Multi-Task Learning for Control with MAML-LQR

James Anderson

Department of Electrical Engineering Columbia University

Johns Hopkins University: ECE Seminar

October 29, 2024

Acknowledgements

- Han Wang, Columbia University
- Leonardo F. Toso, Columbia University
- Donglin Zhan, Columbia University
- Aritra Mitra, NC State

"sometimes I think this collaboration would work better without you"

Motivation: Collaborative (Supervised) Learning

- data is collected from different sources, it cannot be shared
- goal is to build a model that captures all the data

Motivation

Motivation: Collaborative (Supervised) Learning

- data is collected from different sources, it cannot be shared
- goal is to build a model that captures all the data

Motivation

Task Adaptability

- sample tasks from a distribution
- learn a policy that does well on all of them
- quickly adapt policy to an unseen task

Motivation

Outline

- Federated Learning
- Model-Free Learning for control
- The Federated LQR problem
- Meta-LQR

Federated Learning

a framework for distributed optimization that accounts for:

- device and data heterogeneity
- data locality (privacy)
- communication efficiency

FEDERATED LEARNING FOR MOBILE KEYBOARD PREDICTION

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays Sean Augenstein, Hubert Eichner, Chloé Kiddon, Daniel Ramage

> Google LLC, Mountain View, CA, U.S.A.

Centralized "Learning"

• all data in one place (or globally accessible)

Federated "Learning"

• data is not shared between clients, the model is shared and "averaged"

Problem Formulation

consider the stochastic optimization problem

minimize $\mathbb{E}_{\zeta} \left[l(x,\zeta) \right]$ // population risk

where

- $l: \mathbb{R}^p \times \mathbb{R}^u$ is the expected loss function
- x is the model parameter vector
- $\zeta \sim \mathcal{P}$ with \mathcal{P} unknown
- N clients each generate m samples denoted $\mathcal{D}^i = \{\zeta_1^i, \dots, \zeta_m^i\}$ for $i \in [N]$

Problem Formulation

consider the stochastic optimization problem

minimize $\mathbb{E}_{\zeta} \left[l(x,\zeta) \right]$ // population risk

where

- $l: \mathbb{R}^p \times \mathbb{R}^u$ is the expected loss function
- x is the model parameter vector
- $\zeta \sim \mathcal{P}$ with \mathcal{P} unknown
- N clients each generate m samples denoted $\mathcal{D}^i = \{\zeta_1^i, \dots, \zeta_m^i\}$ for $i \in [N]$

to highlight the distributed nature of the problem, rewrite as

$$\underset{x}{\text{minimize}} \quad \underbrace{\frac{1}{N} \sum_{i=1}^{N} f_i(x)}_{\text{empirical risk}}, \quad \text{where} \quad \underbrace{f_i(x) \triangleq \frac{1}{m} \sum_{\zeta \in \mathcal{D}^i} l(x,\zeta)}_{\text{client } i \text{ solves}}$$

FedAvg

a prototypical federated learning algorithm [McMahan et al. 2016]

Algorithm 1: Federated Averaging (FedAvg)

Input: global iterations K, local iterations τ , stepsize $\eta_{k,t}$

```
for k = 0, 1, \dots, K - 1 do
   // server operations
   randomly select subset of clients S_k
    broadcast x_k to all clients in \mathcal{S}_k
    for each client in S_k in parallel do
        x_{k,0}^{(i)} \leftarrow x_k
   send \Delta_{k,\tau}^{(i)} \leftarrow x_{k,\tau}^{(i)} - x_k to server // new - old
    aggregate the updates x_{k+1} \leftarrow x_k + \frac{1}{n_c} \sum_{i \in S_k} \Delta_{k,\tau}^{(i)} // global update
```

Linear Quadratic Control

System

consider the discrete-time dynamical system

 $x_{t+1} = Ax_t + Bu_t, \quad x_0 \sim \mathcal{D} \quad t = 0, 1, 2, \dots$ (dynamics)

with

- state $x_t \in \mathbb{R}^n$, input $u_t \in \mathbb{R}^m$
- initial condition $\mathbb{E}x_0 = 0$, and $\mathbb{E}x_0 x_0^T \succeq \mu I$

Linear Quadratic Control

System

consider the discrete-time dynamical system

$$x_{t+1} = Ax_t + Bu_t, \quad x_0 \sim \mathcal{D} \quad t = 0, 1, 2, \dots$$
 (dynamics)

with

- state $x_t \in \mathbb{R}^n$, input $u_t \in \mathbb{R}^m$
- initial condition $\mathbb{E}x_0 = 0$, and $\mathbb{E}x_0 x_0^T \succeq \mu I$

Objective

design a static linear control policy $u_t = -Kx_t$ such that:

 $K \in \mathcal{K} \triangleq \{K \mid \rho(A - BK) < 1\}$ (stability) // non-convex

and the quadratic cost

$$C(K) \triangleq \mathbb{E}_{x_0 \sim \mathcal{D}} \left[\sum_{t=0}^{\infty} x_t^T \left(Q + K^\top R K \right) x_t \right] \quad \text{s.t. (dynamics)+(stability)}$$

is minimized Model-free LQR

Model-Based Solution

LQR problem:

 $\begin{array}{l} \underset{K}{\text{minimize}} \quad C(K) \\ \text{s.t.} \quad (\text{dynamics}) + (\text{stability}) \end{array}$

LQR solution:

• solve the DARE for P_K

$$\boldsymbol{P}_{\boldsymbol{K}} = \boldsymbol{Q} + \boldsymbol{A}^{T} \boldsymbol{P}_{\boldsymbol{K}} \boldsymbol{A} - \boldsymbol{A}^{T} \boldsymbol{P}_{\boldsymbol{K}} \boldsymbol{B} (\boldsymbol{R} + \boldsymbol{B}^{T} \boldsymbol{P}_{\boldsymbol{K}} \boldsymbol{B})^{-1} \boldsymbol{B}^{T} \boldsymbol{P}_{\boldsymbol{K}} \boldsymbol{A}$$

• construct
$$K^*$$
 from (A, B, P_K, R)

$$K^{\star} = -(R + B^T P_K B)^{-1} B^T P_K A$$

Model-free LQR

Model-Based Solution

LQR problem:

 $\begin{array}{l} \underset{K}{\text{minimize}} \quad C(K) \\ \text{s.t.} \quad (\text{dynamics}) + (\text{stability}) \end{array}$

LQR solution:

• solve the DARE for P_K

$$\boldsymbol{P}_{\boldsymbol{K}} = \boldsymbol{Q} + \boldsymbol{A}^{T} \boldsymbol{P}_{\boldsymbol{K}} \boldsymbol{A} - \boldsymbol{A}^{T} \boldsymbol{P}_{\boldsymbol{K}} \boldsymbol{B} (\boldsymbol{R} + \boldsymbol{B}^{T} \boldsymbol{P}_{\boldsymbol{K}} \boldsymbol{B})^{-1} \boldsymbol{B}^{T} \boldsymbol{P}_{\boldsymbol{K}} \boldsymbol{A}$$

• construct
$$K^*$$
 from (A, B, P_K, R)

$$K^{\star} = -(R + B^T P_K B)^{-1} B^T P_K A$$

Q: How do we compute K without a model, i.e., (A, B, Q, R)?

Model-free LQR

Model-Free LQR

we **do not** have access to the model (A, B) or cost matrices (Q, R)

- Riccati approach won't work
- gradient descent to find K?

Model-Free LQR

we **do not** have access to the model (A, B) or cost matrices (Q, R)

- Riccati approach won't work
- gradient descent to find K?

Policy Iteration

initially assume we do have access to (A, B, Q, R) and we want to solve minimize C(K)s.t. (dynamics) + (stability)

try to apply gradient descent:

$$K \leftarrow K - \eta \nabla C(K)$$

[Fazel, Ke, Kakade, Meshahi, ICML, 2018] Model-free LQR

LQR Reformulation

we can equivalently rewrite the quadratic cost function

$$C(K) \triangleq \mathbb{E}_{x_0 \sim \mathcal{D}} \left[\sum_{t=0}^{\infty} x^T \left(Q + K^\top R K \right) x_t \right] = \mathbb{E}_{x_0 \sim \mathcal{D}} \ x_0^T P_K x_0$$

where P_K solves the Lyapunov equation

$$(A - BK)^T \mathbf{P}_{\mathbf{K}}(A - BK) + Q + K^T RK = \mathbf{P}_{\mathbf{K}}$$

Reformulated LQR problem:

minimize
$$\mathbb{E}_{x_0 \sim \mathcal{D}} x_0^T P_K x_0$$

s.t. (dynamics) + (stability)

• for $n \ge 3$ there exist non-convex problem instances

Model-free LQR

LQR Gradients

 $\mathbb{E}_{x_0 \sim \mathcal{D}} x_0^T P_K x_0$ formulation of C(K) makes it easier to compute a gradient:

$$\nabla C(K) = 2(\underbrace{(R+B^T P_K B)K - B^T P_K A}_{E_K})\Sigma_K,$$

where Σ_K is the state-correlation matrix:

choose
$$K$$
, $\underbrace{x_{t+1} = (A - BK)x_t}_{\text{closed-loop dynamics}}$, $\Sigma_K \triangleq \mathbb{E}_{x_0 \sim \mathcal{D}} \sum_{t=0}^{\infty} x_t x_t^T$

- not useful as an "object" in the model-free setting
- for analysis...

LQR Landscape

Gradient Dominance: [Polyak-Łojasiewicz]

a function $f:\mathbb{R}^n\to\mathbb{R}$ is said to be gradient dominated if the there exits a scalar $\mu>0$ such that

$$f(x) - f(x^*) \le \mu \|\nabla f(x)\|^2.$$

 used in place of strong convexity to ensure linear convergence rate of gradient descent

LQR Landscape

Gradient Dominance: [Polyak-Lojasiewicz]

a function $f:\mathbb{R}^n\to\mathbb{R}$ is said to be gradient dominated if the there exits a scalar $\mu>0$ such that

$$f(x) - f(x^*) \le \mu \|\nabla f(x)\|^2.$$

 used in place of strong convexity to ensure linear convergence rate of gradient descent

LQR is Gradient Dominated! [Fazel et. al]

for any K such that $C(K)<\infty,$ we have

$$C(K) - C(K^*) \leq \underbrace{\frac{\|\Sigma_{K^*}\|}{\sigma_{\min}(\Sigma_K)^2 \sigma_{\min}(R)}}_{\mu} \|\nabla C(K)\|_F^2$$

 $\implies \nabla C(K) = 0 \text{ then } K \text{ is optimal (or } \Sigma_K \text{ not full-rank)}$ Model-free LQR

Model-Based Policy Gradient

LQR landscape is "approximately smooth", for t = 1, ..., N:

• Gradient Descent:

$$K_{t+1} \leftarrow K_t - \eta \nabla C(K_t)$$

produces a controller that satisfies

 $C(K_N) - C(K^*) \leq \epsilon.$

Model-Based Policy Gradient

LQR landscape is "approximately smooth", for t = 1, ..., N:

• Gradient Descent:

$$K_{t+1} \leftarrow K_t - \eta \nabla C(K_t)$$

produces a controller that satisfies

$$C(K_N) - C(K^*) \leq \epsilon.$$

• Natural Policy Gradient:

$$K_{t+1} \leftarrow K_t - \eta \nabla C(K_t) \Sigma_{K_t}^{-1}$$

• Gauss-Newton:

$$K_{t+1} \leftarrow K_t \eta \nabla (R + B^T P_{K_t} B)^{-1} \nabla C(K_t) \Sigma_{K_t}^{-1}$$

Model-free LQR

Model-Based LQR

• Gradient Descent:

$$K_{t+1} \leftarrow K_t - \eta \nabla C(K_t)$$

• Natural Policy Gradient:

$$K_{t+1} \leftarrow K_t - \eta \nabla C(K_t) \Sigma_{K_t}^{-1}$$

• Gauss-Newton:

$$K_{t+1} \leftarrow K_t - \eta (R + B^T P_{K_t} B)^{-1} \nabla C(K_t) \Sigma_{K_t}^{-1}$$

methods require oracle access to: $\nabla C(K_t)$, $\Sigma_{K_t}^{-1}$, $(R + B^T P_{K_t} B)^{-1}$

Model-free LQR

Model-Free LQR

- we do not have access to (A, B, Q, R)
- have access to a **closed-loop** simulation that for a given K, produces

 $\{x_t, u_t\}_{t=0}^l$

use the simulation data to provide a gradient estimate and then run

$$K_{t+1} \leftarrow K_t - \eta \widehat{\nabla C(K_t)}$$

Model-Free LQR

- we do not have access to (A, B, Q, R)
- have access to a closed-loop simulation that for a given K, produces

 $\{x_t, u_t\}_{t=0}^l$

use the simulation data to provide a gradient estimate and then run

$$K_{t+1} \leftarrow K_t - \eta \widehat{\nabla C(K_t)}$$

One-Point Gradient Estimate: $ZeroOrder(K, r, n_s, \tau)$

• draw n_s random matrices U_s , s.t. $||U_s||_F = r$, for $s = 1, \ldots, n_s$

$$\widehat{
abla C(K)} = rac{1}{n_s}\sum_{s=1}^{n_s} C(K+U_s;x_0)rac{nm}{r^2},$$
 // C horizon length au

is a biased estimate of $\nabla C(K)$

Model-free LQR

Model-Free LQR: Convergence

- we **do not** have access to (A, B, Q, R)
- have access to a closed-loop simulation that for a given *K*, produces

 $\{x_t, u_t\}_{t=0}^l$

• use the simulation data to provide a gradient estimate and then run

$$K_{t+1} \leftarrow K_t - \eta \widehat{\nabla C(K_t)}$$

[Malik et al., JMLR, 2020], [Neshaei et al. arXiv, 2024],[Mohammadi et al. TAC, 2022] Model-free LQR

Model-Free LQR: Convergence

- we **do not** have access to (A, B, Q, R)
- have access to a closed-loop simulation that for a given K, produces

 $\{x_t, u_t\}_{t=0}^l$

• use the simulation data to provide a gradient estimate and then run

$$K_{t+1} \leftarrow K_t - \eta \widehat{\nabla C(K_t)}$$

• for k sufficiently large, the one-point gradient estimates converges w.h.p.:

$$C(K_k) - C(K^\star) \le \epsilon$$

polynomial computational and sample complexity

[Malik et al., JMLR, 2020], [Neshaei et al. arXiv, 2024],[Mohammadi et al. TAC, 2022] Model-free LQR

Federated LQR

for full details...

Mathematics > Optimization and Control

[Submitted on 22 Aug 2023]

Model-free Learning with Heterogeneous Dynamical Systems: A Federated LQR Approach

Han Wang, Leonardo F. Toso, Aritra Mitra, James Anderson

Problem formulation

• given $i = 1, \ldots, M$ (stabilzable) LTI systems

 $x_{t+1}^{(i)} = A^{(i)} x_t^{(i)} + B^{(i)} u_t^{(i)}, \quad x_0^{(i)} \sim \mathcal{D}, \quad (\mathsf{dynamics}_i)$

Problem formulation

• given $i = 1, \ldots, M$ (stabilzable) LTI systems

$$x_{t+1}^{(i)} = A^{(i)} x_t^{(i)} + B^{(i)} u_t^{(i)}, \quad x_0^{(i)} \sim \mathcal{D}, \quad (\mathsf{dynamics}_i)$$

• construct a common state feedback controller, $u_t^{(i)} = K x_t^{(i)}$, that solves

$$K^* = \underset{K}{\operatorname{argmin}} \left\{ C_{\mathsf{avg}}(K) \triangleq \frac{1}{M} \sum_{i=1}^{M} \underbrace{\mathbb{E}\left[\sum_{t=0}^{\infty} x_t^{(i)\top} Q x_t^{(i)} + u_t^{(i)\top} R u_t^{(i)}\right]}_{\mathsf{s.t.}} \right\}$$

s.t. {(dynamics_i)}^M_{i=1} + {(stability_i)}^M_{i=1}

Is this common policy stabilizing for all the systems? If so, under what conditions?

- Is this common policy stabilizing for all the systems? If so, under what conditions?
- How far is the learned common policy from each agent's locally optimal policy?

- Is this common policy stabilizing for all the systems? If so, under what conditions?
- How far is the learned common policy from each agent's locally optimal policy?
- **③** What is the (sample complexity) benefit to each participating agent?

- Is this common policy stabilizing for all the systems? If so, under what conditions?
- How far is the learned common policy from each agent's locally optimal policy?
- **③** What is the (sample complexity) benefit to each participating agent?
- ② Can the optimal controller be applied and fine-tuned on unseen systems? [meta-learning, see later]

System Heterogeneity

we cannot expect a solution to Fed-LQR problem for arbitrary systems

• system heterogeneity

$$\max_{i,j} \|A^{(i)} - A^{(j)}\| \le \epsilon_A, \quad \text{and} \quad \max_{i,j} \|B^{(i)} - B^{(j)}\| \le \epsilon_B, \quad \text{for all } i, j$$

• contrast to classical robust control of nominal+perturbation

Low-Heterogeneity Regime

Scalar Example

consider a simple 2 system setting, with

$$x_{t+1}^{(1)} = \alpha x_t^{(1)} + u_t^{(1)}, \qquad x_{t+1}^{(2)} = -\alpha x_t^{(2)} + u_t^{(2)}$$

and controller $\boldsymbol{u}_t^{(i)} = \boldsymbol{K} \boldsymbol{x}_t^{(i)}$ for i=1,2

Low-Heterogeneity Regime

Scalar Example

consider a simple 2 system setting, with

$$x_{t+1}^{(1)} = \alpha x_t^{(1)} + u_t^{(1)}, \qquad x_{t+1}^{(2)} = -\alpha x_t^{(2)} + u_t^{(2)}$$

and controller $u_t^{(i)} = K x_t^{(i)}$ for i = 1, 2

- $\epsilon_A = 2\alpha$ and $\epsilon_B = 0$
- $\epsilon_A > 2 \implies \alpha > 1 \implies$ both systems unstable
- for stability require $|\alpha K| < 1$ and $|\alpha + K| < 1$

Takeaway

we will need to impose some bound on the degree of heterogeneity

Aside: Quantifying System Heterogeneity

recall our definition:

$$\max_{i,j} \|A^{(i)} - A^{(j)}\| \le \epsilon_A, \quad \text{and} \quad \max_{i,j} \|B^{(i)} - B^{(j)}\| \le \epsilon_B, \quad \text{for all } i, j$$

are these systems really similar?

$$x_{t+1}^{(1)} = 0.99 x_t^{(1)} + 0.1 u_t^{(1)} \quad \text{and} \quad x_{t+1}^{(2)} = 1.01 x_t^{(2)} + 0.01 u_t^{(2)}$$

possible fixes:

- $\mu(M, \Delta)$
- ν -gap
- Lyapunov functions

Algorithm 2: Model-free Federated Policy Learing for LQR (FedLQR)

Input: no. of periods N, period length L, stepsizes η_l, η_g , initial policy K_0

```
for n = 0, 1, \dots, N - 1 do
                                            // server operations
                                            broadcast K_n to all clients
                                            for each client i \in [M] in parallel do
                                                                                    K_{n,0}^{(i)} \leftarrow K_n
                                                                           for l = 0, 1, \dots, L - 1 do
                                                \begin{array}{|c|c|c|} \hline & & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline 
                                            aggregate updates K_{n+1} \leftarrow K_n + \frac{\eta_g}{M} \sum_{i \in S_L} \Delta_n^{(i)} // global update
```

Model-Based Results: Bounded Gradient Difference

with access to $({\cal A}^{(i)},{\cal B}^{(i)})$ and Q,R , the global update for the controller is

$$K_{n+1} = K_n - \frac{L\eta_l \eta_g}{ML} \sum_{i=1}^{M} \sum_{l=0}^{L-1} \nabla C(K_{n,l}^{(i)})$$

- if ϵ_A , ϵ_B are small then their policy gradient directions "should be" close
- for any *i*, *j*, we have

$$\|\nabla C^{(i)}(K) - \nabla C^{(j)}(K)\| \leq \underbrace{\epsilon_A h_1(K) + \epsilon_B h_2(K)}_{\mathcal{O}(\epsilon_A + \epsilon_B)}$$

where h_1, h_2 are bounded polynomials of the problem data

• gradient of agent i can be approximated by gradient of agent j

Model-Based Results: Bounded Gradient Difference

Bounded Policy Gradients

$$\|\nabla C^{(i)}(K) - \nabla C^{(j)}(K)\| \leq \underbrace{\epsilon_A h_1(K) + \epsilon_B h_2(K)}_{\mathcal{O}(\epsilon_A + \epsilon_B)}$$

Model-Based Results: Agent Optimality

Distance between K_N and K_i^* : [informal]

For each agent, after N rounds, if $\underline{\left(\epsilon_A g_1 + \epsilon_B g_2\right)^2 < g_3}$, then

low heterogeneityregime

$$C^{(i)}(K_N) - C^{(i)}(K_i^{\star}) \leq \underbrace{\left(1 - \eta\mu^2 C_1\right)^N}_{<1} \underbrace{\left(C^{(i)}(K_0) - C^{(i)}(K_i^{(\star)})\right)}_{\text{initial optimality gap}} + \underbrace{C_u \mathcal{B}(\epsilon_A, \epsilon_B)}_{\text{bias}}$$

moreover K_N is stabilizing for all N.

Model-Based Results: Agent Optimality

Distance between K_N and K_i^* : [informal]

For each agent, after N rounds, if $\underbrace{\left(\epsilon_A g_1+\epsilon_B g_2\right)^2 < g_3}_{}$, then

low heterogeneityregime

$$C^{(i)}(K_N) - C^{(i)}(K_i^{\star}) \leq \underbrace{\left(1 - \eta\mu^2 C_1\right)^N}_{<1} \underbrace{\left(C^{(i)}(K_0) - C^{(i)}(K_i^{(\star)})\right)}_{\text{initial optimality gap}} + \underbrace{C_u \mathcal{B}(\epsilon_A, \epsilon_B)}_{\text{bias}}$$

moreover K_N is stabilizing for all N.

Model-Based Results: Agent Optimality

Distance between K_N and K_i^* : [informal]

For each agent, after N rounds, if $(\epsilon_A g_1 + \epsilon_B g_2)^2 < g_3$, then

$$C^{(i)}(K_N) - C^{(i)}(K_i^{\star}) \leq \underbrace{\left(1 - \eta \mu^2 C_1\right)^N}_{<1} \underbrace{C^{(i)}(K_0) - C^{(i)}(K_i^{(\star)})}_{\text{initial gap}} + \underbrace{C_u \mathcal{B}(\epsilon_A, \epsilon_B)}_{\text{bias}}$$

moreover K_N is stabilizing for all N.

Distance between K^* and K_i^* : [informal]

For all agents

$$C^{(i)}(K^{\star}) - C^{(i)}(K_i^{\star}) = \mathcal{O}((\epsilon_A + \epsilon_B)^2).$$

Model-Free Results:

Variance Reduction

provided n_s and au large enough, and r small enough, then w.h.p

$$\left\|\frac{1}{ML}\sum_{i=1}^{M}\sum_{l=0}^{L-1}\left[\widehat{\nabla C^{(i)}(K_{n,l}^{(i)})}-\nabla C^{(i)}(K_{n,l}^{(i)})\right]\right\|_{F}\leq\epsilon$$

Model-Free Results:

Variance Reduction

provided n_s and au large enough, and r small enough, then w.h.p

$$\left\|\frac{1}{ML}\sum_{i=1}^{M}\sum_{l=0}^{L-1}\left[\widehat{\nabla C^{(i)}(K_{n,l}^{(i)})} - \nabla C^{(i)}(K_{n,l}^{(i)})\right]\right\|_{F} \le \epsilon$$

- each agent obtains a $\frac{1}{ML}$ speed up per iteration relative to centralized case
- all results from model-based setting carry through!
- overall sample complexity improved by a factor $\tilde{\mathcal{O}}(\frac{1}{M})$
- each agent's sample cost improved from $\tilde{\mathcal{O}}(\frac{1}{\epsilon^2})$ to $\tilde{\mathcal{O}}(\frac{1}{M\epsilon^2})$

Performance as a function of number of agents:

- System: 3 states, 3 inputs
- Heterogeneity: $\epsilon_A = \epsilon_B = \frac{1}{2}$
- Z0 Parameters: $n_s = 5$, $\tau = 15$, r = 0.1

Performance as a function of number of agents:

- System: 3 states, 3 inputs
- No. Systems: M = 10
- Z0 Parameters: $n_s = 5$, $\tau = 15$, r = 0.1

- Is this common policy stabilizing for all the systems? If so, under what conditions?
- Ø How far is the learned common policy from each agent's locally optimal policy?
- **③** What is the (sample complexity) benefit to each participating agent?
- Or an the optimal controller be applied and fine-tuned on unseen systems?

For full details...

Proceedings of Machine Learning Research vol 242:902-915, 2024

6th Annual Conference on Learning for Dynamics and Control

Meta-Learning Linear Quadratic Regulators: A Policy Gradient MAML Approach for Model-free LQR

Leonardo F. TosoLT2879@COLUMBIA.EDUDonglin ZhanDZ2478@COLUMBIA.EDUJames AndersonJAMES.ANDERSON@COLUMBIA.EDUHan WangHw2786@COLUMBIA.EDU

Columbia University, New York, NY

Meta-Learning for Control

learn a controller that is efficiently adaptable to all tasks in a distribution

Meta-Learning for Control

learn a controller that is efficiently adaptable to all tasks in a distribution

- the task: $\mathcal{T}^{(i)}:=(A^{(i)},B^{(i)},Q^{(i)},R^{(i)})$
- task objective:

$$C^{(i)}(K) \triangleq \left[\sum_{t=0}^{\infty} x^{(i)T} \left(Q^{(i)} + K^{\top} R^{(i)} K \right) x_t^{(i)} \right]$$

Meta-Learning: Learning to Learn

Meta-Learning: Learning to Learn

Meta-Learning: Learning to Learn

Meta-Learning for Control

$$x_{t+1} = A^{(1)}x_t + B^{(1)}u_t$$
 (sys)

 $(Q^{(1)}, R^{(1)})$ (env)

Design: $\{u_t\}_{t\geq 0}$ such that $\min_{u_t} \mathbb{E} \sum_{t=0}^{\infty} c(\text{sys}, \text{env})$

Meta-Learning for Control

$$x_{t+1} = A^{(1)}x_t + B^{(1)}u_t$$
 (sys)

 $(Q^{(1)}, R^{(1)})$ (env)

Design: $\{u_t\}_{t \ge 0}$ such that $\min_{u_t} \mathbb{E} \sum_{t=0}^{\infty} c(\text{sys}, \text{env})$

Meta-LQR

Downstream Applications

Model Agnostic Meta Learning: MAML

consider the setting where tasks $\tau^{(i)} \sim p(\mathcal{T})$, $i \in \{1, \dots, M\}$

- Features $x_{\tau^{(i)}}$
- Labels $y_{ au^{(i)}}$
- Dataset $\mathcal{D}_{\tau^{(i)}} = \{x_{n,\tau^{(i)}}, y_{n,\tau^{(i)}}\}_{n=1}^N$
- Cost $\ell_{\tau^{(i)}}(\theta, \mathcal{D}_{\tau^{(i)}})$, for some model parameter $\theta \in \Theta$

Model Agnostic Meta Learning: MAML

consider the setting where tasks $\tau^{(i)} \sim p(\mathcal{T})$, $i \in \{1, \dots, M\}$

- Features $x_{\tau^{(i)}}$
- Labels $y_{\tau^{(i)}}$

• Dataset
$$\mathcal{D}_{\tau^{(i)}} = \{x_{n,\tau^{(i)}}, y_{n,\tau^{(i)}}\}_{n=1}^N$$

• Cost $\ell_{\tau^{(i)}}(\theta, \mathcal{D}_{\tau^{(i)}})$, for some model parameter $\theta \in \Theta$

Goal: Learn an initialization $\theta_0 \in \Theta$ that solves

$$\min_{\theta_{0}\in\Theta} \frac{1}{M} \sum_{i=1}^{M} \ell_{\tau^{(i)}}(\hat{\theta}_{0}, \mathcal{D}_{\tau^{(i)}}),$$

subject to $\hat{\theta}_{0} = \underbrace{\theta_{0} - \eta_{l} \nabla_{\theta_{0}} \ell_{\tau^{(i)}}(\theta_{0}, \mathcal{D}_{\tau^{(i)}})}_{1 \text{ step PG}}$ (MAML)

^M[Finn, Abeel, Levine, ICML, 2017]

Model Agnostic Meta-Learning

MAML-LQR Objective: Design a controller K_{ML}^{\star} that can efficiently adapt to any task drawn from $p(\mathcal{T})$, i.e.,

$$K_{\mathsf{ML}}^{\star} = \operatorname{argmin}_{K \in \mathcal{S}_{ML}} C_{\mathsf{ML}}(K) := \frac{1}{M} \sum_{i=1}^{M} C^{(i)} \underbrace{\left(K - \eta_l \nabla C^{(i)}(K)\right)}_{\text{1 step PG}}$$

subject to $\{(sys-dyn)\}_{i=1}^{M}$, with $S_{ML} \triangleq \bigcap_{i \in [M]} S^{(i)}$

[Molybog & Lavaei, CCTA, 2021],[Musavi & Dullerud, CDC, 2023] Meta-LQR

MAML-LQR

 $\label{eq:algorithm 3: Model-free Federated Policy Learnig for LQR (FedLQR)$

Input: no. of periods N, stepsizes η_l, η_g , initial policy K_0 , tasks \mathcal{T}

for
$$n = 0, 1, ..., N - 1$$
 do
broadcast K_n to all clients
for each task $i \in [M]$ in parallel do

$$\begin{bmatrix} K_0^{(i)} \leftarrow K_n \\ // \text{ estimate gradient} \\ [\nabla \widehat{C^{(i)}(K_n)}, \nabla^2 \widehat{C^{(i)}(K_n)}] \leftarrow \text{ZeroOrder2}(K_n, r, \tau, n_s) \\ // \text{ update policy} \\ K_n^{(i)} \leftarrow K_n - \eta_l \nabla \widehat{C^{(i)}(K_n)}, \quad H^{(i)} \leftarrow I - \eta_l \nabla^2 \widehat{C^{(i)}(K_n)} \\ \nabla C^{(i)}(K_n^{(i)}) \leftarrow \text{ZeroOrder2}(K_n, r, \tau, n_s) // \text{ update task gradients} \\ K_{N+1} \leftarrow K_N - \frac{\eta_g}{M} \sum_{i=1}^M H^{(i)} \nabla C^{(i)}(K_N^{(i)}) H^{(i)} // \text{ update MAML} \end{bmatrix}$$

MAML-LQR Properties

For appropriately chosen parameters, we have:

- every iteration of the algorithm produces a stabilizing controller
- for all tasks: $C^{(i)}(K_N) C^{(i)}(K_i^{\star}) \leq \epsilon + c_1(\bar{\epsilon})$
- for all tasks: $C^{(i)}(K_{\mathsf{ML}}^{\star}) C^{(i)}(K_i^{\star}) \leq c_2(\bar{\epsilon})$

where $\bar{\epsilon}$ defines the task heterogeneity

• nominal system: unstable Boeing aircraft

$$A = \begin{bmatrix} 1.22 & 0.03 & -0.02 & -0.32 \\ 0.01 & 0.47 & 4.70 & 0 \\ 0.02 & -0.06 & 0.40 & 0 \\ 0.01 & -0.04 & 0.72 & 1.55 \end{bmatrix}, B = \begin{bmatrix} 0.01 & 0.99 \\ -3.44 & 1.66 \\ -0.83 & 0.44 \\ -0.47 & 0.25 \end{bmatrix}$$

initial stabilzing controller

$$K_0 = \begin{bmatrix} 0.613 & -1.535 & 0.303 & 0.396 \\ 0.888 & 0.604 & -0.147 & -0.582 \end{bmatrix}$$

• heterogeneity (×10⁻³): M = 50 tasks, with:

 $\epsilon_A = 1.2$ $\epsilon_B = 1.1$ $\epsilon_Q = 1.4$ $\epsilon_R = 1.2$

- Left: gap between nominal task and MAML controller
- Right: varying levels of heterogeneity

- three unseen tasks initiated from K^*
- one task initiated from K_0

Final Thoughts

- demonstrated that federated learning can be applied to optimal control
- proven sample and computational complexity performance boost as a function of number of agents and heterogeneity
- demonstrated that MAML can provably produce efficiently adaptable controllers
- bounded the optimality gap

james.anderson@columbia.edu