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The problem?

We have more data than we can compute with

Systems are getting bigger, sensors are getting cheaper & smaller

Phenomenal hardware advances, many work-horse algorithms fail to take advantage

Motivation 3



Why Randomization

Trace estimation:

• given an n× n positive semidefinite matrix A

• provide an estimate of trace(A) through the primitive x 7→ Ax

Girard’s trace estimator

• let ω ∈ Cn be a random vector such that E[ωω∗] = I

if W = ω∗Aw then EW = trace(A)

• reduce the variance by averaging independent copies

W =
1

l

l∑
i=1

Wi ⇒ EW = trace(A) // unbiased estimate

• variance decreases

Var[W] =
1

l
Var[W ] // decrease proportional to sample size
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Why Randomization

Trace estimation:

• given an n× n positive semidefinite matrix A

• provide an estimate of trace(A) through the primitive x 7→ Ax

Choice of distribution:

• ω ∈ N (0, I)

• ω ∈ unif{±1}n

Var[W] ≤
2

l
∥A∥trace(A)

for general matrices, variance may not be related to trace
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Outline

1 Randomized SVD

– Linear system realization

2 Hessian sketching

– Markov parameter estimation

3 Approximate projections

– SDP solver
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Singular Value Decomposition

Given A ∈ Cm×n, define p = min{m,n}, the SVD of A is given by

A = UΣV ∗

where

• U ∈ Cm×m is unitary

• V ∈ Cn×n is unitary

• Σ ∈ Rm×n is diagonal

when m ̸= n, the matrix Σ takes the form

Σ =

[
Σ̂
0

]
or Σ =

[
Σ̃ 0

]
where Σ̂ = diag(σ1, . . . , σn) and Σ̃ = diag(σ1, . . . , σm), and

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0
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Optimal Low-Rank Approximation

Error bounds

The Eckart-Young theorem tells us that for eack k:

σk+1 = minimize
X

∥A−X∥
subject to rank(X) ≤ k

an optimal X can be constructed from the k-dominant singular vectors of A:

X† =
k∑

i=1

σiuiv
∗
i

Computational cost

• The l-truncated SVD takes O(mnl) flops using classical methods

• for even moderate sized mn, O(mnl) is too large!
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Image Compression

• 1350× 1080 pixels (1,458,000 words)
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Image Compression
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Image Compression

• rank-250 approximation, 607,500 words, 3x compression

Randomized SVD 11



Image Compression

• rank-20 approximation, 48,600 words, 30x compression
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Randomized SVD Algorithm: RSVD

Stage 1

Find a matrix Q such that

A ≈ QQ∗A, where Q has orthonormal columns.

Interpret ≈ as meaning that Q satisfies

∥(I −QQ∗)A∥ ≤ ϵ, for some acceptable ϵ > 0

//columns of Q form an approximate basis for range(A)

Stage 2

Using Q and your favorite “classical” method, compute an SVD and rearrange
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Stage 1: Random Sampling

Objective

Given a matrix A ∈ Cm×n compute an approximate basis for range(A).

Algorithm

1 Sample range(A) by generating independent “random” vectors ω(i) for
i = 1, . . . , k:

y(i) = Aω(i) ⇐⇒ Y = AΩ

2 Orthogonalize the columns of Y

Note

• The matrix Y is a called a sketch of A

• Y ∈ Cm×k where k ≪ min{m,n}

Randomized SVD 14



Stage 1: Analysis

HMT’s “randomized range finder”

Stage 1:

1 Draw a random matrix Ω ∈ Rn×(k+l) // draw l extra samples

2 Form the sketch Y = AΩ // cost O(mn(k + l))

3 Construct orthogonal basis: [Q,∼] = QR(Y, ‘‘thin’’) // cost O(n(k + l)2)

Theorem (Halko, Martinsson, Tropp, 2011)
Given A ∈ Rm×n, a target rank k ≥ 2, and parameter l ≥ 2 such that
k + l ≤ min{m,n}. The algorithm above produces a matrix Q with orthonormal
columns that satisfies

E ∥A−QQ∗A∥ ≤
[
1 +

4
√
k + l

l − 1

√
min{m,n}

]
σk+1.
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//stage 1: comments & modifications

Slowly decaying spectrum

Can boost accuracy by incorporating power iterations. Based on the observation:

W := (AA∗)qA

has the same singular vectors as A. But

σj(W ) = σj(A)2q+1, j = 1, 2, . . .

• Replace Y = AΩ with Y = WΩ

• error bound becomes 1 + 4

√
2min{m,n}

k − 1

 1
2q+1

]σk+1

Target rank selection

Straight forward to adaptively construct the basis vectors Q until tolerance is met.
See [HMT] for details.
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Stage 2: Building an Approximate SVD
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Cost of Doing Business

Choice of test matrix Ω

• Dominant cost is computing AΩ

• When A ∈ Cm×n and Ω ∈ Cn×l cost of AΩ is O(mnl)

• Structured random test matrix, reduce complexity to O(mn log l)
– e.g. subsampled random Fourier Transform (SRFT)

Comparing RSVD with other SVD methods

Method Time complexity Space Passes
RSVD O (mn log k) O (mn) 1
Krylov O (mnk) O (mn) k
Truncated O (mnmin(m,n)) O (mn) k

Table: Comparison of complexity
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System Identification Pipeline

Linear System Identification Pipeline
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System Identification

Problem formulation

Collect data from the LTI system

xt+1 = Axt +But + wt

yt = Cxt +Dut + vt

The data

• We have N < ∞ experiments over finite time-horizon T

• Observe: {yit}Tt=0, {ui
t}Tt=0 for i = 1, . . . , N

• Assume: ut
i.i.d.∼ N (0, σ2

uI), wt
i.i.d.∼ N (0, σ2

wI), vt
i.i.d.∼ N (0, σ2

vI)

Objective

Find matrices (Â, B̂, Ĉ, D̂) that “best fit” observed data
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Realization

The process of obtaining a state-space model from the Markov matrix

G =
[

D CB CAB . . . CAT−2B
]
∈ Rm×Tp.

• When wt, vt ≡ 0 have access to G, otherwise must solve an optimization problem
to obtain an estimate Ĝ

• The realization problem is to determine the state-space matrices from Ĝ, i.e., a
mapping

Ĝ 7→
(

Â B̂

Ĉ D̂

)
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Ho-Kalman Algorithm

Assumptions

• (A,B,C) is minimal

• n = rank(H) ≤ min{T1, T2}

Algorithm

1 From G construct the Hankel matrix

H =


CB CAB . . . CAT2B
CAB CA2B . . . CAT2+1B
CA2B CA3B . . . CAT2+2B

...
...

...
...

CAT1−1B CAT1B . . . CAT1+T2−1B

 ∈ RpT1×m(T1+1)

where T = T1 + T2 + 1.

By assumption H and H− are full rank
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Ho-Kalman Algorithm

Assumptions

• (A,B,C) is minimal

• n = rank(H) ≤ min{T1, T2}

Step 2: Factorization

H− is full rank and so it can be factored as

H− =


C
CA
...

CAT−1

 [
B AB . . . AT2−1B

]

= OQ
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Ho-Kalman Algorithm

Algorithm

1 From G construct the Hankel matrix

H =


CB CAB . . . CAT2B
CAB CA2B . . . CAT2+1B
CA2B CA3B . . . CAT2+2B

...
...

...
...

CAT1−1B CAT1B . . . CAT1+T2−1B

 ∈ RpT1×m(T1+1)

where T = T1 + T2 + 1.

2 Compute a n-truncated SVD of H−: H− ≈ UnΣnV ∗
n

3 O = UnΣ
1
2
n , Q = Σ

1
2
n V ∗

n

4 Â = O†H+Q†
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Comments

• Realization is a non-convex problem

• Ho-Kalman algorithm provides realizations unique up to a similarity transform

(A,B,C,D) 7→ (TAT−1, TB,CT−1, D)

• Computation cost: at least O(pmnT1T2) flops from the SVD step.

• Robustness guarantee [Oymak & Ozay, 2019]:

max
{
∥Â− T−1AT∥, ∥B̂ − T−1B∥, ∥Ĉ − CT∥

}
≤ c

√
∥G− Ĝ∥ = O

(
1

N4

)
.

Control Applications 25



Stochastic Ho-Kalman Algorithm

Idea

Replace the truncated SVD with a randomized SVD!

• Measurements contain noise, so full accuracy isn’t necessary anyway

• The deterministic algorithm struggles with modest systems sizes

Main Result (Informal)

Theorem
The stochastic Ho-Kalman Algorithm reduces the computational complexity of the
realization problem from O(pmn3) to O(pmn2 logn) when T1 = T2 = n . The
achievable robustness is the same as deterministic algorithm.

Full details in Wang and Anderson, ACC’22
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Numerical Experiments

Scalability and Approximation Error

• (n,m, p, T ) = (state, input, output, horizon)

• No parallelization used with the randomized SVD

• No power iterations

• Oversampling parameter: p = 10

• Relative error:
∥G − Ĝ∥H∞

∥G∥H∞
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Additional Numerical Experiments

Oversampling parameter

• Example 4: (n,m, p, T ) = (100, 80, 50, 500)

• No power iterations
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Additional Numerical Experiments

Power Iterations

• Example 4: (n,m, p, T ) = (100, 80, 50, 500)
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Stochastic Realization Algorithm: Conclusions

Methodology

• Performance degradation due to randomization almost negligible

• Sample complexity bounds remain intact

• Order of magnitude gain in computation time (for large instances)

• Not yet exploited parallel computing

Algorithm tuning

• Algorithm performance can be boosted by including power iterations
– This does impact running time

• Algorithm performance not sensitive to oversampling rate
– Doesn’t appear to impact running time
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Sketch and Solve

Sketched Least squares Given A ∈ Rn×d and S ∈ Rm×n,m ≪ n

don’t solve x⋆ ∈ argmin
x∈C

1

2n
∥Ax− y∥2︸ ︷︷ ︸

f(x)

, instead, solve x♯ ∈ argmin
x∈C

1

2n
∥S(Ax−y)∥2

• aim for ϵ approximate solutions f(x⋆) ≤ f(x♯) ≤ (1 + ϵ)2f(x⋆)

• m depends on ϵ−2

• Pilanci and Wainwright (JMLR’17) concretely show why this is a bad idea
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Iterative Hessian Sketch

Bartan & Pilanci [BP] propose the equivalent LS problem

minimize
x∈C

∥Ax∥2 − ⟨x,AT y⟩.

Newton’s method produces updates

xt+1 = xt − α(ATA)−1AT (Axt − b).

If we sketch A in the norm only (and keep track of residuals), we get

xt+1 = xt − α(ATST
t StA)−1AT (Axt − b).

Distribute this over q nodes:

xt+1 = xt − α
1

q

q∑
k=1

(ATST
t,kSt,kA)−1AT (Axt − b).
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Distributed Iterative Hessian Sketch

Proposed by Bartan and Pilanci [BP]

Generalized sketching and refined the analysis [Wang & Anderson 2022]
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System Identification

Parameter estimation

Given observed data D believed to have been generated by

xt+1 = Axt +But + wt

yt = Cxt +Dut + vt,

estimate the Markov parameters.
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Learning Markov Parameters

OLS formulation

An estimate Ĝ of the Markov matrix is obtained by solving

minimize
X

∥UX − Y ∥2F

where

• X ∈ RmT×p

• U and Y are Toeplitz matrices

• Solution via QR decomposition: O(NT (mT )2)

Learning Markov Parameters 35



Result

DIHS applied to OLS problem

• Assume number of “rollouts”, N > 8mT + 16 log(T/δ)

• Define κ = mNT 2

Theorem (Informal)
Fix δ ∈ (0, 1) and ρ ∈ (0, 1

2
). If the sketch dimension satisfies

s >
c0 log

4(κ)

ρ2
mT,

then at iteration k, DIHS satisfies

∥Xk −XLS∥F ≤ 3ρk∥XLS∥F

with high probability.
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Numerical Experiments

Sketch selection and number of workers

• 40 states, 30 inputs, 20 outputs

• ∼ 45M data points
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Numerical Experiments

12 workers: same system
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Hessian Sketching: Conclusions

• Randomized numerical linear algebra can be applied to full Sys-ID pipeline

• General least squares problems (and beyond)

• Applications to control synthesis?

• Skipped most of the theoretical results - see our papers!
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Semidefinite Programming Solvers

iterative algorithms for solving

minimize
x

f(x)

s.t. x ∈ C

often involve a projection step

• projected subgradient methods

xk+1 = ΠC(xk − αkgk)

• alternating direction method of multipliers

xk+1 = argmin
x

(
f(x) +

ρ

2
∥x− zk + uk∥2

)
zk+1 = ΠC(xk+1 + uk)

uk+1 = uk + xk+1 − xk+1

algorithm performance depends on projection tractability
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Semidefinite Programming

• conical form SDP

minimize
x

cT x

s.t. x ∈ C

• C = Sn+

• optimal projection of a symmetric matrix onto Sn+:

ΠSn+ (X) = UΛ+UT

where

Λ+ =

 max{λ1, 0}
. . .

max{λn, 0}


• applications in control: performance analysis, synthesis, sum-of-squares

Idea

trade optimal projection for a computationally cheap approximation

41



Semidefinite Programming

• conical form SDP

minimize
x

cT x

s.t. x ∈ C

• C = Sn+

• optimal projection of a symmetric matrix onto Sn+:

ΠSn+ (X) = UΛ+UT

where

Λ+ =

 max{λ1, 0}
. . .

max{λn, 0}


• applications in control: performance analysis, synthesis, sum-of-squares

Idea

trade optimal projection for a computationally cheap approximation

41



Low-rank approximation of symmetric matrices

• computing a low-rank approximation and then projecting doesn’t work

X =

 −3
−2

1

 =⇒

 −3
0

0


︸ ︷︷ ︸

low-rank approx

=⇒

 0
0

0


︸ ︷︷ ︸

project

• the optimal low-rank projection is−3
0

0



• our approach: map X to B := X+αI
α

, which provides the relation:

λi(X) < 0 ⇐⇒ σi(B) ∈ [0, 1) and λi(X) ≥ 0 ⇐⇒ σi(B) ∈ [1,∞)

where α approximates minimum eigenvalue

42



Polynomial minimization via SoS
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Conclusions

• 3 applications of RNLA applied to control

• mostly avoid the theoretical results here, check our papers for performance
bounds!

• huge potential to improve on our results

• plenty more applications
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