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Xi+1 = Ax; + Buy t>0

Objective: Design a control seq {u; }; that minimizes a
cummulative cost C(x, u) = Ey, 320 ¢ (xr, 7).
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Motivation
Model-free Control

Xi41 = Ax, + Bu, t>0

Objective: Design a control sequence {u; }; that minimizes a
cummulative cost C(x, u) = Ex, Yoy ¢ (xr, uy).

Difficulty: Do not have access to the ground-truth
system dynamics (A, B)
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Policy Gradient (PG)

¥

Collect Data: D = {x;,u; };

¥

Estimation: V,C(x,u) = ZO(D)

Control: PG updates
i — =V, Clx )
Sample Complexity:
oo —uxll < e
with # data points ~ O(log(1/e))

Mohammadi et al., 2020.
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Model-free Control

X1 = Axy + Bu, t 20
Objective: Design a control sequence {u; }, that minimizes a

cummulative cost C(x,u) = Ey, Yo ¢ (¢, uy).

Difficulty: Do not have access to the ground-truth
system dynamics (A, B)
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Policy Gradient (PG)

Collect Data: D = {x;,u,},

¥

Estimation: ’V\,, C(x,u) = ZO(D)~Rely on cost queries

Control: PG updates
U~ i— n/V\uC(x, u)
'
Sample Complexity:
[l —usll <€ +» Necessity for cost queries
with # data points ~ O(log(1/e))

Mohammadi et al., 2020.



Motivation

Cost queries are expensive

What is a cost query?

Precision Robotic Arml

Control: Joint angle, speed

Cost metric:
Positioning error of the silicon wafer

Cost query: Configure the arm and measure the
positioning error associated with a specific set
of system parameters.




Motivation

Cost queries are expensive

Autonomous Vehicles Smart Grids Tndustrial Robotics

@ Expensive

@ Time consuming

@ May incur a high risk for human being interaction



Motivation

Cost queries are expensive

Autonomous Vehicles Smart Grids Industrial Robotics

We need to reduce the oracle complexity for large scale
optimal control via policy gradient methods




Consider the following optimization problem

: 1
min £(x) = ; fi(x)

where fi(x) are convex functions.



Motivation

Stochastic Variance-Reduced Gradient Descent

Consider the following optimization problem
n ()= 350
min f(x) = = H(x

xeX n Py !

where f;(x) are convex functions.

Gradient Descent (GD): xx11 = xx — nVxf(xk)

Stochastic GD: x.1 = xk — NVf;(xk), where z ~ {1,2, ...
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Motivation

Stochastic Variance-Reduced Gradient Descent

Consider the following optimization problem

: 1 ¢
min £(x) = — ; fi(x)

where f;(x) are convex functions.

Gradient Descent (GD): xx11 = xx — nVxf(xk)

Stochastic GD: xx1 = xk — 1 Vi f2(xk), where z ~ {1,2,...
———

AV, F (k)7
Stochastic Variance-Reduced:

Xk4+1 = Xk — 7I(Vx'CZ(Xk) *VXfZ(Y) + fo(y))

zero mean

where y is generic point.

Johnson and Zhang, 2013, Reddi et al., 2016.



Motivation

Stochastic Variance-Reduced Gradient Descent

Stochastic Variance-Reduced:

Xkr1 = Xk — N (Vi () =V (y) + Vif(y))

control variates vy

Mean: E(vx) = E(Vf(xk))
Variance: X = V,£(x), Y = —Vif(y) + Vif(y)

var(vg) = var(X) + var(Y) — 2cov(X, Y)

Johnson and Zhang, 2013, Reddi et al., 2016.



Motivation

Stochastic Variance-Reduced Gradient Descent

Stochastic Variance-Reduced:

Xk+1 = X — N (Vi () =V (y) + Vif(y))

control variates vy

Mean: E(vx) = E(Vf(xk))
Variance: X = V,£(x), Y = —Vif(y) + Vif(y)

var(vg) = var(X) + var(Y) — 2cov(X, Y)

Question: Can we design an oracle-efficient solution to address the
model-free LQR problem by building upon the success of stochastic
variance-reduced approaches?

Johnson and Zhang, 2013, Reddi et al., 2016.



Consider a discrete LTI dynamical system

Xt+1 = AXt + But, t= 0, 1, 2, e (Sys—dyn)

where x, € R% and u; € R%.



Linear Quadratic Regulator (LQR)

Formulation

Consider a discrete LTI dynamical system

Xer1 = Axe + Buy, t=0,1,2,... (sys-dyn)

where x; € R% and u; € R%.

LQR Objective: Design a controller K* (u; = —K*x;) that solves

o0

K* = argminy C(K) =E ZXf(Q+KTRK)Xt ,
t=0

subject to (sys-dyn).

Stabilizing set: £ = {K | p(A — BK) < 1}.
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Formulation

LQR Objective: Design a controller K* (u; = —K*x;) that solves

K* = argmin,x C(K) =E th (Q+K'RK) x|,
t=0

subject to (sys-dyn).
Model-based LQR: Given (A, B, Q, R),

K* = DARE(A, B, Q, R) — Riccati Equation



Linear Quadratic Regulator (LQR)

Formulation

LQR Objective: Design a controller K* (u; = —K*x;) that solves

K* = argmin,x C(K) =E th (Q+K'RK) x|,
t=0

subject to (sys-dyn).

Model-based LQR: Given (A, B, Q, R),

K* = DARE(A, B, Q, R) — Riccati Equation

Q: How to design K* when (A, B, Q, R) is unknown?



Linear Quadratic Regulator (LQR)

Policy Gradient LQR

Fazel et al., ICML 2018, proved that despite of the non-convexity* of
C(K), PG methods globally converge to K*, i.e., given

Initial Stabilizing Controller: Ky € K

Controllability: (A, B) is controllable

* Non-convex for dy > 3.



Linear Quadratic Regulator (LQR)

Policy Gradient LQR

Fazel et al., ICML 2018, proved that despite of the non-convexity* of
C(K), PG methods globally converge to K*, i.e., given

Initial Stabilizing Controller: Ky € K

Controllability: (A, B) is controllable

Kn+1 = K —77§C(K,7)7 forne {0,1,...,N -1}
+
C(Kn) — C(K™) <

after N > O(log(1/¢)).

Gradient Dominance: C(K) — C (K*) < A||[VC(K)|2 for any K € K.

* Non-convex for dy > 3.



Linear Quadratic Regulator (LQR)

Policy Gradient LQR

Other nice properties of the LQR cost:
@ Uniform bounds for the gradient
@ Lipschitz of the cost
@ Lipschitz of the gradient
°

Bounded controller difference

Fazel et al. 2018, Bu et al., 2019, Gravell et al. 2020.



Linear Quadratic Regulator (LQR)

Policy Gradient LQR

Other nice properties of the LQR cost:
@ Uniform bounds for the gradient
@ Lipschitz of the cost
@ Lipschitz of the gradient

@ Bounded controller difference

Stabilizing sub-level set: Given (sys-dyn), the stabilizing sub-level set
GCKis

G ={K | C(K) = C(K") <7(C(Ko) — C(K™))},

for some v > 0.

Fazel et al. 2018, Bu et al., 2019, Gravell et al. 2020.



Kni1 = Ko — 0V C(K,), for ne {0,1,...,N —1}



Policy Gradient LQR

Zeroth-order Gradient Estimation

Kns1 = Kn — NV C(K,), for n€ {0,1,...,N — 1}

One-point Zeroth-order Estimation (Z01P):

(m,r) = 201P: VC(K) =) dxduC(K;r U)Ui.

i=1

mr

m (number of trajectories), r (smoothing radius) and ||U;||r = r.
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One-point Zeroth-order Estimation (Z01P):

(m,r) — 201P : VC(K) := i
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Policy Gradient LQR

Zeroth-order Gradient Estimation

Kns1 = Kn — NV C(K,), for n€ {0,1,...,N — 1}

One-point Zeroth-order Estimation (Z01P):

(m,r) — 201P : VC(K) := i
i=1

dedy C(K + Uy U

2 )

mr

m (number of trajectories), r (smoothing radius) and ||U;||r = r.
Two-points Zeroth-order Estimation (Z02P):

(m.r) = 202p T C(K) o= 3 Sl CUCU) = C(K - U

i=1

)

2mr?



Policy Gradient LQR

lllustrative Example - Z0 Bias and Variance
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Policy Gradient LQR

Improvements on the Oracle Complexity

Comparison on the sample complexity (S,), and two-point oracle complexity (Nzozp)

required to achieve E (C(Ky) — C(K*)) < e.

Methods Se Nzoop
PG - ZOIP (Fazel et al (2018)) O(1/¢* Tog (1/€)) -

PG - ZO1P (Gravell et al (2019) O(1/€* -log (1/€)) -

PG - ZOIP (Malik et al. (2019) O(1/e% Tog (1/€))

PG - ZO2P (Malik et al. (2019) O(1/e-log (1/6)) O(1/e-log (1/€))

PG - ZO2P (Mohammadi et al. (2020)) O(log (1/¢)) O(log (1/¢))



Policy Gradient LQR

Improvements on the Oracle Complexity

Comparison on the sample complexity (S,), and two-point oracle complexity (Nzozp)
required to achieve E (C(Ky) — C(K*)) < e.

Methods Se Nzozp
PG - ZOIP (Fazel et al (2018)) 01/ log (1/€)) -
PG - ZOI1P (Gravell et al (2019) O(1/€* -1og (1/€)) -
PG - ZOIP (Malik et al. (2019) O(1/e% Tog (1/e)) -
PG - ZO2P (Malik et al. (2019) O(1/e-log(1/e)) O(1/e-log (1/e))
PG - ZO2P (Mohammadi et al. (2020)) O(log (1/¢)) O(log (1/¢))

Question: Can we harness synergy between Z01P (i.e., cheap cost queries) and
Z02P (i.e., low variance) to reduce two-point oracle complexity for the model-
free LQR problem?




Stochastic Variance-Reduced Policy Gradient (SVRPG)

Difficulties

SVRPG and Reinforcement Learning: Xu et al., 2020, demonstrate a
sample complexity reduction from O(e?) to O(e%/3) in the local conver-
gence analysis, i.e., ||[VC(Kn)|[2 < €

They assume: E(VC(K)) = VC(K),

Papini et al., 2018.
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Papini et al., 2018.



Stochastic Variance-Reduced Policy Gradient (SVRPG)

Difficulties

SVRPG and Reinforcement Learning: Xu et al., 2020, demonstrate a
sample complexity reduction from O(e?) to O(e%/3) in the local conver-
gence analysis, i.e., ||[VC(Kn)|[2 < €

They assume: E(VC(K)) = VC(K),

Difficulties of SVRPG for the model-free LQR:
@ K, needs to stay stabilizing for all iterations
e Z0 gradient estimation is biased, i.e., O(r?)
@ Z02P estimation is cost-query expensive
("]

Z01P estimation has a large variance

We are the first to combine Z01P and Z02P in a SVRPG approach

Papini et al., 2018.



An SVRPG Approach for the model-free LQR

A Mixed ZO1P and ZO2P Estimation with Control Variates

Initialization: N, T, 0, nout, Nin, Nouts fin, Ko € G

e N epochs with length T

® step-size

® (Nout, fout) Z02P's parameters
o (N, fin) ZO1P's parameters

e Ky initial stabilizing controller

10



An SVRPG Approach for the model-free LQR

A Mixed ZO1P and ZO2P Estimation with Control Variates

Initialization: N, T, 0, nout, Nin, fout, fin, Ko €G

Step 1: Forall n € {0,1,...,N — 1} set Ké’“ =K"= K% and
compute

fi = VC(K™) with (nout, fout) — Z02P,

Step 2: Within each epoch repeat for t € {0,1,..., T—1}

VC(KIY),VC(K") with (min, rin) — ZO1P,
Kt = kot — g (VO(REM) + i - VC(R)

\. J

Repeat steps 1 and 2 and return Kyt = K¥.

10



An SVRPG Approach for the model-free LQR

Why Oracle Complexity Reduction?

Step 1: For all n€ {0,1,..., N — 1} set K(;’H =K"= K% and compute

fi = VC(K™) with (nout, fout) — Z02P,

Step 2: Within each epoch repeat for t € {0,1,..., T — 1}

V(KM VC(K™) with (min, rin) — ZO1P,
Kt = K= (VC(KE™) + i - VC(R™)

11



An SVRPG Approach for the model-free LQR

Why Oracle Complexity Reduction?

Step 1: For all n€ {0,1,..., N — 1} set Ké’“ =K"= K% and compute

fi = VC(K™) with (nout, fout) — Z02P,

Step 2: Within each epoch repeat for t € {0,1,..., T — 1}
V(KM VC(K™) with (min, rin) — ZO1P,
Kt = Kt = (VC(KP) + i - VC(R™)

Idea: Use ZO2P less often and control the inner loop gradient variance
with more ZO1P + control variates.

11



Main Results

Convergence Guarantees

Convergence: Given Ko € G. Suppose that r, = rout = 1,

Nout > O(1), mn > O( T2), and 7 sufficiently small,

then it holds that

2
Cbiasr

nln

E(C(KnT) — C(K*)) < Dop"T +

where p € (0,1) and Ag = C(Kp) — C(K™).

Chias 18 Provided in the full paper.

12



E(C(Knt) — C(K*)) < DgpNT + =2 Coias"”

in

Cl:ial is provided in the full paper.
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Main Results

Convergence Guarantees

2
Cbiasr

n

E (C(Knt) — C(K*)) < Aop"T +

By selecting NT > O(log(1/€)) and r < O(/Nin€) we have

E(C(Knt) — C(K*)) < ¢

for some small tolerance e.

Chias 18 Provided in the full paper.

12



Main Results

Convergence Guarantees

2
Cbiasr

Min

E (C(Knt) — C(K*)) < Aop"T +

By selecting NT > O(log(1/€)) and r < O(/Nin€) we have

E(C(Knt) — C(K*)) <€
for some small tolerance e.

Sample complexity: S. = 2Nngy: + NTn;,

Chias 18 Provided in the full paper.
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Main Results

Convergence Guarantees

2
Chiasr

Min

By selecting NT > O(log(1/€)) and r < O(/Nin€) we have

E(C(Knt) — C(K*)) < Dop"T +

E(C(Knt) — C(K*)) <€
for some small tolerance e.

Sample complexity: S, = 2Nngy: + NTn;,

NT > O(log(1/€)) = N = O(log(1/€))?, T = O(log(1/€))*~"
Nout = O(1), min = O(T?) = O(log(1/€))> %4, B € (0,1),

Chias 18 Provided in the full paper.
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Main Results

Convergence Guarantees

2
Chiasr

Min

E(C(Knt) — C(K*)) < Dop"T +
By selecting NT > O(log(1/€)) and r < O(y/nin€) we have
E(C(Knt) — C(K*)) <€

for some small tolerance e.

Sample complexity: S. = 2Nnoy: + NThy, = O(log(1/¢))3~27

NT > O(log(1/€)) = N = O(log(1/€))?, T = O(log(1/€))*~"
Nout = O(1), min = O(T?) = O(log(1/€))> %, B (0,1),

Two-point oracle complexity: Nzoop = 2Nny,: = O(log(1/¢))”
12



Main Results

Stability Guarantees

Stability: Given Ky € G. Suppose that

Nout, Min sufficiently large, and r,n sufficiently small

then K[ € G, with high probability, V epochs n € [N] of length t € [T].

13



Main Results

Stability Guarantees

Stability: Given Ky € G. Suppose that

Nout, Min sufficiently large, and r, 7 sufficiently small

then K[ € G, with high probability, V epochs n € [N] of length t € [T].

Main takeaway: By carefully controlling the quality of the inner and
outer gradient estimations and not taking larger steps the learned controller
provably stays within the stabilizing sub-level set.

13



Numerical Validation

Example 1 - ny =3, n, =1

i 10° —— PG - ZO2P - Algorithm 1 (n,=50)
A% = SVRPG - Algorithm 2
U + PG - Model-based
I = PG -ZO2P - Algorithm 1 (n,=13)
<
1 e
*,\ 10—1 ...........
E(’ ............
s Y S
|
3
O
0 100 200 300 400 500
Number of iterations (/)
Total # cost queries: ZO1P + Z02P # Two cost queries: Z02P

Algorithm 1 (PG - ZO2P) Algorithm 2 (SVRPG)  Algorithm 1 (PG - ZO2P) Algorithm 2 (SVRPG)
50000 37500 25000 6250

14



Numerical Validation

Example 2 - nx =4, n, =2

~ 10° —— PG - ZO2P - Algorithm 1 (n,=50)
v = SVRPG - Algorithm 2
G = PG - Model-based
| = PG - ZO2P - Algorithm 1 (n;=10)
C
5 ......................
N T s e
= -1
=10
3
]
|
A e T
U .........
0 20 40 60 80 100
Number of iterations (/)
Total # cost queries: Z01P + Z02P # Two cost queries: Z02P

Algorithm 1 (PG - ZO2P)
10000

Algorithm 2 (SVRPG)  Algorithm 1 (PG - ZO2P) Algorithm 2 (SVRPG)
5000 5000 1000

15



Conclusions

@ We propose a stochastic variance-reduced policy gradient approach
for the model-free LQR problem.

o Our approach combines the benefits of one-point Z0 estimation (i.e.,
cheap in cost queries) and two-point Z0 estimation (i.e., lower vari-
ance) with the help of a mixed SVRPG approach.

@ We prove that our approach achieves an e-approximate solution with
O (Iog(l/e)372ﬁ> queries, with only O <|og (1/E)ﬁ> two-point query

information for 3 € (0, 1).

@ We prove that (sys-dyn) is stable under the learned controller.

16



Collaborators

Funding

&2 COLUMBIA UNIVERSITY
DATA SCIENCE INSTITUTE

<o

&5 COLUMBIA | ENGINEERING

7% The Fu Foundation School of Engincering and Applied Science

To find out more:

My website Full paper

Happy to take
questions!

e
>

17



	Policy Gradient for the LQR Problem
	An SVRPG Approach for the Model-free LQR
	Main Results
	Numerical Validation

