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e LQR (f is linear) (Kalman, 1960)
e Pole placement (Ackermann, 1972)
e Robust Control (Doyle, 1989)

Acting on all (stable and unstable) modes



Motivation: Designing a Stabilizing Control Policy

PN

0% o
<-’ Rol} Pitch

Typically the number of states dx ~ 20
With only two unstable modes:
e Longitudinal phugoid

e Lateral spiral

[Question: Why to act on all modes? J

e Given f : R x R —y R

Xt+1 = f(Xt, Ut) + Wi
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state input noise

Stabilization: Design a stabilizing policy
7(Xo:¢, Up:¢—1) — Uy such that

x¢ — 0 as t — oo under 7(xo.¢, Up:t—1)

e LQR (f is linear) (Kalman, 1960)
e Pole placement (Ackermann, 1972)
e Robust Control (Doyle, 1989)

Acting on all (stable and unstable) modes



Intro: Model-Free and Learning to Stabilize (LTS)

Consider f(xt, ur) = Ax: + Buy, with A and B unknown, and linear feedback u; = Kx;

[Question: How to design K such that p(A + BK) < 1 (exponential stability)? j
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Intro: Model-Free and Learning to Stabilize (LTS)

Consider f(xt, ur) = Ax: + Buy, with A and B unknown, and linear feedback u; = Kx;

[Question: How to design K such that p(A + BK) < 1 (exponential stability)? j

e System ldentification (sensitive to model inaccuracies)

Data Collection Sy.stem. Controller Design
Dat Identification Model X
X1 = Ax; + By, +w,| P24 (A,B) < LS(D) ode K = place_poles(A,B)
e Policy Optimization (model-free)
Data Collection Damped PG y — schedule update
Xip] = Axt S Bu, + wy Data Ky « PG(D, y) Controller» 7+ < damping(K,,y)
? Repeat while y, < 1




Intro: Discounted Policy Gradient LQR

Consider the simple case where w; = 0Vt > 0 (without noise)

Discounted LQR: minimizex {JW(K) =E [Z vix, (Q + KTRK) Xt
t=0

}

subject to the system dynamics x;+1 = (A + BK)x¢, where v € (0, 1].

Lamperski. Computing stabilizing linear controllers via policy iteration. CDC, 2020. 3



Intro: Discounted Policy Gradient LQR

Consider the simple case where w; = 0Vt > 0 (without noise)

Discounted LQR: minimizex {JW(K) =E [Z vix, (Q + KTRK) Xt
t=0

}

subject to the system dynamics x;y1 = (A + BK)x¢, where v € (0, 1].
e Equivalent Problem: Rescaling x; by v%/2 we have

Discounted LQR: minimizek {JV(K) =E

S (Q n KTRK> Xt
=0

subject to the damped dynamics x;41 = /7(A + BK)x:.

}

e Important: @ > 0, R > 0 are just artifacts

Lamperski. Computing stabilizing linear controllers via policy iteration. CDC, 2020.



Intro: Discounted Policy Gradient LQR

Z x; (Q+ KTRK
> ( )
subject to the damped dynamics x;11 = /7(A + BK)x:.

Discounted LQR: minimizek {JV(K =E

}

e Discount method:

1. Given 7o < 1/p(A)?, then K = 0 stabilizes \/70(A, B)
2. Policy Gradient : K « K — nVJ"(K) such that J7(K) < J (uniform bound)

3. Update: v <+ damping(K,) such that K stabilizes /7 (A, B)



Intro: Discounted Policy Gradient LQR

th (Q + KTRK) }

t=0
subject to the damped dynamics x;11 = /7(A + BK)x:.

Discounted LQR: minimizek {JV(K =E

e Discount method:

1. Given 7o < 1/p(A)?, then K = 0 stabilizes \/70(A, B)
2. Policy Gradient : K « K — nVJ"(K) such that J7(K) < J (uniform bound)

3. Update: v, < damping(K,~) such that K stabilizes /71 (A, B)

Sample Complexity: log(p(A))O(dzdy) — prohibitive for large state dimension dx

Zhao et al. Convergence and sample complexity of policy gradient methods for stabilizing linear systems. TAC, 2024. 3



Intro: Discounted Policy Gradient LQR

Sample Complexity: log(p(A))O(d%dy) — prohibitive for large state dimension dx

High-dimensional Robotic Arm
& (balancing task) dy is large
\) Shoulder pitch and roll
&)

Few unstable modes:{ Elbow
Wrist joints
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Data collection becomes:
e Time consuming
e Expensive

e High risk for human interaction

[Question: Can we reduce sample complexity by only acting on the unstable modes? ]




Intro: Discounted Policy Gradient LQR

Sample Complexity: log(p(A))O(d%dy) — prohibitive for large state dimension dx

High-dimensional Robotic Arm
(balancing task) dy is large

1 1
1 1
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1 Wrist joints 1
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1.8 —— Ours (dx=20,L=1)
—— LTS all modes (dx =20,/=1)

Data collection becomes: 16! —— LTS all modes (dy = 10,=1)

SPOILER
ALERT!

e Time consuming

e Expensive

e High risk for human interaction [
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[Question: Can we reduce sample complexity by only acting on the unstable modes? ]




Setup: Linear Systems

Consider the discrete-time LTI system:
Xe+1 = Axt + Bug,for t = 0,1, ..., where p(A) > 1 (open-loop unstable)

e Spectrum: |1 > ... |Ag| > 1> [App1| > ... > [Agy, with £ < dx
—_——
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unstable modes stable modes



Setup: Linear Systems

Consider the discrete-time LTI system:

Xe+1 = Axt + Bug,for t = 0,1, ..., where p(A) > 1 (open-loop unstable)

e Spectrum: |1 > ... |Ag| > 1> [App1| > ... > [Agy, with £ < dx
—_——

unstable modes stable\:nodes
e Important: A does not need to be diagonalizable (A admits a Jordan decomposition)

Ju O

_ -1 ; _
A= AJA 7W|thJ—[0 J,

, Ju c fof , Js c R(dx—f)x(dx—f) .

unstable modes stable modes

{Goal: Design a linear policy 7(x:) = us = Kx; such that p(A + BK) < 1 (stabilizing) ]

Hu et al. On the sample complexity of stabilizing LTI systems on a single trajectory. NeurlPS, 2022. 4
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e AD = J,®, where & has ¢ orthonormal columns spanning the right unstable eigenspace

e ATd = J,®, with & € R%**! being our unstable subspace representation (left)



Setup: Linear Systems

Ju 0
O JS

A= /\J/\*l7 with J = |: ] , Jy € RZXK  Js € R(dxfé)x(dx—z) ‘

TV
unstable modes stable modes

e AD = J,®, where & has ¢ orthonormal columns spanning the right unstable eigenspace

e ATd = J,®, with & € R%**! being our unstable subspace representation (left)

e Damped system matrices: A” = /A, B" = /7B

Policy Gradient : K < K — nVJ7(K), where VJY(K) is the gradient estimation

e Search over the stabilizing set {K | p(AY + B"K) < 1} (Fazel et al., ICML 2018)

Perdomo et al. Stabilizing dynamical systems via policy gradient methods. NeurlPS, 2021. 4



Setup: Zeroth-order Gradient Estimation

K.U.xo Simulator Xiude Zeroth-order | .
—> . , > 5
(dynamics) (environment)
(cost)
T . .
20(ns, r, 7, K) = VI(K) £ 2= (VI (K x0) = VI (Kzi ) Us,

S =1

e ns : number of trajectories
e r : smoothing radius

e 7 : horizon length

® Ki12y,i = K=£rU;

Malik et al. Derivative-free methods for policy optimization: Guarantees for linear quadratic systems. JMLR, 2020. 5



Setup: Zeroth-order Gradient Estimation

K.U.xo Simulator Xiude Zeroth-order | .
— . , > 2
(dynamics) (environment)
(cost)

T . .
> (VI (Kyi ) — VT (Ko, x4)) Ui

S =1

20(ns, r, 7, K) — VJI(K) £

e ns : number of trajectories

e r : smoothing radius -
v,T

e 7 : horizon length V(K x0) 27 <Q +K RK)

® Ki12y,i = K=£rU;
The burden in the sample complexity O(d3dy) comes from this gradient estimation

Malik et al. Derivative-free methods for policy optimization: Guarantees for linear quadratic systems. JMLR, 2020. 5
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Stabilizing Only the Unstable Modes

Consider first the setting where Q £ [@ & ] is a given orthonormal basis of R
e Left unstable subspace decomposition:

Ay

T
Q AQ = [A A

] , with A, £0TAD, AL P[AD, and A; £ P AD,

~—
unstable modes coupling stable modes

Policy representation: K = &', col(®) — left unstable subspace

u + Buf (unstable)

i =y AT
A + BsO (coupling) A (stable) , with B, 2® B and B; =& B

A+BK =Q [

Spectral radius: p(A + BK) = p(A, + B.0), for € RW*¢ — “smaller” problem
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Decomposing onto the Right Unstable Subspace

[Question: Why not to consider the right unstable subspace of A? J

A+ BK=Q

A, + B0 (unstable) A (coupling) a7
B0 As (stable)

with the coupling A2 PTAD| in the “wrong” position

Spectral radius: p(A+ BK) # p(ﬁu—i— §u9), unless A = 0 (symmetric A)

[Goal: Design a low-dimensional policy 7(z;) = 0z, with z; = ®" x;, such that p(A, + B,0) < 1 }

e Challenge: We don't have access to @ as A is unknown

e Idea: Learn & from trajectory data when u; =0
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Learning the Left Unstable Representation

We compute an estimation of ¢ denoted by ®

e Subspace distance: d(®, ) 2 ||®® || (Stewart and Sun, 1990)

Idea: We compute o by sampling from the autonomous adjoint system

-
1. Simulate the adjoint: x;;1 = Alx = [xt—ref .. .xtTej;(] ,ei+ = Ag;

2. Adjoint data: D = [x1, xo,...,x7] € R**T with horizon length T
3. Estimation: D= ULV — ¢ = [ur, ..., uf @) drawback

@ neutral

where e; is the i-th canonical basis vector of R ©) benefit



Learning the Left Unstable Representation

Theorem (informal). Suppose the amount of trajectory data to learn @ scales as

r=0(1og <M) J1og(1\))

1—[Ae1])

then d(®,®) < ¢ with high probability.



Learning the Left Unstable Representation

Theorem (informal). Suppose the amount of trajectory data to learn @ scales as

r=0(1og <%) J1og(1\))

then d(®,®) < ¢ with high probability.

e Example: dx =3 and ¢/ =2
p X 5107 N\
. T <
e gm(\): geometric multiplicity g
51073
(V]
% — Ai#A>1
Q — A1=A2>1,gmA) =1
41075 — M=A;>1,gm@A) =2
L% — M=Ay=1l+¢g6e=1x10"%gmA) =1
— M =A=1+¢£6e=1x107%gm(A) =2
10—7 Al
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Amount of data (T)



Learning the Left Unstable Representation

Theorem (informal). Suppose the amount of trajectory data to learn @ scales as

T—0 <|og <m> /Iogwn) ,

then d(@, @) < e with high probability.

e Example: dx =3 and ¢/ =2 N
P g107?
. T c
e gm(\): geometric multiplicity g
51073
Q
s o ) % —_— A EA>1
Estimating the unstable subspace is & 10-5 —frchrLomitips
. . o — A1=A2>1,gm(A) =
inconsistent when gm()\) > 1, for any A — AM=Ay=1+e6=1%x10"5 gm(A) = 1
— M=A=1l+ge=1x10"5 gm(A) = 2
unstable mode \ > 1. 107 1=hmlvee=1x107 o A

10 20 30 40 50 60 70
Amount of data (T)



Low-Dimensional Discounted LQR

Z 2 (87Qd+07R0) zt] }

subject to the damped low-dimensional dynamics A} £ \ﬁ@TA@, B] & ﬁ@TB

Discounted LQR: minimizey {J”(Q D)

Policy Gradient: 0 < §—1VJ7(0,®) (low-dimensional)



Low-Dimensional Discounted LQR

Z 2 (87Qd+07R0) zt] }

subject to the damped low-dimensional dynamics A} £ \ﬁ@TA@, B] & ﬁ@TB

Discounted LQR: minimizey {JV(H D)

Policy Gradient: 0 « 6 —nVJ7(0,®) (low-dimensional)

Suppose 0 is stabilizing for the low-dimensional system with A} and By
HVﬂ(e,@) - Vﬁ(e,gE)HF < Cpd(®,®), with Cp = O(f)

If d(&, P) is sufficiently small, PG with VJ7(6, ) looks like PG with VJ7(6, @)



Discount Method on the Unstable Subspace

Initialize: vy sufficiently small — 6 = 0 stabilize the damped low-dimensional system

While 7; < 1 do

Initialize 0y = ; and for n=0,1,...,N do Opi1=0,— n@ﬁf'(én,@

30min(2T QP+ RY;)

Let 0,1 = Oy and compute aj(HJ-,d?) =5
&
Update 7;;1 = damping(f;41,7;) = (1 + faj(ﬁj,ﬁ))'yj with £ € (0,1)
J—Jj+1
Explicit damping update: v, « (1 + §a(9,€§))’y (Lyapunov Stability Analysis)

Zhao et al. Convergence and sample complexity of policy gradient methods for stabilizing linear systems. TAC, 2024. 10



Sample Complexity Analysis

Data collection Representation Encoding LTS Lifting
r Learning N - -
X41 = ALx; (HD) | Dx = {Xt},=L b svaDy)| D |z=D x (LD)| D-={z}, |6« PG(D., )| 0 (LD) | K =D (HD)
» Ll

11



Sample Complexity Analysis
Data collection Representation Encoding LTS Lifting
Learning . . AT
X = Alx (HD) | De = ()T |4 gyapy)| @ |z =" (LD)| D = (2}, |0 < PG(D., )| 8 (LD) | K = 65" (HD)
» Ll

Theorem (informal). Let ns, r, and 7 be set accordingly, and the number of adjoint
samples T be sufficiently large such that

d(gg7 P)<e2O ((1 — max{p(A, + Bubj+1), |)\€+1|})€> )

then 7(x;) = Kx¢ = j+1$Txt is stabilizing for the original system (A, B).

11



Sample Complexity Analysis

Data collection Representation Encoding
Learning .
— T | - . .
Xi41 = ALx; (HD) | Dx = {xf}t=L D « svd(Dy) () L& = @ x; (LD)
» Ll

LTS

={z}L, |6 « PG(D., D)

Lifting
0(LD) | K =9d' (HD)

Theorem (informal). Let ns, r, and 7 be set accordingly, and the number of adjoint

samples T be sufficiently large such that

d(QZA57 P)<e2O ((1 — max{p(A, + Bubj+1), |>\€+1|})€> )

then 7(x;) = Kx¢ = j+1$Txt is stabilizing for the original system (A, B).

Au+ Bubia®'®  B6j110 0,
A+ Bj 1@ & As+ B 18 D)

Mathias. Quadratic residual bounds for the Hermitian eigenvalue problem. SIMAX, 1998.

Learning a low-dimensional control gain 6 €
R9*¢ guarantees stabilization of a high-
dimensional system (A,B) through &.

11



Sample Complexity Analysis

Corollary (informal). Let ng, r, 7, and T be set accordingly, then a stabilizing policy
7(xt) = Kx; is learned with only log(p(A))O(/*dy) samples.

12



Sample Complexity Analysis

Corollary (informal). Let ng, r, 7, and T be set accordingly, then a stabilizing policy
7(xt) = Kx; is learned with only log(p(A))O(/*dy) samples.

1.2
1.8 —— Ours (dx=20,£=1)
—— LTS all modes (dx =20,£=1) =1.0
1.6/ —— LTS all modes (dx =10,£=1) T
< S0.38
@ 9]
+14 L6
< 2
Q1.2 30.4
b
) e NI NEGURPRPRIN b \PRSRIPHN SN, . S W— ao0.2 — Ours
—— LTS all modes
0 20 40 60 80 100 00 200 400 600 800 1000
Iterations (j) Iterations (j)

Augmented inverted pendulum and cartpole systems with random stable modes

Operate on the unstable subspace for LTS with a sufficient accurate unstable subspace

representation @ reduces sample complexity from O(d2dy) to O(/2dy)
12



Key Takeaways and Future Work

Learning to stabilize all modes is very expensive O(d3)

e We considered learning to stabilize only the ¢ unstable modes

e We parameterized K with a low-dimensional controller + a representation (K £ 6 )
e We learned & with T = O (polylog(¢/(1 — |Aes+1]))/ log(|A¢|)) adjoint samples

e We proved that by controlling d(q%, @), LTS takes only O(¢?) samples

13



Key Takeaways and Future Work

Learning to stabilize all modes is very expensive O(d3)

e We considered learning to stabilize only the ¢ unstable modes

e We parameterized K with a low-dimensional controller + a representation (K £ 6 )
o We learned @ with T = O (polylog(¢/(1 — |Aes1]))/ log(|A¢])) adjoint samples

e We proved that by controlling d(fﬁ, @), LTS takes only O(¢?) samples

What's next:

e Learn the representation and the stabilizing policy from stochastic data (w; # 0)

e Learn and refine the representation online as more data becomes available

.......................................................

{ Multiple high dim. systems |
e Multitask setting: with aligned unstable subspaceé

isimultaneous stab. + adaptation oty Vool 13

.......................................................
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