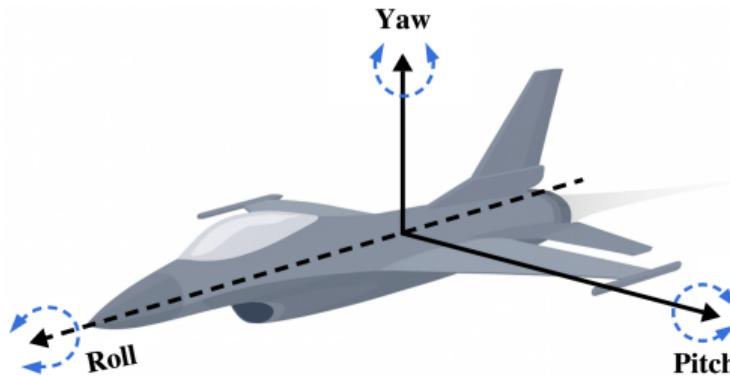


Learning Stabilizing Policies via an Unstable Subspace Representation

Leonardo F. Toso, Lintao Ye, James Anderson

Department of Electrical Engineering, Columbia University

Motivation: Designing a Stabilizing Control Policy



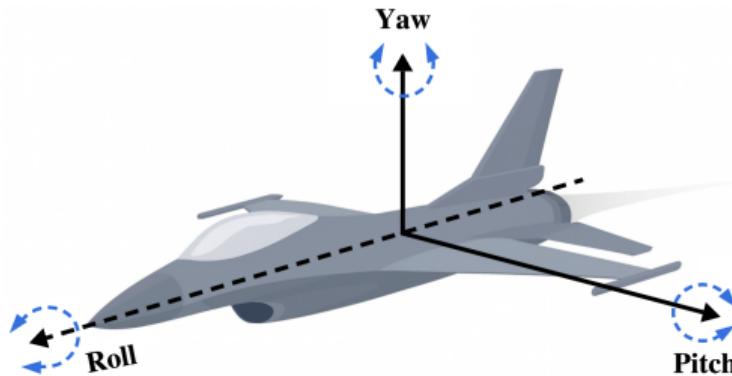
- Given $f : \mathbb{R}^{d_x} \times \mathbb{R}^{d_u} \rightarrow \mathbb{R}^{d_x}$

$$x_{t+1} = f(x_t, u_t) + w_t$$

↓ state ↓ input ↓ noise

$$\text{state} = \begin{bmatrix} \text{pitch angle} \\ \text{roll angle} \\ \text{yaw rate} \\ \text{airspeed} \\ \text{altitude} \\ \vdots \end{bmatrix} - \underbrace{\begin{bmatrix} 0^\circ \\ 0^\circ \\ 0 \text{ rad/s} \\ V_{\text{cruise}} \\ h_{\text{desired}} \\ \vdots \end{bmatrix}}_{\text{Target}}$$

Motivation: Designing a Stabilizing Control Policy



Typically the number of states $d_X \approx 20$

With only **two** unstable modes:

- Longitudinal phugoid
- Lateral spiral

- Given $f : \mathbb{R}^{d_X} \times \mathbb{R}^{d_U} \rightarrow \mathbb{R}^{d_X}$

$$x_{t+1} = f(x_t, u_t) + w_t$$

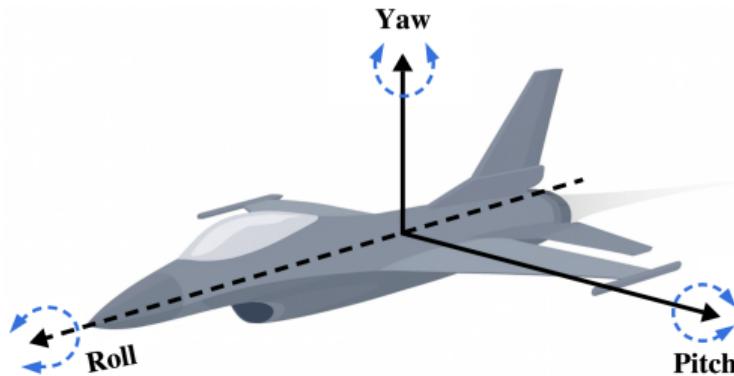
↓ state ↓ input ↓ noise

Stabilization: Design a stabilizing policy

$\pi(x_{0:t}, u_{0:t-1}) \rightarrow u_t$ such that

$x_t \rightarrow 0$ as $t \rightarrow \infty$ under $\pi(x_{0:t}, u_{0:t-1})$

Motivation: Designing a Stabilizing Control Policy



Typically the number of states $d_X \approx 20$

With **only two unstable modes**:

- Longitudinal phugoid
- Lateral spiral

- Given $f : \mathbb{R}^{d_X} \times \mathbb{R}^{d_U} \rightarrow \mathbb{R}^{d_X}$

$$x_{t+1} = f(x_t, u_t) + w_t$$

↓ state ↓ input ↓ noise

Stabilization: Design a stabilizing policy

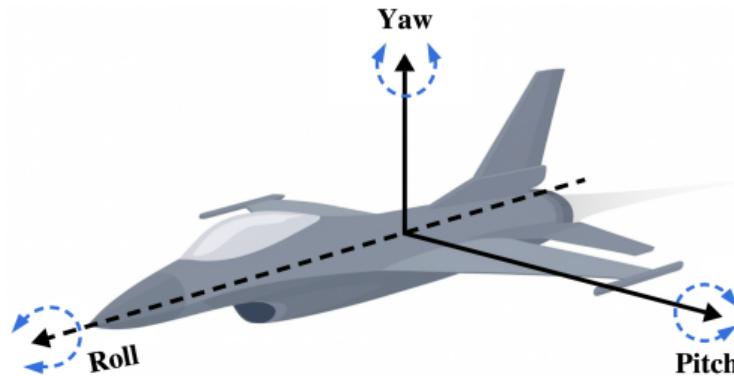
$$\pi(x_{0:t}, u_{0:t-1}) \rightarrow u_t \text{ such that}$$

$$x_t \rightarrow 0 \text{ as } t \rightarrow \infty \text{ under } \pi(x_{0:t}, u_{0:t-1})$$

- LQR (f is linear) (Kalman, 1960)
- Pole placement (Ackermann, 1972)
- Robust Control (Doyle, 1989)

Acting on **all** (stable and unstable) modes

Motivation: Designing a Stabilizing Control Policy



Typically the number of states $d_X \approx 20$

With **only two unstable modes**:

- Longitudinal phugoid
- Lateral spiral

Question: Why to act on **all** modes?

- Given $f : \mathbb{R}^{d_X} \times \mathbb{R}^{d_U} \rightarrow \mathbb{R}^{d_X}$

$$x_{t+1} = f(x_t, u_t) + w_t$$

↓ state ↓ input ↓ noise

Stabilization: Design a stabilizing policy

$$\pi(x_{0:t}, u_{0:t-1}) \rightarrow u_t \text{ such that}$$

$$x_t \rightarrow 0 \text{ as } t \rightarrow \infty \text{ under } \pi(x_{0:t}, u_{0:t-1})$$

- LQR (f is linear) (Kalman, 1960)
- Pole placement (Ackermann, 1972)
- Robust Control (Doyle, 1989)

Acting on **all (stable and unstable) modes**

Intro: Model-Free and Learning to Stabilize (LTS)

Consider $f(x_t, u_t) = Ax_t + Bu_t$, with A and B unknown, and linear feedback $u_t = Kx_t$

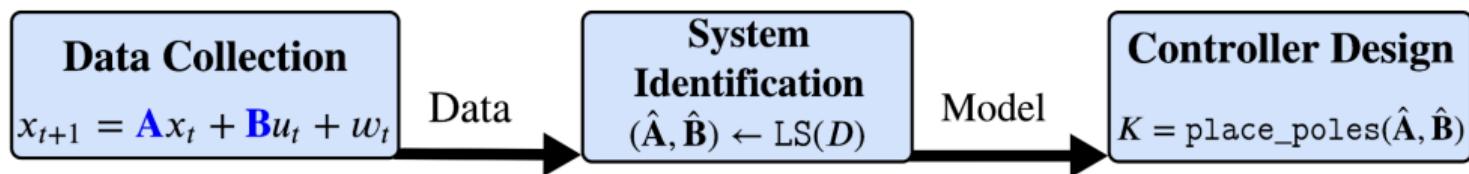
Question: How to design K such that $\rho(A + BK) < 1$ (**exponential stability**)?

Intro: Model-Free and Learning to Stabilize (LTS)

Consider $f(x_t, u_t) = Ax_t + Bu_t$, with A and B unknown, and linear feedback $u_t = Kx_t$

Question: How to design K such that $\rho(A + BK) < 1$ (exponential stability)?

- System Identification (sensitive to model inaccuracies)

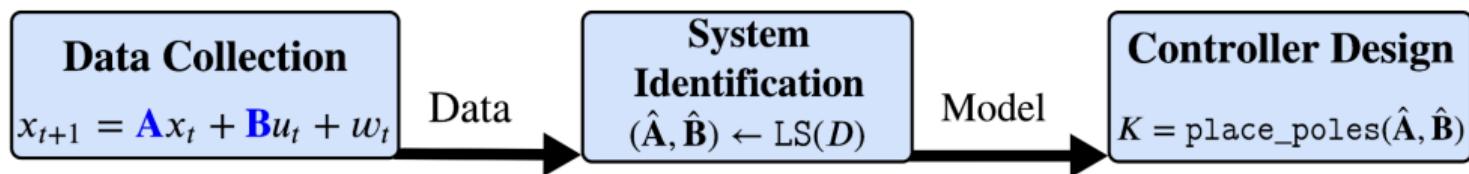


Intro: Model-Free and Learning to Stabilize (LTS)

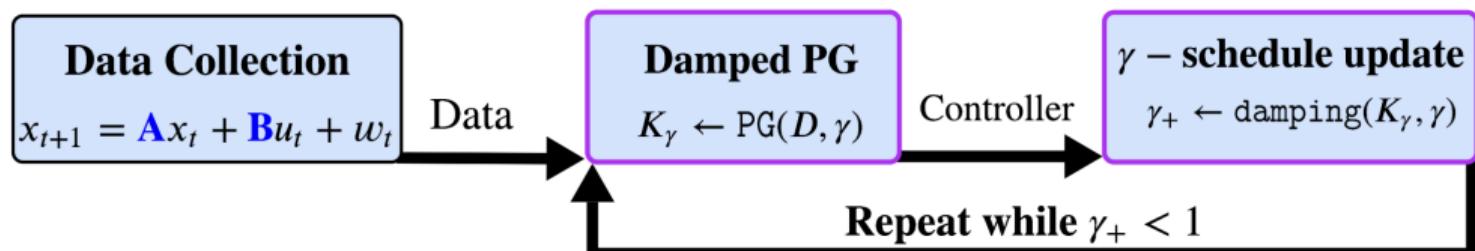
Consider $f(x_t, u_t) = Ax_t + Bu_t$, with A and B unknown, and linear feedback $u_t = Kx_t$

Question: How to design K such that $\rho(A + BK) < 1$ (exponential stability)?

- System Identification (sensitive to model inaccuracies)



- Policy Optimization (model-free)



Intro: Discounted Policy Gradient LQR

Consider the simple case where $w_t = 0 \forall t \geq 0$ (**without noise**)

$$\text{Discounted LQR: minimize}_K \left\{ J^\gamma(K) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t x_t^\top (Q + K^\top R K) x_t \right] \right\}$$

subject to the system dynamics $x_{t+1} = (\textcolor{blue}{A} + \textcolor{blue}{B}K)x_t$, where $\gamma \in (0, 1]$.

Intro: Discounted Policy Gradient LQR

Consider the simple case where $w_t = 0 \forall t \geq 0$ (**without noise**)

$$\text{Discounted LQR: } \underset{K}{\text{minimize}} \left\{ J^\gamma(K) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t x_t^\top (Q + K^\top R K) x_t \right] \right\}$$

subject to the system dynamics $x_{t+1} = (\textcolor{blue}{A} + \textcolor{blue}{B}K)x_t$, where $\gamma \in (0, 1]$.

- **Equivalent Problem:** Rescaling x_t by $\gamma^{t/2}$ we have

$$\text{Discounted LQR: } \underset{K}{\text{minimize}} \left\{ J^\gamma(K) := \mathbb{E} \left[\sum_{t=0}^{\infty} x_t^\top (Q + K^\top R K) x_t \right] \right\}$$

subject to the **damped** dynamics $x_{t+1} = \sqrt{\gamma}(\textcolor{blue}{A} + \textcolor{blue}{B}K)x_t$.

- **Important:** $Q \succ 0$, $R \succ 0$ are just **artifacts**

Intro: Discounted Policy Gradient LQR

$$\text{Discounted LQR: } \underset{K}{\text{minimize}} \left\{ J^\gamma(K) := \mathbb{E} \left[\sum_{t=0}^{\infty} x_t^\top (Q + K^\top R K) x_t \right] \right\}$$

subject to the **damped** dynamics $x_{t+1} = \sqrt{\gamma}(\mathbf{A} + \mathbf{B}K)x_t$.

- **Discount method:**

1. Given $\gamma_0 < 1/\rho(\mathbf{A})^2$, then $K = 0$ **stabilizes** $\sqrt{\gamma_0}(\mathbf{A}, \mathbf{B})$
2. **Policy Gradient** : $K \leftarrow K - \eta \widehat{\nabla} J^\gamma(K)$ such that $J^\gamma(K) \leq \bar{J}$ (**uniform bound**)
3. **Update**: $\gamma_+ \leftarrow \text{damping}(K, \gamma)$ such that K **stabilizes** $\sqrt{\gamma_+}(\mathbf{A}, \mathbf{B})$

Intro: Discounted Policy Gradient LQR

$$\text{Discounted LQR: } \underset{K}{\text{minimize}} \left\{ J^\gamma(K) := \mathbb{E} \left[\sum_{t=0}^{\infty} x_t^\top (Q + K^\top R K) x_t \right] \right\}$$

subject to the **damped** dynamics $x_{t+1} = \sqrt{\gamma}(\mathbf{A} + \mathbf{B}K)x_t$.

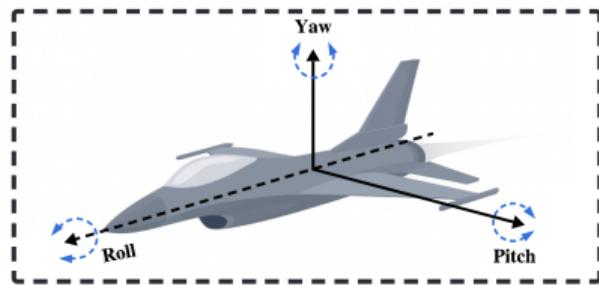
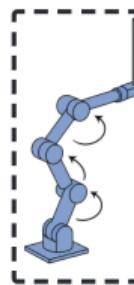
- **Discount method:**

1. Given $\gamma_0 < 1/\rho(\mathbf{A})^2$, then $K = 0$ **stabilizes** $\sqrt{\gamma_0}(\mathbf{A}, \mathbf{B})$
2. **Policy Gradient** : $K \leftarrow K - \eta \hat{\nabla} J^\gamma(K)$ such that $J^\gamma(K) \leq \bar{J}$ (**uniform bound**)
3. **Update**: $\gamma_+ \leftarrow \text{damping}(K, \gamma)$ such that K **stabilizes** $\sqrt{\gamma_+}(\mathbf{A}, \mathbf{B})$

Sample Complexity: $\log(\rho(\mathbf{A}))\mathcal{O}(d_X^2 d_U) \rightarrow$ **prohibitive for large state dimension d_X**

Intro: Discounted Policy Gradient LQR

Sample Complexity: $\log(\rho(\mathcal{A}))\mathcal{O}(d_X^2 d_U) \rightarrow$ prohibitive for large state dimension d_X



High-dimensional Robotic Arm
(balancing task) d_X is **large**

Few **unstable modes**:

Shoulder pitch and roll
Elbow
Wrist joints

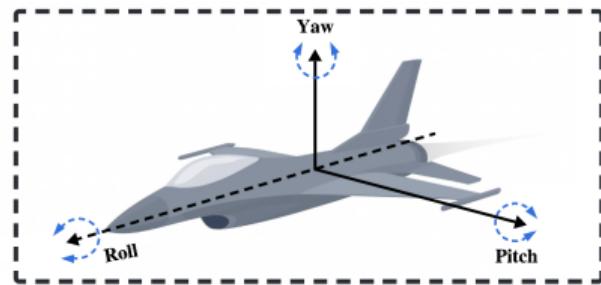
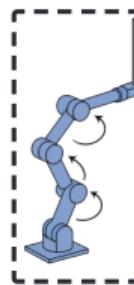
Data collection becomes:

- Time consuming
- Expensive
- High risk for human interaction

Question: Can we reduce sample complexity by **only** acting on the **unstable** modes?

Intro: Discounted Policy Gradient LQR

Sample Complexity: $\log(\rho(A))\mathcal{O}(d_X^2 d_U) \rightarrow$ prohibitive for large state dimension d_X



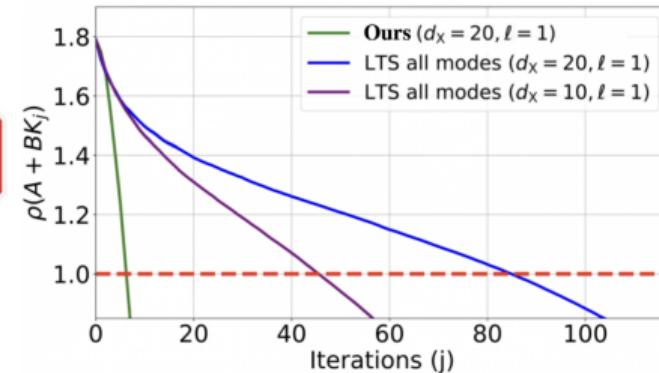
High-dimensional Robotic Arm
(balancing task) d_X is large

Few unstable modes:

Shoulder pitch and roll
Elbow
Wrist joints

Data collection becomes:

- Time consuming
- Expensive
- High risk for human interaction



Question: Can we reduce sample complexity by **only** acting on the **unstable** modes?

Setup: Linear Systems

Consider the discrete-time LTI system:

$$x_{t+1} = Ax_t + Bu_t, \text{ for } t = 0, 1, \dots, \text{ where } \rho(A) > 1 \text{ (open-loop unstable)}$$

- **Spectrum:** $\underbrace{|\lambda_1| \geq \dots \geq |\lambda_\ell|}_{\text{unstable modes}} > 1 > \underbrace{|\lambda_{\ell+1}| \geq \dots \geq |\lambda_{d_X}|}_{\text{stable modes}}, \text{ with } \ell \ll d_X$

Setup: Linear Systems

Consider the discrete-time LTI system:

$$x_{t+1} = Ax_t + Bu_t, \text{ for } t = 0, 1, \dots, \text{ where } \rho(A) > 1 \text{ (open-loop unstable)}$$

- **Spectrum:** $\underbrace{|\lambda_1| \geq \dots \geq |\lambda_\ell|}_{\text{unstable modes}} > 1 > \underbrace{|\lambda_{\ell+1}| \geq \dots \geq |\lambda_{d_x}|}_{\text{stable modes}}$, with $\ell \ll d_x$
- **Important:** A does not need to be diagonalizable (A admits a Jordan decomposition)

$$A = \Lambda J \Lambda^{-1}, \text{ with } J = \begin{bmatrix} J_u & 0 \\ 0 & J_s \end{bmatrix}, \underbrace{J_u \in \mathbb{R}^{\ell \times \ell}}_{\text{unstable modes}}, \underbrace{J_s \in \mathbb{R}^{(d_x-\ell) \times (d_x-\ell)}}_{\text{stable modes}}.$$

Goal: Design a linear policy $\pi(x_t) = u_t \triangleq Kx_t$ such that $\rho(A + BK) < 1$ (stabilizing)

Setup: Linear Systems

$$A = \Lambda J \Lambda^{-1}, \text{ with } J = \begin{bmatrix} J_u & 0 \\ 0 & J_s \end{bmatrix}, \underbrace{J_u \in \mathbb{R}^{\ell \times \ell}}_{\text{unstable modes}}, \underbrace{J_s \in \mathbb{R}^{(d_x - \ell) \times (d_x - \ell)}}_{\text{stable modes}}.$$

- $A\tilde{\Phi} = J_u\tilde{\Phi}$, where $\tilde{\Phi}$ has ℓ **orthonormal** columns spanning the **right** unstable eigenspace
- $A^\top \Phi = J_u \Phi$, with $\Phi \in \mathbb{R}^{d_x \times \ell}$ being our **unstable subspace representation (left)**

Setup: Linear Systems

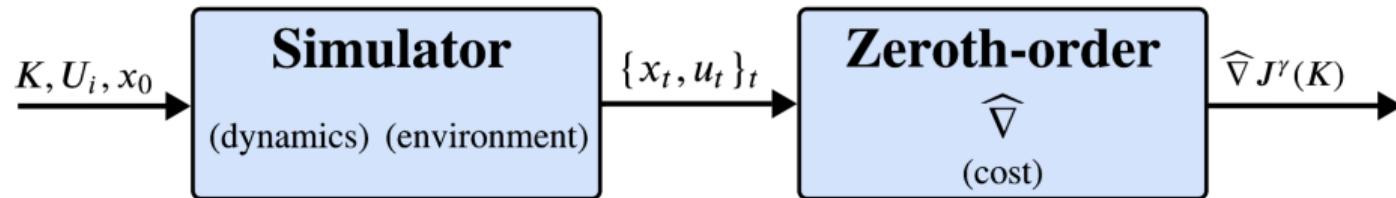
$$A = \Lambda J \Lambda^{-1}, \text{ with } J = \begin{bmatrix} J_u & 0 \\ 0 & J_s \end{bmatrix}, \underbrace{J_u \in \mathbb{R}^{\ell \times \ell}}_{\text{unstable modes}}, \underbrace{J_s \in \mathbb{R}^{(d_x - \ell) \times (d_x - \ell)}}_{\text{stable modes}}.$$

- $A\tilde{\Phi} = J_u\tilde{\Phi}$, where $\tilde{\Phi}$ has ℓ **orthonormal** columns spanning the **right** unstable eigenspace
- $A^\top \Phi = J_u \Phi$, with $\Phi \in \mathbb{R}^{d_x \times \ell}$ being our **unstable subspace representation (left)**
- **Damped system matrices:** $A^\gamma = \sqrt{\gamma}A$, $B^\gamma = \sqrt{\gamma}B$

Policy Gradient : $K \leftarrow K - \eta \hat{\nabla} J^\gamma(K)$, where $\hat{\nabla} J^\gamma(K)$ is the **gradient estimation**

- **Search over** the stabilizing set $\{K \mid \rho(A^\gamma + B^\gamma K) < 1\}$ (Fazel et al., ICML 2018)

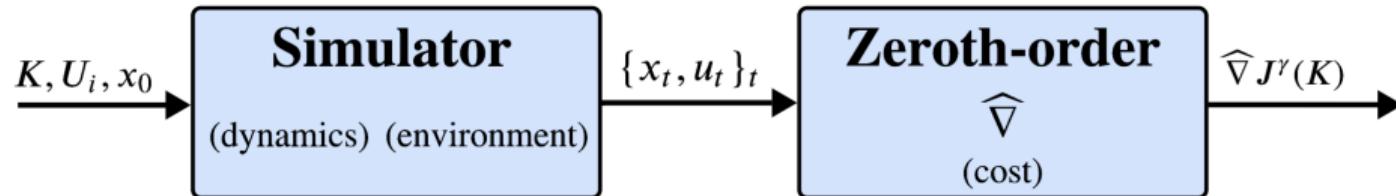
Setup: Zeroth-order Gradient Estimation



$$\text{ZO}(n_s, r, \tau, K) \rightarrow \widehat{\nabla} J^\gamma(K) \triangleq \frac{1}{2rn_s} \sum_{i=1}^{n_s} (V^{\gamma, \tau}(K_{1,i}, x_0^i) - V^{\gamma, \tau}(K_{2,i}, x_0^i)) U_i,$$

- n_s : number of trajectories
- r : smoothing radius
- τ : horizon length
- $K_{\{1,2\},i} = K \pm rU_i$

Setup: Zeroth-order Gradient Estimation



$$\text{ZO}(n_s, r, \tau, K) \rightarrow \widehat{\nabla} J^\gamma(K) \triangleq \frac{1}{2rn_s} \sum_{i=1}^{n_s} (V^{\gamma, \tau}(K_{1,i}, x_0^i) - V^{\gamma, \tau}(K_{2,i}, x_0^i)) U_i,$$

- n_s : number of trajectories
- r : smoothing radius
- τ : horizon length
- $K_{\{1,2\},i} = K \pm rU_i$

$$V^{\gamma, \tau}(K, x_0) = \sum_{t=0}^{\tau-1} \gamma^t x_t^\top (Q + K^\top R K) x_t$$

The burden in the sample complexity $\mathcal{O}(d_X^2 d_U)$ comes from this **gradient estimation**

Stabilizing Only the Unstable Modes

Consider first the setting where $\Omega \triangleq [\Phi \ \Phi_{\perp}]$ is a **given** orthonormal basis of \mathbb{R}^{d_x}

Stabilizing Only the Unstable Modes

Consider first the setting where $\Omega \triangleq [\Phi \ \Phi_\perp]$ is a **given** orthonormal basis of \mathbb{R}^{d_x}

- **Left unstable subspace decomposition:**

$$\Omega^\top \textcolor{blue}{A} \Omega = \begin{bmatrix} A_u & \\ \Delta & A_s \end{bmatrix}, \text{ with } \underbrace{A_u \triangleq \Phi^\top \textcolor{blue}{A} \Phi}_{\text{unstable modes}}, \quad \underbrace{\Delta \triangleq \Phi_\perp^\top \textcolor{blue}{A} \Phi}_{\text{coupling}}, \text{ and } \underbrace{A_s \triangleq \Phi_\perp^\top \textcolor{blue}{A} \Phi_\perp}_{\text{stable modes}}$$

Stabilizing Only the Unstable Modes

Consider first the setting where $\Omega \triangleq [\Phi \ \Phi_\perp]$ is a given orthonormal basis of \mathbb{R}^{d_x}

- Left unstable subspace decomposition:

$$\Omega^\top \mathbf{A} \Omega = \begin{bmatrix} A_u & \\ \Delta & A_s \end{bmatrix}, \text{ with } \underbrace{A_u \triangleq \Phi^\top \mathbf{A} \Phi}_{\text{unstable modes}}, \underbrace{\Delta \triangleq \Phi_\perp^\top \mathbf{A} \Phi}_{\text{coupling}}, \text{ and } \underbrace{A_s \triangleq \Phi_\perp^\top \mathbf{A} \Phi_\perp}_{\text{stable modes}}$$

Policy representation: $\mathbf{K} = \theta \Phi^\top, \text{col}(\Phi) \rightarrow \text{left unstable subspace}$

$$\mathbf{A} + \mathbf{B} \mathbf{K} = \Omega \begin{bmatrix} A_u + B_u \theta & \text{(unstable)} \\ \Delta + B_s \theta & \text{(coupling)} \end{bmatrix} \Omega^\top, \text{ with } B_u \triangleq \Phi^\top \mathbf{B} \text{ and } B_s \triangleq \Phi_\perp^\top \mathbf{B}$$

Stabilizing Only the Unstable Modes

Consider first the setting where $\Omega \triangleq [\Phi \ \Phi_\perp]$ is a given orthonormal basis of \mathbb{R}^{d_x}

- **Left unstable subspace decomposition:**

$$\Omega^\top \mathbf{A} \Omega = \begin{bmatrix} A_u & \\ \Delta & A_s \end{bmatrix}, \text{ with } \underbrace{A_u \triangleq \Phi^\top \mathbf{A} \Phi}_{\text{unstable modes}}, \underbrace{\Delta \triangleq \Phi_\perp^\top \mathbf{A} \Phi}_{\text{coupling}}, \text{ and } \underbrace{A_s \triangleq \Phi_\perp^\top \mathbf{A} \Phi_\perp}_{\text{stable modes}}$$

Policy representation: $\mathbf{K} = \theta \Phi^\top, \text{col}(\Phi) \rightarrow \text{left unstable subspace}$

$$\mathbf{A} + \mathbf{B} \mathbf{K} = \Omega \begin{bmatrix} A_u + B_u \theta & \text{(unstable)} \\ \Delta + B_s \theta & \text{(coupling)} \end{bmatrix} \Omega^\top, \text{ with } B_u \triangleq \Phi^\top \mathbf{B} \text{ and } B_s \triangleq \Phi_\perp^\top \mathbf{B}$$

Spectral radius: $\rho(\mathbf{A} + \mathbf{B} \mathbf{K}) = \rho(A_u + B_u \theta)$, for $\theta \in \mathbb{R}^{d_u \times \ell} \rightarrow \text{"smaller" problem}$

Decomposing onto the Right Unstable Subspace

Question: Why not to consider the **right** unstable subspace of A ?

$$A + BK = \tilde{\Omega} \begin{bmatrix} \tilde{A}_u + \tilde{B}_u \theta & \text{(unstable)} & \tilde{\Delta} & \text{(coupling)} \\ \tilde{B}_s \theta & & \tilde{A}_s & \text{(stable)} \end{bmatrix} \tilde{\Omega}^\top$$

with the **coupling** $\tilde{\Delta} \triangleq \tilde{\Phi}^\top A \tilde{\Phi}_\perp$ in the “wrong” position

Decomposing onto the Right Unstable Subspace

Question: Why not to consider the **right** unstable subspace of \mathbf{A} ?

$$\mathbf{A} + \mathbf{B}\mathbf{K} = \tilde{\Omega} \begin{bmatrix} \tilde{A}_u + \tilde{B}_u\theta & \text{(unstable)} & \tilde{\Delta} & \text{(coupling)} \\ \tilde{B}_s\theta & & \tilde{A}_s & \text{(stable)} \end{bmatrix} \tilde{\Omega}^\top$$

with the **coupling** $\tilde{\Delta} \triangleq \tilde{\Phi}^\top \mathbf{A} \tilde{\Phi}_\perp$ in the “wrong” position

Spectral radius: $\rho(\mathbf{A} + \mathbf{B}\mathbf{K}) \neq \rho(\tilde{A}_u + \tilde{B}_u\theta)$, unless $\tilde{\Delta} \equiv 0$ (**symmetric** \mathbf{A})

Decomposing onto the Right Unstable Subspace

Question: Why not to consider the **right** unstable subspace of \mathbf{A} ?

$$\mathbf{A} + \mathbf{B}\mathbf{K} = \tilde{\Omega} \begin{bmatrix} \tilde{A}_u + \tilde{B}_u\theta & \text{(unstable)} & \tilde{\Delta} & \text{(coupling)} \\ \tilde{B}_s\theta & & \tilde{A}_s & \text{(stable)} \end{bmatrix} \tilde{\Omega}^\top$$

with the **coupling** $\tilde{\Delta} \triangleq \tilde{\Phi}^\top \mathbf{A} \tilde{\Phi}_\perp$ in the “wrong” position

Spectral radius: $\rho(\mathbf{A} + \mathbf{B}\mathbf{K}) \neq \rho(\tilde{A}_u + \tilde{B}_u\theta)$, unless $\tilde{\Delta} \equiv 0$ (**symmetric** \mathbf{A})

Goal: Design a low-dimensional policy $\pi(z_t) = \theta z_t$, with $z_t = \tilde{\Phi}^\top x_t$, such that $\rho(\mathbf{A}_u + \mathbf{B}_u\theta) < 1$

Decomposing onto the Right Unstable Subspace

Question: Why not to consider the **right** unstable subspace of A ?

$$A + BK = \tilde{\Omega} \begin{bmatrix} \tilde{A}_u + \tilde{B}_u \theta & \text{(unstable)} & \tilde{\Delta} & \text{(coupling)} \\ \tilde{B}_s \theta & & \tilde{A}_s & \text{(stable)} \end{bmatrix} \tilde{\Omega}^\top$$

with the **coupling** $\tilde{\Delta} \triangleq \tilde{\Phi}^\top A \tilde{\Phi}_\perp$ in the “wrong” position

Spectral radius: $\rho(A + BK) \neq \rho(\tilde{A}_u + \tilde{B}_u \theta)$, unless $\tilde{\Delta} \equiv 0$ (**symmetric** A)

Goal: Design a low-dimensional policy $\pi(z_t) = \theta z_t$, with $z_t = \Phi^\top x_t$, such that $\rho(A_u + B_u \theta) < 1$

- **Challenge:** We don't have access to Φ as A is **unknown**
- **Idea:** Learn Φ from trajectory data when $u_t \equiv 0$

Learning the Left Unstable Representation

We compute an **estimation** of Φ denoted by $\widehat{\Phi}$

- **Subspace distance:** $d(\widehat{\Phi}, \Phi) \triangleq \|\widehat{\Phi}^\top \Phi_\perp\|$ (Stewart and Sun, 1990)

Learning the Left Unstable Representation

We compute an **estimation** of Φ denoted by $\widehat{\Phi}$

- **Subspace distance:** $d(\widehat{\Phi}, \Phi) \triangleq \|\widehat{\Phi}^\top \Phi_\perp\|$ (Stewart and Sun, 1990)

Idea: We compute $\widehat{\Phi}$ by sampling from the autonomous **adjoint system**

Learning the Left Unstable Representation

We compute an **estimation** of Φ denoted by $\hat{\Phi}$

- **Subspace distance:** $d(\hat{\Phi}, \Phi) \triangleq \|\hat{\Phi}^\top \Phi_\perp\|$ (Stewart and Sun, 1990)

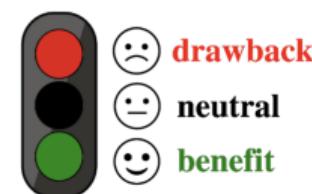
Idea: We compute $\hat{\Phi}$ by sampling from the autonomous **adjoint system**

1. **Simulate the adjoint:** $x_{t+1} = \mathbf{A}^\top x_t = \left[x_t^\top e_1^+ \dots x_t^\top e_{d_X}^+ \right]^\top, e_i^+ = \mathbf{A} e_i$

2. **Adjoint data:** $D = [x_1, x_2, \dots, x_T] \in \mathbb{R}^{d_X \times T}$ with horizon length T

3. **Estimation:** $D = U \Sigma V^\top \rightarrow \hat{\Phi} = [u_1, \dots, u_\ell]$

where e_i is the i -th canonical basis vector of \mathbb{R}^{d_X}



Learning the Left Unstable Representation

Theorem (informal). Suppose the amount of trajectory data to learn $\hat{\Phi}$ scales as

$$T = \mathcal{O} \left(\log \left(\frac{\ell^7 (d_X - \ell)}{(1 - |\lambda_{\ell+1}|) \varepsilon} \right) / \log(|\lambda_\ell|) \right),$$

then $d(\hat{\Phi}, \Phi) \leq \varepsilon$ with high probability.

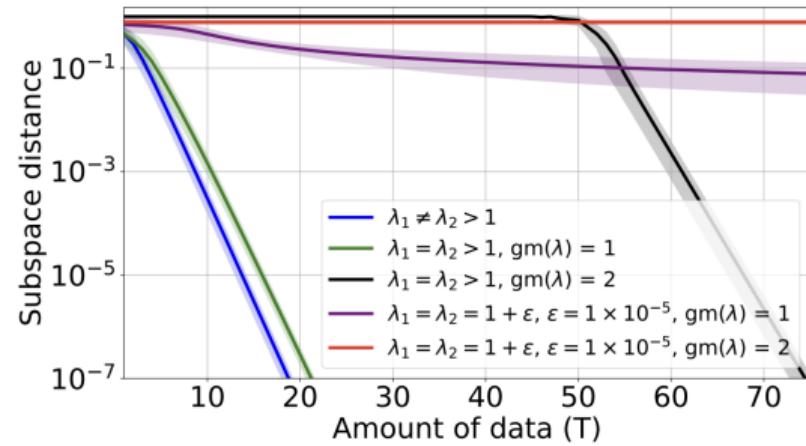
Learning the Left Unstable Representation

Theorem (informal). Suppose the amount of trajectory data to learn $\hat{\Phi}$ scales as

$$T = \mathcal{O} \left(\log \left(\frac{\ell^7 (d_X - \ell)}{(1 - |\lambda_{\ell+1}|) \varepsilon} \right) / \log(|\lambda_\ell|) \right),$$

then $d(\hat{\Phi}, \Phi) \leq \varepsilon$ with high probability.

- **Example:** $d_X = 3$ and $\ell = 2$
- $gm(\lambda)$: geometric multiplicity



Learning the Left Unstable Representation

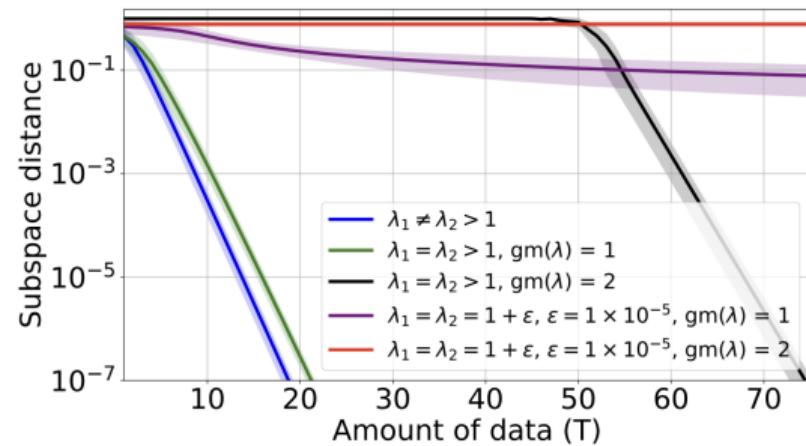
Theorem (informal). Suppose the amount of trajectory data to learn $\hat{\Phi}$ scales as

$$T = \mathcal{O} \left(\log \left(\frac{\ell^7 (d_X - \ell)}{(1 - |\lambda_{\ell+1}|) \varepsilon} \right) / \log(|\lambda_\ell|) \right),$$

then $d(\hat{\Phi}, \Phi) \leq \varepsilon$ with high probability.

- **Example:** $d_X = 3$ and $\ell = 2$
- $gm(\lambda)$: geometric multiplicity

Estimating the unstable subspace is inconsistent when $gm(\lambda) > 1$, for any unstable mode $\lambda > 1$.



Low-Dimensional Discounted LQR

Discounted LQR: $\text{minimize}_{\theta} \left\{ J^{\gamma}(\theta, \hat{\Phi}) \triangleq \mathbb{E} \left[\sum_{t=0}^{\infty} z_t^{\top} \left(\hat{\Phi}^{\top} Q \hat{\Phi} + \theta^{\top} R \theta \right) z_t \right] \right\},$

subject to the **damped** low-dimensional dynamics $\hat{A}_u^{\gamma} \triangleq \sqrt{\gamma} \hat{\Phi}^{\top} \textcolor{blue}{A} \hat{\Phi}$, $\hat{B}_u^{\gamma} \triangleq \sqrt{\gamma} \hat{\Phi}^{\top} \textcolor{blue}{B}$

Policy Gradient: $\theta \leftarrow \theta - \eta \hat{\nabla} J^{\gamma}(\theta, \hat{\Phi})$ **(low-dimensional)**

Low-Dimensional Discounted LQR

Discounted LQR: $\text{minimize}_{\theta} \left\{ J^{\gamma}(\theta, \hat{\Phi}) \triangleq \mathbb{E} \left[\sum_{t=0}^{\infty} z_t^{\top} \left(\hat{\Phi}^{\top} Q \hat{\Phi} + \theta^{\top} R \theta \right) z_t \right] \right\},$

subject to the **damped** low-dimensional dynamics $\hat{A}_u^{\gamma} \triangleq \sqrt{\gamma} \hat{\Phi}^{\top} \textcolor{blue}{A} \hat{\Phi}$, $\hat{B}_u^{\gamma} \triangleq \sqrt{\gamma} \hat{\Phi}^{\top} \textcolor{blue}{B}$

Policy Gradient: $\theta \leftarrow \theta - \eta \hat{\nabla} J^{\gamma}(\theta, \hat{\Phi})$ **(low-dimensional)**

Suppose θ is stabilizing for the low-dimensional system with A_u^{γ} and B_u^{γ}

$$\left\| \nabla J^{\gamma}(\theta, \Phi) - \nabla J^{\gamma}(\theta, \hat{\Phi}) \right\|_F \leq C_{\Phi} \textcolor{green}{d}(\hat{\Phi}, \Phi), \text{ with } C_{\Phi} = \mathcal{O}(\ell)$$

If $\textcolor{green}{d}(\hat{\Phi}, \Phi)$ is **sufficiently small**, PG with $\nabla J^{\gamma}(\theta, \hat{\Phi})$ looks like PG with $\nabla J^{\gamma}(\theta, \Phi)$

Discount Method on the Unstable Subspace

Initialize: γ_0 sufficiently small $\rightarrow \theta \equiv 0$ stabilize the **damped** low-dimensional system

While $\gamma_j < 1$ **do**

Initialize $\bar{\theta}_0 = \theta_j$ and **for** $n = 0, 1, \dots, N$ **do** $\bar{\theta}_{n+1} = \bar{\theta}_n - \eta \hat{\nabla} J^{\gamma_j}(\bar{\theta}_n, \hat{\Phi})$

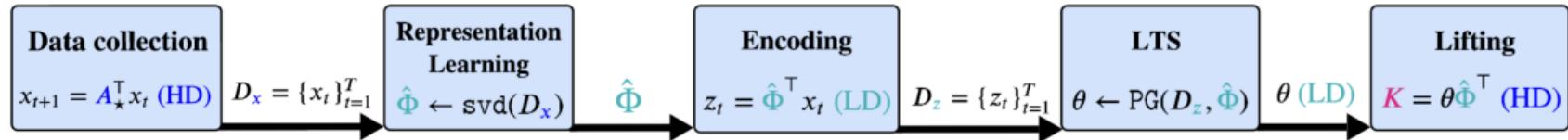
Let $\theta_{j+1} = \bar{\theta}_N$ and **compute** $\alpha_j(\theta_j, \hat{\Phi}) = \frac{3\sigma_{\min}(\hat{\Phi}^\top Q \hat{\Phi} + \theta_j^\top R \theta_j)}{\frac{4}{3} \hat{J}^{\gamma_j}(\theta_j, \hat{\Phi}) - 3\sigma_{\min}(\hat{\Phi}^\top Q \hat{\Phi} + \theta_j^\top R \theta_j)}$

Update $\gamma_{j+1} = \text{damping}(\theta_{j+1}, \gamma_j) \triangleq (1 + \xi \alpha_j(\theta_j, \hat{\Phi})) \gamma_j$ with $\xi \in (0, 1)$

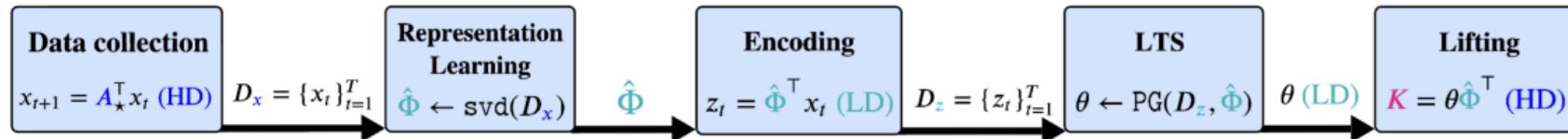
$j \leftarrow j + 1$

Explicit damping update: $\gamma_+ \leftarrow (1 + \xi \alpha(\theta, \hat{\Phi})) \gamma$ (**Lyapunov Stability Analysis**)

Sample Complexity Analysis



Sample Complexity Analysis

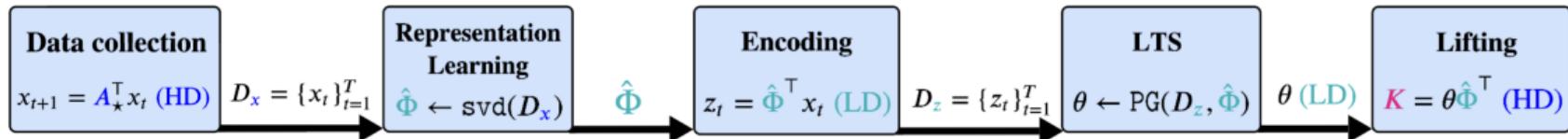


Theorem (informal). Let n_s , r , and τ be set accordingly, and the number of **adjoint** samples T be sufficiently large such that

$$d(\hat{\Phi}, \Phi) \leq \varepsilon \triangleq \mathcal{O} \left((1 - \max\{\rho(A_u + B_u \theta_{j+1}), |\lambda_{j+1}|\})^\ell \right),$$

then $\pi(x_t) = K x_t = \theta_{j+1} \hat{\Phi}^\top x_t$ is **stabilizing** for the original system (A, B) .

Sample Complexity Analysis



Theorem (informal). Let n_s , r , and τ be set accordingly, and the number of **adjoint** samples T be sufficiently large such that

$$d(\hat{\Phi}, \Phi) \leq \varepsilon \triangleq \mathcal{O} \left((1 - \max\{\rho(A_u + B_u \theta_{j+1}), |\lambda_{j+1}|\})^{\ell} \right),$$

then $\pi(x_t) = K x_t = \theta_{j+1} \hat{\Phi}^\top x_t$ is **stabilizing** for the original system (A, B) .

$$\begin{bmatrix} A_u + B_u \theta_{j+1} \hat{\Phi}^\top \Phi & B_u \theta_{j+1} \hat{\Phi}^\top \Phi_\perp \\ \Delta + B_s \theta_{j+1} \hat{\Phi}^\top \Phi & A_s + B_s \theta_{j+1} \hat{\Phi}^\top \Phi_\perp \end{bmatrix}$$

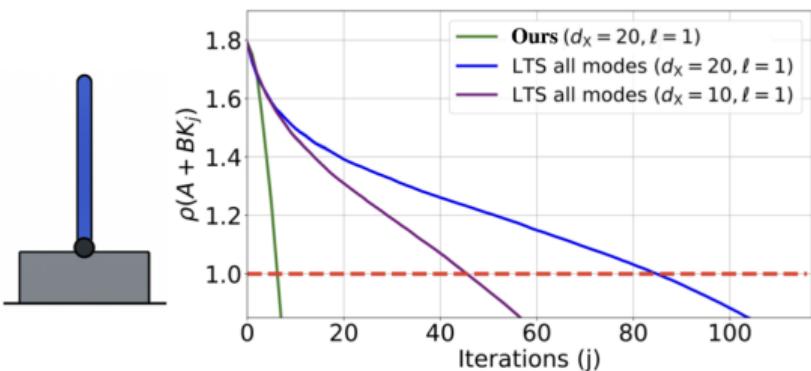
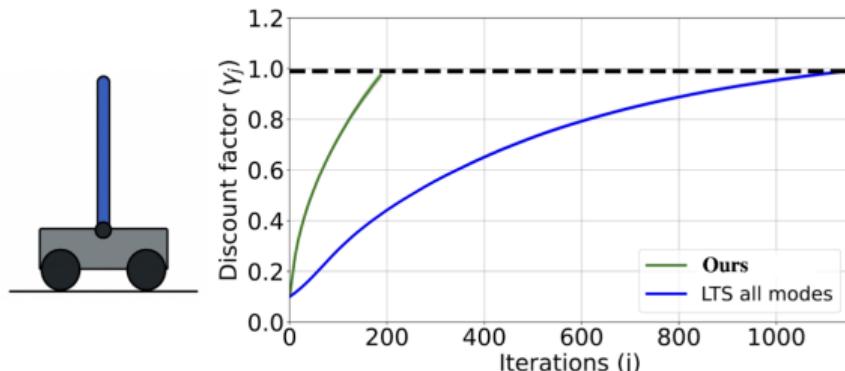
Learning a low-dimensional control gain $\theta \in \mathbb{R}^{d_u \times \ell}$ guarantees stabilization of a high-dimensional system (A, B) through $\hat{\Phi}$.

Sample Complexity Analysis

Corollary (informal). Let n_s , r , τ , and T be set accordingly, then a stabilizing policy $\pi(x_t) = Kx_t$ is learned with **only** $\log(\rho(A))\mathcal{O}(\ell^2 d_U)$ samples.

Sample Complexity Analysis

Corollary (informal). Let n_s , r , τ , and T be set accordingly, then a stabilizing policy $\pi(x_t) = \mathbf{K}x_t$ is learned with **only** $\log(\rho(\mathbf{A}))\mathcal{O}(\ell^2 d_{\mathbf{U}})$ samples.



Augmented inverted pendulum and cartpole systems with **random** stable modes

Operate on the unstable subspace for LTS with a sufficient accurate unstable subspace representation $\widehat{\Phi}$ reduces sample complexity from $\mathcal{O}(d_X^2 d_{\mathbf{U}})$ to $\mathcal{O}(\ell^2 d_{\mathbf{U}})$

Key Takeaways and Future Work

Learning to stabilize **all** modes is very **expensive** $\mathcal{O}(d_X^2)$

- We considered learning to stabilize **only** the ℓ **unstable modes**
- We parameterized K with a low-dimensional controller + a representation ($K \triangleq \theta \hat{\Phi}^\top$)
- We learned $\hat{\Phi}$ with $T = \mathcal{O}(\text{polylog}(\ell/(1 - |\lambda_{\ell+1}|))/\log(|\lambda_\ell|))$ **adjoint samples**
- We proved that by controlling $d(\hat{\Phi}, \Phi)$, LTS takes **only** $\mathcal{O}(\ell^2)$ samples

Key Takeaways and Future Work

Learning to stabilize **all** modes is very **expensive** $\mathcal{O}(d_X^2)$

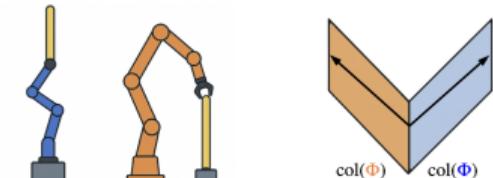
- We considered learning to stabilize **only** the ℓ **unstable modes**
- We parameterized K with a low-dimensional controller + a representation ($K \triangleq \theta \hat{\Phi}^\top$)
- We learned $\hat{\Phi}$ with $T = \mathcal{O}(\text{polylog}(\ell/(1 - |\lambda_{\ell+1}|))/\log(|\lambda_\ell|))$ **adjoint samples**
- We proved that by controlling $d(\hat{\Phi}, \Phi)$, LTS takes **only** $\mathcal{O}(\ell^2)$ samples

What's next:

- Learn the **representation** and the **stabilizing policy** from **stochastic** data ($w_t \neq 0$)
- Learn and **refine** the representation **online** as more data becomes available

- Multitask setting:

Multiple **high dim. systems**
with **aligned unstable subspace**
simultaneous stab. + **adaptation**



References

- Hu et al. On the sample complexity of stabilizing LTI systems on a single trajectory. NeurIPS 2022.
- Malik et al. Derivative-free methods for policy optimization: Guarantees for linear quadratic systems. JMLR 2020.
- Stewart and Sun. Matrix Perturbation Theory. Academic Press 1990.
- Mathias. Quadratic residual bounds for the Hermitian eigenvalue problem. SIMAX 1998.
- Perdomo et al. Stabilizing dynamical systems via policy gradient methods. NeurIPS 2021.
- Fazel et al. Global convergence of policy gradient methods for the linear quadratic regulator. ICML 2018.
- Zhao et al. Convergence and sample complexity of policy gradient methods for stabilizing linear systems. TAC 2024.
- Lamperski. Computing stabilizing linear controllers via policy iteration. CDC, 2020.

Acknowledgments

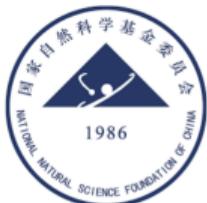
James Anderson

Lintao Ye

Website

Full Paper

The Fu Foundation School of Engineering and Applied Science



Happy to take questions!

