
Learning Stabilizing Policies via an Unstable
Subspace Representation

Leonardo F. Toso, Lintao Ye, James Anderson

Department of Electrical Engineering, Columbia University

64th IEEE Conference on Decision and Control, December 2025



Motivation: Designing a Stabilizing Control Policy
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• Given f : RdX × RdU → RdX
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↓

state

= f (xt , ut
↓
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) + wt
↓
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Motivation: Designing a Stabilizing Control Policy

Typically the number of states dX ≈ 20

With only two unstable modes:

• Longitudinal phugoid

• Lateral spiral

• Given f : RdX × RdU → RdX

xt+1
↓

state

= f (xt , ut
↓
input

) + wt
↓

noise

Stabilization: Design a stabilizing policy

π(x0:t , u0:t−1)→ ut such that

xt → 0 as t →∞ under π(x0:t , u0:t−1)
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Stabilization: Design a stabilizing policy

π(x0:t , u0:t−1)→ ut such that

xt → 0 as t →∞ under π(x0:t , u0:t−1)

• LQR (f is linear) (Kalman, 1960)

• Pole placement (Ackermann, 1972)

• Robust Control (Doyle, 1989)

Acting on all (stable and unstable) modes
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Motivation: Designing a Stabilizing Control Policy

Typically the number of states dX ≈ 20

With only two unstable modes:

• Longitudinal phugoid

• Lateral spiral

Question: Why to act on all modes?

• Given f : RdX × RdU → RdX

xt+1
↓

state

= f (xt , ut
↓
input

) + wt
↓

noise

Stabilization: Design a stabilizing policy
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Intro: Model-Free and Learning to Stabilize (LTS)

Consider f (xt , ut) = Axt +But , with A and B unknown, and linear feedback ut = Kxt

Question: How to design K such that ρ(A+ BK ) < 1 (exponential stability)?
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Intro: Discounted Policy Gradient LQR

Consider the simple case where wt = 0 ∀t ≥ 0 (without noise)

Discounted LQR: minimizeK

{
Jγ(K ) := E

[ ∞∑
t=0

γtx⊤t

(
Q + K⊤RK

)
xt

]}
subject to the system dynamics xt+1 = (A+ BK )xt , where γ ∈ (0, 1].

Lamperski. Computing stabilizing linear controllers via policy iteration. CDC, 2020. 3



Intro: Discounted Policy Gradient LQR

Consider the simple case where wt = 0 ∀t ≥ 0 (without noise)

Discounted LQR: minimizeK

{
Jγ(K ) := E

[ ∞∑
t=0

γtx⊤t

(
Q + K⊤RK

)
xt

]}
subject to the system dynamics xt+1 = (A+ BK )xt , where γ ∈ (0, 1].

• Equivalent Problem: Rescaling xt by γt/2 we have

Discounted LQR: minimizeK

{
Jγ(K ) := E

[ ∞∑
t=0

x⊤t

(
Q + K⊤RK

)
xt

]}
subject to the damped dynamics xt+1 =

√
γ(A+ BK )xt .

• Important: Q ≻ 0, R ≻ 0 are just artifacts

Lamperski. Computing stabilizing linear controllers via policy iteration. CDC, 2020. 3



Intro: Discounted Policy Gradient LQR

Discounted LQR: minimizeK

{
Jγ(K ) := E

[ ∞∑
t=0

x⊤t

(
Q + K⊤RK

)
xt

]}
subject to the damped dynamics xt+1 =

√
γ(A+ BK )xt .

• Discount method:

1. Given γ0 < 1/ρ(A)2, then K = 0 stabilizes
√
γ0(A,B)

2. Policy Gradient : K ← K − η∇̂Jγ(K ) such that Jγ(K ) ≤ J̄ (uniform bound)

3. Update: γ+ ← damping(K , γ) such that K stabilizes
√
γ+(A,B)

Sample Complexity: log(ρ(A))O(d2
XdU) → prohibitive for large state dimension dX

Zhao et al. Convergence and sample complexity of policy gradient methods for stabilizing linear systems. TAC, 2024.
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Intro: Discounted Policy Gradient LQR

Sample Complexity: log(ρ(A))O(d2
XdU) → prohibitive for large state dimension dX

Data collection becomes:
• Time consuming
• Expensive
• High risk for human interaction

Question: Can we reduce sample complexity by only acting on the unstable modes?
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Setup: Linear Systems

Consider the discrete-time LTI system:

xt+1 = Axt + But , for t = 0, 1, . . . ,where ρ(A) > 1 (open-loop unstable)

• Spectrum: |λ1| ≥ . . . |λℓ|︸ ︷︷ ︸
unstable modes

> 1 > |λℓ+1| ≥ . . . ≥ |λdX |︸ ︷︷ ︸
stable modes

, with ℓ≪ dX
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Setup: Linear Systems

Consider the discrete-time LTI system:

xt+1 = Axt + But , for t = 0, 1, . . . ,where ρ(A) > 1 (open-loop unstable)

• Spectrum: |λ1| ≥ . . . |λℓ|︸ ︷︷ ︸
unstable modes

> 1 > |λℓ+1| ≥ . . . ≥ |λdX |︸ ︷︷ ︸
stable modes

, with ℓ≪ dX

• Important: A does not need to be diagonalizable (A admits a Jordan decomposition)

A = ΛJΛ−1, with J =

[
Ju 0
0 Js

]
, Ju ∈ Rℓ×ℓ︸ ︷︷ ︸
unstable modes

, Js ∈ R(dx−ℓ)×(dx−ℓ)︸ ︷︷ ︸
stable modes

.

Goal: Design a linear policy π(xt) = ut ≜ Kxt such that ρ(A+ BK ) < 1 (stabilizing)

Hu et al. On the sample complexity of stabilizing LTI systems on a single trajectory. NeurIPS, 2022. 4
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, Js ∈ R(dx−ℓ)×(dx−ℓ)︸ ︷︷ ︸
stable modes

.

• AΦ̃ = JuΦ̃, where Φ̃ has ℓ orthonormal columns spanning the right unstable eigenspace

• A⊤Φ = JuΦ, with Φ ∈ RdX×ℓ being our unstable subspace representation (left)
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A = ΛJΛ−1, with J =

[
Ju 0
0 Js

]
, Ju ∈ Rℓ×ℓ︸ ︷︷ ︸
unstable modes

, Js ∈ R(dx−ℓ)×(dx−ℓ)︸ ︷︷ ︸
stable modes

.

• AΦ̃ = JuΦ̃, where Φ̃ has ℓ orthonormal columns spanning the right unstable eigenspace

• A⊤Φ = JuΦ, with Φ ∈ RdX×ℓ being our unstable subspace representation (left)

• Damped system matrices: Aγ =
√
γA, Bγ =

√
γB

Policy Gradient : K ← K − η∇̂Jγ(K ), where ∇̂Jγ(K ) is the gradient estimation

• Search over the stabilizing set {K | ρ(Aγ + BγK ) < 1} (Fazel et al., ICML 2018)

Perdomo et al. Stabilizing dynamical systems via policy gradient methods. NeurIPS, 2021. 4



Setup: Zeroth-order Gradient Estimation

ZO(ns , r , τ,K )→ ∇̂Jγ(K ) ≜
1

2rns

ns∑
i=1

(
V γ,τ (K1,i , x

i
0)− V γ,τ (K2,i , x

i
0)
)
Ui ,

• ns : number of trajectories
• r : smoothing radius
• τ : horizon length
• K{1,2},i = K ± rUi

V γ,τ (K , x0) =
τ−1∑
t=0

γtx⊤t

(
Q + K⊤RK

)
xt

The burden in the sample complexity O(d2
XdU) comes from this gradient estimation

Malik et al. Derivative-free methods for policy optimization: Guarantees for linear quadratic systems. JMLR, 2020. 5
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Stabilizing Only the Unstable Modes

Consider first the setting where Ω ≜ [Φ Φ⊥] is a given orthonormal basis of RdX
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• Left unstable subspace decomposition:

Ω⊤AΩ =

[
Au

∆ As

]
, with Au ≜ Φ⊤AΦ︸ ︷︷ ︸

unstable modes

, ∆ ≜ Φ⊤
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⊥AΦ︸ ︷︷ ︸

coupling

, and As ≜ Φ⊤
⊥AΦ⊥︸ ︷︷ ︸

stable modes

Policy representation: K = θΦ⊤, col(Φ)→ left unstable subspace

A+BK = Ω

[
Au + Buθ (unstable)
∆+ Bsθ (coupling) As (stable)

]
Ω⊤, with Bu ≜ Φ⊤B and Bs ≜ Φ⊤

⊥B

Spectral radius: ρ(A+ BK ) = ρ(Au + Buθ), for θ ∈ RdU×ℓ → “smaller” problem
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Decomposing onto the Right Unstable Subspace

Question: Why not to consider the right unstable subspace of A?

A+ BK = Ω̃

[
Ãu + B̃uθ (unstable) ∆̃ (coupling)

B̃sθ Ãs (stable)

]
Ω̃⊤

with the coupling ∆̃ ≜ Φ̃⊤AΦ̃⊥ in the “wrong” position

Spectral radius: ρ(A+BK ) ̸= ρ(Ãu + B̃uθ), unless ∆̃ ≡ 0 (symmetric A)

Goal: Design a low-dimensional policy π(zt) = θzt , with zt = Φ⊤xt , such that ρ(Au + Buθ) < 1

• Challenge: We don’t have access to Φ as A is unknown

• Idea: Learn Φ from trajectory data when ut ≡ 0
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B̃sθ Ãs (stable)

]
Ω̃⊤

with the coupling ∆̃ ≜ Φ̃⊤AΦ̃⊥ in the “wrong” position
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Learning the Left Unstable Representation

We compute an estimation of Φ denoted by Φ̂

• Subspace distance: d(Φ̂, Φ) ≜ ∥Φ̂⊤Φ⊥∥ (Stewart and Sun, 1990)
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Learning the Left Unstable Representation

We compute an estimation of Φ denoted by Φ̂

• Subspace distance: d(Φ̂, Φ) ≜ ∥Φ̂⊤Φ⊥∥ (Stewart and Sun, 1990)

Idea: We compute Φ̂ by sampling from the autonomous adjoint system

1. Simulate the adjoint: xt+1 = A⊤xt =
[
x⊤t e+1 . . . x⊤t e+dX

]⊤
, e+i = Aei

2. Adjoint data: D = [x1, x2, . . . , xT ] ∈ RdX×T with horizon length T

3. Estimation: D = UΣV⊤ → Φ̂ = [u1, . . . , uℓ]

where ei is the i-th canonical basis vector of RdX

8



Learning the Left Unstable Representation

Theorem (informal). Suppose the amount of trajectory data to learn Φ̂ scales as

T = O
(
log

(
ℓ7(dX − ℓ)

(1− |λℓ+1|)ε

)
/ log(|λℓ|)

)
,

then d(Φ̂, Φ) ≤ ε with high probability.
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(
log

(
ℓ7(dX − ℓ)

(1− |λℓ+1|)ε

)
/ log(|λℓ|)

)
,

then d(Φ̂, Φ) ≤ ε with high probability.

• Example: dX = 3 and ℓ = 2

• gm(λ): geometric multiplicity
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Learning the Left Unstable Representation

Theorem (informal). Suppose the amount of trajectory data to learn Φ̂ scales as

T = O
(
log

(
ℓ7(dX − ℓ)

(1− |λℓ+1|)ε

)
/ log(|λℓ|)

)
,

then d(Φ̂, Φ) ≤ ε with high probability.

• Example: dX = 3 and ℓ = 2

• gm(λ): geometric multiplicity

Estimating the unstable subspace is
inconsistent when gm(λ) > 1, for any
unstable mode λ > 1.
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Low-Dimensional Discounted LQR

Discounted LQR: minimizeθ

{
Jγ(θ, Φ̂) ≜ E

[ ∞∑
t=0

z⊤t

(
Φ̂⊤QΦ̂+ θ⊤Rθ

)
zt

]}
,

subject to the damped low-dimensional dynamics Âγ
u ≜
√
γΦ̂⊤AΦ̂, B̂γ

u ≜
√
γΦ̂⊤B

Policy Gradient: θ ← θ−η∇̂Jγ(θ, Φ̂) (low-dimensional)

Suppose θ is stabilizing for the low-dimensional system with Aγ
u and Bγ

u∥∥∥∇Jγ(θ, Φ)−∇Jγ(θ, Φ̂)∥∥∥
F
≤ CΦd(Φ̂, Φ), with CΦ = O(ℓ)

If d(Φ̂, Φ) is sufficiently small, PG with ∇Jγ(θ, Φ̂) looks like PG with ∇Jγ(θ, Φ)
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Discount Method on the Unstable Subspace

Initialize: γ0 sufficiently small → θ ≡ 0 stabilize the damped low-dimensional system

While γj < 1 do

Initialize θ̄0 = θj and for n = 0, 1, . . . ,N do θ̄n+1 = θ̄n − η∇̂Jγj (θ̄n, Φ̂)

Let θj+1 = θ̄N and compute αj(θj , Φ̂) =
3σmin(Φ̂⊤QΦ̂+θ⊤j Rθj)

4
3 Ĵ

γj (θj ,Φ̂)−3σmin(Φ̂⊤QΦ̂+θ⊤j Rθj)

Update γj+1 = damping(θj+1, γj) ≜ (1 + ξαj(θj , Φ̂))γj with ξ ∈ (0, 1)

j ← j + 1

Explicit damping update: γ+ ← (1 + ξα(θ, Φ̂))γ (Lyapunov Stability Analysis)

Zhao et al. Convergence and sample complexity of policy gradient methods for stabilizing linear systems. TAC, 2024. 10



Sample Complexity Analysis

Theorem (informal). Suppose the gradient estimation parameters ns , r , and τ are
set accordingly, the number of adjoint samples T is sufficiently large such that

d(Φ̂, Φ) ≤ ε ≜ O
(
(1−max{ρ(Au + Buθj+1), |λℓ+1|})ℓ

)
,

then π(xt) = Kxt = θj+1Φ̂
⊤xt is stabilizing for the original system (A,B).

[
Au + Buθj+1Φ̂

⊤Φ Buθj+1Φ̂
⊤Φ⊥

∆+ Bsθj+1Φ̂
⊤Φ As + Bsθj+1Φ̂

⊤Φ⊥

] Controlling d(Φ̂, Φ) ≤ ε guarantees that the
low-dimensional (LD) policy stabilizes the
high-dimensional (HD) system (A,B).

Mathias. Quadratic residual bounds for the Hermitian eigenvalue problem. SIMAX, 1998.
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Sample Complexity Analysis

Theorem (informal). Let ns , r , and τ be set accordingly, and the number of adjoint
samples T be sufficiently large such that

d(Φ̂, Φ) ≤ ε ≜ O
(
(1−max{ρ(Au + Buθj+1), |λℓ+1|})ℓ

)
,

then π(xt) = Kxt = θj+1Φ̂
⊤xt is stabilizing for the original system (A,B).

[
Au + Buθj+1Φ̂

⊤Φ Buθj+1Φ̂
⊤Φ⊥

∆+ Bsθj+1Φ̂
⊤Φ As + Bsθj+1Φ̂

⊤Φ⊥

] Learning a low-dimensional control gain θ ∈
RdU×ℓ guarantees stabilization of a high-
dimensional system (A,B) through Φ̂.

Mathias. Quadratic residual bounds for the Hermitian eigenvalue problem. SIMAX, 1998. 11



Sample Complexity Analysis

Corollary (informal). Let ns , r , τ , and T be set accordingly, then a stabilizing policy
π(xt) = Kxt is learned with only log(ρ(A))O(ℓ2dU) samples.

Augmented inverted pendulum and cartpole systems with random stable modes

Operate on the unstable subspace for LTS with a sufficient accurate unstable subspace
representation Φ̂ reduces sample complexity from O(d2

XdU) to O(ℓ2dU)

12



Sample Complexity Analysis

Corollary (informal). Let ns , r , τ , and T be set accordingly, then a stabilizing policy
π(xt) = Kxt is learned with only log(ρ(A))O(ℓ2dU) samples.

Augmented inverted pendulum and cartpole systems with random stable modes

Operate on the unstable subspace for LTS with a sufficient accurate unstable subspace
representation Φ̂ reduces sample complexity from O(d2

XdU) to O(ℓ2dU)
12



Key Takeaways and Future Work

Learning to stabilize all modes is very expensive O(d2
X)

• We considered learning to stabilize only the ℓ unstable modes

• We parameterized K with a low-dimensional controller + a representation (K ≜ θΦ̂⊤)

• We learned Φ̂ with T = O (polylog(ℓ/(1− |λℓ+1|))/ log(|λℓ|)) adjoint samples

• We proved that by controlling d(Φ̂, Φ), LTS takes only O(ℓ2) samples

What’s next:

• Learn the representation and the stabilizing policy from stochastic data (wt ̸= 0)

• Learn and refine the representation online as more data becomes available

• Multitask setting:

13



Key Takeaways and Future Work

Learning to stabilize all modes is very expensive O(d2
X)

• We considered learning to stabilize only the ℓ unstable modes

• We parameterized K with a low-dimensional controller + a representation (K ≜ θΦ̂⊤)

• We learned Φ̂ with T = O (polylog(ℓ/(1− |λℓ+1|))/ log(|λℓ|)) adjoint samples

• We proved that by controlling d(Φ̂, Φ), LTS takes only O(ℓ2) samples

What’s next:

• Learn the representation and the stabilizing policy from stochastic data (wt ̸= 0)

• Learn and refine the representation online as more data becomes available

• Multitask setting:

13



References

• Hu et al. On the sample complexity of stabilizing LTI systems on a single trajectory. NeurIPS 2022.

• Malik et al. Derivative-free methods for policy optimization: Guarantees for linear quadratic systems. JMLR 2020.

• Stewart and Sun. Matrix Perturbation Theory. Academic Press 1990.

• Mathias. Quadratic residual bounds for the Hermitian eigenvalue problem. SIMAX 1998.

• Perdomo et al. Stabilizing dynamical systems via policy gradient methods. NeurIPS 2021.

• Fazel et al. Global convergence of policy gradient methods for the linear quadratic regulator. ICML 2018.

• Zhao et al. Convergence and sample complexity of policy gradient methods for stabilizing linear systems. TAC 2024.

• Lamperski. Computing stabilizing linear controllers via policy iteration. CDC, 2020.

14



Acknowledgments

James Anderson Lintao Ye

15


