
To Collaborate, or Not?
Federated Learning Meets Control

James Anderson

Department of Electrical Engineering
Columbia University

MIT LIDS
Nov 27th, 2023



Acknowledgements

• Han Wang, Columbia University

• Leonardo F. Toso, Columbia University

• Siddartha Marella, ZF Group

• NSF: Grant 2144634 & Columbia Data Science Institute



The Problem

collaboration seems like a good idea

...but is it always?

Motivation



Outline

1) Train on data generated by “similar” systems seeded with a common model

2) Aggregate model and broadcast

3) Repeat

Q) How does heterogeneity affect sample complexity and performance?

1 system identification

2 clustering for personalization

3 extension to model-free optimal control



Federated Learning

a framework for distributed optimization that accounts for:

• device and data heterogeneity

• data locality (privacy)

• communication efficiency

Federated Learning Problem Setup
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Centralized “Learning”

• all data in one place (or globally accessible)

Federated Learning Problem Setup



Federated “Learning”

• data is not shared between clients, the model is shared and “averaged”

Federated Learning Problem Setup



Data Privacy

Many high profile and large-scale data breaches have politicized data privacy

• EU’s General Data Protection Regulation (GDPR) addresses the transfer
of personal data outside the EU & EEA

• California Consumer Privacy Act (CCPA) intended to enhance privacy
rights and consumer protection for residents

• many more countries have/will follow suit

Federated Learning Problem Setup



Federated Learning

generic problem formulation:

minimize
x∈Rn

F (x) ≜
1

N

N∑
i=1

fi(x) + g(x)

assumptions:

• fi non-convex, L-smooth

• g non-smooth, convex

• problem data is stored locally on each device and is never shared

• client-server computation model

Federated Learning Problem Setup



Federated Learning

generic problem formulation:

minimize
x∈Rn

F (x) ≜
1

N

N∑
i=1

fi(x) + g(x)

we do not assume:

• bounded gradients: ∥∇fi(x)∥2 ≤ G2 for all agents

• bounded heterogeneity: ∥∇fi(x)−∇fj(x)∥ ≤ δ for all x

Federated Learning Problem Setup



Federated Learning

minimize
x∈Rn

1

N

N∑
i=1

fi(x) + g(x)

no shortage of federated algorithms:

• FedAvg, FedSplit, FedProx, FedDR, SCAFFOLD, FedPD, FedDyn,...

• our contribution: FedADMM
– converges with partial participation and approximate local solutions

– no bounded gradients

– no bounded heterogeneity

Federated Learning Problem Setup



FedADMM

rewrite the problem as

minimize
x,x̄

1

N

N∑
i=1

fi(xi) + g(x̄)

s.t. ↶=x̄

where

• x: concatenation of local variables [xT
1 , x

T
2 , . . . , x

T
N ]

• x̄: global consensus variable

each agent has an augmented Lagrangian:

Li(xi, x̄, zi) := fi(xi) + g(x̄k) + ⟨zki , xi − x̄k⟩+ η

2

∥∥∥xi − x̄k
∥∥∥2

FedADMM



Client-side

FedADMM



Client-side

approximation

clients do not have to minimize Li precisely:∥∥∥∥xk+1
i − argmin

xi

Li(xi, x̄
k, zki )

∥∥∥∥ ≤ ϵi,k+1

partial participation

at iteration k only a subset of clients Sk need to send local updates

mixing

each client is seeded with averaging vector x̄

FedADMM



Server-side

• FedADMM performs K server-side iterations

FedADMM



Analysis

convergence (informal, g ≡ 0):

1

K + 1

K∑
k=0

E
[∥∥∥∇f(x̄k)

∥∥∥2] ≤ c1[F (x0)− F ⋆]

K + 1︸ ︷︷ ︸+ 1

N(K + 1)
l(ϵi,k, ϵi,k+1)︸ ︷︷ ︸

(1) (2)

where

l(ϵi,k, ϵi,k+1) :=
K∑

k=0

n∑
i=1

(c2ϵ
2
i,k + c3ϵ

2
i,k+1)

.

• (1) initial optimality gap

• (2) cost of working with approximate solutions and bennifit of N clients

• impact of partial participation reflected in the constants

FedADMM



Analysis

convergence (informal):

if the sum of the inaccuracies is bounded by D > 0, then FedADMM requires

K =

⌊
c1[F (x0)− F ⋆] + (c2 + c3)D

ϵ2

⌋
≡ O(ϵ−2)

to achieve an ϵ-suboptimal stationary point.

• analysis can be extended to include g

FedADMM



Numerical Experiments

• FEMNIST Dataset: 62 classes, 1-10, A-Z, a-z, multiple writers, 30 clients

• 2 convolutional layers, 2 fully connected layers, 62 output neurons

• stochastic gradient descent, 300 iterations per client

FedADMM



FedADMM: A Federated Primal-Dual Algorithm Allowing Partial
Participation
Wang, Marella, Anderson
Proc. IEEE CDC, 2022

FedADMM



System Identification

model-based control

• adaptive control: update model (and controller) online

• offline control: learn model once

Federated System Identification



Centralized Setting

• ground truth system

xt+1 = A⋆xt +B⋆ut + wt, t = 0, 1, 2, . . . , T − 1

• generates data
{xl,t, ul,t}T−1

t=0 , l = 1, . . . , N

• rewrite the system as

xt+1 = Θzt + wt, Θ ≜ [A⋆ B⋆], zt ≜

[
xt

ut

]

Federated System Identification



Data

• rollout l generates data

Xl =
[
xl,T−1 . . . xl,1

]
∈ Rn×T

Zl =
[
xl,T−1 . . . xl,1

]
∈ R(n+p)×T

Wl =
[
wl,T−1 . . . wl,1

]
∈ Rn×T

• concatenating data from all rollouts

X =
[
X1 . . . XN

]
∈ Rn×TN , Z =

[
Z1 . . . ZN

]
∈ R(n+p)×TN

• relationship described by
X = ΘZ +W

• least-squares estimator

Θ̂ ≜
[
A B

]
= argminΘ∈Rn×(n+p)∥X −ΘZ∥2F .

Federated System Identification



Error Analysis

• optimal Θ̂ satisfies [Dean et al.]:

max{∥A⋆ −A∥, ∥B⋆ −B∥} ≤ 16σw√
λmin(ΣT )

(
(n+ 2p) log(36/δ)

N

) 1
2

︸ ︷︷ ︸
O(N− 1

2 )

where ΣT is the covariance of the state at time T

Note:

• xT = GTu+ FTw

• λmin(σ
2
uGTG

T
T + σ2

wFTF
T
T ) quantifies how difficult to system is to control

• result only uses data at time T from each rollout

Federated System Identification



Federated System ID

• ground truth systems, i = 1, . . . ,M

x
(i)
t+1 = A(i)

⋆ x
(i)
t +B(i)

⋆ u
(i)
t + w

(i)
t , t = 0, 1, 2, . . . , T − 1

where

x
(i)
0 ∼ N (0, σ2

i,xI), u
(i)
t ∼ N (0, σ2

i,uI), w
(i)
0 ∼ N (0, σ2

i,wI)

• system i generates

{x(i)
l,t , u

(i)
l,t }

T−1
t=0 , l = 1, . . . , Ni

• system heterogeneity

max
i,j
∥A(i)

⋆ −A(j)
⋆ ∥ ≤ ϵ, and max

i,j
∥B(i)

⋆ −B(j)
⋆ ∥ ≤ ϵ, for all i, j

Federated System Identification



Federated System Identification

Objective:

Learn a common model Θ̄ = [Ā B̄] that performs well on all Θ(i) = [A
(i)
⋆ B

(i)
⋆ ]

Challenges

• Data cannot be shared

• Systems are different

Formally, we will solve the following problem in a federated manner:

Θ̄ ≜
[
Ā B̄

]
=

1

M

M∑
i=1

argmin
Θ

∥X(i) −ΘZ(i)∥2F

Federated System Identification



Aside: Quantifying System Heterogeneity

recall our definition:

max
i,j
∥A(i)

⋆ −A(j)
⋆ ∥ ≤ ϵ, and max

i,j
∥B(i)

⋆ −B(j)
⋆ ∥ ≤ ϵ, for all i, j

are these systems really similar?

x
(1)
t+1 = 0.99x

(1)
t + 0.1u

(1)
t and x

(2)
t+1 = 1.01x

(2)
t + 0.01u

(2)
t

possible fixes:

• system norms

• ν-gap

Federated System Identification



FedSysID: Meta Algorithm

Federated System Identification



Price of Heterogeneity

with high probability, the least squares estimator produces Θ̄ such that:

max{∥Ā−A
(i)
⋆ ∥, ∥B̄ −B

(i)
⋆ ∥} ≤

1√∑M
i=1 Ni

×
c

√∑M
i=1 σ

2
i,w

(∑T−1
t=0 ∥(Σ

(i)
t )

1
2 ∥
)2

λ︸ ︷︷ ︸+ϵ×
9
∑

j ̸=i

√
(
∑T−1

t=0 ∥Σ
(i)
t ∥)2

λ︸ ︷︷ ︸
C1 C2

where λ = mini λmin(
∑T−1

t=0 Σ
(i)
t ).

• C1: error constant

• C2: heterogeneity constant

Federated System Identification



with high probability, the least squares estimator produces Θ̄ such that:

max{∥Ā−A(i)
⋆ ∥, ∥B̄ −B(i)

⋆ ∥} ≤
1√∑M
i=1 Ni

× signal

noise
+O(heterogeneity)

Takeaways

• collaboration allows clients to improve their performance from O( 1√
Ni

) to

O
(

1∑M
i=1

√
Ni

)
• despite not sharing the data, clients performance improves as if they did

Federated System Identification



ClientUpdate: Per-Round Analysis

∆R ≜ max
{
E∥ĀR −A(i)∥,E∥B̄R −B(i)∥

}

for all R ≥ 1, the output of FedSysID Θ̄ satisfies:

• FedAvg [McMahan et al.]

∆R ≤ O

 1

KR
+

C1√∑M
i=1 Ni

+ ϵC2


• FedLin [Mitra et al.]

∆R ≤ O

e−βR +
C1√∑M
i=1 Ni

+ ϵC2


Federated System Identification



Numerical Experiments

• nominal system (A0, B0)

• perturbed system A(i) = A0 + γ
(i)
1 V , B(i) = B0 + γ

(i)
2 U

Federated System Identification



FedSysID: A Federated Approach to Sample-Efficient System ID
Wang, Toso, Anderson
Proc. L4DC, 2023

Federated System Identification



Clustering

• Motivation:
is a common estimation for all the participants a good idea in
heterogeneous settings?

can we get personalized models when the systems participating in the
collaboration are significantly different

• Pros:
cluster systems with similar dynamics – run system identification on the
clusters separately – reduces heterogeneity, therefore should speed up
convergence.

• Cons:
incorrect classification slows things down

Clustering for sysID
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Clustering setup

• M systems generating data

x
(i)
t+1 = A(i)x

(i)
t +B(i)u

(i)
t + w

(i)
t , t = 0, . . . , T − 1

• M data sets of the form

{x(i)
l,t , u

(i)
l,t }

T−1
t=0 , l = 1, . . . , Ni

• each data set generated by one of K ≪M system types

• define “clusters” C1, . . . , CK , where

Cj ≜ (Aj , Bj) such that Aj = A(i), Bj = B(i) for some i ∈ [M ]

and define Θj ≜
[
A B

]
Clustering for sysID



Clustering for System Identification

Objective:

Given M data sets from K system types (clusters):

1 partition the data sets into clusters

2 learn a common model within the cluster

Challenges

• Data is unlabelled

• Misclassification may hinder progress

Clustering for sysID



Assumptions

• ∥Θ̂(0)
j −Θj∥ ≤ ( 1

2
− α(0))∆min where α(0) ∈ (0, 1

2
)

• Nin and ∆min sufficiently large

∆min ≳ 1 + ∆max

∑
i∈[M ]

T∑
t=1

exp(−f(Ni, n, α
(0), ∥Σ(i)

t ∥, ρ
(i)))

Clustering for sysID



Phase 1: Clustering

for each i ∈ [M ], ĵ = argmin
j∈[K]

∥X(i) − Θ̂
(r)
j Z(i)∥2F

Clustering for sysID



Phase 2: Learning

Θ̂
(r+1)
j ← Θ̂

(r)
j +

2ηj∑
i∈[M ] ei,j

∑
i∈[M ]

(X(i) − Θ̂
(r)
j Z(i))(Z(i))⊤︸ ︷︷ ︸

localupdate︸ ︷︷ ︸
centralized averaging

Clustering for sysID



Phase 1: Clustering

and repeat...

Clustering for sysID



Algorithm

Clustering for sysID



Theoretical Guarantees

Probability of misclassification:

P
{
Mj,j′

i

}
≤ c1

T−1∑
t=0

exp

(
−c2Ninx

(
αρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2)

Mj,j′

i is the event that system i is misclassified as belonging to cluster Cj′

• reformulate so that misclassification happens with at most probability δ

• recovers the results of Ghosh et al. NeurIPS’20

Clustering for sysID



Theoretical Guarantees

Convergence:

after R iterations, for every cluster j ∈ [K], ||Θ̂(R)
j −Θj || is upper bounded by

c̃0√∑
i∈Cj

Ni︸ ︷︷ ︸
C3

+ c̃1∆max

∑
i∈[M ]

T−1∑
t=0

exp

(
−c̃2Ninx

(
ρ(i)∥Σ(i)

t ∥
ρ(i)∥Σ(i)

t ∥+
√
nx

)2)
︸ ︷︷ ︸

C4

• C3: in-class sample complexity

• C4 probability of misclassification

• bound holds w.h.p., + earlier assumptions

• bound is independent of α(0)

Clustering for sysID



Comparison

• Federated SysID:

max{∥Ā−A(i)
⋆ ∥, ∥B̄ −B(i)

⋆ ∥} ≤
1√∑M
i=1 Ni

× signal

noise
+O(heterogeneity)

where O(heterogeneity) is not controlled by the number of trajectories Ni

• Clustered SysID:

max{∥Âj −Aj∥, ∥B̂j −Bj∥} ≤
1√∑
i∈Cj

Ni

× signal

noise
+O(exp(misclass))

with exp(misclass) being controlled by Ni

Clustering for sysID



• Gain of collaboration:

• Gain of clustering:

– 50 systems, 3 clusters, T = 50

Clustering for sysID



• Number of misclassifications:

Clustering for sysID



Learning Personalized Models with Clustered System Identification
Toso, Wang, Anderson
To appear, Proc IEEE CDC’23: arXiv 2304.01395
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Conclusions

• federated learning can be applied to system identification system
identification

• characterized the cost/benefit of heterogeneity

• personalization can be achievd through clustering

• aimed for ideas – dodged the technical details

• related: federated LQR policy gradient and RL problems

james.anderson@columbia.edu www.columbia.edu/∼ja3451



Federated LQR

• Given M LTI systems

x
(i)
t+1 = A(i)x

(i)
t +B(i)u

(i)
t , x

(i)
0 ∼ D, i = 1, . . . ,M

• construct a state feedback controller that solves

K∗ =argmin
K

{
Cavg(K) ≜

1

M

M∑
i=1

E

[
∞∑
t=0

x
(i)⊤
t Qx

(i)
t + u

(i)⊤
t Ru

(i)
t

]}
s.t. u

(i)
t = −Kx

(i)
t

system dynamics

• system heterogeneity

max
i,j
∥A(i) −A(j)∥ ≤ ϵ1, and max

i,j
∥B(i) −B(j)∥ ≤ ϵ2, for all i, j



Single Agent Policy Gradient

• if (A,B) is known and Ex0∼D[x0x
T
0 ] is full rank, the iteration

K ← K − η∇C(K)

finds the globally optimal controller

• closed-form expressions for the gradient: ∇C(K) = 2EKΣK where

EK ≜
(
R+BTPKB

)
K −BTPKA, ΣK ≜ Ex0∼D

∞∑
t=0

xtx
T
t

and PK solves the Lyapunov equation

PK = Q+KTRK + (A−BK)TPK(A−BK)



Model-Free Case

• when (A,B,Q,R) not directly available, ∇C(K) can’t be computed

• the controller only has simulation access to a model

• iterates are generated according to K ← K − η∇̂C(K)



FedLQR

Federated LQR



Under the Hood

Details can be found in the paper:

• require a controller K0 that stabilizes all systems

• sufficiently large smoothing radius of the gradient estimator

• have access to sufficient samples

• operate in a low heterogeneity regime

Federated LQR



Algorithm Guarantees

• At every round n, Kn is stabilizing

• Every local controller K
(i)
n is locally stabilzing

• After

N ≥
cuni,4

∥∥ΣK∗
i

∥∥
ηµ2σmin(R)

log

(
2(C(i)(K0)− C(i)(K∗

i ))

ϵ′

)
rounds, FedLQR acheives

C(i)(KN )− C(i)(K∗
i ) ≤ ϵ′ + cuni,2 × B(ϵ1, ϵ2), ∀i ∈ [M ]

Federated LQR
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