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The Problem

collaboration seems like a good idea
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“Sometimes I think the collaborative process
would work better without you.”

...but is it always?

Motivation



Outline

@ system identification
® clustering for personalization

© extension to model-free optimal control



Federated Learning

a framework for distributed optimization that accounts for:

® device and data heterogeneity
® data locality (privacy)

® communication efficiency
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The next word
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Centralized “Learning”
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® all data in one place (or globally accessible)
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Federated “Learning”

e.”
) ® o ) °®
o @ 92 e
() e’ @
\\ @ ’/ ®
Q @y .7
& >
) ® o
@ @
g e e - 4
// N "
% ] ./,
S/ @ - @
o ®0
0 P )
(] @

® data is not shared between clients, the model is shared and “averaged”
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Data Privacy

Many high profile and large-scale data breaches have politicized data privacy

[ LZJp.

® EU’s General Data Protection Regulation (GDPR) addresses the transfer
of personal data outside the EU & EEA

® California Consumer Privacy Act (CCPA) intended to enhance privacy
rights and consumer protection for residents

® many more countries have/will follow suit

Federated Learning Problem Setup



Federated Learning

generic problem formulation:

N
mianiFRgLize F(z) 2 % Z fi(z) + g(x)

=1

assumptions:

® fi non-convex, L-smooth
® g non-smooth, convex
® problem data is stored locally on each device and is never shared

® client-server computation model

Federated Learning Problem Setup



Federated Learning

generic problem formulation:

TER™

LN
minimize F(z) £ ~ Zfz(x) +g(x)

we do not assume:
® bounded gradients: ||V fi(x)|* < G? for all agents

® bounded heterogeneity: ||V fi(z) — V f;(z)| < 6 for all z

Federated Learning Problem Setup



Federated Learning

N
m|n|m|ze E
R —

no shortage of federated algorithms:

® FedAvg, FedSplit, FedProx, FedDR, SCAFFOLD, FedPD, FedDyn,...

® our contribution: FedADMM
— converges with partial participation and approximate local solutions

— no bounded gradients

— no bounded heterogeneity
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FedADMM
rewrite the problem as

N

minimize —g (4 + :E‘

x,T N g g
st. =

where

® 1: concatenation of local variables [T, 27, ..., z%]

® 7. global consensus variable

each agent has an augmented Lagrangian:

Li(xi,5,2:) = fi(wi) + 9(7 )+<zf,zi—a—:k>+g\mi_@ku2

FedADMM
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FedADMM
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Client-side

> Client side
for each client 7 € S, do
receive Z¥ from the server.
k+1 =k k
;TR argmmL (ml,:z: ,zi)

2Pl =2k (w :ik) {Dual updates
B+ ght +1 1kt

send Azl “f‘H fzf back to the server
end for



Client-side

approximation
clients do not have to minimize £; precisely:

k+1

. ko _k
x; —argnalcl_n[li(:ri,x 2 27)
i

‘ < €ik+1

partial participation
at iteration k only a subset of clients Si need to send local updates
mixing

each client is seeded with averaging vector T

FedADMM



Server-side

@ > Server side
‘4

aggregation FFt1 =k + 137 o Ak
update zF+1 = prox,, (8%+1)
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® FedADMM performs K server-side iterations

FedADMM



Analysis

convergence (informal, g = 0):

e [ )] < 2T )
14 K+1 N(K +1) ok ikt
=0 N e
(1) (2)
where

n

K
2 2
l(€s,k, €ik+1) E g (co€i 1 + C3€5 k1)

k=0 i=1

® (1) initial optimality gap
® (2) cost of working with approximate solutions and bennifit of IV clients

® impact of partial participation reflected in the constants

FedADMM



Analysis

convergence (informal):
if the sum of the inaccuracies is bounded by D > 0, then FedADMM requires

o rl[F(xo) =L MEACE: c3)DJ

= 0(6_2)

to achieve an e-suboptimal stationary point.

® analysis can be extended to include g

FedADMM



Numerical Experiments

® FEMNIST Dataset: 62 classes, 1-10, A-Z, a-z, multiple writers, 30 clients
® 2 convolutional layers, 2 fully connected layers, 62 output neurons

® stochastic gradient descent, 300 iterations per client

accuracy

FedADMM



FedADMM: A Federated Primal-Dual Algorithm Allowing Partial
Participation

Wang, Marella, Anderson

Proc. IEEE CDC, 2022
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System ldentification
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model-based control

® adaptive control: update model (and controller) online

® offline control: learn model once

Federated System Identification



Centralized Setting

® ground truth system

Tip1 = Awze + Boug +wy, t=0,1,2,..., T -1

® generates data
T—1
{ze,witizo, 1=1,...,N

® rewrite the system as

Tip1 = Oz +wi, O =) [A* B*L 2t 2 |:xt:|

Ut
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Data

® rollout [ generates data

X, = [wl,Tfl R xl,1] c RnXT
7z = [l'l,T—l A 1‘[}1] c R(n+p)XT
W, = [wl,Tfl wl,l} S RTLXT

® concatenating data from all rollouts

X=[X1 ... Xn]eRY™N, Z=[z1 ... Zy]eROP*TN

® relationship described by
X=0Z4+W

® |east-squares estimator

64 [ A B ] =argminggnxmin||X — oz|%.

Federated System Identification



Error Analysis

* optimal © satisfies [Dean et al.]:

1

160, n + 2p) log(36/9) \ 2

max{|A. — All,||B. — BJ}} < (( p) log( ”)
)\min(ET) N

where Y1 is the covariance of the state at time T

Note:

® v =Gru+ Frw
® \nin(02GrGH + 02 Fr FE) quantifies how difficult to system is to control

® result only uses data at time T from each rollout

Federated System Identification



Federated System ID

® ground truth systems, i =1,..., M
mgil = Aii)xgi) + Bii)ugi) + wgi)7 t=0,1,2,...,T—-1
where

:E(<)l) NN(O?UZQ,x'I)7 UEZ) NN(OyazzuI)a w(()l) NN(O’GZQWI)

p

® system ¢ generates

{2f ) ulVS 1=1 N

t

® system heterogeneity

max |AY) — AP|| <€, and max|B{” —BY| <e, foralli,j
2,] 2y
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Federated System Identification

Formally, we will solve the following problem in a federated manner:

M

5 i B 1 : i i

CEN B]:ME argémnHX()—@Z()H%
i=1
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Aside: Quantifying System Heterogeneity

recall our definition:

max |4 — AP <€, and max|B) — BY|| <e, foralli,j
,] 2]

are these systems really similar?

M =099z +0.1uY and 27, = 1.012{% 4 0.01u>

possible fixes:

® system norms

® v-gap

Federated System Identification



FedSysID: Meta Algorithm

Algorithm 1 FedSysID
1: Initialize the server with © and step size o ;
2: Initialize each client i € [M] with ©5) = O0;
3: For each round r =0,1,...,R—1do
4: uniformly sample S, C {1,2,--- , M}

5 > Client side:

6: For each client ¢ € S, in parallel do =

7. 6, = ClientUpdate(i,0,,K;) == J
8 send @sfll back to the server

9 end for

10: t> Server side: '
11: update ©,11 = 3; Zz_ 95':)-1 and send O, to each client

12: end for
13: Return Op

Federated System Identification



Price of Heterogeneity

with high probability, the least squares estimator produces © such that:

max{||A — AL||,||B - BI||} <

L S (ERIEN) oy o o
M % A tex A
Zi:1Ni
Cy Cs

where A = min; mm(ZT 12 ).

® (y: error constant

® (5: heterogeneity constant

Federated System Identification



with high probability, the least squares estimator produces © such that:

_ ) _ ) 1 i
max{|[A — AQ|, |B - BY|} < « Signal

— + O(heterogeneity)
M noise
i=1 NZ

Takeaways

® collaboration allows clients to improve their performance from O( \/%) to

O (swrivw,)

® despite not sharing the data, clients performance improves as if they did

Federated System Identification



ClientUpdate: Per-Round Analysis

Ar 2 max {E|Ar — A, E|Br - B }

for all R > 1, the output of FedSysID O satisfies:

® FedAvg [McMahan et al.]

AR S O KLR + L + ECQ
M
Zi:l Ni
® FedLin [Mitra et al.]
Ar<o|er S 4,
M
Zi:l N

Federated System Identification



Numerical Experiments

® nominal system (Ao, Bo)

e perturbed system A = A, + 'V, B = By + 457U

0.6 05 04
Ap=|[0 04 03
0 0 03
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FedSysID: A Federated Approach to Sample-Efficient System ID
Wang, Toso, Anderson
Proc. L4DC, 2023
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Clustering

® Motivation:
is a common estimation for all the participants a good idea in
heterogeneous settings?

can we get personalized models when the systems participating in the
collaboration are significantly different

® Pros:
cluster systems with similar dynamics — run system identification on the
clusters separately — reduces heterogeneity, therefore should speed up
convergence.

® Cons:
incorrect classification slows things down

Clustering for sysID
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Clustering setup

® M systems generating data

W =A920 4 BOYD o p=0,...,T 1

® M data sets of the form

{ }t 07 lzlval

each data set generated by one of K < M system types

define “clusters” Ci,...,Ck, where
C;j 2 (4;,B;) suchthat A; = A” B; = B for some i € [M]

and define ©; £ [ A B |

Clustering for sysID



Clustering for System Identification
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Assumptions

C4*

o ||@§~O) -0 < (5 - @) Apin where o € (0, )

® N;n and Anin sufficiently large

Amln = 14+ Amax Z Zexp Ni; n,a(o), ||E§Z)||7p(l)))

ie[M] t=1

Clustering for sysID



Phase 1: Clustering

clustering
1) 7 prn
{X9, 2%, Wy
(X® 70wy kG
: . - *Cs

N\

(X0 z0) Wi} —

() Z(00) oy
{ ; WY

for each i € [M], j =argmin || X — @g-T)Z(i)HQF
JE[K]

Clustering for sysID



Phase 2: Learning

clustering learning
1) 7z prn
(X%, 2%, wihy
~ e
(x®, 7™ w®y g
. ~ 1 b\{_/
N\ /» 9% Co 92+m +

(X z0) Wi} —

Ny

* Cx

1) () )/
{ ; W}

Ar+1) A 2n; OB OIHONTIONS
6y 8} +‘76_'Z(X o RARPAR)
i€[M] 8T e

localupdate

centralized averaging

Clustering for sysID



Phase 1: Clustering

clustering

{X(l),z(l),W(l)}\

(X, 72 W@y * C1

\ ‘\‘
: \‘\\ kG
{X@) Zz0) Wiy~ \
\
N
bl

K Cx

and repeat...

Clustering for sysID



Algorithm

Algorithm 1 Clustered System Identification

1: Initialization: number of clusters i, step-size 7;, and model initialization égo) Vj € [K],
2 for each iterationr = 0,1,..., R — 1 do
3 The systems receive the models {@({] - ,@g)}, vj € [K],
Cluster estimation (CE):
for each system i € [M]
j = argmin, g | X — 87 Z0)|2,
define ¢; = {ei,j}le withe; ; = 1{j = 3}
end for
Model estimation (ME):

Ar+1) () 2n; i o) #(i i), 5
10: 9 '=6;"+ Zzé:“’,;gu Yien € (XW =072 ZOT forall j € [K]

e s

11: end for _
12: Return 953) forall j € [K].

Clustering for sysID



Theoretical Guarantees

Probability of misclassification:

-, T-1 @ 0 ?
IP’{MZ’] } <c Z exp (—@me <0¢P||t||>
t=0

PSP || + iw

M7 is the event that system i is misclassified as belonging to cluster C;/

® reformulate so that misclassification happens with at most probability ¢

® recovers the results of Ghosh et al. NeurlPS'20

Clustering for sysID



Theoretical Guarantees

Convergence:

after R iterations, for every cluster j € [K], ||(:)§R) — ©j]| is upper bounded by

@) 323 2
+C1Amax g E exp <C2 (p(J|)Et|> >
Zlec N & = PO + e

——
Cs C4

® (C3: in-class sample complexity
® (4 probability of misclassification
® bound holds w.h.p., + earlier assumptions

® bound is independent of (¥

Clustering for sysID



Comparison

® Federated SysID:

1 ignal
. Signa

max{||A — A ||, || B - BY||} < + O(heterogeneity)

M a7 noise
i=14Ve

where O(heterogeneity) is not controlled by the number of trajectories V;

® Clustered SysID:

1 ignal
, signa

) noise
\/ 2iec, Ni

with exp(misclass) being controlled by N;

max{[|[4; — 4;|,||1B; — B;||} < + O(exp(misclass))

Clustering for sysID



® Gain of collaboration:

10° : 10°
10
Si 10 g 10 Ei 107!
102 102 107
100 200 300 100 200 300 100 200 300
T : 5 T

® Gain of clustering;:

3 15
15 h clustering
hout clustering

1 2
0.5 d

0 0

100 200 300 100 200 300 100 200 300
I T T

— 50 systems, 3 clusters, T' = 50

Clustering for sysID



® Number of misclassifications:

20

15¢1

101

# misclassifications

10°
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Learning Personalized Models with Clustered System ldentification
Toso, Wang, Anderson
To appear, Proc IEEE CDC’23: arXiv 2304.01395
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Conclusions

® federated learning can be applied to system identification system
identification

® characterized the cost/benefit of heterogeneity
® personalization can be achievd through clustering
® aimed for ideas — dodged the technical details

® related: federated LQR policy gradient and RL problems

james.anderson@columbia.edu www.columbia.edu/~ja3451



Federated LQR

® Given M LTI systems

2, = AD2) 4 BOU | o D, =1, M

® construct a state feedback controller that solves

M oo
x . 1 DT A (i DT o (i
K —arggnn{Cavg(K)éM;_lE ;:O:ri) Q" + ul"" Ru" }

s.t. ugi) = fK;cEi)

system dynamics

® system heterogeneity

max A" — AY|| < ¢, and max|BY — BY| < e, foralli,j
1,7 2y



Single Agent Policy Gradient

e if (A, B) is known and E,,p[zoxzd] is full rank, the iteration

K+ K -nVC(K)

finds the globally optimal controller

® closed-form expressions for the gradient: VC'(K) = 2Ex Xk where
Ex 2 (R n BTPKB) K~ B"PxA, S 2E;np Y wia]
t=0
and Px solves the Lyapunov equation

Px =Q+ K"RK + (A — BK)"Pg(A — BK)



Model-Free Case

® when (A, B,Q, R) not directly available, VC(K) can't be computed

® the controller only has simulation access to a model

—

® jterates are generated according to K «+ K — nVC(K)

Algorithm 2 Zeroth-order gradient estimation (z0)

1: Input: K, number of trajectories ns, trajectory length 7, smoothing radius r, dimension n,, and n,,, system

index i.

2 fors=1,...,ns do

3:  Sample a policy K, = K + Uy, with U, drawn uniformly at random over matrices whose (Frobenius)
norm is 7.

4:  Simulate the i-th system for 7 steps starting from zp ~ D using policy R,. Let C; be the empirical
estimate: 66 =11 ¢, where ¢; := z (Q +K T RI?S) z; on this trajectory.

5: end for . N

6: Return the estimate: VC(K) = n% ey 22 CoU.




FedLQR

Algorithm 1 Model-free Federated Policy Learning for the LQR (FedLQR)

1: Input: initial policy Ko, local step-size 7; and global step-size 7.
2: Initialize the server with K¢ and 7,
3: forn=0,...,N—1 do

4 for each system i € [M] do

5 fori=0,---,L—1do

6: Agent i initializes K;&_:\Kn

7: Agent i estimates VO () (K 7(3) = z0(K 7(3, i) and updates local policy as
8: K{), = K9 —nveo (k)

9: end for )
10: send A(nl ) = KT(:)L — K, back to the server
11: end for )
12: Server computes and broadcasts global model K,, 1 = K, + "Hg Zf\il Aﬁ: )
13: end for

Federated LQR



Under the Hood

Details can be found in the paper:

® require a controller Ky that stabilizes all systems

® sufficiently large smoothing radius of the gradient estimator

® have access to sufficient samples

® operate in a low heterogeneity regime

Federated LQR



Algorithm Guarantees

® At every round n, K, is stabilizing
® Every local controller K,(f) is locally stabilzing

® After

Cuniya || Sk
N Z k3
Ni*Omin (R)
rounds, FedLQR acheives

log (2<c<“<f<o> - ch*)))

6/

CO(Ky) — C(KT) < € + cunia x Bler,e2), Vi € [M]

Federated LQR
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