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Motivation



The problem?

We have more data than we can compute with

“According to all the big data we've gathered,
our discussions about big data are up 72%
this year alone.”

Systems are getting bigger, sensors are getting cheaper & smaller

Phenomenal hardware advances, many work-horse algorithms fail to take advantage
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Why Randomization
Trace estimation:
® given an n X n positive semidefinite matrix A
® provide an estimate of trace(A) through the primitive z — Az
Girard’s trace estimator

® let w € C™ be a random vector such that E[ww*] =T
if W =w"Aw then EW = trace(A)

® reduce the variance by averaging independent copies

l
1
W = n ZW”” = [EW =trace(A) // unbiased estimate
i=1

® variance decreases

1
Var[W] = jVar[W} // decrease proportional to sample size
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Why Randomization

Trace estimation:

® given an n X n positive semidefinite matrix A

® provide an estimate of trace(A) through the primitive z — Az
Choice of distribution:

® weN(0,I)

® w € unif{£+1}"

2
Var(W] < 7||A||trace(A)
for general matrices, variance may not be related to trace

Motivation



Outline

©® Randomized SVD

— Linear system realization

® Hessian sketching

— Markov parameter estimation

® Approximate projections

— SDP solver

Motivation



Singular Value Decomposition

Given A € C™*" define p = min{m, n}, the SVD of A is given by

A=UXV*

where
e U € C™X™ s unitary

® V € C™"*" s unitary

® 3 € R™*" is diagonal
when m # n, the matrix 3 takes the form

2:{%] oo T=[X 0]

where & = diag(o1,...,0n) and s = diag(o1,...,0m), and

o12>202>...20p20

Randomized SVD



Optimal Low-Rank Approximation

Error bounds
The Eckart-Young theorem tells us that for eack k:

Okt1 = mini}r{nize [JA—X||
subject to rank(X) <k

an optimal X can be constructed from the k-dominant singular vectors of A:

k
XT: E oiuiv;‘
i=1

Computational cost

® The I-truncated SVD takes O(mnl) flops using classical methods

® for even moderate sized mn, O(mnl) is too large!

Randomized SVD



Image Compression

® 1350 x 1080 pixels (1,458,000 words)

Randomized SVD
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Image Compression

® rank-250 approximation, 607,500 words, 3x compression

Randomized SVD
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Image Compression

® rank-20 approximation, 48,600 words, 30x compression

Randomized SVD
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Randomized SVD Algorithm: RSVD

SIAM Review (© 2011 Societyfor Industrial and Applied Mathematics
Vol. 53, No. 2, pp. 217-288

Finding Structure with Randomness:
Probabilistic Algorithms for
Constructing Approximate

Matrix Decompositions*

N. Halko!
P. G. Martinsson'
J. A. Tropp*

Stage 1
Find a matrix @ such that

A~ QQ*A, where Q has orthonormal columns.
Interpret & as meaning that @ satisfies

(I —QQ™)A| <e for some acceptable ¢ > 0
//columns of () form an approximate basis for range(A)

Stage 2

Using @ and your favorite “classical” method, compute an SVD and rearrange
Randomized SVD
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Stage 1: Random Sampling

Objective

Given a matrix A € C™*"™ compute an approximate basis for range(A).

Algorithm

® Sample range(A) by generating independent “random” vectors w® for
i=1,...,k: v )
y@ = Al = Y =4Q

® Orthogonalize the columns of Y

Note
® The matrix Y is a called a sketch of A

® Y € C™*F where k < min{m,n}

Randomized SVD
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Stage 1: Analysis

HMT’s “randomized range finder”

Stage 1:

® Draw a random matrix Q € R***+D  // gray [ extra samples
® Form the sketch Y = AQ // cost O(mn(k+1))
© Construct orthogonal basis: [Q,~] = QR(Y, ¢ ‘thin’’) // cost O(n(k+1)?)

Randomized SVD
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Stage 1: Analysis

HMT’s “randomized range finder”

Stage 1:

® Draw a random matrix Q € R***+D  // gray [ extra samples
® Form the sketch Y = AQ // cost O(mn(k+1))
© Construct orthogonal basis: [Q,~] = QR(Y, ¢ ‘thin’’) // cost O(n(k+1)?)

Theorem (Halko, Martinsson, Tropp, 2011)

Given A € R™*™, a target rank k > 2, and parameter | > 2 such that
k+ ! < min{m,n}. The algorithm above produces a matrix Q with orthonormal
columns that satisfies

X AWEFT —
E[[A-QQ Al < 1+ﬁ\/mln{m7n} Okl

Randomized SVD 15



//stage 1: comments & modifications

Slowly decaying spectrum

Can boost accuracy by incorporating power iterations. Based on the observation:
W= (AA*)1A

has the same singular vectors as A. But

aj (W) = o (AP j=1,2,...

® Replace Y = AQ with Y = WQ

® error bound becomes
2 {Fl
. q
2min{m,n
1444/ % lokt1

Target rank selection

Straight forward to adaptively construct the basis vectors ) until tolerance is met.
See [HMT] for details.

Randomized SVD 16



Stage 2: Building an Approximate SVD
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Cost of Doing Business

Choice of test matrix Q2

® Dominant cost is computing A
® When 4 € C™*™ and O € C"*! cost of AQ is O(mnl)

® Structured random test matrix, reduce complexity to O(mnlogl)
— e.g. subsampled random Fourier Transform (SRFT)

Comparing RSVD with other SVD methods

Method Time complexity Space Passes
RSVD O (mnlogk) O(mn) 1
Krylov O (mnk) O(mn) k

Truncated O (mnmin(m,n)) O (mn) k

Table: Comparison of complexity

Randomized SVD 18



System ldentification Pipeline

Linear System Identification Pipeline

Control Applications

Dy = {(yp ut)}

|

Parameter
Estimation

G =D, CB, CAB,..]

Realization

!
(¢15)
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System Identification

Problem formulation
Collect data from the LTI system

ri11 = Az + Bug + we
yt = Cxy + Duy + v¢

The data

® We have N < oo experiments over finite time-horizon T'
® Observe: {yi}T ,, {ui}l jfori=1,...,N
. iid. 2 iid. 2 iid. 2
® Assume: us ~N(0,021), wi ~'N(0,05,1), vi ~ N(0,021)

Objective

Find matrices (A,B,C‘, D) that "best fit" observed data

Control Applications 20



Realization

The process of obtaining a state-space model from the Markov matrix

G=[D CB CAB ... CAT—2B ]eR™*T?

® When wt, vy = 0 have access to G, otherwise must solve an optimization problem
to obtain an estimate G

® The realization problem is to determine the state-space matrices from @ ie., a

mapping o
= A| B
G
- (&)

Control Applications 21



Ho-Kalman Algorithm

Assumptions

® (A, B,C) is minimal
® n =rank(H) < min{7T1, T2}

Algorithm

® From G construct the Hankel matrix
CB CAB
CAB CA?B
CA%B CA3B
cATh-lp cAT B
where T'=T7 + T5 + 1.

By assumption ‘H and H~ are full rank

Control Applications

CA™:B
CAT2+1p
CAT2+2p c RPT1xm(T1+1)

C’ATI#TZ’*lB
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Ho-Kalman Algorithm

Assumptions

® (A, B,C) is minimal
® n =rank(H) < min{7T1, T2}
Step 2: Factorization

H~ is full rank and so it can be factored as

C
CA
"= _ [ B AB ... AT271p]

CcAT1

Control Applications
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Ho-Kalman Algorithm

Algorithm

® From G construct the Hankel matrix

CB CAB ... CAT:2B
CAB CA2B ... CAT2+1p
2 CA2%B CA3B ... CAT2+2p ¢ RPT1xm(T1+1)
CATi—lB CA;‘FI B . CATI‘*‘.TTlB

where T' =T + T5 + 1.

® Compute a n-truncated SVD of H™: H™ =~ U, X, V,;

1 1
0 O=U,%2, Q=3V;

0 A=0Htof

Control Applications



Comments

® Realization is a non-convex problem

® Ho-Kalman algorithm provides realizations unique up to a similarity transform

(A,B,C,D) — (TAT™!,TB,CT~1,D)
® Computation cost: at least O(pmnT1T2) flops from the SVD step.

® Robustness guarantee [Oymak & Ozay, 2019]:

max { |4 = T~LAT|, | B - T~ BI|,|C - T }

<oyfia=di-o ().

Control Applications 25



Stochastic Ho-Kalman Algorithm

Idea
Replace the truncated SVD with a randomized SVD!

® Measurements contain noise, so full accuracy isn't necessary anyway

® The deterministic algorithm struggles with modest systems sizes

Main Result (Informal)

Theorem

The stochastic Ho-Kalman Algorithm reduces the computational complexity of the
realization problem from O(pmn3) to O(pmn?logn) when Ty = To = n . The
achievable robustness is the same as deterministic algorithm.

Full details in Wang and Anderson, ACC'22

Control Applications 26



Numerical Experiments

Scalability and Approximation Error

N Running Time [s] Realization Error
Eg | (n.m,p,T) dim(H") deterministic | stochastic | deterministic | stochastic
1 (30,20,10,90) 450 x 880 0.1079 0.0156 7.64e-04 7.70e-04
2 (40,30,20 100) 2000 x 2970 5.7456 0.0897 6.67e-04 1.19e-03
3 (60,50,40,360) 7200 x 8950 227.0116 0.9323 8.27e-04 1.75e-03
4 (100,80,50,500) 12500 x 19920 | 922.8428 4.4581 6.53e-04 1.66e-03
5 (120,110,90,600) | 27000 x 32890 | Inf 17.6603 N/A 1.96e-03
6 (200,150,100,600) | 30000 x 44850 | Inf 52.1762 N/A 1.45e-03

® (n,m,p,T) = (state, input, output, horizon)

® No parallelization used with the randomized SVD

® No power iterations

® Oversampling parameter: p = 10

® Relative error:

Control Applications

19 = Gllrtn

1G 113
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Additional Numerical Experiments

Oversampling parameter

Running time: [sec]
-
g
=
I
FTH
PO F--
T+
Realization Error

48 L+ !
Pl :
1
L
! : ¢ oversampling pararnts:@.r] ° ° v oversampling pdrdnl;tzr’a e
(a) Running time of stochastic Ho-Kalman Algo-  (b) Realization error of stochastic Ho-Kalman Al-
rithm using RSVD with oversampling parameter [. gorithm using RSVD with oversampling parameter

l.

® Example 4: (n,m,p,T) = (100, 80, 50, 500)

® No power iterations

Control Applications
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Additional Numerical Experiments

Power lterations

as
o — 18
75 N 16
— ’ —_—
§os 5o
s i
g 6 g
4 £
E =] E
g 2
as
=
. o8
i s f v i 2 s o
power parameter g power parameter g
(c) Running time of stochastic Ho-Kalman Algo-  (d) Realization error of the stochastic Ho-Kalman
rithm with varying power parameter g. The over- Algorithm with varying power parameter g. The
sampling parameter [ is 10. oversampling parameter ! is 10.

® Example 4: (n,m,p,T) = (100, 80, 50, 500)

Control Applications
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Stochastic Realization Algorithm: Conclusions

Methodology

® Performance degradation due to randomization almost negligible

® Sample complexity bounds remain intact

Order of magnitude gain in computation time (for large instances)

® Not yet exploited parallel computing

Algorithm tuning

® Algorithm performance can be boosted by including power iterations
— This does impact running time

® Algorithm performance not sensitive to oversampling rate
— Doesn't appear to impact running time

Control Applications 30



Sketch and Solve

Sketching as a Tool for
Numerical Linear Algebra

now David P. Woodruff

the amanca of inouledge IBM Research Almaden
Boston — Delft dpwoodru@us.ibm.com

Sketched Least squares Given A € R?*% and S € R™*™", m <« n

1 1
don't solve #* € argmin — ||Az — y||?, instead, solve z* € arg min — || S(Az —1v)||?
zeC 2n zeC 2n

f(z)

® aim for € approximate solutions f(z*) < f(z#) < (1 + €)2f(z*)

® m depends on e 2

® Pilanci and Wainwright (JMLR'17) concretely show why this is a bad idea

Sketching the Hessian
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Iterative Hessian Sketch

Bartan & Pilanci [BP] propose the equivalent LS problem

inimize || Az||> — (z, ATy).
minimize |Az||* — (z, A" y)

Newton's method produces updates

zip1 = x¢ — a(ATA)1AT (Axy — b).
If we sketch A in the norm only (and keep track of residuals), we get
241 =2t — a(ATST S, A) AT (Axy —b).
Distribute this over ¢ nodes:

1 q
zip1 =z —a— > (ATS. S, xA) "1 AT (Azy — b).
k=1

Sketching the Hessian 32



Distributed lterative Hessian Sketch

Proposed by Bartan and Pilanci [BP]

Generalized sketching and refined the analysis [Wang & Anderson 2022]

Algorithm 1 Distributed Iterative Hessian Sketch
Input: Number of iterations 7', step size .
fort =1to T do
for workers k£ = 1 to g in parallel do
Sample Sy, € R™*™.
Sketch the data Sy 1, A.
Compute gradient g; = AT (Az; — b).
Solve A, = argmina 1||S; cAA[|3 + g7 A and
send to master.
end for
Master: Update z;11 = 2 +43 Y, A, ), and send
Z¢41 to workers.
end for
return xp

Sketching the Hessian
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System Identification

Parameter estimation
Given observed data D believed to have been generated by

Ti+1 = Azt + Bug + wy
yt = Cxt + Duy + v,

estimate the Markov parameters.
DY = {(y,u)}

Parameter
Estimation

G =D, CB, CAB,..\

Learning Markov Parameters 34



Learning Markov Parameters

OLS formulation
An estimate G of the Markov matrix is obtained by solving
minimize [|UX — Y%

where
e X ¢ RTxp

® U and Y are Toeplitz matrices

® Solution via QR decomposition: O(NT(mT)?)

Learning Markov Parameters 35



Result

DIHS applied to OLS problem
® Assume number of “rollouts”, N > 8mT + 161og(T/§)
® Define k = mNT?

Theorem (Informal)
Fix § € (0,1) and p € (0, %) If the sketch dimension satisfies

co log? (k) m

T7
p2

then at iteration k, DIHS satisfies
[ Xk — X557 < 307 X5 p

with high probability.

Learning Markov Parameters
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Numerical Experiments

Sketch selection and number of workers

10t —e— unif_2
—=— unif_16

1072 —— hybrid_2
—e— hybrid_16

10-°

g

1078

101

107

0.0 25 5.0 75 10.0 125 15.0

time

® 40 states, 30 inputs, 20 outputs
® ~ 45M data points
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12 workers: same system

Numerical Experiments

1071

1071

Learning Markov Parameters

5 10
running time

15

—e— unif
—— sjlt

—e— unif&sjlt
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Hessian Sketching: Conclusions

Randomized numerical linear algebra can be applied to full Sys-ID pipeline
General least squares problems (and beyond)
Applications to control synthesis?

Skipped most of the theoretical results - see our papers!
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Semidefinite Programming Solvers

iterative algorithms for solving
minimize  f(x)
x
st. zeC

often involve a projection step

® projected subgradient methods
w1 = He(zk — argr)

® alternating direction method of multipliers

. P
21 = argmin (£() + Ll - 21 + i ?)
x

e (@pq1 + ug)
Uk41 = Uk + Th41 — Tht1

Zk+1

algorithm performance depends on projection tractability

40



Semidefinite Programming

® conical form SDP
minimize ¢’
x
st. zeC
j— n
°eC=8%
® optimal projection of a symmetric matrix onto S% :

Ty (X) = UALUT

where
max{A1, 0}
Ay =
max{\n, 0}

® applications in control: performance analysis, synthesis, sum-of-squares

41



Semidefinite Programming

conical form SDP
minimize ¢’
x
st. zeC
j— n
C=5s%
optimal projection of a symmetric matrix onto S :

Ty (X) = UALUT

where
max{A1, 0}
Ay =
max{\n, 0}

applications in control: performance analysis, synthesis, sum-of-squares

Idea

trade optimal projection for a computationally cheap approximation



Low-rank approximation of symmetric matrices

® computing a low-rank approximation and then projecting doesn’t work

-3 -3 0
X = —2 = 0 — 0
1 0 0

low-rank approx project

® the optimal low-rank projection is

-3

® our approach: map X to B := %, which provides the relation:
Ai(X) <0 <= 0y(B)€[0,1) and X(X)>0 <= o04(B)€[1,0)

where o approximates minimum eigenvalue

42



Polynomial minimization via SoS
Degree= 4, SDP size: T k=[0.2n] | k=[0.1n] | k=[0.05n] | k=[0.2n] | k=[0.In] | k=[0.05n]
[n,m] = [3026, 715] g scal=1 | scal=1 | scal=1 scal=0 | scal=0 | scal=0
Computation time (s) 0.176 1.65 2.1 1.8 1.6 1.8 1.5 1.46
VST (Te(ATX) —b)? | 1.75¢-9 | 45¢3 | 0.1 0.15 0.14 2.08 55 2.08
[y —~* 6.52e-10 | 1.54e-5 | 4.5e-5 1.76e-5 | 5.1e-5 3.1e-5 9.56e-4 | le-3
Degree= 6, SDP size:
[n, m] = [48401, 5005]
Computation time (s) 8.82 19.26 22.1 17.8 16.9 16.2 11.9 10.7
VET(T(ATX) = b,)® | 7e-12 | 45e2 | 033 044 0.43 237 237 2.33
|y =~ 1.9e-12 | 2.7e-4 | 1.25e-4 | 2.3e-4 1.43e-4 3.53e-4 | 2.1e-3 9.9e-3
Degree= 8, SDP size:
[n,m] = [511226,24310]
Computation time (s) 690.6 201 188 156.8 141.7 160.8 134.7 114.6
VO (Te(ATX) — b)? | 6.83e-11 | 0.17 | 337 31 33 373 9.78 975
Iy =7 1.le-11 | 1.7e-3 | 1.7e-3 1.6e-3 1.2e-3 1.07e-4 | 6.4e-3 1.9e-2
Degree= 10, SDP size:
[n, m] = [4008005, 92378]
Computation time (s) 0 2275.7 | 2389.9 1992.8 1820.6 2179 1909.5 1734.6
VI (A X) - b) | o 35e2 | 0.86 099 12 1.05 527 1.05
[y =7 o0 4.2e-5 | 1.19e-4 | 7.5e-5 1.19e4 | 4.8e-5 |[3e4 1.3e-3
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Conclusions

3 applications of RNLA applied to control

mostly avoid the theoretical results here, check our papers for performance
bounds!

huge potential to improve on our results

plenty more applications

EEEE
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