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Motivation
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Motivation
Stochastic Variance-Reduced Gradient Descent

Consider the following optimization problem

min
x∈X

f (x) =
1
n

n∑
i=1

fi (x)

where fi (x) are convex functions.
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Stochastic Variance-Reduced Gradient Descent

Consider the following optimization problem

min
x∈X

f (x) =
1
n

n∑
i=1

fi (x)

where fi (x) are convex functions.

Gradient Descent (GD): xk+1 = xk − η∇x f (xk)

Stochastic GD: xk+1 = xk − η∇x fz(xk)︸ ︷︷ ︸
≈∇x f (xk )?

, where z ∼ {1, 2, . . . , n}

Stochastic Variance-Reduced:

xk+1 = xk − η(∇x fz(xk)−∇x fz(y) +∇x f (y)︸ ︷︷ ︸
zero mean

)

where y is generic point.

Johnson and Zhang, 2013, Reddi et al., 2016.
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Motivation
Stochastic Variance-Reduced Gradient Descent

Stochastic Variance-Reduced:

xk+1 = xk − η (∇x fz(xk)−∇x fz(y) +∇x f (y))︸ ︷︷ ︸
control variates vk

Mean: E(vk) = E(∇x fz(xk))

Variance: X = ∇x fz(xk), Y = −∇x fz(y) +∇x f (y)

var(vk) = var(X ) + var(Y )− 2cov(X ,Y )

Johnson and Zhang, 2013, Reddi et al., 2016.
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Linear Quadratic Regulator (LQR)
Formulation

Consider a discrete LTI dynamical system

xt+1 = Axt + But , t = 0, 1, 2, . . . (sys-dyn)

where xt ∈ Rdx and ut ∈ Rdu .
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Linear Quadratic Regulator (LQR)
Formulation

Consider a discrete LTI dynamical system

xt+1 = Axt + But , t = 0, 1, 2, . . . (sys-dyn)

where xt ∈ Rdx and ut ∈ Rdu .

LQR Objective: Design a controller K⋆ (ut = −K⋆xt) that solves

K⋆ = argminK∈KC (K ) = E

[ ∞∑
t=0

xt
(
Q + K⊤RK

)
xt

]
,

subject to (sys-dyn).

Stabilizing set: K = {K | ρ(A− BK ) < 1}.
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Linear Quadratic Regulator (LQR)
Formulation

LQR Objective: Design a controller K⋆ (ut = −K⋆xt) that solves

K⋆ = argminK∈KC (K ) = E

[ ∞∑
t=0

xt
(
Q + K⊤RK

)
xt

]
,

subject to (sys-dyn).

Model-based LQR: Given (A,B,Q,R),

K⋆ = DARE(A,B,Q,R) → Riccati Equation

Q: How to design K⋆ when (A,B,Q,R) is unknown?
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Linear Quadratic Regulator (LQR)
Policy Gradient LQR

Fazel et al., ICML 2018, proved that despite of the non-convexity∗ of
C (K ), PG methods globally converge to K⋆, i.e., given

Initial Stabilizing Controller: K0 ∈ K

Controllability: (A,B) is controllable

∗ Non-convex for dx ≥ 3.
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Linear Quadratic Regulator (LQR)
Policy Gradient LQR

Fazel et al., ICML 2018, proved that despite of the non-convexity∗ of
C (K ), PG methods globally converge to K⋆, i.e., given

Initial Stabilizing Controller: K0 ∈ K

Controllability: (A,B) is controllable

Kn+1 = Kn − η∇̂C (Kn), for n ∈ {0, 1, . . . ,N − 1}
↓

C (KN)− C (K⋆) ≤ ϵ,

after N ≥ O(log(1/ϵ)).

Gradient Dominance: C (K )− C (K⋆) ≤ λ∥∇C (K )∥2
F for any K ∈ K.

∗ Non-convex for dx ≥ 3.
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Linear Quadratic Regulator (LQR)
Policy Gradient LQR

Other nice properties of the LQR cost:
Uniform bounds for the gradient
Lipschitz of the cost
Lipschitz of the gradient
Bounded controller difference

Fazel et al. 2018, Bu et al., 2019, Gravell et al. 2020.
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Linear Quadratic Regulator (LQR)
Policy Gradient LQR

Other nice properties of the LQR cost:
Uniform bounds for the gradient
Lipschitz of the cost
Lipschitz of the gradient
Bounded controller difference

Stabilizing sub-level set: Given (sys-dyn), the stabilizing sub-level set
G ⊆ K is

G = {K | C (K )− C (K⋆) ≤ γ(C (K0)− C (K⋆))} ,

for some γ > 0.

Fazel et al. 2018, Bu et al., 2019, Gravell et al. 2020.
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Policy Gradient LQR
Zeroth-order Gradient Estimation

Kn+1 = Kn − η∇̂C (Kn), for n ∈ {0, 1, . . . ,N − 1}
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One-point Zeroth-order Estimation (ZO1P):

(m, r) → ZO1P : ∇C (K ) :=
m∑
i=1

dxduC (K + Ui )Ui

mr2 ,

m (number of trajectories), r (smoothing radius) and ∥Ui∥F = r .
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Policy Gradient LQR
Zeroth-order Gradient Estimation

Kn+1 = Kn − η∇̂C (Kn), for n ∈ {0, 1, . . . ,N − 1}

One-point Zeroth-order Estimation (ZO1P):

(m, r) → ZO1P : ∇C (K ) :=
m∑
i=1

dxduC (K + Ui )Ui

mr2 ,

m (number of trajectories), r (smoothing radius) and ∥Ui∥F = r .

Two-points Zeroth-order Estimation (ZO2P):

(m, r) → ZO2P : ∇̃C (K ) :=
m∑
i=1

dxdu(C (K + Ui )− C (K − Ui ))Ui

2mr2 ,
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Policy Gradient LQR
Illustrative Example - ZO Bias and Variance

A =

1.20 0.50 0.40
0.01 0.75 0.30
0.10 0.02 1.50

 ,B =

 1
2
1
1
2

 ,Q = 2I3,R =
1
2
,
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Policy Gradient LQR
Improvements on the Oracle Complexity
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Stochastic Variance-Reduced Policy Gradient (SVRPG)
Difficulties

SVRPG and Reinforcement Learning: Xu et al., 2020, demonstrate a
sample complexity reduction from O(ϵ2) to O(ϵ5/3) in the local conver-
gence analysis, i.e., ∥∇C (KN)∥2

F ≤ ϵ

They assume: E(∇̂C (K )) = ∇C (K ),

Papini et al., 2018.
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Stochastic Variance-Reduced Policy Gradient (SVRPG)
Difficulties

SVRPG and Reinforcement Learning: Xu et al., 2020, demonstrate a
sample complexity reduction from O(ϵ2) to O(ϵ5/3) in the local conver-
gence analysis, i.e., ∥∇C (KN)∥2

F ≤ ϵ

They assume: E(∇̂C (K )) = ∇C (K ),

Difficulties of SVRPG for the model-free LQR:
Kn needs to stay stabilizing for all iterations
ZO gradient estimation is biased, i.e., O(r2)

ZO2P estimation is cost-query expensive
ZO1P estimation has a large variance

We are the first to combine ZO1P and ZO2P in a SVRPG approach

Papini et al., 2018.
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An SVRPG Approach for the model-free LQR
A Mixed ZO1P and ZO2P Estimation with Control Variates

Initialization: N, T , η, nout, nin, nout, rin, K0 ∈ G

• N epochs with length T
• step-size η
• (nout, rout) ZO2P’s parameters
• (nin, rin) ZO1P’s parameters
• K0 initial stabilizing controller
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An SVRPG Approach for the model-free LQR
A Mixed ZO1P and ZO2P Estimation with Control Variates

Initialization: N, T , η, nout, nin, rout, rin, K0 ∈ G

Step 1: For all n ∈ {0, 1, . . . ,N − 1} set K n+1
0 = K̃ n = K n

T and
compute

µ̃ = ∇̃C (K̃ n) with (nout, rout) → ZO2P,

Step 2: Within each epoch repeat for t ∈ {0, 1, . . . ,T−1}

∇C (K n+1
t ),∇C (K̃ n) with (nin, rin) → ZO1P,

K n+1
t+1 = K n+1

t − η
(
∇C (K n+1

t ) + µ̃−∇C (K̃ n)
)
,

Repeat steps 1 and 2 and return KNT = KN
T .
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An SVRPG Approach for the model-free LQR
Why Oracle Complexity Reduction?

Step 1: For all n ∈ {0, 1, . . . ,N − 1} set K n+1
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An SVRPG Approach for the model-free LQR
Why Oracle Complexity Reduction?

Step 1: For all n ∈ {0, 1, . . . ,N − 1} set K n+1
0 = K̃ n = K n

T and compute

µ̃ = ∇̃C (K̃ n) with (nout, rout) → ZO2P,

Step 2: Within each epoch repeat for t ∈ {0, 1, . . . ,T − 1}

∇C (K n+1
t ),∇C (K̃ n) with (nin, rin) → ZO1P,

K n+1
t+1 = K n+1

t − η
(
∇C (K n+1

t ) + µ̃−∇C (K̃ n)
)
,

Idea: Use ZO2P less often and control the inner loop gradient variance
with more ZO1P + control variates.
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Main Results
Convergence Guarantees

Convergence: Given K0 ∈ G. Suppose that rin = rout = r ,

nout ≥ O(1), nin ≥ O(T 2), and η sufficiently small,

then it holds that

E (C (KNT)− C (K⋆)) ≤ ∆0ρ
NT +

Cbiasr
2

nin

where ρ ∈ (0, 1) and ∆0 = C (K0)− C (K⋆).

Cbias is provided in the full paper.
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Main Results
Convergence Guarantees

E (C (KNT)− C (K⋆)) ≤ ∆0ρ
NT +

Cbiasr
2

nin

By selecting NT ≥ O(log(1/ϵ)) and r ≤ O(
√
ninϵ) we have

E (C (KNT)− C (K⋆)) ≤ ϵ

for some small tolerance ϵ.

Sample complexity: Sc = 2Nnout + NTnin = O(log(1/ϵ))3−2β

NT ≥ O(log(1/ϵ)) → N = O(log(1/ϵ))β , T = O(log(1/ϵ))1−β

nout = O(1), nin = O(T 2) = O(log(1/ϵ))2−2β , β ∈ (0, 1),

Two-point oracle complexity: NZO2P = 2Nnout = O(log(1/ϵ))β
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Main Results
Stability Guarantees

Stability: Given K0 ∈ G. Suppose that

nout, nin sufficiently large, and r , η sufficiently small

then K n
t ∈ G, with high probability, ∀ epochs n ∈ [N] of length t ∈ [T ].
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Main Results
Stability Guarantees

Stability: Given K0 ∈ G. Suppose that

nout, nin sufficiently large, and r , η sufficiently small

then K n
t ∈ G, with high probability, ∀ epochs n ∈ [N] of length t ∈ [T ].

Main takeaway: By carefully controlling the quality of the inner and
outer gradient estimations and not taking larger steps the learned controller
provably stays within the stabilizing sub-level set.
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Numerical Validation
Example 1 - nx = 3, nu = 1
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Numerical Validation
Example 2 - nx = 4, nu = 2
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Conclusions

We propose a stochastic variance-reduced policy gradient approach
for the model-free LQR problem.

Our approach combines the benefits of one-point ZO estimation (i.e.,
cheap in cost queries) and two-point ZO estimation (i.e., lower vari-
ance) with the help of a mixed SVRPG approach.

We prove that our approach achieves an ϵ-approximate solution with
O
(
log (1/ϵ)3−2β

)
queries, with only O

(
log (1/ϵ)β

)
two-point query

information for β ∈ (0, 1).

We prove that (sys-dyn) is stable under the learned controller.
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