(i)(K) = 2E
(i)
K Σ

(i)
K , and ∇C(j)(K) = 2E

(j)
K Σ

(j)
K

where,

E
(i)
K = (R +B(i)⊤P

(i)
K B(i))K −B(i)⊤P

(i)
K A(i),

and

Σ
(i)
K =

x
(i)
0 ∼D

∞∑
t=0

x
(i)
t x

(i)⊤
t .

Thus, we can write,

||∇C(i)(K)−∇C(j)(K)|| = ||2E(i)
K Σ

(i)
K − 2E

(j)
K Σ

(j)
K ||

≤ 2(||E(i)
K − E

(j)
K ||||Σ

(i)
K ||︸ ︷︷ ︸
β1

+ ||E(j)
K ||︸ ︷︷ ︸
β2

||Σ(i)
K − Σ

(j)
K ||).

From Eq. (6.11) we can upper bound ||Σ(i)
K || as:

||Σ(i)
K ||≤

C(i)(K)

σmin(Q)
.

With the definition of E(j)
K = RK+B(j)⊤P

(j)
K B(j)K−B(j)⊤P

(j)
K A(j), we can use triangle inequality

to write,

||E(j)
K || ≤ ||RK||+||B(j)||||P (j)

K ||||B
(j)K||+||B(j)||||P (j)

K ||||A
(j)||

≤ ||RK||+ ||B
(j)||C(j)(K)

µ
(||B(j)K||+||A(j)||),

where ||P (j)
K ||≤

C(j)(K)
µ

from Eq. (6.11), with µ = σmin(Σ
(j)
0 ).
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With the notation that we introduced previously, we can write

β1 = ||Σ(i)
K ||≤ ||ΣK ||max≤

Cmax(K)

σmin(Q)
,

and,

β2 = ||E(j)
K ||≤ ||EK ||max≤ ||R||||K||+

||B||maxCmax(K)

µ
(||B||max+||A||max),

where Cmax(K) := maxi C
(i)(K).

Next we will derive an upper bound for ||E(i)
K − E

(j)
K ||.

Upper bound for ||E(i)
K − E

(j)
K ||: We can first use the definition of E(i)

K and E
(j)
K to write,

E
(i)
K − E

(j)
K = B(j)⊤P

(j)
K (A(j) −B(j)K)−B(i)⊤P

(i)
K (A(i) −B(i)K)

= −B(i)⊤P
(i)
K (A(i) −B(i)K) +B(i)⊤P

(i)
K (A(j) −B(j)K)−B(i)⊤P

(i)
K (A(j) −B(j)K)

+B(i)⊤P
(j)
K (A(j) −B(j)K)−B(i)⊤P

(j)
K (A(j) −B(j)K) +B(j)⊤P

(j)
K (A(j) −B(j)K).

Then, by using triangle inequality, we obtain the following expression:

||E(i)
K − E

(j)
K || ≤ ||B

(i)⊤P
(i)
K (A(i) −B(i)K)−B(i)⊤P

(i)
K (A(j) −B(j)K)︸ ︷︷ ︸

H1

||

+ ||B(i)⊤P
(i)
K (A(j) −B(j)K)−B(i)⊤P

(j)
K (A(j) −B(j)K)︸ ︷︷ ︸

H2

||

+ ||B(i)⊤P
(j)
K (A(j) −B(j)K)−B(j)⊤P

(j)
K (A(j) −B(j)K)︸ ︷︷ ︸

H3

||.

Incorporating the heterogeneity bounds from assumption 1 gives

||H1||≤ ||B(i)||||P (i)
K ||(ϵ1 + ϵ2||K||),

to which we apply the max-norm definition to arrive at

||H1||≤ ||B||max(ϵ1 + ϵ2||K||)||PK ||max. (6.17)
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Similarly, we can also derive upper bounds for ||H2|| and ||H3||, as follows,

||H2||≤ ||B(i)||||P (i)
K − P

(j)
K ||||A

(j) −B(j)K||≤ ||B||max||P (i)
K − P

(j)
K ||||A−BK||max (6.18)

and

||H3||≤ ϵ2||A(i) −B(i)K||||P (j)
K ||≤ ϵ2||A−BK||max||PK ||max. (6.19)

To bound H2, we need to derive an upper bound for ||P (i)
K − P

(j)
K ||. For this purpose, we have that

for any fixed system i ∈ [M ]

||P (i)
K − P

(j)
K ||=

∥∥∥T (i)
K

(
Q+K⊤RK

)
− T (j)

K

(
Q+K⊤RK

)∥∥∥ .
Thus, by using Lemma 33, we can write,

||P (i)
K − P

(j)
K ||≤ 2

∥∥∥T (i)
K

∥∥∥2 ∥∥∥F (i)
K −F

(j)
K

∥∥∥∥∥Q+K⊤RK
∥∥ ,

where ||T (i)
K ||≤

C(i)(K)
σmin(Q)µ

≤ Cmax(K)
σmin(Q)µ

(detailed in Lemma 17 of [50]). With the following upper

bound for
∥∥∥F (i)

K −F
(j)
K

∥∥∥:

||(F (i)
K −F

(j)
K )(X)|| = ||(A(i) −B(i)K)X(A(i) −B(i)K)⊤

− (A(j) −B(j)K)X(A(j) −B(j)K)⊤||

≤ 2(ϵ1 + ϵ2||K||)||X||||A−BK||max,

we have

||P (i)
K − P

(j)
K ||≤ 4

(
Cmax(K)

σmin(Q)µ

)2

(ϵ1 + ϵ2||K||)||A−BK||max(||Q||+||R||||K||2), (6.20)

Plugging in Eq. (6.20) into H2 and adding the upper bounds of H1 (Eq. 6.17), H2 (Eq. 6.18)

and H3 (Eq. 6.19) together, we have

||E(i)
K − E

(j)
K || ≤ g1(ϵ1, ϵ2, K),
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where g1 is a linear in ϵ1, ϵ2 and polynomial in the remaining problem data. Specifically,

g1(ϵ1, ϵ2,K) = ϵ1

(
||B||maxCmax(K)

µ

[
1 + 4

(
Cmax(K)

σmin(Q)µ

)
(||A−BK||max)

2 (||Q||+||R||||K||2)])
+ ϵ2

(
||B||max||K||Cmax(K)

µ

[
1 + 4

(
Cmax(K)

σmin(Q)µ

)
(||A−BK||max)

2 (||Q||+||R||||K||2)]+ ||A−BK||max

)
.
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In what follows, we will derive an upper bound for ||Σ(i)
K − Σ

(j)
K ||:

Upper bound for ||Σ(i)
K −Σ

(j)
K ||: From the previous definitions in Eq.(6.12) and Lemma 33, we

have,

||Σ(i)
K − Σ

(j)
K || = ||T

(i)
K (Σ0)− T (j)

K (Σ0)||≤ 2
∥∥∥T (i)

K

∥∥∥2 ∥∥∥F (i)
K −F

(j)
K

∥∥∥ ∥ Σ0∥

≤ 4

(
Cmax

σmin(Q)µ

)2

(ϵ1 + ϵ2||K||)||A−BK||max||Σ0||

where Σ0 = E
x
(i)
0 ∼D

[
x
(i)
0 x

(i)⊤
0

]
.

Thus, we have the following upper bound for ||Σ(i)
K − Σ

(j)
K ||,

||Σ(i)
K − Σ

(j)
K ||≤ g2(ϵ1, ϵ2, K)

with,

g2(ϵ1, ϵ2,K) = ϵ1

(
Cmax(K)

σmin(Q)µ

)2

(4||A−BK||max||Σ0||) + ϵ2||K||
(
Cmax(K)

σmin(Q)µ

)2

(4||A−BK||max||Σ0||) .

Therefore, we can finally write an upper bound for ||∇C(i)(K)−∇C(j)(K)||, which is:

||∇C(i)(K)−∇C(j)(K)||≤ f(ϵ1, ϵ2, K)

where,

f(ϵ1, ϵ2, K) = 2(β1g1(ϵ1, ϵ2, K) + β2g2(ϵ1, ϵ2, K)).

After some rearrangement, we have that

f(ϵ1, ϵ2, K) = ϵ1h
1
het(K) + ϵ1h

2
het(K),

where h1
het = h1f + h2f and h2

het = h3f + h4f , and
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h1f =
2||B||max(Cmax(K))2

σmin(Q)µ

[
1 + 4

(
Cmax(K)

σmin(Q)µ

)
(||A−BK||max)

2 (||Q||+||R||||K||2)] ,
h2f =

2

µ

(
Cmax(K)

σmin(Q)

)3

(4||A−BK||max||Σ0||) ,

h3f = 2

(
||R||||K||+ ||B||maxCmax(K)

µ
(||B||max+||A||max)

)
×
(
||B||max||K||Cmax(K)

µ

[
1 + 4

(
Cmax(K)

σmin(Q)µ

)
(||A−BK||max)

2 (||Q||+||R||||K||2)]+ ||A−BK||max

)
,

h4f = 2

(
||R||||K||+ ||B||maxCmax(K)

µ
(||B||max+||A||max

)
||K||

(
Cmax(K)

σmin(Q)µ

)2

(4||A−BK||max||Σ0||) .

b) Proof of Theorem 9

In this theorem, we consider the setting where (ϵ1h̄
1
het + ϵ2h̄

2
het)

2 ≤ h̄3
het with

h̄3
het := min

j∈[M ]

{
µ2σmin(R)

(
C(j)(K0)− C(j)(K∗

j )
)

4||ΣK∗
j
||min{nx, nu}

}
. (6.21)

Outline: To prove Theorem 9, we first introduce some lemmas: Lemma 34 establishes stability of

the local policies; Lemma 35 provides the drift analysis; Lemma 36 quantifies the per-round progress

of our FedLQR algorithm. As a result, we are able to present the iterative stability guarantees and

convergence analysis of FedLQR in the model-based setting.

Lemma 34. (Stability of the local policies) Suppose Kn ∈ G0. If the local step-size satisfies

ηl ≤ min{h∆

h̄1
, 1
4h̄grad

} and the heterogeneity level satisfies (ϵ1h̄1
het + ϵ2h̄

2
het)

2 ≤ h̄3
het, then K

(i)
n,l ∈ G0

holds for all i ∈ [M ] and l ∈ [L].
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Proof: Since Kn ∈ G0, based on the local Lipschitz property in Lemma 25, we have:

C(j)(K
(i)
n,1)− C(j)(Kn) ≤

〈
∇C(j)(Kn), K

(i)
n,1 −Kn

〉
+

hgrad(Kn)

2

∥∥∥K(i)
n,1 −Kn

∥∥∥2
F

≤ −
〈
∇C(j)(Kn), ηl∇C(i)(Kn)

〉
+

hgrad(Kn)

2

∥∥∥ηl∇C(i)(Kn)
∥∥∥2
F

(6.22)

holds for any i, j ∈ [M ], if
∥∥∥ηl∇C(i)(Kn)

∥∥∥
F
≤ h∆ ≤ h∆(Kn), which holds when

∥∥∥ηl∇C(i)(Kn)
∥∥∥
F

(a)

≤ ηlh1(Kn) ≤ ηlh̄1

(b)

≤ h∆,

where (a) comes from Lemma 30 and (b) holds because of the requirement on ηl in the statement

of the lemma.

Following the analysis in Eq (6.22), we have

C(j)(K
(i)
n,1)− C(j)(Kn) ≤ −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
− ηl

〈
∇C(j)(Kn),∇C(i)(Kn)−∇C(j)(Kn)

〉︸ ︷︷ ︸
T1

+
hgrad(Kn)

2

∥∥∥ηl∇C(i)(Kn)
∥∥∥2
F
. (6.23)

Now T1 can be bounded as

T1 ≤ ηl

∥∥∥∇C(j)(Kn)
∥∥∥
F

∥∥∥∇C(i)(Kn)−∇C(j)(Kn)
∥∥∥
F

≤ ηl
√

min{nx, nu}
∥∥∥∇C(j)(Kn)

∥∥∥
F

∥∥∥∇C(i)(Kn)−∇C(j)(Kn)
∥∥∥

(c)

≤ ηl
√

min{nx, nu}
∥∥∥∇C(j)(Kn)

∥∥∥
F
(ϵ1h̄

1
het + ϵ2h̄

2
het), (6.24)

where (c) is due to Lemma 27. Plugging in the upper bound of T1 into (6.22), we have:

C(j)(K
(i)
n,1)− C(j)(Kn) ≤ −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥
F
(ϵ1h̄

1
het + ϵ2h̄

2
het) +

hgrad(Kn)

2

∥∥∥ηl∇C(i)(Kn)
∥∥∥2
F

(d)

≤ −ηl
〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥
F
(ϵ1h̄

1
het + ϵ2h̄

2
het)
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+ hgrad(Kn)
∥∥∥ηl∇C(j)(Kn)

∥∥∥2
F
+ hgrad(Kn)

∥∥∥ηl∇C(i)(Kn)− ηl∇C(j)(Kn)
∥∥∥2
F

(e)

≤ −ηl
〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥
F
(ϵ1h̄

1
het + ϵ2h̄

2
het)

+ η2l hgrad(Kn)
∥∥∥∇C(j)(Kn)

∥∥∥2
F
+ η2l hgrad(Kn)min{nx, nu}(ϵ1h̄1

het + ϵ2h̄
2
het)

2

(f)

≤ −ηl
〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+

ηl
4

∥∥∥∇C(j)(Kn)
∥∥∥2
F
+ ηl min{nx, nu}(ϵ1h̄1

het + ϵ2h̄
2
het)

2

+ η2l h̄grad

∥∥∥∇C(j)(Kn)
∥∥∥2
F
+ η2l h̄grad min{nx, nu}(ϵ1h̄1

het + ϵ2h̄
2
het)

2

= −ηl
〈
∇C(j)(Kn),∇C(j)(Kn)

〉
+ (

ηl
4
+ η2l h̄grad)

∥∥∥∇C(j)(Kn)
∥∥∥2
F

+ (ηl + η2l h̄grad)min{nx, nu}(ϵ1h̄1
het + ϵ2h̄

2
het)

2

(g)

≤ −ηl
2

∥∥∥∇C(j)(Kn)
∥∥∥2
F
+ 2ηl min{nx, nu}(ϵ1h̄1

het + ϵ2h̄
2
het)

2,

which implies

C(j)(K
(i)
n,1)− C(j)(K∗)

(h)

≤

1− 2ηlµ
2σmin(R)∥∥∥ΣK∗

j

∥∥∥
 (C(j)(K0)− C(j)(K∗

j ))

+ 2ηl min{nx, nu}(ϵ1h̄1
het + ϵ2h̄

2
het)

2, (6.25)

where (d) is due to Eq. (6.8); (e) is due to Lemma 27; (f) is due to Eq.(6.10) with ζ = 1
2
; (g) is

due to the choice of step-size such that η2l h̄grad ≤ ηl
4

, which holds when ηl ≤ 1
4h̄grad

; and (h) is due

to Lemma 26 and the fact that Kn ∈ G0. If ϵ1 and ϵ2 are small enough that

(ϵ1h̄
1
het + ϵ2h̄

2
het)

2 ≤ min
j∈[M ]

{
µ2σmin(R)

(
C(j)(K0)− C(j)(K∗

j )
)

4||ΣK∗
j
||min{nx, nu}

}
,

we have that

C(j)(K
(i)
n,1)− C(j)(Kn) ≤ C(j)(K0)− C(j)(K∗

j ),

holds for any j ∈ [M ].

The above inequality implies K(i)
n,1 ∈ G0 as long as Kn ∈ G0. Then we can use the induction

method to obtain that K(i)
n,2 ∈ G0 since K

(i)
n,1 ∈ G0. As a result, an identical argument can be used
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from K
(i)
n,1 to K

(i)
n,2. Therefore, by repeating this step for L times, we have that all the local polices

K
(i)
n,l ∈ G0 holds for all i ∈ [M ] and l = 1, · · · , L, when the global policy Kn ∈ G0. □

Lemma 35. (Drift term analysis) If ηl ≤ min
{

1
4h̄grad

, 1
2
,
h∆

h̄1
, log 2
L(3h̄grad+1)

}
and Kn ∈ G0, the

difference between the local policy and global policy can be bounded as follows ∀i ∈ [M ] and

l ∈ [L]: ∥∥∥K(i)
n,l −Kn

∥∥∥2
F
≤ 2ηlL

∥∥∥∇C(i)(Kn)
∥∥∥2
F
=

2η

ηg

∥∥∥∇C(i)(Kn)
∥∥∥2
F
.

Proof: We have∥∥∥K(i)
n,l −Kn

∥∥∥2
F
=
∥∥∥K(i)

n,l−1 −Kn − ηl∇C(i)(K
(i)
n,l−1)

∥∥∥2
F

=
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
− 2ηl

[〈
∇C(i)(K

(i)
n,l−1), K

(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇C(i)(K

(i)
n,l−1)

∥∥∥2
F

=
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
− 2ηl

[〈
∇C(i)(K

(i)
n,l−1)−∇C

(i)(Kn), K
(i)
n,l−1 −Kn

〉]
− 2ηl

[〈
∇C(i)(Kn), K

(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇C(i)(K

(i)
n,l−1)

∥∥∥2
F

≤
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
+ 2ηl

∥∥∥∇C(i)(K
(i)
n,l−1)−∇C

(i)(Kn)
∥∥∥
F

∥∥∥K(i)
n,l−1 −Kn

∥∥∥
F

+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥
F

∥∥∥K(i)
n,l−1 −Kn

∥∥∥
F
+
∥∥∥ηl∇C(i)(K

(i)
n,l−1)

∥∥∥2
F

(a)

≤
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
+ 2ηlhgrad(Kn)

∥∥∥K(i)
n,l−1 −Kn

∥∥∥
F

∥∥∥K(i)
n,l−1 −Kn

∥∥∥
F

+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ ηl

∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F
+
∥∥∥ηl∇C(i)(K

(i)
n,l−1)

∥∥∥2
F

≤ (1 + 2ηlhgrad(Kn) + ηl)
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
+ (ηl + 2η2l )

∥∥∥∇C(i)(Kn)
∥∥∥2
F

+ 2η2l

∥∥∥∇C(i)(K
(i)
n,l−1)−∇C

(i)(Kn)
∥∥∥2
F

(b)

≤ (1 + 2ηlhgrad(Kn) + ηl)
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
+ (ηl + 2η2l )

∥∥∥∇C(i)(Kn)
∥∥∥2
F

+ 2η2l h
2
grad(Kn)

∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F
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(c)

≤
(
1 + 2ηlh̄grad + ηl + 2η2l h̄

2
grad

) ∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F
+ (ηl + 2η2l )

∥∥∥∇C(i)(Kn)
∥∥∥2
F

(d)

≤
(
1 + 3ηlh̄grad + ηl

) ∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F
+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F
, (6.26)

where (a) and (b) are due to Lemma 25; (c) is due to the fact that Kn ∈ G0; (d) is due to the

choice of step-size such that 2η2l h̄
2
grad ≤ ηlh̄grad and 2η2l ≤ ηl, which hold when ηl ≤ min{ 1

2h̄grad
, 1
2
}.

Therefore, we have

∥∥∥K(i)
n,l −Kn

∥∥∥2
F
≤ (1 + 3ηlh̄grad + ηl)

∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F
+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F

≤ (1 + 3ηlh̄grad + ηl)
l
∥∥∥K(i)

n,0 −Kn

∥∥∥2
F︸ ︷︷ ︸

=0

+ 2
l−1∑
j=0

(
1 + 3ηlh̄grad + ηl

)j
ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F

≤
(
1 + 3ηlh̄grad + ηl

)l − 1(
1 + 3ηlh̄grad + ηl

)
− 1

2ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F

(a)

≤ 2×
1 + l(3ηlh̄grad + ηl)− 1

3h̄grad + 1

∥∥∥∇C(i)(Kn)
∥∥∥2
F

≤ 2ηlL
∥∥∥∇C(i)(Kn)

∥∥∥2
F
,

where, for (a), we used the fact that (1 + x)τ+1 ≤ 1 + 2x(τ + 1) holds for x ≤ log 2
τ

. In other

words,
(
1 + 3ηlh̄grad + ηl

)l ≤ 1 + l(3ηlh̄grad + ηl) holds when 3ηlh̄grad + ηl ≤ log 2
l
, i.e., when

ηl ≤ log 2
L(3h̄grad+1)

. □

Lemma 36. (Per round progress) Suppose Kn ∈ G0. If we choose the local step-size as

ηl =
1

2
min

{
1

4h̄grad
,
1

2
,
h∆

h̄1

,
log 2

L(3h̄grad + 1)
,

1

80Lh̄2
grad

}
,

choose η = 1
2
min{h∆

h̄1
, 1, 2

3h̄grad
}, and the global step-size as ηg = η

Lηl
, then, for all i ∈ [M ], it
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holds that

C(i)(Kn+1)− C(i)(Kn) ≤ −
ηµ2σmin(R)∥∥ΣK∗

i

∥∥
max

(C(i)(Kn)− C(i)(K∗
i )) + 3ηmin{nx, nu}(ϵ1h̄1

het + ϵ2h̄
2
het)

2.

(6.27)

Proof:

C(i)(Kn+1)− C(i)(Kn)
(a)

≤ ⟨∇C(i)(Kn), Kn+1 −Kn⟩+
hgrad(Kn)

2
∥Kn+1 −Kn∥2F

= −

〈
∇C(i)(Kn),

η

ML

M∑
j=1

L−1∑
l=0

∇C(j)(K
(j)
n,l )

〉
+

hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇C(j)(K
(j)
n,l )
∥∥∥2
F

= −

〈
∇C(i)(Kn),

η

ML

M∑
j=1

L−1∑
l=0

[
∇C(j)(K

(j)
n,l )−∇C

(i)(Kn)
]〉
− η
∥∥∥∇C(i)(Kn)

∥∥∥2
F

+
hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇C(j)(K
(j)
n,l )
∥∥∥2
F

= −

〈
∇C(i)(Kn),

η

ML

M∑
j=1

L−1∑
l=0

[
∇C(j)(K

(j)
n,l )−∇C

(j)(Kn) +∇C(j)(Kn)−∇C(i)(Kn)
]〉

− η
∥∥∥∇C(i)(Kn)

∥∥∥2
F
+

hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇C(j)(K
(j)
n,l )
∥∥∥2
F

≤ η
∥∥∥∇C(i)(Kn)

∥∥∥
F

∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

[
∇C(j)(K

(j)
n,l )−∇C

(j)(Kn)
] ∥∥∥

F

+
η

M

M∑
j=1

∥∥∥∇C(i)(Kn)
∥∥∥
F

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥
F

− η
∥∥∥∇C(i)(Kn)

∥∥∥2
F
+

hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇C(j)(K
(j)
n,l )
∥∥∥2
F

(b)

≤ η
∥∥∥∇C(i)(Kn)

∥∥∥
F

[
hgrad(Kn)

ML

M∑
j=1

L−1∑
l=0

∥∥∥K(j)
n,l −Kn

∥∥∥
F

]

+
η

4

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+

η

M

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2
F
− η
∥∥∥∇C(i)(Kn)

∥∥∥2
F

+ hgrad(Kn)
3η2

2ML

M∑
j=1

L−1∑
l=0

∥∥∥∇C(j)(K
(j)
n,l )−∇C

(j)(Kn)
∥∥∥2
F
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+
3η2hgrad(Kn)

2M

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2
F
+

3η2hgrad(Kn)

2

∥∥∥∇C(i)(Kn)
∥∥∥2
F

(c)

≤ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+

ηh̄2
grad

ML

M∑
i=1

L−1∑
l=0

∥∥∥K(i)
n,l −Kn

∥∥∥2
F

+
η

4

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+

(
η +

3η2h̄grad

2

)
1

M

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2
F

− η
∥∥∥∇C(i)(Kn)

∥∥∥2
F
+

3η2h̄2
grad

2ML

M∑
j=1

L−1∑
l=0

∥∥∥K(j)
n,l −Kn

∥∥∥2
F
+

η

8

∥∥∥∇C(i)(Kn)
∥∥∥2
F

(d)

≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+

5η2h̄2
grad

ηgM

M∑
j=1

∥∥∥∇C(j)(Kn)
∥∥∥2
F

+ 2ηmin{nx, nu}(ϵ1h̄1
het + ϵ2h̄

2
het)

2

(e)

≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+

10η2h̄2
grad

ηgM

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2
F

+
10η2h̄2

grad

ηg

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ 2ηmin{nx, nu}(ϵ1h̄1

het + ϵ2h̄
2
het)

2

(f)

≤ −η

4

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ 3ηmin{nx, nu}(ϵ1h̄1

het + ϵ2h̄
2
het)

2

≤ −ηµ2σmin(R)∥∥ΣK∗
i

∥∥ (C(i)(Kn)− C(i)(K∗
i )) + 3ηmin{nx, nu}(ϵ1h̄1

het + ϵ2h̄
2
het)

2.

In the above steps, (a) is due to the choice of step-size η such that

∥Kn+1 −Kn∥= ∥
η

ML

M∑
i=1

L−1∑
l=0

∇C(i)(K
(i)
n,l)∥≤ ηh̄1 ≤ h∆,

holds when η ≤ h∆

h̄1
. For (b), we use the Lipschitz property of the gradient (Lemma 25) in the

first line, and use Eq.(6.10) with ζ = 1
2

in the second line, and for the third and forth lines we use

Eq. (6.8); (c) is due to Lemma 25 and
3η2h̄grad

2
≤ η

8
; (d) is due to Lemma 27, Lemma 35 and the

choice of step-size such that
3η2h̄grad

2
≤ η

8
≤ η; (e) is due to Eq.(6.8); and for (f), we use the fact

that
10η2h̄2

grad
ηg

≤ η
8
≤ η, which holds when ηl ≤ 1

80Lh̄2
grad

. We use the gradient domination property

(Lemma 26) in the last equality. □
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With this lemma, we are now ready to provide the convergence guarantees for FedLQR in the

model-based setting.

Proof of the iterative stability guarantees of FedLQR: Here we leverage the method of induction

to prove FedLQR’s iterative stability guarantees. First, we start from an initial policy K0 ∈ G0. At

round n, we assume Kn ∈ G0. According to Lemma 34, we can show that all the local policies

K
(i)
n,l ∈ G0. Furthermore, by choosing the step-sizes properly in Lemma 36, we have that

C(i)(Kn+1)− C(i)(Kn) ≤ −
ηµ2σmin(R)∥∥ΣK∗

i

∥∥
max

(C(i)(Kn)− C(i)(K∗
i ))

+ 3ηmin{nx, nu}(ϵ1h̄1
het + ϵ2h̄

2
het)

2.

for any i ∈ [M ].

Then, for any fixed system i ∈ [M ], with (ϵ1h̄
1
het + ϵ2h̄

2
het)

2 ≤ h̄3
het, we have that

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)
(C(i)(Kn)− C(i)(K∗

i ))

+ 3ηmin{nx, nu}(ϵ1h̄1
het + ϵ2h̄

2
het)

2

≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)
(C(i)(K0)− C(i)(K∗

i ))

+
ηµ2σmin(R)∥∥ΣK∗

i

∥∥ (C(i)(K0)− C(i)(K∗
i ))

≤ C(i)(K0)− C(i)(K∗
i ).

With this, we can easily see that the global policy Kn+1 at the next round n+1 is also stabilizing,

i.e., Kn+1 ∈ G0, by using the definition of G0 (Definition 2). Therefore, we can complete proving

FedLQR’s iterative stability property by inductive reasoning.

Proof of FedLQR’s convergence: From Eq.(6.27), we have

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)
(C(i)(Kn)− C(i)(K∗

i ))
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+ 3ηmin{nx, nu}(ϵ1h̄1
het + ϵ2h̄

2
het)

2.

Under the assumptions in Lemma 36, FedLQR thus enjoys the following convergence guarantee

after N rounds:

C(i)(KN)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i ))

+
3min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R)

(ϵ1h
1
het + ϵ1h

2
het)

2.

Thus, we finish the proof of Theorem 9 with cuni,1 = 12 and B(ϵ1, ϵ2) :=
υ
∥∥∥ΣK∗

i

∥∥∥
4µ2σmin(R)

(ϵ1h
1
het + ϵ1h

2
het)

2.

□

c) Proof of Theorem 8

Proof: First, we provide the analysis for per-round cost function decrease with one local update,

i.e., L = 1. For any fixed system i ∈ [M ], the cost decrease C(i)(Kn+1)−C(i)(Kn) can be bounded

as

C(i)(Kn+1)− C(i)(Kn) = (C(i)(Kn+1)− C(i)(K̃n+1))︸ ︷︷ ︸
T1

+(C(i)(K̃n+1)− C(i)(Kn))︸ ︷︷ ︸
T2

where

K̃n+1 = Kn − η∇C(i)(Kn),

Kn+1 = Kn −
η

M

M∑
i=1

∇C(i)(Kn).

The term T2 can be bounded as

T2 ≤ −
ηµ2σmin(R)∥∥ΣK∗

i

∥∥
max

(C(i)(Kn)− C(i)(K∗
i )),
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based on the gradient domination property in Lemma 26. It is evident that K̃n+1 ∈ G0 holds.

By using a small step-size η such that
∥∥∥Kn+1 − K̃n+1

∥∥∥ ≤ h∆, we can bound T1 as follows:

T1 = C(i) (Kn+1)− C(i)(K̃n+1)
(a)

≤ h̄cost

∥∥∥Kn+1 − K̃n+1

∥∥∥
≤ ηh̄cost

M

M∑
j=1

∥∥∥∇C(i)(Kn)−∇C(j)(Kn)
∥∥∥

(b)

≤ ηh̄cost(Kn)(ϵ1h̄
1
het(Kn) + ϵ2h̄

2
het(Kn))

where (a) is due to the smoothness of the cost function in Lemma 25, and (b) is due to the bound

on the policy gradient heterogeneity in Lemma 27.

Plugging in the upper bounds of T1 and T2, after some rearrangement, we have

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
max

)
(C(i)(Kn)− C(i)(K∗

i ))

+ ηh̄cost(Kn)(ϵ1h̄
1
het(Kn) + ϵ2h̄

2
het(Kn)).

By properly choosing the step-size η, we can ensure that the sequence of control gains (Kn) remains

inside the sub-level set G0. Thus, for any i ∈ [M ], we have the sequence
{
C(i)(Kn)

}∞
n=0

is bounded,

based on the definition of the stabilizing set G0. Then, we have:

lim sup
n→∞

C(i)(Kn)− C(i)(K∗
i ) ≤

h̄cost
∥∥ΣK∗

i

∥∥
max

µ2σmin(R)
(ϵ1h̄

1
het + ϵ2h̄

2
het). (6.28)

From the gradient domination Lemma 11 in [50], we know that

C(i)(K∗)− lim sup
n→∞

C(i) (Kn) = lim inf
n→∞

[
C(i)(K∗)− C(i) (Kn)

]
= lim inf

n→∞

[
−E

∑
t

A
(i)
K∗

(
xKn
t , uKn

t

)]
(6.29)

where {xKn
t , uKn

t } denotes the system’s state and input induced by the control action ut = −Knxt.

Moreover, for any x, the advantage function AK (x,K ′x) is defined as

AK (x,K ′x) := 2x⊤ (K ′ −K)
⊤
EKx+ x⊤ (K ′ −K)

⊤ (
R +B⊤PKB

)
(K ′ −K)x.
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Following the analysis above in Eq. (6.29), we have that

C(i)(K∗)− lim sup
n→∞

C(i) (Kn) ≤ lim inf
n→∞

E
∑
t

Tr

(
xKn
t

(
xKn
t

)⊤
E

(i)⊤
K∗

(
R +B(i)⊤P

(i)
K∗B(i)

)−1

E
(i)
K∗

)
= lim inf

n→∞
Tr

(
Σ

(i)
Kn

E
(i)⊤
K∗

(
R +B(i)⊤P

(i)
K∗B(i)

)−1

E
(i)
K∗

)
≤ lim inf

n→∞

∥∥∥Σ(i)
Kn

∥∥∥Tr(E(i)⊤
K∗

(
R +B(i)⊤P

(i)
K∗B(i)

)−1

E
(i)
K∗

)
(a)

≤ lim inf
n→∞

C̄max

σmin(Q)

∥∥∥∥(R +B(i)⊤P
(i)
K∗B(i)

)−1
∥∥∥∥Tr(E(i)⊤

K∗ E
(i)
K∗

)
≤ C̄max

σmin(R)σmin(Q)
Tr
(
E

(i)⊤
K∗ E

(i)
K∗

)
=

C̄max

σmin(R)σmin(Q)
Tr
(
(Σ

(i)
K∗)−1∇C(i)⊤(K∗)∇C(i)(K∗)(Σ

(i)
K∗)−1

)
(b)

≤ C̄max

σmin(R)σmin(Q)σmin

(
Σ

(i)
K∗

)2 Tr (∇C(i)⊤(K∗)∇C(i)(K∗)
)

≤ C̄max

µ2σmin(R)σmin(Q)
∥∇C(i)(K∗)∥2F

(c)

≤ C̄max

µ2σmin(R)σmin(Q)


∥∥∥ 1

M

M∑
j=1

∇C(j)(K∗)
∥∥∥
F︸ ︷︷ ︸

T1=0

+
∥∥∥∇C(i)(K∗)− 1

M

M∑
j=1

∇C(j)(K∗)
∥∥∥
F


2

(d)

≤ min{nx, nu}C̄max

µ2σmin(R)σmin(Q)

∥∥∥∇C(i)(K∗)− 1

M

M∑
j=1

∇C(j)(K∗)
∥∥∥2

≤ min{nx, nu}C̄max

µ2σmin(R)σmin(Q)
(ϵ1h̄

1
het + ϵ2h̄

2
het)

2. (6.30)

Here we use the uniform upper bound of
∥∥∥Σ(i)

Kn

∥∥∥ , i.e., ||Σ(i)
Kn
||≤ C(i)(Kn)

σmin(Q)
≤ C̄max

σmin(Q)
in Eq.(6.11)

for (a); we use
∥∥∥Σ(i)

K∗

∥∥∥ ≥ ∥∥∥E[x(i)
0 x

(i)
0

⊤
]
∥∥∥ ≥ µ for (b); we bound the L2 norm with Frobenius norm

for (c); we use the policy gradient heterogeneity bound in Lemma 27 for (d). Note that T1 = 0

since K∗ is the optimal solution to the FL problem in Eq. (6.2). Therefore, by adding Eq. (6.30)
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and Eq. (6.28) together, we have that

C(i)(K∗)− C(i)(K∗
i ) ≤

h̄cost
∥∥ΣK∗

i

∥∥
max

µ2σmin(R)
(ϵ1h̄

1
het + ϵ2h̄

2
het) +

min{nx, nu}C̄max

µ2σmin(R)σmin(Q)
(ϵ1h̄

1
het + ϵ2h̄

2
het)

2.

Thus, we complete the proof of Theorem 9. □

6.9.8 Zeroth-order optimization

To prepare for the model-free setting where the controllers only have access to the system’s

trajectories, we first quickly recap the basic idea behind zeroth-order optimization. Say our goal

is to minimize a loss function f(x), where x ∈ Rd. When one has access to exact deterministic

gradients of this loss function via an oracle, the standard approach for minimization would be

to query the gradient oracle at each iteration, and run gradient descent. Concretely, one would

run the following iterative scheme: xt+1 = xt − η∇f(xt), where η is a suitably chosen learning-

rate/step-size. While such first-order optimization schemes have a rich history, there has also been a

growing interest in understanding the behavior of derivative-free (zeroth-order) methods that can

only query function values, as opposed to the gradients. Two immediate reasons (among many) for

studying zeroth-order optimization are as follows: (i) in practice, one may only have access to a

black-box procedure that cannot evaluate gradients; and (ii) computing gradients might prove to be

too computationally-expensive.

Given two or more function evaluations, the basic idea behind zeroth-order algorithms is to

construct an estimate of the true gradient for evaluating and updating model parameters. For instance,

a typical zeroth-order scheme with single-point function evaluation would take the following

form [156]:

xt+1 = xt − ηt

(
f(xt + µtu)− f(xt)

µt

)
u.
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In the expression above, {ηt} is the learning-rate sequence, {µt} is a sequence typically chosen

in a way such that µt → 0, and u is a random vector distributed uniformly over the unit sphere. For

details about the convergence of zeroth-order optimization algorithms such as the one above, we

refer the interested reader to [8, 41, 144].

We now turn to briefly describing the model-free setup for our LQR problem. [50] propose

a zeroth-order-based algorithm (Algorithm 1 in [50]) to compute an estimation ∇̂C(K) and Σ̂K

for both ∇C(K) and ΣK , for a given K. Algorithm 1 in [50] exploits a multiple-trajectory-based

technique that uses a Gaussian perturbed cost function (i.e., producing a Gaussian smoothing

function) to estimate ∇C(K) from cost function perturbed values. That is, given the cost function

C(K), we can define its perturbed function as,

Cr(K) = EU∼Br [C(K + U)]

where Br is the uniform distribution over all matrices with Frobenius norm at most r and U is a

random matrix with proper dimension and generated from Br. For small r, the smooth cost Cr(K)

is a good approximation to the original cost C(K). Due to the Gaussian smoothing, the gradient

has a particularly simple functional form [65]:

∇Cr(K) =
nxnu

r2
EU∼Br [C(K + U)U ].

Therefore, this expression implies a straightforward method to obtain an unbiased estimate of

∇Cr(K), through obtaining the infinite-horizon rollouts. However, in practice, we can only obtain

the finite-horizon rollouts to approximate the gradient. Thanks to [50], they showed that the

approximation error of the exact gradient can be reduced to arbitrary accuracy if the number of

sample trajectories ns and the length of each rollout τ are sufficiently large, and the smoothing

radius r is small enough.
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6.9.9 The model-free setting

For notational brevity we rewrite ̂∇C(i)(K) as ∇̃C(i)(K) where

̂∇C(i)(K) = ∇̃C(i)(K) :=
1

ns

ns∑
s=1

nxnu

r2
C̃(i),(τ)

(
K + U (i)

s

)
U (i)
s ,

and introduce two new gradient-based terms:

∇′C(i)(K) :=
1

ns

ns∑
s=1

nxnu

r2
C(i),(τ)

(
K + U (i)

s

)
U (i)
s ,

∇̂C(i)(K) :=
1

ns

ns∑
s=1

nxnu

r2
C(i)

(
K + U (i)

s

)
U (i)
s ,

where C̃(i),(τ)
(
K + U

(i)
s

)
:=
∑τ−1

t=0

(
x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

)
with x(i)

t = (K+U
(i)
s )u

(i)
t , C(i),(τ)

(
K + U

(i)
s

)
:=

E
x
(i)
0 ∼D

∑τ−1
t=0

(
x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

)
and

C(i)
(
K + U (i)

s

)
:= E

x
(i)
0 ∼D

∞∑
t=0

(
x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

)
.

a) Auxiliary Lemmas

Lemma 37. (Approximating C(i)(K) and Σ
(i)
K with finite horizon) Suppose K is such that C(i)(K)

is finite. Define the finite horizon estimates,

Σ
(i),(τ)
K := E

[
τ−1∑
t=0

x
(i)
t x

(i)⊤
t

]
and C(i),(τ)(K) := E

[
τ−1∑
t=0

x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

]
,

for all systems i ∈ [M ]. Now, let ϵ be an arbitrarily small constant such that

τ ≥ h1
τ (ϵ) := max

i∈[M ]

{
nx · (C(i)(K))2

ϵµ(σmin(Q))2

}
=

nx · (Cmax(K))2

ϵµ(σmin(Q))2
,

such that ∥∥∥Σ(i),(τ)
K − Σ

(i)
K

∥∥∥ ≤ ϵ.
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If

τ ≥ h2
τ (ϵ) := max

i∈[M ]

{
nx · (C(i)(K))2(∥Q∥+∥R∥∥K∥2)

ϵµ(σmin(Q))2

}
=

nx · (Cmax(K))2(∥Q∥+∥R∥∥K∥2)
ϵµ(σmin(Q))2

,

we have

∣∣C(i),(τ)(K)− C(i)(K)
∣∣ ≤ ϵ,

where Cmax(K) := maxi∈[M ] C
(i)(K).

Proof: The proof for this lemma is detailed in the proof of Lemma 23 in [50]. □

Lemma 38. (Estimating ∇C(i)(K) with finitely many infinite-horizon rollouts) Given an arbitrary

tolerance ϵ and probability δ, suppose the radius r satisfies

r ≤ hr

( ϵ
2

)
:= min

{
h∆,

C̄max

h̄cost
,

ϵ

2h̄grad

}
,

and the number of samples ns satisfies,

ns ≥ hsample

( ϵ
2
, δ
)
: =

8σ2
∇̂ min(nx, nu)

ϵ2
log

[
nx + nu

δ

]
σ2
∇̂ :=

(
2nxnuC̄max

r

)2

+
( ϵ
2
+ h̄1

)2
Then with a high probability of at least 1− δ, the estimate

∇̂C(i)(K) =
1

ns

ns∑
s=1

nxnu

r2
C(i)

(
K + U (i)

s

)
U (i)
s

satisfies

∥∇̂C(i)(K)−∇C(i)(K)∥F≤ ϵ

for any system i ∈ [M ] and K ∈ G0.
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Proof: The proof for this lemma is detailed in Lemma B.6 of [65]. It is worthwhile to mention

that, in [65], the number of samples ns satisfies

ns ≥

8σ
2
∇̂min(nx, nu)

ϵ2︸ ︷︷ ︸
T1

+
8min(nx, nu)

ϵ2
R∇̂ϵ

6
√
min(nx, nu)︸ ︷︷ ︸

T2

 log

[
nx + nu

δ

]

with R∇̂ = 2nxnuC̄max

r
+ ϵ

2
+ h̄1. In the analysis throughout the paper, we only keep the dominant

term T1 in ns, since T1 is in the order O(ϵ−2) while T2 is in the order O(ϵ−1).

By taking the maximum over K inside G0, we make the local parameters become the global

parameters, e.g., C̄max := supK∈G0,i∈[M ] C
(i)(K). □

Lemma 39. (Estimating ∇C(i)(K) with finitely many finite-horizon rollouts): Given an arbitrary

tolerance ϵ and probability δ, suppose that the smoothing radius r satisfies,

r ≤ hr

( ϵ
4

)
= min

{
h̄∆,

C̄max

h̄cost
,

ϵ

4h̄grad

}
,

and the trajectory length τ satisfies

τ ≥ hτ

(
rϵ

4nxnu

)
=

4nun
2
x(Cmax(K))2 (∥Q∥+∥R∥∥K∥2)

rϵµσmin(Q)2
.

According to Assumption 7, the distribution of the initial states satisfies x(i)
0 ∼ D and

∥∥∥x(i)
0

∥∥∥ ≤ H

almost surely. Thus, for any given realization x
(i)
0,s

16 of x(i)
0 , and for any system i ∈ [M ], we have∥∥∥x(i)

0,s

∥∥∥ ≤ H,
(
x
(i)
0,s

)(
x
(i)
0,s

)⊤
⪯ H2

µ
E
[
x
(i)
0 x

(i)⊤
0

]
.

As a result, the summation over the finite-time horizon

τ−1∑
t=0

(
x
(i)⊤
t,j Qx

(i)
t,j + u

(i)⊤
t,j Ru

(i)
t,j

)
≤ H2

µ
C(i)

(
K + U

(i)
j

)
.

16The notation x
(i)
0,s denotes s-th sample of the initial state from i-th system.
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Furthermore, suppose the number of samples ns satisfies

ns ≥ hsample,trunc

(
ϵ

4
, δ,

H2

µ

)
:=

32σ2
∇̃min(nx, nu)

ϵ2
log

[
nx + nu

δ

]
,

where

σ2
∇̃ :=

(
2nxnuH

2C̄max

rµ

)2

+
( ϵ
2
+ h̄1

)2
,

then, with a high probability of at least 1− δ, the estimated gradient

∇̃C(i)(K) :=
1

ns

ns∑
s=1

nunx

r2
C̃(i),(τ)

(
K + U (i)

s

)
U (i)
s

satisfies

∥∇̃C(i)(K)−∇C(i)(K)∥F≤ ϵ

for any system i ∈ [M ] and K ∈ G0.

Proof: The proof for this lemma is detailed in Lemma B.7 of [65]. As in Lemma 38, we only

keep the dominant term in the requirement of sample size ns. By taking the maximum over K

inside G0, all the local parameters inside the polynomials such as hr(
ϵ
4
) become global parameters.

□

b) Proof of Lemma 28

Proof: For our subsequent analysis, we will use Fn
l to denote the filtration that captures all the

randomness up to the l-th local step in round n. We have∥∥∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
̂∇C(i)(K

(i)
n,l)−∇C

(i)(K
(i)
n,l)

]∥∥∥∥∥
F

=

∥∥∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̃C(i)(K

(i)
n,l)−∇C

(i)(K
(i)
n,l)
]∥∥∥∥∥

F

≤
∥∥∥ 1

ML

M∑
i=1

L∑
l=0

[
∇̃C(i)(K

(i)
n,l)−∇

′C(i)(K
(i)
n,l)
] ∥∥∥

F︸ ︷︷ ︸
T1
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+
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇′C(i)(K

(i)
n,l)− ∇̂C

(i)(K
(i)
n,l)
] ∥∥∥

F︸ ︷︷ ︸
T2

+
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K

(i)
n,l)−∇C

(i)(K
(i)
n,l)
] ∥∥∥

F︸ ︷︷ ︸
T3

.

Next, we will bound T1, T2, and T3, respectively.

Bounding T2: From the proof of Lemma B.7 in [65], we have

T2 ≤
1

ML

M∑
i=1

L−1∑
l=0

∥∥∥∇′C(i)(K
(i)
n,l)− ∇̂C

(i)(K
(i)
n,l)
∥∥∥
F
≤ ϵ

4
(6.31)

holds as long as τ ≥ hτ

(
rϵ

4nxnu

)
.

Bounding T3 : To precede, we bound T3 as

T3 =
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K

(i)
n,l)−∇C

(i)(K
(i)
n,l)
] ∥∥∥

F

≤
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K

(i)
n,l)−∇C

(i)
r (K

(i)
n,l)
] ∥∥∥

F︸ ︷︷ ︸
Variance term 2

+
1

ML

M∑
i=1

L−1∑
l=0

∥∥∥∇C(i)
r (K

(i)
n,l)−∇C

(i)(K
(i)
n,l)
∥∥∥
F︸ ︷︷ ︸

Bias term 1

(6.32)

where∇C(i)
r (K

(i)
n,l) := EU(i)

n,l∼Br

[
∇C(i)(K

(i)
n,l + U

(i)
n,l)
]
.

For the bias term 1 , since the smoothing radius r ≤ hr

(
ϵ
4

)
, we have that

1 =
∥∥∥∇C(i)

r (K
(i)
n,l)−∇C

(i)(K
(i)
n,l)
∥∥∥
F
≤ hgrad(K

(i)
n,l)r ≤ h̄gradr ≤

ϵ

4
. (6.33)

For the variance term, 2 , we will exploit the matrix Freedman inequality (Lemma 31) to bound it.

For simplicity, we denote

e
(i)
l :=

1

ML

[
∇̂C(i)(K

(i)
n,l)−∇C

(i)
r (K

(i)
n,l)
]
, el :=

M∑
i=1

e
(i)
l ,
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Then, we have

1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K

(i)
n,l)−∇C

(i)
r (K

(i)
n,l)
]
=

L−1∑
l=0

el.

Next, we aim to prove the following claims:

Claim I: Yt :=
∑t

l=0 el is a martingale w.r.t Fn
t−1 for t = 1, · · · , L− 1 and el :=

∑M
i=1 e

(i)
l is a

martingale difference sequence.

Proof: Note that E [∇̂C(i)(K
(i)
n,l)] = ∇C(i)

r (K
(i)
n,l). Then we can easily have E [el] = 0 for

l = 0, · · · , L − 1. As a result, we have E [Yt | Fn
t−1] = Yt−1 since Yt = Yt−1 + et. In other words,

Yt :=
∑t

l=0 el is a martingale w.r.t Fn
t−1 for t = 1, · · · , L− 1.

Claim II:
∥∥∥∥E [ele⊤l ∣∣∣∣ Fn

l−1

]∥∥∥∥ ≤ σ2
∇̂

nsML2 where σ2
∇̂ is as defined in Lemma 38.

Proof: From Lemma B.7 in [65], we can write

∥∥∥∥E [e(i)l e
(i)⊤
l

∣∣∣∣ Fn
l−1

]∥∥∥∥ ≤ σ2
∇̂

nsM2L2
,

∥∥∥∥E [e(i)⊤l e
(i)
l

∣∣∣∣ Fn
l−1

]∥∥∥∥ ≤ σ2
∇̂

nsM2L2
,

and based on this fact, we have∥∥∥∥E [ele⊤l ∣∣∣∣ Fn
l−1

]∥∥∥∥ =

∥∥∥∥∥E
[(

M∑
i=1

e
(i)
l

)(
M∑
i=1

e
(i)⊤
l

) ∣∣∣∣ Fn
l−1

]∥∥∥∥∥
≤

M∑
i=1

∥∥∥∥E [e(i)l e
(i)⊤
l

∣∣∣∣ Fn
l−1

]∥∥∥∥+ M∑
i ̸=j

∥∥∥∥E [e(i)l e
(j)⊤
l

∣∣∣∣ Fn
l−1

]∥∥∥∥︸ ︷︷ ︸
T4=0

≤
σ2
∇̂

nsML2
,

where we use the fact that T4 = 0 because e
(i)
l and e

(j)
l are independent, if we conditioned on Fn

l .

An identical argument holds for
∥∥∥∥E [e⊤l el ∣∣∣∣ Fn

l−1

]∥∥∥∥.

Define Wcol,t :=
∑t

l=0 E
[
ele

⊤
l

∣∣∣∣ Fn
l−1

]
and Wrow,t :=

∑t
l=0 E

[
e⊤l el

∣∣∣∣ Fn
l−1

]
, then we have

∥Wcol,t∥≤
σ2
∇̂

nsML
, ∥Wrow,t∥≤

σ2
∇̂

nsML
.
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Claim III: ∥el∥ ≤
R∇̂
nsL

where R∇̂ = 2nxnuC̄max

r
+ ϵ

2
+ h̄1.

Proof: From Lemma B.7 in [65], we have ∥e(i)l ∥≤
nsR∇̂
ML

. With this fact, we have

∥el∥ ≤
M∑
i=1

∥∥∥e(i)l

∥∥∥ ≤ R∇̂
nsL

.

With Claim I, II and Claim III and the matrix Freedman inequality (31), we have, for all ϵ ≥ 0,

P

{
∃t ≥ 0 : λmax (Yt) ≥ ϵ and max {∥Wcol ,t∥ , ∥Wrow ,t∥} ≤

σ2
∇̂

nsML

}
≤ (nx + nu) exp

− −ϵ2/2
σ2
∇̂

nsML +
R∇̂ϵ

3nsL

 .

(6.34)

Therefore, rephrasing Eq.(6.34), if

ns ≥

32σ2
∇̂min (nx, nu)

MLϵ2︸ ︷︷ ︸
T5

+
32LR∇̂

√
min (nx, nu)

12MLϵ︸ ︷︷ ︸
T6

 log

[
ML(nx + nu)

δ

]
, (6.35)

we have that

∥YL∥F= ∥
1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K

(i)
n,l)−∇C

(i)
r (K

(i)
n,l)
]
∥F≤

ϵ

4
, (6.36)

holds with probability 1 − δ. As we discussed in Lemma 38, we only keep the dominant term T5 in the

requirement of the sample size ns (as in Eq.(6.35)). Because T5 is in the order O(ϵ−2) while T6 is in the

order O(ϵ−1). Then, T6 when compared to T5 is negligible.

In summary, if ns ≥
32σ2

∇̂
min(nx,nu)

MLϵ2

[
ML(nx+nu)

δ

]
=

hsample (
ϵ
4
, δ
ML)

ML ,

2 =
∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
∇̂C(i)(K

(i)
n,l)−∇C

(i)
r (K

(i)
n,l)
] ∥∥∥

F
≤ ϵ

4
(6.37)

holds with probability 1− δ.

As a result, we have T3 ≤ ϵ
2 holds with probability 1− δ, when r ≤ hr

(
ϵ
4

)
and ns ≥

hsample (
ϵ
4
, δ
ML)

ML . In

what follows, we will provide an upper bound on the term T1.

Bounding T1: We can follow the same analysis of bounding 2 in T3 to bound T1. Different from the

filtration we define in analyzing 2 , we need to define a new filtration F̃n
l−1, where F̃n

l−1 := Fn
l−1 ∪ Un

l

and Un
l :=

{
U

(i)
n,l,s

}i=1,···,N

s=1,···,ns

. Note that Un
l is the sigma-field generated by the randomness of all random

smoothing matrices U (i)
n,l,s

17 from all the systems at the n-th global iteration and l-th local iteration. Replacing

17Here we use the index s to denote s-th sample. Note that in each local iteration l, we need to generate the random

smoothing matrices ns times.
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σ2
∇̂ Eq.(6.35) with into σ2

∇̃ and R∇̂ with R∇̃, we have that

T1 =
∥∥∥ 1

ML

M∑
i=1

L∑
l=0

[
∇̃C(i)(K

(i)
n,l)−∇

′C(i)(K
(i)
n,l)
] ∥∥∥

F
≤ ϵ

4
(6.38)

holds with probability 1− δ when

ns ≥
32σ2

∇̃min(nx, nu)

MLϵ2
log

[
ML(nx + nu)

δ

]
=

hsample,trunc

(
ϵ
4 ,

δ
ML ,

H2

µ

)
ML

.

Combing the upper bound of T1 (Eq.(6.38)), T2 (Eq.(6.31)) and T3 (Eq.(6.33) and (6.37)), we have∥∥∥∥∥ 1

ML

M∑
i=1

L−1∑
l=0

[
̂∇C(i)(K

(i)
n,l)−∇C

(i)(K
(i)
n,l)

]∥∥∥∥∥
F

≤ T1 + T2 + T3 ≤ ϵ

when the trajectory length τ satisfies τ ≥ hτ

(
rϵ

4nxnu

)
, the smoothing radius satisfies r ≤ hr

(
ϵ
4

)
and the size

of samples satisfies ns ≥ max

{
hsample,trunc

(
ϵ
4
, δ
ML

,H
2

µ

)
ML ,

hsample (
ϵ
4
, δ
ML)

ML

}
=

hsample,trunc
(

ϵ
4
, δ
ML

,H
2

µ

)
ML . Thus,

we complete the proof of Lemma 28.
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c) Proof of Theorem 10

Outline: To prove Theorem 10, we first introduce some lemmas: Lemma 40 establishes stability of the

local policies; Lemma 41 provides the drift analysis; Lemma 42 quantifies the per-round progress of our

FedLQR algorithm. As a result, we are able to present the iterative stability guarantees and convergence

analysis of FedLQR in the model-free setting.

Lemma 40. (Stability of the local policies) Suppose Kn ∈ G0 and the heterogeneity level satisfies (ϵ1h̄1het +

ϵ2h̄
2
het)

2 ≤ h̄3het, where h̄3het is as defined in Eq.(6.21). If the local step-size ηl satisfies

ηl ≤ min

{
h∆µ

H2
(
h1 +

√
ϵ̄
) , 1

9h̄grad

}
,

the smoothing radius satisfies

r ≤ min

{
mini∈[M ]C

(i)(K0)

h̄cost
, h∆, hr

(√
ϵ̄

4

)}
,

the trajectory length satisfies τ ≥ hτ

(
r
√
ϵ̄

4nxnu

)
, and the number of the sample size satisfies

ns ≥ max

{
hsample,trunc

(√
ϵ̄

4
,
δ

L
,
H2

µ

)
, hsample

(√
ϵ̄

2
,
δ

L

)}
where we choose a fixed error tolerance ϵ̄ to be

ϵ̄ := min
j∈[M ]

3µ2σmin(R)
(
C(j)(K0)− C(j)(K∗

j )
)

5||ΣK∗
j
||

 ,

then with probability 1− δ,, where δ ∈ (0, 1), K(i)
n,l ∈ G

0 holds for all i ∈ [M ] and l = 0, 1, · · · , L− 1.

Proof: For any i, j ∈ [M ], according to the local Lipschitz property in Lemma 25, we have that

C(j)(K
(i)
n,1)− C(j)(Kn) ≤

〈
∇C(j)(Kn),K

(i)
n,1 −Kn

〉
+

hgrad(Kn)

2

∥∥∥K(i)
n,1 −Kn

∥∥∥2
F

(Local lipschitz)

= −
〈
∇C(j)(Kn), ηl∇̃C(i)(Kn)

〉
+

hgrad(Kn)

2

∥∥∥ηl∇̃C(i)(Kn)
∥∥∥2
F
,

holds if
∥∥∥ηl∇̃C(i)(Kn)

∥∥∥
F
≤ h∆ ≤ h∆(Kn). Note that this inequality holds when ηl satisfies

∥∥∥ηl∇̃C(i)(Kn)
∥∥∥
F
= ηl

∥∥∥ 1

ns

ns∑
s=1

nunx

r2
C̃(i),(τ)

(
Kn + U (i)

s

)
U (i)
s

∥∥∥
F
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(a)

≤ ηl
H2

µ

∥∥∥ 1

ns

ns∑
i=1

nxnu

r2
C(i)

(
Kn + U (i)

s

)
U (i)
s

∥∥∥
F

=
ηlH

2

µ

∥∥∥∇̂C(i)(K)
∥∥∥
F

≤ ηlH
2

µ

[∥∥∥∇C(i)(K)
∥∥∥
F
+
∥∥∥∇̂C(i)(K)−∇C(i)(K)

∥∥∥
F

]
(b)

≤ ηlH
2

µ

[∥∥∥∇C(i) (Kn)
∥∥∥
F
+
√
ϵ̄
]

≤ ηlH
2

µ

(
h1 +

√
ϵ̄
)

(6.39)

where18 (a) is due to Lemma 39; according to Lemma 38, (b) holds with high probability, when the number of

the sample size satisfies ns ≥ hsample

(√
ϵ̄
2 , δ

L

)
. The last inequality follows from the uniform upper gradient

bound in Lemma 30. Then we can easily conclude that
∥∥∥ηl∇̃C(i)(Kn)

∥∥∥
F
≤ h∆ holds when ηl ≤ h∆µ

H2(h1+
√
ϵ̄)
.

Following the analysis in Eq (6.22), we have

C(j)(K
(i)
n,1)− C(j)(Kn) ≤ −ηl

〈
∇C(j)(Kn),∇C(j)(Kn)

〉
− ηl

〈
∇C(j)(Kn),∇C(i)(Kn)−∇C(j)(Kn)

〉
︸ ︷︷ ︸

T1

−ηl
〈
∇C(j)(Kn), ∇̃C(i)(Kn)−∇C(i)(Kn)

〉
︸ ︷︷ ︸

T2

+
hgrad(Kn)

2

∥∥∥ηl∇̃C(i)(Kn)
∥∥∥2
F
,

where T1 can be upper bounded as

T1 ≤ ηl

∥∥∥∇C(j)(Kn)
∥∥∥
F

∥∥∥∇C(i)(Kn)−∇C(j)(Kn)
∥∥∥
F

≤ ηl
√

min{nx, nu}
∥∥∥∇C(j)(Kn)

∥∥∥
F
(ϵ1h̄

1
het + ϵ2h̄

2
het),

where we use the policy gradient heterogeneity bound in Lemma 27 and the fact that Kn ∈ G0.

We can bound T2 as follows

T2 ≤ ηl

∥∥∥∇C(j)(Kn)
∥∥∥
F

∥∥∥∇̃C(i)(Kn)−∇C(i)(Kn)
∥∥∥
F

≤ ηl

∥∥∥∇C(j)(Kn)
∥∥∥
F

√
ϵ̄,

18For sake of the notation, we ignore the dependence on the local iteration l and global iteration n when we index

U
(i)
s in this part.
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where it holds with probability 1− δ. Here we use the Cauchy-Schwarz inequality in the first inequality, and

the second inequality is due to Lemma 39 since ns ≥ hsample,trunc

(√
ϵ̄
4 , δ, H

2

µ

)
, the smoothing radius satisfies

r ≤ hr

(√
ϵ̄
4

)
and the length of trajectories satisfies τ ≥ hτ

(
r
√
ϵ̄

4nxnu

)
.

Plugging the upper bounds of T1 and T2 in Eq (6.23), we have:

C(j)(K
(i)
n,1)− C(j)(Kn)

(a)

≤ −ηl
∥∥∥∇C(j)(Kn)

∥∥∥2
F
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥
F
(ϵ1h̄

1
het + ϵ2h̄

2
het)

+ ηl

∥∥∥∇C(j)(Kn)
∥∥∥
F

√
ϵ̄+

3hgrad(Kn)η
2
l

2

∥∥∥∇̃C(i)(Kn)−∇C(i)(Kn)
∥∥∥2
F

+
3hgrad(Kn)η

2
l

2

∥∥∥∇C(i)(Kn)−∇C(j)(Kn)
∥∥∥2
F

+
3hgrad(Kn)η

2
l

2

∥∥∥∇C(j)(Kn)
∥∥∥2
F

(b)

≤ −ηl
∥∥∥∇C(j)(Kn)

∥∥∥2
F
+ ηl

√
min{nx, nu}

∥∥∥∇C(j)(Kn)
∥∥∥
F
(ϵ1h̄

1
het + ϵ2h̄

2
het)

+ ηl

∥∥∥∇C(j)(Kn)
∥∥∥
F

√
ϵ̄+

3h̄gradη
2
l

2
ϵ̄

+
3h̄gradη

2
l min{nx, nu}

2
(ϵ1h̄

1
het + ϵ2h̄

2
het)

2 +
3h̄gradη

2
l

2

∥∥∥∇C(j)(Kn)
∥∥∥2
F
,

where (a) follows from Eq.(6.8); (b) follows from the same reasoning as we bound T1 and T2 and the fact

that Kn ∈ G0. If we choose the local step-size ηl satisfies ηl ≤ 1
9h̄grad

, i.e.,
3h̄gradη

2
l

2 ≤ ηl
6 , we have

C(j)(K
(i)
n,1)− C(j)(Kn)

(a)

≤ −ηl
∥∥∥∇C(j)(Kn)

∥∥∥2
F
+

ηl
6

∥∥∥∇C(j)(Kn)
∥∥∥2
F

+
3ηl min{nx, nu}

2
(ϵ1h̄

1
het + ϵ2h̄

2
het)

2 +
ηl

∥∥∥∇C(j)(Kn)
∥∥∥2
F

6
+

3ηlϵ̄

2
+

ηl
6
ϵ̄

+
ηl min{nx, nu}

6
(ϵ1h̄

1
het + ϵ2h̄

2
het)

2 +
ηl
6

∥∥∥∇C(j)(Kn)
∥∥∥2
F

≤ −ηl
2

∥∥∥∇C(j)(Kn)
∥∥∥2
F
+

5ηl min{nx, nu}
3

(ϵ1h̄
1
het + ϵ2h̄

2
het)

2 +
5ηl
3

ϵ̄

(b)

≤ −2ηlσmin(R)µ2

||ΣK∗
j
||

(C(j)(Kn)− C(j)(K∗
j )) +

5ηl min{nx, nu}
3

(ϵ1h̄
1
het + ϵ2h̄

2
het)

2 +
5ηl
3

ϵ̄,

where (a) follows from the Young’s inequality in Eq.(6.9); and (b) follows from the gradient domination in

Lemma 26.

Therefore, if the heterogeneity satisfies (ϵ1h̄1het + ϵ2h̄
2
het)

2 ≤ h̄3het, then we have

(ϵ1h̄
1
het + ϵ2h̄

2
het)

2 ≤ min
j∈[M ]

3µ2σmin(R)
(
C(j)(K0)− C(j)(K∗

j )
)

5||ΣK∗
j
||min{nx, nu}

 .
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Since the error tolerance

ϵ̄ = min
j∈[M ]

3µ2σmin(R)
(
C(j)(K0)− C(j)(K∗

j )
)

5||ΣK∗
j
||

 ,

we have

C(j)(K
(i)
n,1)− C(j)(K∗

j ) ≤

1− 2ηµ2σmin(R)∥∥∥ΣK∗
j

∥∥∥
 (C(j)(Kn)− C(j)(K∗

j ))

+
ηlµ

2σmin(R)
(
C(j)(K0)− C(j)(K∗

j )
)

||ΣK∗
j
||

+
ηlµ

2σmin(R)
(
C(j)(K0)− C(j)(K∗

j )
)

||ΣK∗
j
||

(a)

≤

1− 2ηµ2σmin(R)∥∥∥ΣK∗
j

∥∥∥
 (C(j)(K0)− C(j)(K∗

j )) +
2ηlµ

2σmin(R)
(
C(j)(K0)− C(j)(K∗

j )
)

||ΣK∗
j
||

= C(j)(K0)− C(j)(K∗
j ), ∀j ∈ [M ],

where we use the fact that Kn ∈ G0 in (a). The above inequality implies K(i)
n,1 ∈ G0 with high probability

1 − δ when Kn ∈ G0. Then we can use the induction method to obtain that K(i)
n,2 ∈ G0, since K

(i)
n,1 ∈ G0.

By repeating this step for L times, we have that all the local polices K(i)
n,l ∈ G

0 holds for all i ∈ [M ] and

l = 0, 1, · · · , L− 1, when the global policy Kn ∈ G0. □

Lemma 41. (Drift term analysis) Suppose Kn ∈ G0. If ηl ≤ min

{
1

4h̄grad
, 14 ,

log 2
L(3h̄grad+2)

}
, the number of

the sample size ns satisfies

ns ≥
hsample,trunc

(√
ϵ
4 , δ

L ,
H2

µ

)
ML

,

the smoothing radius satisfies r ≤ hr

(√
ϵ
4

)
and the length of trajectories satisfies τ ≥ hτ

(
r
√
ϵ

4nxnu

)
, given

any δ ∈ (0, 1), the difference between the local policy and global policy can be bounded by∥∥∥K(i)
n,l −Kn

∥∥∥2
F
≤ 2ηlL

[∥∥∥∇C(i)(Kn)
∥∥∥2
F
+MLϵ

]
=

2η

ηg

[∥∥∥∇C(i)(Kn)
∥∥∥2
F
+MLϵ

]
holds, with probability 1− δ, for all i ∈ [M ] and l = 0, 1, · · · , L− 1.

Proof:∥∥∥K(i)
n,l −Kn

∥∥∥2
F
=
∥∥∥K(i)

n,l−1 −Kn − ηl∇̃C(i)(K
(i)
n,l−1)

∥∥∥2
F
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=
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
− 2ηl

[〈
∇̃C(i)(K

(i)
n,l−1),K

(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇̃C(i)(K

(i)
n,l−1)

∥∥∥2
F

=
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
− 2ηl

[〈
∇̃C(i)(K

(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1),K

(i)
n,l−1 −Kn

〉]
− 2ηl

[〈
∇C(i)(K

(i)
n,l−1)−∇C

(i)(Kn),K
(i)
n,l−1 −Kn

〉]
− 2ηl

[〈
∇C(i)(Kn),K

(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇̃C(i)(K

(i)
n,l−1)

∥∥∥2
F

(a)

≤
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
− 2ηl

[〈
∇̃C(i)(K

(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1),K

(i)
n,l−1 −Kn

〉]
+ 2ηl

∥∥∥∇C(i)(K
(i)
n,l−1)−∇C

(i)(Kn)
∥∥∥
F

∥∥∥K(i)
n,l−1 −Kn

∥∥∥
F
+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥
F

∥∥∥K(i)
n,l−1 −Kn

∥∥∥
F

+
∥∥∥ηl∇̃C(i)(K

(i)
n,l−1)

∥∥∥2
F

(b)

≤
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
− 2ηl

[〈
∇̃C(i)(K

(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1),K

(i)
n,l−1 −Kn

〉]
+ 2ηlhgrad(Kn)

∥∥∥K(i)
n,l−1 −Kn

∥∥∥
F

∥∥∥K(i)
n,l−1 −Kn

∥∥∥
F
+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ ηl

∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F

+
∥∥∥ηl∇̃C(i)(K

(i)
n,l−1)

∥∥∥2
F

(6.40)

where we use Cauchy–schwarz inequality for (a); and for (b), we use Eq. (6.9).

Following the analysis in Eq.(6.40), we have∥∥∥K(i)
n,l −Kn

∥∥∥2
F
≤
(
1 + 2ηlhgrad(Kn) + ηl

) ∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F
+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F

− 2ηl

[〈
∇̃C(i)(K

(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1),K

(i)
n,l−1 −Kn

〉]
+
∥∥∥ηl∇̃C(i)(K

(i)
n,l−1)

∥∥∥2
F

(a)

≤
(
1 + 2ηlhgrad(Kn) + ηl

) ∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F
+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F

+ 2ηl

[∥∥∥∇̃C(i)(K
(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1)

∥∥∥
F

∥∥∥K(i)
n,l−1 −Kn

∥∥∥
F

]
+ 2η2l

∥∥∥∇̃C(i)(K
(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1)

∥∥∥2
F
+ 2η2l

∥∥∥∇C(i)(K
(i)
n,l−1)

∥∥∥2
F

(b)

≤
(
1 + 2ηlhgrad(Kn) + ηl

) ∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F
+ ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F

+ ηl

∥∥∥∇̃C(i)(K
(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1)

∥∥∥2
F
+ ηl

∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F

+ 2η2l

∥∥∥∇̃C(i)(K
(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1)

∥∥∥2
F

+ 4η2l

∥∥∥∇C(i)(K
(i)
n,l−1)−∇C

(i)(Kn)
∥∥∥2
F
+ 4η2l

∥∥∥∇C(i)(Kn)
∥∥∥2
F

(c)

≤
(
1 + 2ηlhgrad(Kn) + ηl

) ∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F
+ (ηl + 4η2l )

∥∥∥∇C(i)(Kn)
∥∥∥2
F
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+ ηl

∥∥∥∇̃C(i)(K
(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1)

∥∥∥2
F
+ ηl

∥∥∥K(i)
n,l−1 −Kn

∥∥∥2
F

+ 2η2l

∥∥∥∇̃C(i)(K
(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1)

∥∥∥2
F
+ 4η2l hgrad(Kn)

2
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F

(d)
=
(
1 + 2ηlhgrad(Kn) + 2ηl + 4η2l hgrad(Kn)

2
) ∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
+ (ηl + 4η2l )

∥∥∥∇C(i)(Kn)
∥∥∥2
F

+
(
ηl + 2η2l

) ∥∥∥∇̃C(i)(K
(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1)

∥∥∥2
F

≤
(
1 + 2ηlh̄grad + 2ηl + 4η2l h̄

2
grad
) ∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
+ (ηl + 4η2l )

∥∥∥∇C(i)(Kn)
∥∥∥2
F

+
(
ηl + 2η2l

) ∥∥∥∇̃C(i)(K
(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1)

∥∥∥2
F︸ ︷︷ ︸

T1

,

where we use Cauchy-Schwarz inequality and Eq.(6.6) for (a); for (b), we use Eq.(6.6) and (6.8); for (c), we

use the gradient smoothness lemma in Lemma 25; and for (d), we use the fact that Kn ∈ G0.

From Lemma 39, we can bound T1 term as follows

T1 =
∥∥∥∇̃C(i)(K

(i)
n,l−1)−∇C

(i)(K
(i)
n,l−1)

∥∥∥2
F
≤MLϵ,

where it holds with probability 1 − δ, since ns ≥
hsample,trunc

(√
ϵ

4
,δ,H

2

µ

)
ML , the smoothing radius satisfies

r ≤ hr

(√
ϵ
4

)
and the length of trajectories satisfies τ ≥ hτ

(
r
√
ϵ

4nxnu

)
.

Then we have∥∥∥K(i)
n,l −Kn

∥∥∥2
F
≤
(
1 + 2ηlh̄grad + 2ηl + 4η2l h̄

2
grad
) ∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
+ (ηl + 4η2l )

∥∥∥∇C(i)(Kn)
∥∥∥2
F

+
(
ηl + 2η2l

)
MLϵ

(a)

≤ (1 + 3ηlh̄grad + 2ηl)
∥∥∥K(i)

n,l−1 −Kn

∥∥∥2
F
+ 2ηl

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ 2ηlMLϵ

≤ (1 + 3ηlh̄grad + 2ηl)
l
∥∥∥K(i)

n,0 −Kn

∥∥∥2
F︸ ︷︷ ︸

=0

+ 2ηl

l−1∑
j=0

(
1 + 3ηlh̄grad + 2ηl

)j [∥∥∥∇C(i)(Kn)
∥∥∥2
F
+MLϵ

]

≤ 2ηl ×
(
1 + 3ηlh̄grad + 2ηl

)l − 1(
1 + 3ηlh̄grad + 2ηl

)
− 1

[∥∥∥∇C(i)(Kn)
∥∥∥2
F
+MLϵ

]

≤ 2×
(
1 + 3ηlh̄grad + 2ηl

)l − 1

3h̄grad + 2

[∥∥∥∇C(i)(Kn)
∥∥∥2
F
+MLϵ

]
(b)

≤ 2×
1 + l(3ηlh̄grad + 2ηl)− 1

3h̄grad + 2

[∥∥∥∇C(i)(Kn)
∥∥∥2
F
+MLϵ

]
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≤ 2ηlL

[∥∥∥∇C(i)(Kn)
∥∥∥2
F
+MLϵ

]
,

where (a) is due to the choice of local step-size which satisfies 2ηlh̄grad + 2ηl + 4η2l h̄
2
grad ≤ 3ηlh̄grad + 2ηl

and ηl + 2η2l ≤ ηl + 4η2l ≤ 2ηl, i.e., ηl ≤ min

{
1

4h̄grad
, 14

}
. For (b), we used the fact that (1 + x)τ+1 ≤

1 + 2x(τ + 1) holds for x ≤ log 2
τ . In other words,

(
1 + 3ηlh̄grad + 2ηl

)l ≤ 1 + l(3ηlh̄grad + 2ηl) when

3ηlh̄grad + 2ηl ≤ log 2
l , i.e., ηl ≤ log 2

L(3h̄grad+2)
. □

Lemma 42. (Per round progress) Suppose Kn ∈ G0. If we choose the local step-size as

ηl =
1

2
min

{
h∆µ

H2 (h1 +
√
ϵ)
,

1

9h̄grad
,
1

4
,

log 2

L(3h̄grad + 2)
,

1

256Lh̄2grad

}
,

with step-size η := Lηlηg = 1
2 min{ h∆µ

H2(h1+
√
ϵ)
, 1, 1

32h̄grad
}, and the smoothing radius19

r ≤ min

{
mini∈[M ]C

(i)(K0)

h̄cost
, h∆, hr

(√
ϵ

4

)}
,

where the trajectory length satisfies τ ≥ hτ

(
r
√
ϵ

4nxnu

)
, and the number of the sample size satisfies

ns ≥
hsample,trunc

(√
ϵ
4 , δ

L ,
H2

µ

)
ML

,

then with probability 1 − δ, for any small δ ∈ (0, 1), the FedLQR algorithm provides the following

convergence guarantee:

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)
(C(i)(Kn)− C(i)(K∗

i )) + 2ηϵ

+ 2ηmin{nx, nu}(ϵ1h̄1het + ϵ1h̄
2
het).

2 (6.41)

Proof: For any i ∈ [M ], according to the local Lipschitz property in Lemma 25, we have that

C(i)(Kn+1)− C(i)(Kn) ≤ ⟨∇C(i)(Kn),Kn+1 −Kn⟩+
hgrad(Kn)

2
∥Kn+1 −Kn∥2F

19The exact requirement of r is r ≤ min
{

mini∈[M] C
(i)(K0)

h̄cost
, h∆, hr

(√
ϵ

4

)
, hr

(√
ϵ̄

4

)}
. Here, without loss of

generality, we drop the hr

(√
ϵ̄

4

)
term from the min expression. This can be done because the error tolerance ϵ is

usually small, and so hr

(√
ϵ

4

)
≤ hr

(√
ϵ̄

4

)
holds. The assumptions on τ and ns follow similarly.
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= −

〈
∇C(i)(Kn),

η

ML

M∑
j=1

L−1∑
l=0

∇̃C(j)(K
(j)
n,l )

〉
+

hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇̃C(j)(K
(j)
n,l )
∥∥∥2
F
, (6.42)

holds when
∥∥∥ η
ML

∑M
j=1

∑L−1
l=0 ∇̃C(j)(K

(j)
n,l )
∥∥∥
F
≤ h∆ ≤ h∆(Kn). Following the same analysis as Eq.(6.39),

this inequality holds when

η ≤ h∆µ

H2 (h1 +
√
ϵ)
, r ≤ min

{
mini∈[M ]C

(i)(K0)

h̄cost
, h∆

}
.

Following the analysis in Eq.(6.42), we have

C(i)(Kn+1)− C(i)(Kn) ≤ −

〈
∇C(i)(Kn),

η

ML

M∑
j=1

L−1∑
l=0

∇̃C(j)(K
(j)
n,l )−

η

ML

M∑
j=1

L−1∑
l=0

∇C(j)(K
(j)
n,l )

〉

−

〈
∇C(i)(Kn),

η

ML

M∑
j=1

L−1∑
l=0

∇C(j)(K
(j)
n,l )−∇C

(j)(Kn)

〉

−

〈
∇C(i)(Kn),

η

M

M∑
j=1

∇C(j)(Kn)−∇C(i)(Kn)

〉
− η

∥∥∥C(i)(Kn)
∥∥∥2

+
hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇̃C(j)(K
(j)
n,l )
∥∥∥2
F

(a)

≤ η
∥∥∥∇C(i)(Kn)

∥∥∥
F

∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

[
∇̃C(j)(K

(j)
n,l )−∇C

(j)(K
(j)
n,l )
] ∥∥∥

F

+ η
∥∥∥∇C(i)(Kn)

∥∥∥
F

∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

[
∇C(j)(K

(j)
n,l )−∇C

(j)(Kn)
] ∥∥∥

F

+ η
∥∥∥∇C(i)(Kn)

∥∥∥
F

∥∥∥ 1

M

M∑
j=1

[
∇C(j)(Kn)−∇C(i)(Kn)

] ∥∥∥
F
− η
∥∥∥∇C(i)(Kn)

∥∥∥2
F

+
hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇̃C(j)(K
(j)
n,l )
∥∥∥2
F

(b)

≤ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ η
∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

[
∇̃C(j)(K

(j)
n,l )−∇C

(j)(K
(j)
n,l )
] ∥∥∥2

F

+
η

8

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+

2ηhgrad(Kn)
2

ML

M∑
j=1

L−1∑
l=0

∥∥∥K(j)
n,l −Kn

∥∥∥2
F

+
η

4

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+

η

M

M∑
j=1

∥∥∥∇C(j)(Kn)− C(i)(Kn)
∥∥∥2
F

− η
∥∥∥∇C(i)(Kn)

∥∥∥2
F
+

hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇̃C(j)(K
(j)
n,l )
∥∥∥2
F
,
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where (a) is due to Cauchy–Schwarz inequality; and (b) is due to Cauchy–Schwarz inequality and Eq.(6.7).

Moreover, we have

C(i)(Kn+1)− C(i)(Kn)
(b)

≤ η

4

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ η
∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

[
∇̃C(j)(K

(j)
n,l )−∇C

(j)(K
(j)
n,l )
] ∥∥∥2

F

+
η

8

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+

2ηhgrad(Kn)
2

ML

M∑
j=1

L−1∑
l=0

∥∥∥K(j)
n,l −Kn

∥∥∥2
F

+
η

4

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+

η

M

M∑
j=1

∥∥∥∇C(j)(Kn)− C(i)(Kn)
∥∥∥2
F

− η
∥∥∥∇C(i)(Kn)

∥∥∥2
F
+

hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇̃C(j)(K
(j)
n,l )
∥∥∥2
F

(c)

≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ ηϵ+

4η2h̄2grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2
F
+MLϵ

]

+ ηmin{nx, nu}(ϵ1h̄1het + ϵ1h̄
2
het)

2 +
hgrad(Kn)

2

∥∥∥ η

ML

M∑
j=1

L−1∑
l=0

∇̃C(j)(K
(j)
n,l )
∥∥∥2
F
,

(6.43)

where (b) follows from the gradient Lipschitz property in Lemma 25; and (c) follows from the policy gradient

heterogeneity property in Lemma 27, Lemma 28 and Lemma 41.

Following the analysis in Eq.(6.43), we have

C(i)(Kn+1)− C(i)(Kn)
(d)

≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ ηϵ+

4η2h̄2grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2
F
+MLϵ

]
+ ηmin{nx, nu}(ϵ1h1het + ϵ1h

2
het)

2

+
4η2h̄grad

2

∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

∇̃C(j)(K
(j)
n,l )−∇C

(j)(K
(j)
n,l )
∥∥∥2
F

+
4η2h̄grad

2

∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

∇C(j)(K
(j)
n,l )−∇C

(j)(Kn)
∥∥∥2
F

+
4η2h̄grad

2M

M∑
j=1

∥∥∥∇C(j)(Kn)−∇C(i)(Kn)
∥∥∥2
F
+

4η2h̄grad

2

∥∥∥∇C(i)(Kn)
∥∥∥2
F

(e)

≤ −3η

8

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ (η + 2η2h̄grad)ϵ+

4η2h̄2grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2
F
+MLϵ

]
+ (η + 2η2h̄grad)min{nx, nu}(ϵ1h1het + ϵ1h

2
het)

2 + 2η2h̄grad

∥∥∥∇C(i)(Kn)
∥∥∥2
F
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+
4η2h̄grad

2

∥∥∥ 1

ML

M∑
j=1

L−1∑
l=0

∇C(j)(K
(j)
n,l )−∇C

(j)(Kn)
∥∥∥2
F

(f)

≤ −
(
3η

8
+ 2η2h̄grad

)∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ (η + 2η2h̄grad)ϵ

+
4η2h̄2grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2
F
+MLϵ

]
+ (η + 2η2h̄grad)min{nx, nu}(ϵ1h1het + ϵ1h

2
het)

2

+
4η2h̄2grad

2ML

M∑
j=1

L−1∑
l=0

∥∥∥K(j)
n,l −Kn

∥∥∥2
F

(g)

≤ −
(
3η

8
+ 2η2h̄grad

)∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ (η + 2η2h̄grad)ϵ

+
4η2h̄2grad + 4η3h̄2grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2
F
+MLϵ

]
+ (η + 2η2h̄grad)min{nx, nu}(ϵ1h̄1het + ϵ1h̄

2
het)

2, (6.44)

where (d) is due to Eq.(6.8); (e) is due to variance reduction property in Lemma 28 and policy gradient

heterogeneity in Lemma 27; (f) is due to gradient Lipschitz property in Lemma 25; (g) is due to drift term

analysis in Lemma 41.

Continuing the analysis in Eq.(6.44), we have that

C(i)(Kn+1)− C(i)(Kn) ≤ −
(
3η

8
+ 2η2h̄grad

)∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ (η + 2η2h̄grad)ϵ

+
4η2h̄2grad + 4η3h̄2grad

ηgM

M∑
j=1

[∥∥∥∇C(j)(Kn)
∥∥∥2
F
+MLϵ

]
+ (η + 2η2h̄grad)min{nx, nu}(ϵ1h̄1het + ϵ1h̄

2
het)

2

(a)

≤ −
(
3η

8
+ 2η2h̄grad

)∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ (η + 2η2h̄grad)ϵ

+
4η2h̄2grad + 4η3h̄2grad

ηgM

M∑
j=1

[
2
∥∥∥∇C(j)(Kn)−∇C(i)(Kn)

∥∥∥2
F
+ 2
∥∥∥∇C(i)(Kn)

∥∥∥2
F
+MLϵ

]
+ (η + 2η2h̄grad)min{nx, nu}(ϵ1h̄1het + ϵ1h̄

2
het)

2

(b)

≤ −

(
3η

8
+ 2η2h̄grad +

8η2h̄2grad + 8η3h̄2grad

ηg

)∥∥∥∇C(i)(Kn)
∥∥∥2
F

+

(
η + 2η2h̄grad +

4η2h̄2grad + 4η3h̄2grad

ηg
ML

)
ϵ
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+

(
η + 2η2h̄grad +

8η2h̄2grad + 8η3h̄2grad

ηg

)
min{nx, nu}(ϵ1h̄1het + ϵ1h̄

2
het)

2

(c)

≤ −η

4

∥∥∥∇C(i)(Kn)
∥∥∥2
F
+ 2ηϵ+ 2ηmin{nx, nu}(ϵ1h̄1het + ϵ1h̄

2
het)

2

(d)

≤ −ηµ2σmin(R)∥∥ΣK∗
i

∥∥ (C(i)(Kn)− C(i)(K∗
i )) + 2ηϵ+ 2ηmin{nx, nu}(ϵ1h̄1het + ϵ1h̄

2
het)

2,

(6.45)

where (a) is due to Eq.(6.8); (b) is due to policy gradient heterogeneity in Lemma 27; and (c) is due to the

choice of step-size such that 3η
8 + 2η2h̄grad +

8η2h̄2
grad+8η3h̄2

grad
ηg

≤ η
4 and

η + 2η2h̄grad +
8η2h̄2grad + 8η3h̄2grad

ηg
≤ 2η,

which holds when η ≤ min{ 1
32h̄grad

, 1} and ηl ≤ 1
256Lh̄2

grad
; for (d) we use the gradient domination lemma

in Lemma 26.

In conclusion, we have that

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)
(C(i)(Kn)− C(i)(K∗

i )) + 2ηϵ

+ 2ηmin{nx, nu}(ϵ1h̄1het + ϵ1h̄
2
het)

2,

holds when the step-size, smoothing radius, trajectory length, and sample size satisfy the requirements

mentioned above and those in Lemma 40 and Lemma 41. □

With this lemma, we are now ready to provide the convergence guarantees for the FedLQR under the

model-free setting.

Proof of the iterative stability guarantees of FedLQR: Here, we leverage the method of induction

to prove FedLQR’s iterative stability guarantees. First, we start from an initial policy K0 ∈ G0. At round n,

we assume Kn ∈ G0. According to Lemma 40, we have that all the local policies K(i)
n,l ∈ G

0. Furthermore,

frame the hypotheses of in Lemma 42, we have that

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)
(C(i)(Kn)− C(i)(K∗

i )) + 2ηϵ

+ 2ηmin{nx, nu}(ϵ1h̄1het + ϵ1h̄
2
het)

2.
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Since (ϵ1h̄
1
het + ϵ2h̄

2
het)

2 ≤ h̄3het, we have

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)
(C(i)(K0)− C(i)(K∗

i )) + 2ηϵ

+
ηµ2σmin(R)

2
∥∥ΣK∗

i

∥∥ (C(i)(K0)− C(i)(K∗
i ))

(a)

≤ C(i)(K0)− C(i)(K∗
i ),

where (a) follows from the fact that ϵ can be arbitrarily small by choosing a small smoothing radius, sufficient

long trajectory length, and enough samples. □

With this, we can easily have that the global policy Kn+1 at the next round n+ 1 is also stabilizing, i.e.,

Kn+1 ∈ G0. Therefore, we can finish proving FedLQR’s iterative stability property by inductively reasoning.

Proof of FedLQR’s convergence: From Eq.(6.41), we have

C(i)(Kn+1)− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)
(C(i)(Kn)− C(i)(K∗

i )) + 2ηϵ

+ 2ηmin{nx, nu}(ϵ1h̄1het + ϵ1h̄
2
het)

2,

Using the above inequality recursively, FedLQR enjoys the following convergence guarantee after N

rounds:

C(i)(KN )− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i )) +

2
∥∥ΣK∗

i

∥∥
µ2σmin(R)

ϵ

+
2min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R)

(ϵ1h̄
1
het + ϵ1h̄

2
het)

2.

Suppose the trajectory length satisfies τ ≥ hτ

(
rϵ′

4nxnu

)
, the smoothing radius satisfies r ≤ h′r

(
ϵ′

4

)
, where

h′r

(
ϵ′

4

)
:= min

{
mini∈[M ]C

(i)(K0)

h̄cost
, h∆, hr

(
ϵ′

4

)}
,

and the number of the sample size of each agent ns satisfies

ns ≥
hsample,trunc

(
ϵ′

4 ,
δ

ML ,
H2

µ

)
ML

,

with ϵ′ =
√

µ2σmin(R)

4
∥∥∥ΣK∗

i

∥∥∥ · ϵ.
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When the number of rounds N ≥
cuni,4

∥∥∥ΣK∗
i

∥∥∥
ηµ2σmin(R)

log
(
2(C(i)(K0)−C(i)(K∗

i ))
ϵ′

)
, our FedLQR algorithm enjoys

the following convergence guarantee:

C(i)(KN )− C(i)(K∗
i ) ≤

(
1− ηµ2σmin(R)∥∥ΣK∗

i

∥∥
)N

(C(i)(K0)− C(i)(K∗
i )) +

ϵ′

2

+
2min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R)

(ϵ1h
1
het + ϵ1h

2
het)

2

≤ ϵ′ +
2min{nx, nu}

∥∥ΣK∗
i

∥∥
µ2σmin(R)

(ϵ1h
1
het + ϵ1h

2
het)

2.

Thus, we complete the proof with cuni,2 = 2, cuni,3 = 1 and cuni,4 = 1. □
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Chapter 7

Personalized System Identification

7.1 Introduction

System identification is the data-driven process of estimating a dynamic model of a system based on

observations of the system trajectories. It plays a crucial role in aiding our understanding of complex systems

and is a fundamental problem in numerous fields, including time-series analysis, control theory, robotics,

and reinforcement learning [7, 125]. The effective utilization of available data is pivotal in obtaining an

accurate model estimate with a measure of uncertainty quantification. Traditional system identification,

methods [125] have focused on asymptotic analysis, which, although insightful, is restrictive when dealing

with small to medium sized data sets. Motivated by this, and the fact that data generation is often costly and

time consuming, modern approaches focus on developing sample complexity bounds (i.e., non-asymptotic

convergence analysis).

Results on the estimation of both fully [35, 168, 179] and partially [146, 177, 186, 206, 253] observed

LTI systems have demonstrated that a more precise characterization of error bounds is essential for designing

efficient and robust control systems [35, 206, 254]. These studies provide non-asymptotic bounds that are

functions of the number of observed trajectories (see Table 1 of [253] for a summary of the bounds).

A recent body of work has begun to formalize methods for improving sample efficiency by considering

data (or models generated from data) from multiple systems [27, 193, 212, 229, 230, 245, 246]. Leveraging

data from similar systems provides a promising approach although clarifying the effect of the heterogeneity

in the systems and their environments is crucial. The aforementioned work have demonstrated that the benefit
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of collaboration typically reduces the sample complexity by a factor of the number of collaborators, when

compared to the single-agent setting where each system estimate its dynamics from its own observations.

However, the approaches discussed in [212, 229, 230] compute a common estimation for all participants,

thereby restricting the ability to obtain personalized estimations. Furthermore, the sample complexity bounds

achieved in those studies are subject to an unavoidable heterogeneity bias that cannot be controlled by

the number of trajectories or systems, thus leading to an estimation error that scales with the measure

of heterogeneity among the considered systems. Specifically in [212, 229, 230] the error of the system

identification process is shown to be of order O( 1√
N

+ ϵhet) where ϵhet characterizes the worst case

heterogeneity and N is the number of trajectories across all systems.

Personalization in collaborative settings aims to provide tailored solutions (e.g. model estimates) to

individual agents with distinct objectives, while enabling inter-agent collaboration (e.g. model sharing). This

encompasses diverse topics such as representation learning [12, 30, 52, 246] and clustering [233], both widely

studied in machine learning and data analysis. The present work address the aforementioned challenges

by leveraging clustering techniques to achieve personalized model estimations. The idea is simple: cluster

systems into groups that have identical system dynamics, and then apply collaborative learning algorithms to

the clusters in order to improve sample complexity (by reducing the heterogeneity induced error ϵhet) and

achieve personalization even for heterogeneous settings.

Recent work on clustered federated learning that includes [60], [62], [170] have shown the potential of

clustering techniques to collaboratively train models in heterogeneous settings with non-i.i.d. data. Building

upon this success, this paper aims to apply clustering to the system identification problem, which poses

unique challenges due to the dynamical nature of the system that results in non-i.i.d. data. This is in contrast

to the linear regression and model training settings explored in the aforementioned work. Further details on

these challenges are discussed later.

Specifically, we investigate the scenario where we have M dynamical systems, with each of them

belonging to one of K different system types (which we refer to as a “cluster”). Which cluster a system

belongs to is not initially disclosed. Our objective is to simultaneously identify the correct cluster identities

for each of the M systems and obtain a system model by collaboratively learning with the systems in the

same cluster. Our approach can lead to significant reductions in the amount of data required to accurately

estimate the system models, as illustrated in the following theorem.

Theorem 11. (main result, informal) Suppose the K system types are sufficiently different, and we observe
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the same number of trajectories from each system. Then, for a given cluster, with high probability, the

estimation error between the learned and ground truth model is bounded by:

estimation error ≲
1√

# systems× # trajectories
+ misclass. rate ,

with

misclass. rate ≲ exp(−# trajectories× misclass. const.).

where #systems denotes the number of systems in the cluster, and #trajectories represents the number of

trajectories observed by each of them.

The first term captures the error in learning the system dynamics from systems’ observations within

the same cluster. It shows what one would hope; as the number of systems and observations increase, the

error decreases. However, this speedup does not come for free. The second term is the penalty paid for

assigning one of the M systems to one of the incorrect K clusters. One of the main results from our work is

to show that both terms can be controlled by adjusting the number of observed trajectories. Moreover, the

misclassification rate is dominated by the first term, thus leading to a an approximate sample complexity that

is scale inversely with the number of system within the cluster. This is in stark contrast to [212, 229, 230]

which is where the heterogeneity introduces a bias ϵ which is not a function of the number of systems or the

volume of data at our disposal. Our work shows that by controlling both sources of error, our approach can

accurately estimate the system dynamics with fewer samples, when compared to the single agent case, and

provides better estimation in heterogeneous settings when compared to [212, 229, 230].

Contributions: This is the first work to introduce clustering in order to provide sample complexity

gains to the collaborative system identification problem. We derive an upper bound on the estimation error

(Theorem 12) that decomposes into two terms (as shown above), where each term can be controlled by

adjusting the number of observed trajectories. We offer theoretical guarantees on the probability of cluster

identity misclassification (Lemma 43) and thus convergence (Corollary 3). We show that under a mild

assumption on the number of observed trajectories, our approach correctly estimates the cluster identities,

with high probability. Moreover, we show that our method achieves an improved convergence rate when

compared to the single-agent system identification process. In contrast to the federated setting [27, 212] and

that of [229, 230], we are able to provide personalized models as opposed to a single generic model, thus

expanding the use cases for collaborative system identification.

Refer to [199] for all proofs in this Chapter.



CHAPTER 7. PERSONALIZED SYSTEM IDENTIFICATION 255

7.1.1 Notation

Given a matrix G ∈ Rm×n, the Frobenius norm of G is denoted by ∥G∥F=
√

Tr(GG⊤). ∥G∥=

σmax(G), where σmax(G) is the largest singular value of G. Consider a symmetric matrix Σ, λmin(Σ) and

λmax(Σ) denote its minimum and maximum eigenvalues, respectively. For systems, we use superscript (i)

to denote the system index and subscript t for time. For models, subscript denotes the cluster identity, and

superscript (r) is the iteration counter.

7.2 Problem Formulation and Algorithm

Consider M linear time-invariant (LTI) systems

x
(i)
t+1 = A(i)x

(i)
t +B(i)u

(i)
t + w

(i)
t , t = 0, 1, . . . , T − 1 (7.1)

where x
(i)
t ∈ Rnx , u(i)t ∈ Rnu and w

(i)
t ∈ Rnx are the state, input, and process noise at time t, for system

i ∈ [M ]. We assume that {u(i)t }
T−1
t=1 , {w

(i)
t }

T−1
t=1 are random vectors distributed according to u

(i)
t

i.i.d.∼

N
(
0, σ2

u,iInu

)
and w

(i)
t

i.i.d.∼ N
(
0, σ2

w,iInx

)
. Furthermore, it is assumed that x(i)0

i.i.d.∼ N
(
0, σ2

x,iInx

)
.

We consider the setting where we have access to M datasets corresponding to observed system trajectories.

Each of the datasets is generated by one of K different systems. We consider the case where K ≪M . We

will from now on refer to the K types of different systems as “clusters”, which we label as C1, . . . , CK . We

denote (Aj , Bj) as the ground truth system matrices of cluster j ∈ [K]. That is, A(i) = Aj , and B(i) = Bj ,

for any i ∈ Cj . Note that due to the noise in model (7.1), two datasets generated by cluster Cj will be different.

The state-input pair of a single trajectory {x(i)t , u
(i)
t } of system i ∈ Cj is referred to as rollout. We

consider the setting where multiple rollouts of length T are collected and stored as
{
x
(i)
l,t , u

(i)
l,t

}T−1

t=0
, for

l = 1, . . . Ni, with l denoting the l-th rollout and t the t-th time-step of the corresponding rollout. Thus, for

any system i ∈ Cj and cluster j ∈ [K], the system dynamics is described by:

x
(i)
l,t+1 = Θjz

(i)
l,t + w

(i)
l,t ∀ 1 ≤ l ≤ Ni and 0 ≤ t ≤ T − 1, (7.2)

where z
(i),⊤
l,t ≜

[
x
(i),⊤
l,t u

(i),⊤
l,t

]
∈ Rnx+nu corresponds to the augmented state-input pair of system i ∈ Cj

over rollout l at time t, and Θj ≜ [Aj Bj ] denotes the concatenation of the ground truth system matrices Aj
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and Bj . The state update x
(i)
l,t+1 can be expanded recursively as follows:

x
(i)
l,t = G

(i)
t


u
(i)
l,0
...

u
(i)
l,t−1

+ F
(i)
t


w

(i)
l,0
...

w
(i)
l,t−1

+At
jx

(i)
l,0,

where, G(i)
t ≜

[
At−1

j Bj At−2
j Bj · · · Bj

]
and Ft ≜

[
At−1

j At−2
j · · · Inx

]
for all t ≥ 1.

The state-input pair z(i)l,t is distributed according to a Gaussian distribution with zero mean and covariance

matrix Σ
(i)
t , where,

Σ
(i)
0 ≜

 σ2
x,iInx 0

0 σ2
u,iInu

 ≻ 0, for t = 0,

and

Σ
(i)
t ≜

 σ2
u,iG

(i)
t G

(i),⊤
t + σ2

w,iF
(i)
t F

(i),⊤
t + σ2

x,iA
t
j(A

t
j)

⊤ 0

0 σ2
u,iInu

 ,

for all t ≥ 1 and i ∈ Cj , ∀j ∈ [K], as detailed in [212].

Next, we define the offline batch matrices for each system i ∈ Cj , ∀j ∈ [K]. For a single rollout l, the

data is concatenated according to X
(i)
l =

[
x
(i)
l,T · · · x

(i)
l,1

]
∈ Rnx×T , Z

(i)
l =

[
z
(i)
l,T−1 · · · z

(i)
l,0

]
∈

R(nx+nu)×T , and W
(i)
l =

[
w

(i)
l,T−1 · · · w

(i)
l,0

]
∈ Rnx×T . This is then further stacked to construct the

batch matrices

X(i) =
[
X

(i)
1 . . . X

(i)
Ni

]
∈ Rnx×NiT , Z(i) =

[
Z

(i)
1 · · · Z

(i)
Ni

]
∈ R(nx+nu)×NiT ,

and W (i) =
[
W

(i)
1 · · · W

(i)
Ni

]
∈ Rnx×NiT . Therefore, for each system i ∈ Cj , ∀j ∈ [K], its state, input,

noise, and model parameters are related according to

X(i) = ΘjZ
(i) +W (i), (7.3)

where each column of Z(i) and W (i) are sampled according to Gaussian distributions with zero means and

covariance matrices Σ(i)
t , σ2

w,iInx , respectively. With that said, we are now able to introduce the clustered

system identification problem.

Problem 1. We consider M dynamical systems as in (7.1) that are equipped with batch matrices X(i), Z(i),

and W (i). Each system i ∈ [M ] is associated with its own cost function C(i)(Θ) = ∥X(i) −ΘZ(i)∥2F , and is

unaware of its cluster identity. We aim to estimate the systems’ cluster identities Ĉ1, . . . , ĈK and use it to

estimate a model Θ̂j = [Âj B̂j ] which is close to the ground truth Θj , ∀j ∈ [K].
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To obtain a faster and more accurate estimation, we frame the system identification problem in the setting

where systems within the same cluster can leverage data from each other. Further in this paper, we provide

theoretical guarantees to support these statements.

The problem described above can be framed into an alternating optimization problem, as the actual

cluster identity of each system (i.e., C1, . . . , CK) is not disclosed to the systems in advance. Therefore, our

objective is twofold: firstly, we aim to classify the correct cluster identities of the systems by employing the

Mean Square Error (MSE) as the clustering criterion, with the resulting output being the cluster estimation

(CE); secondly, we use that estimation to identify the model dynamics of each cluster with a model estimation

(ME) step. Next, we introduce our clustered system identification algorithm to solve this problem.

Algorithm 9 Clustered System Identification

1: Initialization: number of clusters K, step-size ηj , and model initialization Θ̂
(0)
j ∀j ∈ [K],

2: for each iteration r = 0, 1, . . . , R− 1 do

3: The systems receive the models {Θ̂(r)
1 , . . . , Θ̂

(r)
K }, ∀j ∈ [K],

4: Cluster estimation (CE):

5: for each system i ∈ [M ]

6: ĵ = argminj∈[K]∥X(i) − Θ̂
(r)
j Z(i)∥2F ,

7: define ei = {ei,j}Kj=1 with ei,j = 1{j = ĵ},

8: end for

9: Model estimation (ME):

10: Θ̂
(r+1)
j = Θ̂

(r)
j +

2ηj∑
i∈[M ] ei,j

∑
i∈[M ] ei,j(X

(i) − Θ̂
(r)
j Z(i))Z(i),⊤ for all j ∈ [K]

11: end for

12: Return Θ̂
(R)
j for all j ∈ [K].

The initial step of Algorithm 9 involves the initialization of the number of clusters and the provision of an

initial guess for the dynamics of each cluster. Subsequently, the algorithm iterates from line 2 to 11, during

which each system estimates its corresponding cluster identity and stores this information in the form of a

one-hot encoding vector denoted by ei. The one-hot encoding vector comprises K elements, with one in the

position of the estimated cluster identity and zero elsewhere. After the estimation of the cluster identity, the

cluster model is updated by performing a single gradient descent iteration in line 10, with the gradient being
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the average of the gradients of each individual system’s cost function that belongs to the cluster.

Remark 5. Note that Algorithm 9 is an alternating minimization algorithm, where it performs an iterative

clustering step followed by a model estimation process. Prior to the start of collaboration, each system

i ∈ [M ] collects data and stores it in batch matrices X(i), Z(i), and W (i). Moreover, it is worth noting that

Algorithm 9 uses the same batch matrices for both cluster identity and model estimation.

The following definitions and assumptions are required in order to analyze Algorithm 1. Subsequently,

we provide the intuition behind them.

Definition 3. The minimum and maximum separation between the clusters are defined as

∆min ≜ min
j ̸=j′
∥Θj −Θj′∥ and ∆max ≜ max

j ̸=j′
∥Θj −Θj′∥,

respectively.

We define ρ(i) ≜
∆2

min

σ2
w,i

as the signal-to-noise ratio ∀i ∈ [M ].

Assumption 9. The initial model estimate Θ̂
(0)
j satisfy ∥Θ̂(0)

j − Θj∥≤
(
1
2 − α(0)

)
∆min,∀j ∈ [K], where

0 < α(0) < 1
2 .

Assumption 10. For any fixed and small δ, the number of trajectories satisfies Ninx ≳

(
ρ(i)∥Σ(i)

t ∥+√
nx

α(0)ρ(i)∥Σ(i)
t ∥

)2

log(MT
δ ),

for all i ∈ [M ]. We also assume that

∆min ≳ 1 + ∆max

∑
i∈[M ]

T−1∑
t=0

exp

−cNinx

(
α(0)ρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2


for some constant c.

Assumption 9 implies that the initial guess for the model estimates is superior to a random initialization.

This assumption is standard for alternating minimization algorithms, particularly for learning mixture

models [9]. The condition on the number of trajectories in Assumption 10 is a common requirement in the

concentration bound analysis. This is used to guarantee that the cluster estimation procedure of Algorithm 9

correctly estimate the cluster identities, with high probability. Note that this is a mild assumption since for

well-behaved systems where Σ
(i)
t is well conditioned, Ninx is typically in the same or superior to the order

of log
(
MT
δ

)
. The condition on ∆min in Assumption 10 is to ensure that any two clusters are well-separated.

This is a standard assumption in the literature of clustering [43, 99]. Similar assumptions are exploited in

[60] in the context of the linear regression problem.
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7.3 Theoretical Guarantees

We begin our analysis by examining a single iteration of Algorithm 9. For simplicity, we omit the

superscript r that denotes the iteration counter. Let us assume that we have the current estimated model

Θ̂j for all clusters j ∈ [K] at a given iteration, such that ∥Θ̂j −Θj∥≤
(
1
2 − α

)
∆min for all j ∈ [K], with

0 < α < 1
2 .

7.3.1 Probability of Cluster Identity Misclassification
Consider a system i ∈ [M ] within cluster Cj . LetMj,j′

i be the event in which system i is inaccurately

classified as belonging to cluster Cj′ . The event when system i is correctly classified is denoted asMj,j
i . The

following lemma provides an upper bound on the probability of misclassification.

Lemma 43. Suppose that i ∈ Cj . There exist universal constants c1 and c2, such that for any j′ ̸= j,

P
{
Mj,j′

i

}
≤ c1

T−1∑
t=0

exp

−c2Ninx

(
αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 .

By combining Lemma 43 with the condition on Ninx from Assumption 10, our algorithm can ensure

that the probability of misclassifying system i to cluster Cj′ is at most δ, where δ can be arbitrarily small.

Moreover, it is noteworthy that if we assume the data X(i), Z(i), and W (i) to be i.i.d. with T = 1 and

nx = 1, and the columns of Z(i) to have an identity covariance matrix, we can recover the probability of

misclassification in the linear regression problem, as discussed in [60].

7.3.2 Convergence Analysis
We now examine the convergence of Algorithm 9. The theorem below is a single-iteration convergence

analysis of our algorithm. Here we assume that, at a given iteration, an estimation Θ̂j is obtained, which

closely approximates the true model Θj , i.e., ∥Θ̂j − Θj∥≤
(
1
2 − α

)
∆min, ∀j ∈ [K] and 0 < α < 1

2 . We

demonstrate that Θ̂j converges to Θj up to a small bias.

Theorem 12. For any fixed 0 < δ < 1, with

Ni ≥ max

{
8(nx + nu) + 16 log

2MT

δ
, (4nx + 2nu) log

MT

δ

}
,

∀i ∈ [M ], and selected step-size ηj =
|Cj |

λmin

(∑
i∈Cj

Ni
∑T−1

t=0 Σ
(i)
t

) , with probability at least 1 − 3δ, it holds

that,

∥Θ̂+
j −Θj∥ ≤

1

2
∥Θ̂j −Θj∥+c̄0 ×

1√∑
i∈Ĉj Ni

(7.4)
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+ c̄1∆max

∑
i∈[M ]

T−1∑
t=0

exp

−c̄2Ninx

(
αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 , (7.5)

for all j ∈ [K], where c̄0, c̄1, c̄2 > 0 are problem dependent constants.

This theorem provides an upper bound for the estimation error per iteration of our algorithm. Specifically,

this bound consists of three terms. The first term is a contraction term that decreases to zero as the number

of iterations increases. The second term is a constant error that decreases as the total number of observed

trajectories by the systems within the cluster increases. The final term is the misclassification rate, which

decays exponentially with the number of observed trajectories.

Note that although our setting is different from [60], which leads to a different estimation error expression,

our per-iteration estimation error is also composed of a contractive term added to a constant error that can

be controlled by the amount of data (i.e., the number of observed trajectories). We proceed to show the

convergence of our algorithm by demonstrating that α(r) is non-decreasing throughout iterations and using

Assumptions 9 and 10 to show that ∥Θ̂(r+1)
j −Θj∥≤ ∥Θ̂(r)

j −Θj∥ for all r ∈ [R].

Therefore, equipped with the aforementioned result, the following corollary characterizes the convergence

of Algorithm 9 by providing the number of iterations required to attain a certain small and near optimal error

ϵ, i.e., ∥Θ̂(R)
j −Θj∥≤ ϵ, for all clusters j ∈ [K].

Corollary 3. Frame the hypotheses of Theorem 12 and Assumptions 9 and 10. Select the step-size as

ηj =
|Cj |

λmin

(∑
i∈Cj

Ni
∑T−1

t=0 Σ
(i)
t

) for all j ∈ [K]. Then, after R ≥ 2 + log(∆min
4ϵ ) parallel iterations, we have

∥Θ̂(R)
j −Θj∥≤ ϵ, with

ϵ = c̃0 ×
1√∑
i∈Cj Ni

+ c̃1∆max

∑
i∈[M ]

T−1∑
t=0

exp

−c̃2Ninx

(
ρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 , (7.6)

for all j ∈ [K], where c̃0, c̃1, c̃2 > 0 are problem dependent constants.

Our proof builds upon similar arguments as in [60], which considers the linear regression setting. To

establish the non-decreasing property of α(r) for all r ∈ [R] and a decrease in the additive error term over the

iterations, we rely on Assumptions 9 and 10. Furthermore, we demonstrate that our algorithm achieves a

sufficiently large value of α(r) ≥ 1
4 after only a small number of iterations R ≥ 2. This indicates that after a

suitable number of iterations, our Algorithm 9 produces an estimation error that scales down with the number

of systems within the cluster, and is independent of the initial closeness parameter α(0).
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This corollary highlights the benefits of collaboration. It demonstrates that the estimation error scales

inversely with the number of agents within a cluster, implying that as the number of systems in the cluster

increases, this error decreases. This leads to a smaller error when compared to the single agent setting, where

each system estimates its dynamics using only its own observations.

Importantly, the presented error bound differs from that of [212]. Here the misclassification rate

exponentially decays with the number of observed trajectories, whereas the heterogeneity bias ϵhet in [212]

cannot be controlled by the number of trajectories. This indicates that under heterogeneous settings where

the systems are significantly different, our clustering-based approach outperforms [212] by providing better

control over the sources of error. However, it is worth mentioning that when the systems are similar and

personalization is not required, the approaches introduced in [212, 229, 230] may be more favorable as their

error bounds scale down with the total number of systems and do not necessitate a clustering step.

7.4 Numerical Results

The following simulations1 illustrate the efficiency of Algorithm 9. Our analysis considers M = 50

systems, each described by an LTI model as in (7.1) where K = 3 clusters and the number of systems in each

cluster is |C1|= 10, |C2|= 24, and |C3|= 16. The systems matrices for each cluster are described as follows:

A1 =


0.5 0.3 0.1

0.0 0.2 0.0

0.1 0.0 0.3

 , A2 =


−0.3 0.0 0.0

0.1 0.4 0.0

0.2 0.3 0.5

 , A3 =


−0.1 0.1 0.1

0.1 0.15 0.1

0.1 0.0 0.2

 ,

B1 =


1 0.5

0.1 1

0.75 1.5

 , B2 =


1 0.5

0.1 1

0.75 1.5

 , B3 =


0.8 0.1

0.1 1.5

0.4 0.8

 ,

where the initial state, input, and process noise standard deviations, for each cluster, are set to σx,i = σu,i =

σw,i = 0.11, ∀i ∈ C1, σx,i = σu,i = σw,i = 0.12, ∀i ∈ C2, and σx,i = σu,i = σw,i = 0.05, ∀i ∈ C3. We

consider the same number of trajectories Ni = 100 for all i ∈ [M ]. Moreover, the trajectory length is set

to T = 50. We use a fixed step-size ηj = 10−3, ∀j ∈ [3]. For each iteration r, the estimation error e(j)r is

defined as the spectral norm distance between the estimated model Θ̂(r)
j and the ground truth model Θj , i.e.,

1Code can be downloaded from https://github.com/jd-anderson/cluster-sysID

https://github.com/jd-anderson/cluster-sysID
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Figure 7.1: Estimation error as a function of iteration count. The plot on the top considers Algorithm

9 with and without clustering, whereas the bottom plot consider the single and multiple agents

settings.

e
(j)
r = ∥Θ̂(r)

j −Θj∥, for all clusters j ∈ [K].

Figure 7.1 depicts the estimation error e(j)r as a function of the number of iterations r for all the three

considered clusters. The top plots compare the performance of Algorithm 9 with and without the clustering

procedure (i.e., line 5 of Algorithm 9). These plots reveals that the estimation error decreases significantly

when systems with the same model are clustered and cooperate to estimate their dynamics. Conversely, in the

absence of clustering, the significant heterogeneity level across the systems leads to a poor common estimation,

resulting in a large estimation error and unpersonalized solutions. This confirms our theoretical results,

showing that the misclassification rate in (7.6) outperforms the heterogeneity constant of [212, 229, 230],

when dealing with heterogeneous settings.

The bottom plots of Figure 7.1 demonstrates the benefits of collaboration among systems to learn their

dynamics. This shows that the estimation error is considerably reduced when multiple systems within the

same cluster (i.e., |C1|= 10, |C2|= 24, and |C3|= 16) leverage the data from each other to identify their

dynamics, compared to the case where a single system estimate its dynamics by using its own observations.

This also confirms our theoretical results, where the statistical error in (7.6) scales down with the number of

systems in the cluster, thus highlighting the benefit of collaboration in improving estimation accuracy in a

multi-system setting.
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Figure 7.2: Number of misclassification as a function of iteration count.

Figure 7.2 presents the misclassifications of Algorithm 9 as a function of iterations r. It depicts the number

of systems whose cluster identity is incorrectly estimated. The figure illustrates the effect of the number of

observed trajectories on the misclassification rate. As anticipated and consistent with our theoretical results,

an increase in the number of trajectories leads to a considerable reduction in the number of iterations needed

to correctly classify all the systems into their respective clusters.

7.5 Chapter Summary and Future Work

We presented an approach to address the system identification problem through the use of clustering.

Our method involves partitioning different systems that observe multiple trajectories into disjoint clusters

based on the similarity of their dynamics. This approach enjoys an improved convergence rate that scales

inversely with the number of systems in the cluster, along with an additive misclassification rate that has

been shown to be negligible under mild assumptions. Our approach enables systems within the same cluster

to learn their dynamics more efficiently. Future work will involve extending the proposed formulation to

online system identification and proposing an adaptive clustering approach that eliminates the necessity for

the warm initialization and well-separated clusters assumptions.
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7.6 Omitted Proofs

7.6.1 Proof of Lemma 43

Without loss of generality, we can analyze only the first clusterM1,j
i for some j ̸= 1. By definition, we

have

M1,j
i =

{
∥X(i) − Θ̂jZ

(i)∥2F≤ ∥X(i) − Θ̂1Z
(i)∥2F

}
where the batch matrices X(i), Z(i) and W (i) are related according to X(i) = Θ1Z

(i) + W (i). Note that

z
(i)
l,t

i.i.d.∼ N
(
0,Σ

(i)
t

)
and w

(i)
l,t

i.i.d.∼ N
(
0, σ2

w,iInx

)
are independent across trajectories (i.e., the columns of

Z(i) and W (i) are independent). Thus, we can write

P
{
M1,j

i

}
= P

{∥∥∥(Θ1 − Θ̂1)Z
(i) +W (i)

∥∥∥2
F
≥
∥∥∥(Θ1 − Θ̂j)Z

(i) +W (i)
∥∥∥2
F

}
= P

{
T−1∑
t=0

Ni∑
l=1

m
(i),⊤
l,t m

(i)
l,t ≥

T−1∑
t=0

Ni∑
l=1

n
(i),⊤
l,t n

(i)
l,t

}
,

where m(i)
l,t = (Θ1 − Θ̂1)z

(i)
l,t +w

(i)
l,t ∼ N

(
0, Σ̄

(i)
t

)
, n(i)

l,t = (Θ1 − Θ̂j)z
(i)
l,t +w

(i)
l,t ∼ N

(
0, Σ̃

(i)
t

)
, with

Σ̄
(i)
t = (Θ1 − Θ̂1)Σ

(i)
t (Θ1 − Θ̂1)

⊤ + σ2
w,iInx , Σ̃

(i)
t = (Θ1 − Θ̂j)Σ

(i)
t (Θ1 − Θ̂j)

⊤ + σ2
w,iInx .

Therefore, we obtain

P
{
M1,j

i

}
= P

{
T−1∑
t=0

Ni∑
l=1

v
(i),⊤
l,t Σ̄

(i)
t v

(i)
l,t ≥

T−1∑
t=0

Ni∑
l=1

u
(i),⊤
l,t Σ̃

(i)
t u

(i)
l,t

}
,

with m
(i)
l,t = (Σ̄

(i)
t )

1
2 v

(i)
l,t and n

(i)
l,t = (Σ̄

(i)
t )

1
2u

(i)
l,t for some standard normal random vectors v

(i)
l,t , u(i)l,t ∼

N (0, Inx). Then, the above expression can be rewritten as follows

P
{
M1,j

i

}
= P

{
T−1∑
t=0

Ni∑
l=1

v
(i),⊤
l,t Σ̄

(i)
t v

(i)
l,t ≥

T−1∑
t=0

Ni∑
l=1

∥Σ̃(i)
t ∥u

(i),⊤
l,t u

(i)
l,t

}

= P

{
T−1∑
t=0

Ni∑
l=1

v
(i),⊤
l,t Σ̄

(i)
t v

(i)
l,t ≥

T−1∑
t=0

Ni∑
l=1

c
(i)
t u

(i),⊤
l,t u

(i)
l,t

}

with c
(i)
t = ∥Θ1 − Θ̂j∥2∥Σ(i)

t ∥+σ2
w,i

√
nx, which implies

P
{
M1,j

i

}
= P

{
T−1∑
t=0

Ni∑
l=1

v
(i),⊤
l,t Σ̄

(i)
t v

(i)
l,t ≥

T−1∑
t=0

Ni∑
l=1

c
(i)
t u

(i),⊤
l,t u

(i)
l,t

}
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≤ P

{
T−1∑
t=0

Ni∑
l=1

c
(i)
t u

(i),⊤
l,t u

(i)
l,t ≤ t̄

}
+ P

{
T−1∑
t=0

Ni∑
l=1

v
(i),⊤
l,t Σ̄

(i)
t v

(i)
l,t > t̄

}
,

for any t̄ ≥ 0. Therefore , by using v
(i),⊤
l,t Σ̄

(i)
t v

(i)
l,t ≤ d

(i)
t v

(i),⊤
l,t v

(i)
l,t with d

(i)
t = ∥Θ1 − Θ̂1∥2∥Σ(i)

t ∥+σ2
w,i

√
nx

we obtain

P
{
M1,j

i

}
≤ P

{
T−1∑
t=0

c
(i)
t V

(i)
t ≤ t̄

}
+ P

{
T−1∑
t=0

d
(i)
t V

(i)
t > t̄

}
,

where V (i)
t are standard Chi-squared distributions with Ninx degrees of freedom, for all t ∈ {0, 1, . . . , T−1}.

Moreover, by using Definition 3 and Assumption 9,

P
{
M1,j

i

}
≤ P

{
T−1∑
t=0

f
(i)
t V

(i)
t ≤ t̄

}
+ P

{
T−1∑
t=0

g
(i)
t V

(i)
t > t̄

}
,

with f
(i)
t = (12 + α)2∆2

min∥Σ
(i)
t ∥+σ2

w,i

√
nx and g

(i)
t = (12 − α)2∆2

min∥Σ
(i)
t ∥+σ2

w,i

√
nx, since c

(i)
t =

∥Θ1 − Θ̂j∥2∥Σ(i)
t ∥+σ2

w,i

√
nx ≥ (12 + α)2∆2

min∥Σ
(i)
t ∥+σ2

w,i

√
nx, with ∥Θj − Θ̂1∥≥ ∥Θj − Θ1∥−∥Θ̂j −

Θj∥= (12 + α)∆min and d
(i)
t = ∥Θ1 − Θ̂1∥2∥Σ(i)

t ∥+σ2
w,i

√
nx ≤ (12 − α)2∆2

min∥Σ
(i)
t ∥+σ2

w,i

√
nx, where

∥Θ1 − Θ̂1∥≤ (12 − α)∆min according to Assumption 9. Therefore, to characterize the above tail bounds, we

can exploit well-established concentration inequalities as detailed in [17, 207]. To this end, we can use union

bound to write

P
{
M1,j

i

}
≤

T−1∑
t=0

P
{
f
(i)
t V

(i)
t ≤ t̄

}
+ P

{
g
(i)
t V

(i)
t > t̄

}
,

where P
{
f
(i)
t V

(i)
t ≤ t̄

}
can be rewritten as follows

P
{
f
(i)
t V

(i)
t ≤ t̄

}
= P

V
(i)
t ≤ 4t̄

σ2
w,i

√
nx

(
(1 + 2α)2ρ(i)

∥Σ(i)
t ∥√
nx

+ 4

)
 ,

thus, by choosing t̄ = Ninx

(
(14 + α2)∆2

min∥Σ
(i)
t ∥+σ2

w,i

√
nx

)
we obtain

P
{
f
(i)
t V

(i)
t ≤ t̄

}
= P

{
V

(i)
t

Ninx
− 1 ≤ −4α∥Σ(i)

t ∥
(1 + 2α)2ρ(i)∥Σ(i)

t ∥+4
√
nx

}
,

as per the concentration of standard Chi-squared distributions in [208], it is established that there exist

universal constants c1 and c2, such that

P
{
f
(i)
t V

(i)
t ≤ t̄

}
≤ c1 exp

−c2Ninx

(
αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 . (7.7)
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Similarly, P
{
g
(i)
t V

(i)
t > t̄

}
can be rewritten as follows

P
{
g
(i)
t V

(i)
t ≤ t̄

}
= P

{
V

(i)
t

Ninx
− 1 ≤ 4α∥Σ(i)

t ∥
(1− 2α)2ρ(i)∥Σ(i)

t ∥+4
√
nx

}
,

and by the concentration of Chi-squared distribution

P
{
g
(i)
t V

(i)
t ≤ t̄

}
≤ c3 exp

−c4Ninx

(
αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 , (7.8)

where the proof is completed by combining (7.7) and (7.8) to obtain

P
{
M1,j

i

}
≤ c1

T−1∑
t=0

exp

−c2Ninx

(
αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 .

7.6.2 Proof of Theorem 12

Without loss of generality, we analyze only the first cluster. Recall that the model is updated as follows:

Θ̂+
1 =

1

|Ĉ1|

∑
i∈Ĉ1

Θ̃i =
1

|Ĉ1|

∑
i∈Ĉ1∩S1

Θ̃i +
1

|Ĉ1|

∑
i∈Ĉ1∩S1

Θ̃i (7.9)

with Θ̃i = Θ̂1+2η1(X
(i)−Θ̂1Z

(i))Z(i),⊤. Here Ĉ1∩C1 corresponds to the set of systems correctly classified

to the first cluster and Ĉ1 ∩ C1 represents the set of systems that are misclassified to the first cluster, with C1

denoting the complement of C1. The above expression can be rewritten as follows

Θ̂+
1 = Θ̂1 +

2η1

|Ĉ1|

∑
i∈Ĉ1∩C1

(X(i) − Θ̂1Z
(i))Z(i),⊤ +

2η1

|Ĉ1|

∑
i∈Ĉ1∩C1

(X(i) − Θ̂1Z
(i))Z(i),⊤,

where X(i) = Θ1Z
(i) +W (i) for i ∈ Ĉ1 ∩ C1, and X(i) = ΘjZ

(i) +W (i) for i ∈ Ĉ1 ∩ C1, with j ̸= 1 ∈ [K].

Therefore, by manipulating the above expression, we have

Θ̂+
1 −Θ1 = (Θ̂1 −Θ1)

I − 2η1

|Ĉ1|

∑
i∈Ĉ1

Z(i)Z(i),⊤

+
2η1

|Ĉ1|

∑
i∈Ĉ1

W (i)Z(i),⊤

+ (Θj −Θ1)
2η1

|Ĉ1|
|Ĉ1 ∩ C1|

∑
i∈Ĉ1∩C1

Z(i)Z(i),⊤,

and thus, we obtain

∥Θ̂+
1 −Θ1∥≤∥H1∥+∥H2∥,
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with,

∥H1∥ = ∥Θ̂1 −Θ1∥

∥∥∥∥∥I − 2η1

|Ĉ1|
ZZ⊤

∥∥∥∥∥+ 2η1

|Ĉ1|

∑
i∈Ĉ1

∥WZ⊤∥,

∥H2∥ = ∥Θj −Θ1∥
2η1

|Ĉ1|
|Ĉ1 ∩ C1|∥Z̄Z̄⊤∥.

We now concatenate the batch matrices Z(i),W (i) of the systems classified to the first cluster in Z ∈

R(nx+nu)×NiT |Ĉ1| and W ∈ Rnx×NiT |Ĉ1|, and similarly the batch matrices Z(i) of the systems incorrectly

classified to the first cluster are concatenated in Z̄ ∈ R(nx+nu)×NiT |Ĉ1∩C1|. We proceed with our analysis by

controlling both terms separately. To upper bound the first term, we introduce the following propositions.

Proposition 3. [212, Proposition 8] For any fixed 0 < δ < 1, let Ni ≥ (4nx+ 2nu) log
T |Ĉ1|
δ . It holds, with

probability at least 1− δ, that

∥∥∥WZ⊤
∥∥∥ ≤ 4σw,i

√
Ni(2nx + nu) log

9|Ĉ1|T
δ

T−1∑
t=0

∥∥∥(Σ(i)
t )

1
2

∥∥∥ . (7.10)

Proposition 4. (Adapted from [212, Proposition 6 ]) For any fixed 0 < δ < 1, let Ni ≥ 8(nx + nu) +

16 log 2|Ĉ1|T
δ . It holds, with probability at least 1− δ, that

ZZ⊤ ⪰ 1

4

∑
i∈Ĉ1

Ni

T−1∑
t=0

Σ
(i)
t , (7.11)

∥Z̄Z̄⊤∥≤ 9

4

∑
i∈Ĉ1∩C1

T−1∑
t=0

Ni

∥∥∥Σ(i)
t

∥∥∥ . (7.12)

Proof. Expression (7.11) follows direct from Proposition 6 in [212]. For expression (7.12), we can first write

∥Z̄Z̄⊤∥ =

∥∥∥∥∥∥
∑

i∈Ĉ1∩C1

Ni∑
l=1

T−1∑
t=0

z
(i)
l,t z

(i),⊤
l,t

∥∥∥∥∥∥
≤

∑
i∈Ĉ1∩C1

∥∥∥∥∥
Ni∑
l=1

T−1∑
t=0

z
(i)
l,t z

(i),⊤
l,t

∥∥∥∥∥
where χ

(i)
l,t = (Σ

(i)
t )−

1
2 z

(i)
l,t for any fixed l, t, and i, where χi

l,t
i.i.d.∼ N (0, Inx+nu), for all l ∈ {1, 2, . . . , Ni},

we obtain

∥Z̄Z̄⊤∥≤
∑

i∈Ĉ1∩C1

T−1∑
t=0

∥Σ(i)
t ∥

∥∥∥∥∥
Ni∑
l=1

χ
(i)
l,tχ

(i),⊤
l,t

∥∥∥∥∥ ,
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thus, by using Proposition 6 of [212], with probability 1− δ
T , we have∥∥∥∥∥

Ni∑
l=1

χ
(i)
l,tχ

(i),⊤
l,t

∥∥∥∥∥ ≤ 9Ni

4
,

which implies

∥Z̄Z̄⊤∥≤ 9

4

∑
i∈Ĉ1∩C1

T−1∑
t=0

Ni∥Σ(i)
t ∥.

Therefore, with probability 1− 2δ, we have

∥H1∥ ≤ ∥Θ̂1 −Θ1∥

∥∥∥∥∥∥I − η1

2|Ĉ1|

∑
i∈Ĉ1

Ni

T−1∑
t=0

Σ
(i)
t

∥∥∥∥∥∥+ 2η1

|Ĉ1|

∑
i∈Ĉ1

∥WZ⊤∥,

= ∥Θ̂1 −Θ1∥

1− η1

2|Ĉ1|
λmin

∑
i∈Ĉ1

Ni

T−1∑
t=0

Σ
(i)
t

+
2η1

|Ĉ1|

∑
i∈Ĉ1

∥WZ⊤∥.

Hence, by selecting η1 =
|Ĉ1|

λmin

(∑
i∈Ĉ1

Ni
∑T−1

t=0 Σ
(i)
t

) , we obtain

∥H1∥ ≤
1

2
∥Θ̂1 −Θ1∥+

8
∑

i∈Ĉ1 σw,i

√
Ni(2nx + nu) log

9|Ĉ1|T
δ

∑T−1
t=0

∥∥∥(Σ(i)
t )

1
2

∥∥∥
λmin

(
Ni
∑T−1

t=0 Σ
(i)
t

)

≤ 1

2
∥Θ̂1 −Θ1∥+

8

√
(2nx + nu) log

9|Ĉ1|T
δ

√∑
i∈S1

σ2
w,i

(∑T−1
t=0

∥∥∥(Σ(i)
t )

1
2

∥∥∥)2√∑
i∈Ĉ1 Ni ×min

i∈Ĉ1 λmin

(∑T−1
t=0 Σ

(i)
t

)
=

1

2
∥Θ̂1 −Θ1∥+c̄0 ×

1√∑
i∈Ĉ1 Ni

, (7.13)

with Ni ≥ max{8(nx + nu) + 16 log 2|Ĉ1|T
δ , (4nx + 2nu) log

|Ĉ1|T
δ }, for all i ∈ Ĉ1. To control the second

term ∥H2∥, we first use the Definition 3 to write

∥H2∥≤ ∆max|Ĉ1 ∩ C1|
9
∑

i∈Ĉ1∩C1 Ni
∑T−1

t=0 ∥Σ
(i)
t ∥

2λmin

(∑
i∈Ĉ1 Ni

∑T−1
t=0 Σ

(i)
t

) ,
which implies

∥H2∥≤ c5∆max|Ĉ1 ∩ C1|,
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by using Jensen and Cauchy-Schwartz inequalities in the denominator and numerator, respectively, where we

define c5 =
9
∑

i∈Ĉ1∩C1

∑T−1
t=0 ∥Σ(i)

t ∥

2min
i∈Ĉ1

(∑T−1
t=0 Σ

(i)
t

) . Therefore, we proceed with our analysis to control |Ĉ1 ∩ C1|. To do so,

we use Lemma 43 and obtain

E
[
|Ĉ1 ∩ C1|

]
≤ c6

∑
i∈[M ]

T−1∑
t=0

exp

−c7Ninx

(
αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
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which yields

P

|Ĉ1 ∩ C1|≤ c6
∑
i∈[M ]

T−1∑
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exp

−c7
2
Ninx
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αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
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≥ 1−
∑
i∈[M ]

T−1∑
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exp

−c7
2
Ninx

(
αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 ≥ 1− δ,

by using Markov’s inequality and Assumption 10 with Ninx ≥ c

(
ρ(i)∥Σ(i)

t ∥+√
nx

αρ(i)∥Σ(i)
t ∥

)2

log(MT
δ ), for some

large enough constant c such that 1
c < c7, with 0 < δ < 1 for all i ∈ [M ]. Thus, we obtain

∥H2∥≤ c̄1∆max

∑
i∈[M ]

T−1∑
t=0

exp

−c̄2Ninx

(
αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 , (7.14)

with probability at least 1− δ. The proof is completed by combining (7.13) and (7.14).

7.6.3 Proof of Corollary 3

We first recall that at iteration r we posses an estimation for the model such that ∥Θ̂(r)
j − Θj∥≤

(12 − α(r))∆min, for all j ∈ [K] with α(r) ∈ R. Moreover, according to Theorem 12, we have

∥Θ̂(r+1)
j −Θj∥ ≤

1

2
∥Θ̂(r)

j −Θj∥+c̄0 ×
1√∑

i∈Ĉ(r)
j

Ni

+ c̄1∆max

∑
i∈[M ]

T−1∑
t=0

exp

−c̄2Ninx

(
α(r)ρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 ,

where by using Assumption 10 and 0 < α(0) < 1
2 we can guarantee that ∥Θ̂(r+1)

j − Θj∥≤ ∥Θ̂(r)
j − Θj∥

for any r ∈ [R]. This implies that α(r+1) ≥ α(r), for any r ∈ [R]. First, we aim to show that after a small
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number of iterations, we obtain a sufficiently large value of α(r) ≥ 1
4 . To do so, let

ϵr := c̄0 ×
1√∑

i∈Ĉ(r)
j

Ni

+ c̄1∆max

∑
i∈[M ]

T−1∑
t=0

exp

−c̄2Ninx

(
α(r)ρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2
 , (7.15)

be the error at iteration r, and note that ϵr+1 ≤ ϵr for any r ∈ [R] since α(r+1) ≥ α(r). Then, after R′

iterations of Algorithm 9, we obtain

∥Θ̂(R′)
j −Θj∥ ≤ (1− µj)

R′
(
1

2
− α(0)

)
∆min + 2ϵ0

for R′ ≥ 2. Therefore, we need to guarantee that after R′ ≥ 2 parallel iterations, the right hand side of the

above expression is upper bounded by 1
4∆min. For the first term, since 0 < α(0) < 1

2 , it suffices to show

that (12)
R′ ≤ 1

4 , which is satisfied for any R′ ≥ 2. On the other hand, 2ϵ0 ≤ 1
8∆min follows directly from

the minimum separation condition of Assumption 10. Therefore, we have ∥Θ̂(r)
j −Θj∥≤ 1

4∆min, for any

r ≥ R′. Then, after R′′ ≥ R′, we have

∥Θ̂(R′′)
j −Θj∥≤

(
1

2

)R′′
∆min

4
+ 2ϵ0

which implies ∥Θ̂(R)
j −Θj∥≤ ϵ after R = R′ +R′′ ≥ 2 + log(∆min

4ϵ ), with ϵ as defined in (7.6).
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Chapter 8

SUMMARY AND FUTURE DIRECTIONS

In this thesis, we introduced methods to address FL challenges by developing robust, efficient algorithms

for supervised learning, reinforcement learning (RL), control, and personalized system identification. By

tackling fundamental issues related to data heterogeneity, communication efficiency, and convergence stability,

our research pushes the boundaries of FL across diverse applications and environments.

In Chapter 3, we introduced an algorithm for supervised learning problems to address data heterogeneity

and ensure stable convergence, even with partial client participation. This algorithm lays the groundwork for

more resilient federated models, capable of handling real-world heterogeneity across distributed data sources.

In Chapter 4 and 5, we developed federated reinforcement learning (FRL) algorithms that leverage

similarities across heterogeneous environments, demonstrating improvements in sample efficiency and

the acceleration of policy learning. Our rigorous theoretical analyses established the efficiency of these

algorithms, showcasing the potential of FRL to accelerate policy evaluation and policy optimization across

diverse agent environments.

In Chapter 6, we extended FL into control systems through the development of the FedLQR algorithm,

enabling multiple agents with similar but unknown dynamics to collaboratively learn stabilizing policies.

This work highlights the potential of federated approaches to ensure stability and optimize control systems,

even in the presence of heterogeneity among agents.

To further advance FL’s application, we explored techniques for personalized system identification

in Chapter 7. Our approach leverages clustering methods to enable clients to obtain customized models,

improving convergence and adaptability to individual system dynamics. This personalized framework
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enhances FL’s flexibility, making it suitable for complex applications where each client requires a customized

solution.

Now, let us briefly outline certain problems that are a subject of future research.

•Meta and Fine-tuning Reinforcement Learning (Meta-RL): When a RL agent encounters a change

in task or environment, conventional methods often discard the pretrained policy and start training a new

policy from scratch, which is usually computationally expensive. Meta-RL, as empirically investigated in [11],

offers a solution to this problem by allowing the agent to adapt quickly to new tasks/environments. However,

the empirical advances lack solid theoretical guarantees and systematic guidance. Our future work aims to

provide systematic fine-tuning methodologies and develop more effective meta-RL algorithms by leveraging

principles from Information Theory, Network Control, high-dimensional probability, and Optimization. We

believe that exploring this direction will have a profound impact on fields like autonomous self-driving cars

and recommendation systems.

• Robust Reinforcement Learning: Drawing on our previous works on FRL, we aim to provide more

general and theoretically grounded solutions to improve the robustness of RL algorithms. The main focus of

FRL is environmental heterogeneity among agents, while robust RL emphasizes the environmental uncertainty.

This raises a crucial question: Is there an intrinsic link between this environmental heterogeneity and the

robustness of RL agents? Revealing this connection could be key to develop more robust RL algorithms that

remain effective despite the presence of noise, misinformation, or even adversarial attacks. The significance

of this research lies in its potential to create more reliable and resilient AI systems for complex, real-world

decision-making tasks.

• Future Research: More Complex Models and Modalities In our prior work [193], we explored

a collaborative FL framework geared towards rapidly acquiring knowledge for linear-time-invariant (LTI)

controllers in the context of basic LTI systems. However, the real-world systems we encounter are often

nonlinear and subject to inherent safety constraints. Extending our research to encompass nonlinear systems

with safety constraints is an enticing prospect. To tackle this challenge, we envision integrating Model

Predictive Control (MPC) with techniques like sequential linearization or lifting and enforce safety through

barrier certificates. Furthermore, dealing with multiple systems that provide observations in different

dimensions and modalities presents a significant challenge. For instance, one system may generate image

data while another captures speech or audio data. This disparity in data modalities poses a complex problem

within FL for control, particularly in data aggregation on the server side. Addressing this challenge is a main
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focus of my future research, promising to enhance the utility of FL for control across diverse real-world

scenarios.

• Personalization in Robust Multi-Agent control in Networked Systems: In a network of interconnected

and diverse agents, the challenge is to facilitate collaborative learning of personalized and resilient controllers

through limited information exchange. This problem is intricate due to factors like agent heterogeneity,

dynamic network structures, model uncertainties, and potential adversarial disruptions. Our future research

aims to assess the impact of agent diversity, refine the definition of heterogeneity, and find ways to mitigate

its effects. Leveraging personalization techniques such as classification, transfer learning, and representation

learning, my work seeks to enhance our understanding of personalization in robust multi-agent control

problems. Ultimately, this will lead to more efficient and resilient control strategies in complex networked

systems.
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