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a b s t r a c t

This paper establishes the consistency of the estimated common break point in panel data. Consistency
is obtainable even when a regime contains a single observation, making it possible to quickly identify the
onset of a new regime. We also propose a new framework for developing the limiting distribution for the
estimated break point, and show how to construct confidence intervals. The least squares method is used
for estimating breaks in means and the quasi-maximum likelihood (QML) method is used to estimate
breaks in means and in variances. QML is shown to be more efficient than the least squares even if there
is no change in the variances.
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1. Introduction

This paper studies the problem of structural changes for panel
data, in which there are N series (variables), and each series has T
observations. It is assumed that a change has taken place in each
series at an unknown common point, referred to as the common
break point. This paper focuses on the statistical properties of the
estimated break point when N is large.
Common breaks in panel data are wide spread phenomena. For

example, a credit crunch or debt crisis may affect every company’s
stock returns, and an oil price shock may impact every country’s
output. A tax policy change may alter each firm’s investment in-
centive. A fad or fashion can influence a large section of the so-
ciety. Likewise, an emergence of new technology, a discovery of
a new medicine, and an enaction of new governmental program
have their own consequences on people or other entities. While
it may be difficult to identify a break point with a single series,
it should be, intuitively, much easier to locate the common break
point using a number of series together. In this paper, we explore
the panel data approach to the estimation of break point.
In comparison to the vast literature on change point for univari-

ate series, the corresponding literature for panel data is quite small.
Joseph andWolfson (1992, 1993) are the early researcherswho laid
the groundwork in this area. They proposed a random breakmodel
in which each series has its own break point; across the N series,
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the break points are assumed to be independent and identically
distributed (iid). They showed that the common distribution of the
iid break points can be consistently estimated. Under the random
break model, the likelihood function is similar to that of mixture
distributions and themaximum likelihood estimators are obtained
via EM algorithm. The present paper departs from theirs in several
directions.
First,motivated by some concrete economic problems,we focus

on the common break situation, in which all series have the same
break point. Theoretically, common break is a more restrictive
assumption than the random breaks of Joseph andWolfson (1993).
Nevertheless, when break points are indeed common, as a result of
common shocks or policy shift affecting every individual, imposing
the constraint gives a more precise estimation. Computationally,
common break model is much simpler. Furthermore, even if each
series has its own break point, the common break method can be
considered as estimating the mean of the random break points,
which can be useful.
Second, the maximum likelihood estimation of Joseph and

Wolfson (1993) assumes that the pre-break data for all series are
sampled from a single distribution F1 and the post-break data from
another single distribution F2. For panel data, this appears to be
a restricted assumption. In the case of a break in a time series
mean, this would imply that the pre-break meanµi1 and the post-
break mean µi2 for the ith series do not depend on i, and, of
course, neither does the magnitude of breakµi2−µi1. The present
paper allows heterogeneous means, which are important for some
practical applications. For example, the effect of an oil price shock
on economic growth varies from country to country, depending on
whether an economy is oil importing or exporting as well as on
an economy’s extent of oil consumption. The magnitude of change
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in the mean growth rate µi2 − µi1 depends on i and it can be
positive for some countries and negative for some others. From
the statistical point of view, the heterogeneous values for (µi1, µi2)
create a truly incidental parameter problem for large N panel data.
Nevertheless, even with the presence of incidental parameters,
we establish consistency of the break point estimator. In addition,
we consider least squares estimation, requiring no distributional
assumptions except existence of some moments.
Third, in terms of the theoretical proofs, Joseph and Wolfson

(1993) provided an indirect proof by verifying the five assumptions
of Kiefer and Wolfowitz (1956). In this paper, under the common
break setup, we provide an elementary, self-contained, and yet
rigorous proof for consistency, without assuming a compact
parameter space as required by Kiefer and Wolfowitz.
Fourth, Joseph andWolfson (1993) considered the case of fixed

T . We consider both fixed T and T going to infinity. When T →
∞, and if the common break point k0 is allowed to take on any
integer value in [1, T − 1], it becomes more difficult to locate
the break point, in this case, we show that consistency requires
T/N → 0. If the conventional assumption that k0 = [Tτ0] (0 <
τ0 < 1) is imposed, T/N → 0 is not needed, and N → ∞

is sufficient. A large T helps identity the break point, and indeed,
we show that the break point can be consistently estimated even
with small (converging to zero) magnitude of breaks. Whether or
not k0 is restricted, an unbounded T requires a separate argument
for consistency. This is due to, among other things, the following
fact: the maximum of any fixed number of random variables is
stochastically bounded (Op(1)), but the maximum of unbounded
number of random variables diverges, in general, as the number of
random variables going to infinity.
Finally, we propose a new framework to formulate the limiting

distribution. This new framework is suitable under the common
break assumption, and it overcomes a number of limitations asso-
ciated with univariate data. Based on the limiting distribution, we
show how to construct confidence intervals for the true common
break point.
The random break model of Joseph and Wolfson (1993) is ex-

tended to autoregressivemodels by Joseph et al. (1996). A Bayesian
framework was considered by Joseph et al. (1997). Application
oriented Bayesian models (medical) were studied by Skates et al.
(2001), and Jackson and Sharples (2004). More recently, Emerson
and Kao (2001, 2002) and Wachter and Tzavalis (2004a,b) devel-
oped test statistics for break points in panel data. In this paper, we
provide a systematic treatment of panel data change point prob-
lem from the perspective of classical inference. The focus is on the
estimation of the break point given its existence.
For panel data, the number of series N can be much larger than

the number of observations T . For microeconomic data, N usually
represents the number of firms or the number of individuals, and T
is the number of years. For example, the Panel Study of Income Dy-
namics (PSID) data have thousands of families, but the number of
observations over time is about 40. Formacroeconomic data,N and
T are usually comparable in size, e.g., the number of countries and
number of years with complete GDP data. Therefore, in developing
the asymptotic theory, the limit is taken as the number of series
goes to infinity. The number of observations T is fixed or going to
infinity as well.
Panel data approach to the change point problem offers an in-

teresting and unique perspective that is not shared by a univariate
or fixed N approach. In a univariate case, the break point cannot
be consistently estimated, no matter how large is the sample. We
show that in panel data it is possible to obtain consistent estimates,
as the number of series going to infinity. In a univariate setting, it
is impossible to identify the break point when a regime has a sin-
gle observation, because the change can easily be mistaken as an
unusual realization of the disturbance term.With the assistance of
the panel data, we show that consistency is attainable even when
a regime has a single observation. This property is especially useful
when the objective is to locate as quickly as possible the onset of
a new regime or the turning point, without the need of waiting for
many observations from the new regime.

2. The model

To highlight the main idea, we shall consider a simple mean
shift model.

Yit = µi1 + eit , t = 1, 2, . . . , k0
Yit = µi2 + eit , t = k0 + 1, . . . , T

i = 1, 2, . . . ,N
(1)

where E(eit) = 0 for all i and t . In this model, each series has a
break point at k0, where k0 is unknown. The pre-break mean of
Yit is µi1 and post-break mean is µi2. The difference µi2 − µi1
represents the magnitude of break, which can be either random
or nonrandom, and is assumed to be independent of error process
eit . In addition, E(µi2 − µi1)

2
≤ M for all i. We refer to T as

the number of observations or sample size, and refer to N as the
number of variables or the number of series. For panel data, N is
usually large relative to T . This common break model in panel data
is called ‘‘fixed τ model’’ by Joseph and Wolfson (1992). Note that
k0 = T implies no break in the sample. Thus the maximum value
for k0 is T − 1, assuming existence of a break.
We consider two cases with respect to the size T ; the first case

corresponds to a fixed T , and k0 can take on any value from 1 to
T−1without restriction. The second case assumes T growswithout
bound. For the latter, the break point k0 is assumed to be bounded
away from 1 and T such that

k0 = [Tτ0]

with τ0 ∈ (0, 1) so that k0 is a positive fraction of the total sample
size, where [x] represents the integer part of x. This is a conven-
tional assumption in the change point literature, see, e.g., Csörgő
and Horváth (1997). In terms of consistency, this assumption is
removable in the panel data setting, as long as T/N → 0, see
Remark 3 in Appendix for a proof. However, for our second con-
sistency theorem and for the limiting distribution, this condition
is needed and thus it is maintained throughout. To avoid technical
niceties, we simply assume k0 = Tτ0. Again, for fixed T , no such a
restriction is necessary.
We assume the error process eit is stationarity in the time di-

mension. More specifically,

Assumption 1. eit =
∑
∞

j=0 aijεi,t−j, εit ∼ (0, σ 2iε) are iid over t;∑
j j|aij| ≤ M for all i. In addition, eit are independent over i.

Let σ 2i = E(e
2
it) = σ

2
iε(
∑
j a
2
ij). We assume there is no change in

the variance. If a shift in the variance also occurs, it ismore efficient
to estimate simultaneously the break in variance and the break in
mean.When a break in variance exists but is ignored, the estimated
break inmean,while consistent,will have a nonsymmetric limiting
distribution. Bai (1997b) discusses nonsymmetric distribution due
to nonconstant variance or nonstationary regressors. Changes in
variance will be analyzed in Section 5.
Assumption 1 assumes eit are cross-sectionally independent.

This assumption can be relaxed without affecting the consistency
result. Cross-sectional independence is mainly used for the term
N−1/2

∑N
i=1 eit to be Op(1) (for consistency) and to have the cen-

tral limit theorem (for limiting distribution). Clearly, central limit
theorem still holds under cross-sectional correlation, provided that
the correlation is weak.
With respect to the size of breaks, it seems reasonable to as-

sume a positive limit for lim infN→∞ 1
N

∑N
i=1(µi2−µi1)

2 > 0. This
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would be the case if the magnitude of breaks µi2 −µi1 are iid ran-
dom variables with positive variance. However, we shall assume a
weaker condition:

Assumption 2.

lim
N→∞

N−1/2
N∑
i=1

(µi2 − µi1)
2
= ∞. (2)

The sum is divided by N1/2 instead of N . The condition does not
require every series to have a break.

3. Least squares estimation of the break point

For a given k such that 1 ≤ k ≤ T − 1, define

Ȳi1 =
1
k

k∑
t=1

Yit

Ȳi2 =
1

T − k

T∑
t=k+1

Yit

so that Ȳi1 and Ȳi2 are estimators for µi1 and µi2, respectively.
Their dependence on k is suppressed for notational simplicity. They
are biased estimators unless k = k0. This biased property when
k 6= k0 in fact helps identity the true break point. Define the sum
of squared residuals for the ith equation as

SiT (k) =
k∑
t=1

(Yit − Ȳi1)2 +
T∑

t=k+1

(Yit − Ȳi2)2

k = 1, 2, . . . , T − 1. We define SiT (k) =
∑T
t=1(Yit − Ȳi)

2 for k = T ,
where Ȳi is the whole sample mean. In this way, SiT (k) is defined
for every k = 1, . . . , T . The total sum of squared residuals across
all equations is defined as

SSR(k) =
N∑
i=1

SiT (k).

The least squares estimator for k0 in the panel datamodel is defined
as
k̂ = argmin

1≤k≤T−1
SSR(k).

This estimator is straightforward to compute.
An alternative procedure is to estimate the break point series by

series and then take the average over theN estimates. Thismethod
is not recommended because it does not guarantee consistency. If
a portion of series are not subject to breaks, the estimated break
points for these series can take on any value. Averaging those val-
ues will not give the correct answer since they do not necessarily
fluctuates around k0, particularly when k0 is near the boundary.
When N = 1 (a univariate series), it is well known that

k̂ = k0 + Op(1) (3)

so that the difference between k̂ and true break point k0 is
stochastically bounded. For a fixed T , such a statement is not
helpful because T is bounded and k̂− k0 is always bounded. When
T →∞, the statement of (3) is quite strong. It implies that
τ̂ = τ0 + Op(T−1)

where τ̂ = k̂/T . So in terms of the fraction of the sample size, τ̂ is
T -consistent for τ0. Nevertheless, k̂ itself is not consistent for k0 in
univariate framework.
For panel data, however, much stronger statements can be

made. We shall prove the following result:

Theorem 3.1. For model (1), assume Assumptions 1 and 2 hold. Then
under either fixed T or unbounded T ,

lim
N→∞

P(k̂ = k0) = 1.
To access the theoretical result numerically, we report some
Monte Carlo simulations. Attention is given to the effect of N on
the precision of estimated k̂. We generate data based onmodel (1),
with T = 10, k0 = 5, and N = 1, 10, 20, 100. The actual levels of
µi2 andµi1 are not essential, it is the differenceµi2−µi1 that mat-
ters. This difference is generated as having a uniform distribution
on the interval (−2, 2),

µi2 − µi1 ∼ U(−2, 2), i = 1, 2, . . . ,N.

The disturbances eit are iid standard normal N(0, 1).
Fig. 1 displays four histograms for the estimated break points,

with each corresponding to a different value of N . It is clear that
the precision of k̂ improves markedly as N increases. With a single
series (N = 1), it is difficult to estimate the break point. With
N = 100, the breakpoint is estimatedprecisely (100%of precision).
More importantly, evenwhen a regime has a single observation,

the break point can still be estimated precisely. For example, with
k0 = 9, the second regime has a single observation given T = 10.
Fig. 2 shows the histograms of k̂ when k0 = 9. The assertion that
precise estimation is obtained as N increases holds for every k0 in
between 1 and T − 1. This conforms with Theorem 3.1 since the
theorem does not impose any restriction on k0.
Theorem3.1 states that the estimatedbreakpoint k̂ is consistent

for k0 under condition (2), i.e., N−1/2
∑N
i=1(µi2 − µi1)

2 grows
unbounded as N increases. The consistency holds whether T is
bounded or unbounded. We now show that condition (2) can be
weakened to

lim
N→∞

N∑
i=1

(µi2 − µi1)
2
= ∞. (4)

It is clear that (2) implies (4); the latter does not require a rate
at which the sum diverges to infinity. As a cost to the weaker
condition, we have to assume T is larger than N such that

log(log(T ))
T

N → 0 (5)

as T and N going to infinity. This restricts the relative rate at which
T and N diverge. Intuitively, this means that with more observa-
tions, one can detect faint signals.

Theorem 3.2. Under Assumption 1, (4) and (5), we have

lim
N,T→∞

P(k̂ = k0) = 1.

In summary, under Assumption 2, consistency is possible for either
fixed T or large T . Under (4), T must be large to obtain consistency.

4. Limiting distribution

In the previous section, we showed that P(k̂ = k0) → 1, im-
plying a degenerate limiting distribution for k̂. In practice, either
due to too small magnitude of breaks or due to the finiteness of N ,
we cannot expect k̂ to coincide with k0. It is therefore of interest
to study the distribution of k̂. Limiting distributions can be used to
construct confidence intervals for the true break point.
In the univariate case, there are two frameworks for developing

the limiting distribution of k̂. For concreteness, consider a
univariate series

Yt = µ1 + et , t = 1, 2, . . . , k0
Yt = µ2 + et , t = k0 + 1, . . . , T .

The first framework assumes the magnitude of break |µ2 − µ1| is
fixed and the second assumes |µ2 − µ1| depends on T such that
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Fig. 1. Histogram of the estimated break points (T = 10, k0 = 5).
Fig. 2. Histogram of the estimated break points (T = 10, k0 = 9).
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vT = |µ2−µ1| converges to zero as T →∞. Under fixedµ2−µ1,
the limiting distribution is given by

k̂− k0
d
−→ argmax`V (`) (6)

where V (0) = 0 and

V (`) = (µ2 − µ1)2|`| − 2(µ2 − µ1)
0∑

s=−`+1

es,

` = −1,−2, . . . .

V (`) = (µ2 − µ1)2`− 2(µ2 − µ1)
∑̀
s=1

es, ` = 1, 2, . . .

see Bhattacharya (1994). The above assumes et is strictly
stationary, although independence is not necessary. If et is not
strictly stationary, then

∑`
s=1 es must be replaced by

∑k0+`
s=k0+1

es
and

∑0
s=−`+1 es replaced by

∑k0
s=k0−`+1

es, see Bai (1997a,b).
In addition to the strict stationarity requirement, another re-

stricted feature of the distribution is its dependence on the under-
lying distribution of et . Different distributions for the disturbances
et imply different distributions for k̂−k0. For the limiting distribu-
tion to be useful, one must know the distribution of et .
The second framework assumes vT = µ2 − µ1 → 0 and

Tv2T →∞. The limiting distribution is

(v2T/σ
2)(k̂− k0)

d
−→ argmin

r
[−|r| + 2W (r)] (7)

where σ 2 is the long run variance of et , that is, the spectral density
at frequency zero multiplied by 2π ;W (r) is a two-sided Brownian
motion on the real line. More specificallyW (0) = 0 andW (r) =
W1(r) for r > 0, and W (r) = W2(−r) for r < 0, where W1 and
W2 are two independent Brownian motions on [0,∞); See Picard
(1985), Yao (1987), or Bai (1994) for et being a linear process.
The second framework implies that k̂ − k0 diverges to infinity

as T →∞ because v2T goes to zero and the product v
2
T (k̂− k0) has

a non-degenerate distribution.
These limitations associated with a univariate series can be

overcome under panel data. Belowwe introduce a new framework
for developing the limiting theory. Under the new framework,
we show that the limiting distribution does not depend on the
underlying distribution of eit , nor on the strict stationarity of eit ,
nor on the divergence of k̂− k0.
We shall assume T is unbounded, as in the previous section.

Thus limits are taken as N and T both go to infinity. For fixed T ,
the limiting distribution will depend on the exact location of k0,
and it also has more complicated expression. We therefore focus
on the case of unbounded T in the limit.
Recall that as long as λN =

∑N
i=1(µi2 − µi1)

2
→ ∞, we have

P(k̂ = k0) → 1, implying a degenerate distribution. To obtain
a non-degenerate distribution, we assume limN→∞

∑N
i=1(µi2 −

µi1)
2
= λ > 0 for some λ < ∞. Roughly speaking, this implies

that the magnitude of break in each equation is small. For fixed N ,
the sum λN is always bounded. So a bounded limit provides a good
approximation for panel data with not too large N .
To derive the limiting distribution, we make the following

specific assumption:

µi2 − µi1 = N−1/2∆i, with lim
N→∞

N∑
i=1

(µi2 − µi1)
2

= lim
N→∞

1
N

N∑
i=1

∆2i = λ (8)
where ∆i is uniformly bounded, or in the case of stochastic ∆i, its
variance is uniformly bounded. In addition, we assume

lim
N→∞

N∑
i=1

[(µi2 − µi1)
2σ 2i ] = lim

N→∞

1
N

N∑
i=1

∆2i σ
2
i = φ. (9)

Note that φ = σ 2λwhen σ 2i = σ
2 for all i.

Lemma 4.1. Under Assumption 1, (5) and (8), we have

k̂− k0 = Op(1).

The Op(1) in the lemma is genuine in the sense that it is not op(1).
Thus, due to small magnitude of breaks, k̂ does not collapse to k0,
leading to a non-degenerate distribution. Nevertheless, this lemma
says that the break point can be estimated well because τ̂ = k̂/T
is still T consistent for τ0.
Unlike the univariate case, even though k̂−k0 = Op(1), the lim-

iting distribution will not depend on the underlying distribution of
eit . We state the limiting distribution in the following theorem.

Theorem 4.2. Assume eit are uncorrelated over t. Under conditions
(5), (8) and (9), as N, T →∞,

k̂− k0
d
−→ argmin

`

[
|`| λ+ 2

√
φ W (`)

]
(10)

where W (0) = 0 and

W (`) =
0∑

s=−`+1

Zs, ` = −1,−2, . . .

W (`) =
∑̀
s=1

Zs, ` = 1, 2, . . .

and Zs, s = . . .− 2,−1, 0, 1, 2, . . . are iid standard normal random
variables.

The key distinction between the limiting distribution in
Theorem 4.2 and the limiting distribution in (6) is that the random
variables Zt are standard normal random variables instead of the
disturbances of the regression. The normality of Zs is due to the
central limit theorem applied to cross-sectional regression errors.
In the above theorem, the eit are assumed to be uncorrelated over t .
Under serial correlation for eit , the theorem continues to hold,
except that the normal random variables Zs will be correlated. In
order to derive or simulate the probability distribution for the
limiting random variable, the correlation coefficients ρh =

E(ZsZs+h) are needed. For fixed T , it may be difficult to estimate
those coefficients. But for simple parametric processes such that
eit = ρeit−1 + ηit , panel data techniques as described in Arellano
(2003) and Hsiao (2003) can be used to consistently estimate ρ
even for fixed T . However, under fixed T , the two-sided random
walk (defined on a bounded set) will be nonsymmetric implying a
nonsymmetric limiting distribution for k̂.
For given λ andφ, we can easily simulate the distribution on the

right hand side (10). From the simulated distribution, confidence
intervals on k0 can also be constructed. Also note that λ and φ can
be estimated consistently. Inwhat follows, we shall provide amore
practicalway of constructing confidence intervals.We only need to
simulate a standard distribution for λ = 1 and φ = 1. For all other
values of λ and φ, a simple transformation is sufficient. Given the
critical values reported below, no further simulation is needed for
applied researchers.
TheW (`) in the limit is a two-sided and discrete-time Gaussian

random walk, quite analogous to the continuous-time Gaussian
randomwalk (Brownianmotion) in (7). For amoment, assume that
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Fig. 3. The distribution of argmin`[|`| + 2W (`)], where W (`) is a two-sided
Gaussian random walk (` = . . . ,−2,−1, 0, 1, 2, . . .). The distribution is obtained
from simulation via 100,000 repetitions.

` takes on continuous values andW (`) is a Brownianmotion, then
by a simple change in variable, the right hand side of (10) is equal in
distribution to (φ/λ2)argmin`[|`| + 2W (`)]. Then we can rewrite
(10) as

(λ2/φ)(k̂− k0)
d
−→ argmin

`

[
|`| + 2W (`)

]
. (11)

The above can be rewritten as

AN(k̂− k0)
d
−→ argmin

`

[
|`| + 2W (`)

]
(12)

where

AN =

[
N∑
i=1
(µi2 − µi1)

2
]2

N∑
i=1
(µi2 − µi1)2σ

2
i

because AN → λ2/φ in view of (8) and (9). In the special case that
σ 2i = σ

2 for all i, AN is simplified to AN =
∑N
i=1(µi2 − µi1)

2/σ 2.
However, ` only takes on integer values, andW (`) is a random

walk, the change in variable argument does not hold exactly so that
(12) is only an approximation. Nevertheless, the approximation
holds well because a Gaussian random walk and a Brownian
motion (evaluated at integer time) have the same distribution. The
quality of the approximation is also confirmed by Monte Carlo
simulations.
Let `∗ = argmin`{|`| + 2W (`)}. The distribution of `∗ is free

fromunknownparameters and is easily simulated, see Fig. 3,which
is obtained from 100,000 repetitions. This discrete density func-
tion quite resembles the continuous density function of the ran-
dom variable in (7). This is not surprising because, as mentioned
earlier, a Gaussian random walk and a Brownian motion (evalu-
ated at integer time) have the same distribution. From the simu-
lated distribution, it is found that

P(|`∗| ≤ 7) ' 0.90
P(|`∗| ≤ 11) ' 0.95
P(|`∗| ≤ 20) ' 0.99.

Using (12), the 90% confidence interval for k0 is constructed as

[k̂− floor(7/ÂN), k̂+ ceiling(7/ÂN)] (13)
Table 1
Coverage rate and the length of confidence intervals (T = 100).

Distribution of eit N Coverage rate Median length of CI
90% 95% 99% 90% 95% 99%

N(0, 1) 1 0.635 0.719 0.812 25 39 70
5 0.829 0.886 0.954 9 13 23
10 0.900 0.932 0.979 5 7 13
15 0.937 0.968 0.989 5 7 9
20 0.949 0.983 0.994 3 5 7

χ2(5) 1 0.647 0.722 0.815 25 39 69
5 0.824 0.885 0.944 9 13 23
10 0.905 0.941 0.979 5 9 13
15 0.933 0.963 0.989 5 5 9
20 0.942 0.959 0.986 3 5 7

t(5) 1 0.646 0.713 0.800 25 39 69
5 0.830 0.883 0.927 9 13 23
10 0.904 0.947 0.978 5 7 13
15 0.939 0.967 0.989 5 5 9
20 0.935 0.968 0.988 3 5 7

where floor(x) is the largest integer smaller than or equal to x, and
ceiling(x) is the smallest integer larger than or equal to x; ÂN is
an estimate of AN , obtained by replacing unknown parameters by
their estimated values. We prove in Appendix that

ÂN = AN + op(1) (14)

thus replacing AN by ÂN has no asymptotic effect on the confidence
intervals. Replacing the value 7 in the confidence interval (13) by
11 and 20 will give rise to the 95% and 99% confidence intervals,
respectively.
Monte Carlo simulation. To examine the coverage probability of the
confidence intervals based on (13), we simulate observations from
model (1) with T = 100, k0 = 50, and a number of different values
of N . The disturbances eit are generated as iid for all i and t with
three different distributions, namely, normal N(0, 1), chi-square
χ2(5), and the student t distribution t(5). The last two distributions
allows us to see the effect of skewness and heavy-tailedness on the
coverage probability.
The estimator k̂ is invariant to the actual levels of µi1 and µi2;

only the difference µi2 −µi1 matters. We generate the magnitude
of break as uniform random variables such that

µi2 − µi1 ∼ σ · U(−1, 1), i = 1, 2, . . . ,N

where σ is the standard deviation of the disturbances, i.e., σ 2 =
E(e2it). These are small levels of breaks relative to the error variance.
From a single series, it would be very difficult to accurately
estimate the break point for this magnitude of break.
To construct confidence intervals, we estimate AN as follows.

In each repetition, we estimate the break point k̂ first. We then
estimateµi1 andµi2 based on the pre-break and post-break sample
means using k̂ as the break point. Then AN is estimated by ÂN =∑N
i=1(µ̂i2 − µ̂i1)

2/σ̂ 2, where σ̂ 2 is the estimated error variance
defined as σ̂ 2 =

∑N
i=1
∑T
t=1 ê

2
it/(NT − 2N).

Table 1 presents the coverage rates (frequencies) from 5000
repetitions. The first column lists the distribution types, the second
column gives the values on N = 1, 5, 10, 15, 20. The next three
columns provide the coverage rates based on the confidence inter-
vals in (13) (with 7 replaced by 11 and 20 for the 95% and 99% con-
fidence intervals). The last three columns are the median length of
the confidence intervals.
Upon inspecting the table, three conclusions can be drawn.

First, as N increases, the length of the confidence interval becomes
tighter, reflecting more precise estimation of k0 (see the last three
columns). Even with narrower confidence intervals, the coverage
rate increases asN gets larger. The interval iswidest forN = 1with
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poor coverage rate. Due to theuse of ‘‘floor’’ and ‘‘ceiling’’ functions,
the shortest confidence interval (by construction) would contain
three integers (k̂ − 1, k̂, k̂ + 1). If we round 7/ÂN to the nearest
integer instead of using the floor and ceiling functions, then the
shortest confidence interval would contain a single element {k̂}.
This would be the case under largemagnitude of breaks (more pre-
cisely, when 7/ÂN is less than 0.5). We did not consider such inter-
vals. Second, as N increases, say no smaller than 15, the coverage
rate in general exceeds the nominal rate. This is consistentwith the
theory which predicts k̂− k0 converges to zero under fixed magni-
tude of breaks. While ideally, one may want to see the actual cov-
erage rates being close to their nominal counterparts, it might be
desirable to have the coverage rate higher than the theoretical one.
It is more assuring to have conservative confidence intervals but
not at the expense of widening the intervals. In our case, as N in-
creases (not reported) the coverage rates will increase to 1. Finally,
skewness and heavy-tailedness do not seem to adversely affect the
confidence intervals, as shown in the second and third panel of
Table 1, as predicted by the theory.
Determining which series had undergone a change. Our assumptions
do not require each series to have a break. It is therefore of interest
to determinewhich series had in fact undergone a structural break.
For this purpose, the standardChow test (Chow, 1960) computed at
the estimated common break and the associated chi-square critical
values are applicable, provided that the test is performed series
by series. To see this, consider testing whether there is a break
in the first series. Under large N , the estimated common break
can be viewed as exogenous given, i.e., independent of the first
series since the contribution from the first series to the estimated
break point is asymptotically negligible as N → ∞. Because for
each exogenous given break point, the Chow test has a chi-square
limiting distribution, the usual chi-square critical values are usable.
Alternatively, one can estimate the common break point with the
rest of N − 1 series, and compute the Chow test for the first series
by splitting the sample at the estimated break point. The predictive
Chow test can be used if one of the regimes does not contain
enough observations, a relevant case for multiple regressions.

5. Extension: Common breaks in variances

5.1. Model and estimation

Consider

Yit = µi1 + σi1 ηit , t = 1, 2, . . . , k0
Yit = µi2 + σi2 ηit , t = k0 + 1, . . . , T

i = 1, 2, . . . ,N
(15)

where E(ηit) = 0, var(ηit) = 1, and for each i, ηit is a linear process
such that ηit =

∑
∞

j=0 bijεi,t−j, with εit iid (0, 1),
∑
∞

j=1 j|bij| < ∞,
and var(ηit) =

∑
∞

j=0 b
2
ij = 1. In addition, E(ε

4
it) is bounded, and

k0 = [Tτ0], τ0 ∈ (0, 1).
We assume either µi1 6= µi2 or σi1 6= σi2. For ease of analysis,

we shall assume that σi1 and σi2 are uniformly bounded above and
bounded away from zero. That is, there exist a > 0 and A < ∞
such that a ≤ σ 2ik ≤ A (k = 1, 2). To estimate the break point, we
use the quasi-maximum likelihood method (QML) by treating ηit
as if they were iid normal N(0, 1). Let

σ̂ 2i1(k) =
1
k

k∑
t=1

(Yit − Ȳi1)2, σ̂ 2i2(k) =
1

T − k

T∑
t=k+1

(Yit − Ȳi2)2.

The QML objective function for series i is equal to

k log σ̂ 2i1(k)+ (T − k) log σ̂
2
i2(k)
multiplied by−1/2. For a single series, the break point is estimated
by minimizing the above objective function, as discussed in Bai
(2000, p. 335). For N independent series, the objective function
becomes

UNT (k) = k
N∑
i=1

log σ̂ 2i1(k)+ (T − k)
N∑
i=1

log σ̂ 2i2(k). (16)

The break point estimator is defined as k̂ = argminkUNT (k). To
study the property of k̂, we need to make an assumption about
the magnitude of breaks. In case of no breaks in means, consistent
estimation of the break point relies on breaks in variances. Let
f (x) = x− 1− log(x), x > 0.
Function f (x) is monotonically decreasing on (0, 1] andmonotoni-
cally increasing on [1,∞), thereby achieving its unique minimum
at x = 1 with f (1) = 0 and f (x) > 0 for x 6= 1. Note that σ 2i1 6= σ

2
i2

if and only if f (σ 2i1/σ
2
i2) > 0. The required condition for consistent

estimation of the break point is (in the absence of mean breaks)

lim
N→∞

N∑
i=1

f (σ 2i1/σ
2
i2) = ∞. (17)

Analogous to (4), this condition does not require a rate of
divergence. If it is assumed that |σ 2i1/σ

2
i2 − 1| > c for all i, then∑N

i=1 f (σ
2
i1/σ

2
i2) ≥ c1N (for some c1 > 0) so that it increases at rate

N . Condition (17) is much weaker. This weak condition, however,
requires the sample size T to go to infinity for asymptotic theory.
Unless normality is assumed, the fixed T framework appears to
be very complicated even assuming

∑N
i=1 f (σ

2
i1/σ

2
i2) to be of O(N).

Thus we leave the fixed T analysis as an open research problem,
and assume T is larger than N such that (5) hold.
Consistent estimation of the break point requires either breaks

in variance as described by (17) or breaks in mean as described
by (4), i.e.,

lim
N→∞

N∑
i=1

(µi1 − µi2)
2
= ∞. (18)

Now we are ready to state the main result

Theorem 5.1. Assume thatmodel (15) and assumption (5) hold. Then
under either (17) or (18), we have, as N, T →∞,

P(k̂ = k0)→ 1.

Therefore, in presence of either mean breaks or variance breaks
(or both), the break point is consistently estimable. In presence of
breaks in variance only, consistent estimation of the break point
is possible if QML method is used. The least squares method in
previous sections is not designed to estimate breaks in variance,
and will not give consistent estimation unless mean breaks exist.

5.2. Limiting distribution

The usefulness of limiting distributions is explained in early
sections. That motivation remains pertinent here and will not be
repeated. To derive the limiting distribution,weuse the framework
in which the magnitude of breaks is small. For breaks in variance,
we assume di = (σ 2i1/σ

2
i2) − 1 → 0 so that σi1 and σi2 collapse

to a common value as N → ∞. We shall denote this common
value by σ 2i . Theorem 5.1 shows that as long as

∑N
i=1 f (σ

2
i1/σ

2
i2)→

∞, a degenerate limiting distribution is assured. To obtain a non-
degenerate limiting distribution, this limit must be bounded. We
assume di = 1

√
N
δi with δi satisfying

1
N

N∑
i=1

δ2i → ω, say
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for some ω > 0. Then f (σ 2i1/σ
2
i2) = f (1 + di) = 2

−1d2i + O(d
3
i ) =

2−1N−1δ2i + O(N
−3/2). This implies

N∑
i=1

f (σ 2i1/σ
2
i2) =

1
2
1
N

N∑
i=1

δ2i + o(1)→
1
2
ω.

Similarly, we let µi1 − µi2 = N−1/2∆i such that
N∑
i=1

(µi1 − µi2)
2/σ 2i =

1
N

N∑
i=1

∆2i /σ
2
i −→ τ > 0, say.

Finally, let κ be the fourth cumulant of ηit . Having defined the
parameters ω, τ , and κ , we are ready to state the limiting
distribution.

Theorem 5.2. For small magnitudes of breaks described by τ and ω,
if each of ηit and η2it − 1 is a serially uncorrelated sequence, then

k̂− k0
d
−→ argmin

`

[
|`|(τ + 2−1ω)+ 2

√
τ W1(`)

+

√
(κ + 2)ωW2(`)

]
.

where both W1(`) and W2(`) are two-sided Gaussian random walks,
having the same form as the W (`) defined in Theorem 4.2; ` =
. . . ,−2,−1, 0, 1, 2, . . . .

Two special cases are of interest. In the absence of breaks in
variance, ω = 0, we have

Corollary 5.3. Under assumptions of Theorem 5.2 and no breaks in
variance,

k̂− k0
d
−→ argmin

`

[
|`| τ + 2

√
τ W1(`)

]
.

Analogous to (11), a variable transformation will lead to τ(k̂ −
k0)

d
−→ argmin`

[
|`|+2W1(`)

]
=
d `∗, where ‘‘=d’’ means equal in

distribution, and `∗ is defined earlier. Again, this result holds only
approximately sinceW is not a continuous-time Brownianmotion.
In view that τ is the limit of BN =

∑N
i=1(µi1 − µi2)

2/σ 2i , we have

BN(k̂− k0)
d
−→ `∗.

The limit remains valid when BN is estimated by replacing µi1,
µi2, σ

2
i by their estimates. Recall that the least squares estima-

tor has the same limit except that BN is replaced by AN , see (12).
By the Cauchy–Schwarz inequality, AN ≤ BN . This implies that
the QML is more efficient than the least squares. In the absence of
cross-sectional heteroskedasticity (i.e., σ 2i = σ

2 for all i), the least
squares method and QML are equivalent. With heteroskedasticity,
efficiency gain arises from the fact that QML is asymptotically us-
ing the criterion

∑N
i=1 σ

−2
i SiT (k), which is the GLS criterion. See the

proof in the Appendix. Thus QML down weights more noisy series.
Clearly, the GLS criterion itself is infeasible since σ 2i is not observ-
able. But a feasible GLS, a two-step procedure, is readily available.
The first step uses the least squaresmethod to get k̂. From this k̂, we
estimate the variance σ̂ 2i = (T − 2)−1SiT (k̂). We then reestimate
the break point with the feasible GLS criterion

∑N
i=1 σ̂

−2
i SiT (k). It

can be shown that the feasible GLS is asymptotically equivalent to
QML.
It is interesting to note that when changes in variances are also

present, if the following weighted least squares (WLS) criterion is
used to estimate the break in means, WLS(k) = 1

σ 2i1

∑k
t=1(Yit −

Ȳi1)2 + 1
σ 2i2

∑T
t=k+1(Yit − Ȳi2)

2, where σi1 and σi2 are assumed to

be known for simplicity, then the estimator for k0 is not necessar-
ily consistent, while both the least squares and QML will be con-
sistent. Consider, for example, µi2 = 2µi1 and σi2 = 2σi1. WLS is
equivalent to dividing the subsample [k, T ] by 2. Upon the division,
there is no break in either the mean or variance, at least evaluated
at k = k0. For this particular example, QML will work well since
breaks exist in both means and variances.
Another special case of Theorem 5.2 is that there are no breaks

in mean but only breaks in variance. This gives τ = 0, and we have

Corollary 5.4. Under the assumptions of Theorem 5.2 and absence of
mean breaks,

k̂− k0
d
−→ argmin

`

[
|`| 2−1ω +

√
(κ2 + 2)ωW2(`)

]
.

Again a variable transformation shows that ω
κ+2 (k̂ − k0)

d
−→

argmin`[ |`| + 2W2(`)] =d `∗. In view ω is the limit of 2
∑N
i=1 f

(σ 2i1/σ
2
i2), we have[
2

κ + 2

N∑
i=1

f (σ 2i1/σ
2
i2)

]
(k̂− k0)

d
−→ `∗.

It can be shown that the same limit is obtained when κ and σik
are replaced by their consistent estimates κ̂ and σ̂ 2ik (k = 1, 2).
This result can be used to construct confidence intervals. Under
normality of ηit , the fourth cumulant κ = 0. In addition, with
small changes,

∑N
i=1 f (σ

2
i1/σ

2
i2) = 2

−1∑N
i=1 d

2
i + o(1) with di =

σ 2i1/σ
2
i2 − 1, so that 2

−1∑N
i=1 d

2
i (k̂ − k0) converges to the same

limiting distribution. This expression is analogous to Corollary 7
of Bai (2000) for the case of N = 1.

Remark 1. The two Gaussian random walks W1 and W2 in The-
orem 5.2 will be independent if E(η3it) = 0. They will also be
independent if the magnitude of breaks in mean and the magni-
tude of breaks in variance are orthogonal across i in the sense that∑N
i=1[(µi1 − µi2)/σi][(σ

2
i1 − σ

2
i2)/σ

2
i ] = N

−1∑N
i=1(∆i/σi)δi → 0.

This follows because the normal random variables that make up
the two random walks are the limits of N−1/2

∑N
i=1(∆i/σi)ηit and

N−1/2
∑N
i=1 δi(η

2
it − 1), respectively. The limits are independent

if E(η3it) = 0 or N
−1∑N

i=1(∆i/σi)δi → 0; see further details in
Appendix.

Remark 2. When W1 and W2 are independent, 2
√
τ W1(`) +√

(κ + 2)ωW2(`) has the same distribution as [4τ + (κ +
2)ω]1/2W (`) = 2[τ + (2 + κ)ω/4]1/2W (`), where W (`) is a
two-sided Gaussian random walk. Therefore, we can rewrite the
limiting distribution as

k̂− k0
d
−→ argmin

`

[
|`|(τ + 2−1ω)

+ 2[τ + (2+ κ)ω/4]1/2W (`)
]
.

To allow dependence between W1 and W2. Let µ3 = E(η3it) and
assume

∑N
i=1[(µi1−µi2)/σi][(σ

2
i1−σ

2
i2)/σ

2
i ] = N

−1∑N
i=1(∆i/σi)δi

→ π . We show in Appendix that

k̂− k0
d
−→ argmin

`

[
|`|(τ + 2−1ω)

+ 2[τ + (2+ κ)ω/4+ µ3π ]1/2W (`)
]
. (19)

A change in variable implies the following approximation

(τ + 2−1ω)2

τ + (2+ κ)ω/4+ µ3π
(k̂− k0)

d
−→ `∗.

The case of µ3 = 0 has a similar form as Corollary 3 in Bai (2000)
with fixedN but allowing correlations across i for ηit (VAR system).
But there, the Gaussian random walk is replaced by a continuous-
time Brownian motion.
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6. Discussion: Multiple breaks

Using panel data is particularly suitable for estimating multi-
ple breaks. With multiple breaks, regime span is short, making
it difficult to identity the breaks with a single series. As demon-
strated in previous sections, with panel data, a break point can be
consistently estimated even if a regime contains a single obser-
vation. In this section, we discuss how to estimate multiple com-
mon break points. Consider the model with m breaks occurring at
k01, k

0
2, . . . , k

0
m:

Yit = µi1 + eit , t = 1, 2, . . . , k01,

Yit = µi2 + eit , t = k01 + 1, . . . , k
0
2,

...

Yit = µi,m+1 + eit , t = k0m + 1, . . . , T .

There are two estimating procedures: simultaneous approach
and one-at-a-time approach. The former estimates all the break
points simultaneously. This method is discussed in Bai and Perron
(1998, 2003). Here we elaborate the one-at-a-time approach of Bai
(1997a). This method is computationally simple. A researcher with
a least squares routine is able to estimate multiple breaks one by
one. The number of least squares required is a linear function of the
sample size T .
Suppose that the number of breaks,m (m > 1), is given. Despite

multiple breaks, the one-at-a-time approach proceeds as if there
were just a single break. Thus the objective function is identical to
the SSR(k) defined in Section 3. Let k̂1 be the point that minimizes
SSR(k). This k̂1 is not necessarily estimating k01. However, it is con-
sistent for one of true break points.Which one it is being estimated
depends on which true break point gives the largest reduction in
the sum of squared residuals. This in turn depends on the mag-
nitudes of breaks and regime spans, see Bai (1997a). Once the first
break is obtained, we split the sample at the estimated break point,
resulting in two subsamples.We then estimate a single break point
in each of the subsamples, but only one of them is retained as our
second estimator. The one that gives a larger reduction in the sum
of squared residuals is kept. Denote the resulting estimator as k̂2. If
k̂2 < k̂1 (the retained estimator is from the first subsample) we re-
label them (switching the subscripts) so that k̂1 < k̂2. Ifm = 2, the
procedure is stopped, and it can be shown that k̂j is consistent for
k0j (j = 1, 2). If m > 2, we need to estimate the third break point
from the resulting three subsamples separated by the break points
(k̂1, k̂2). Again, a single break point is estimated for each of the sub-
samples, and the one that achieves the largest reduction in the sum
of squared residuals is retained as our estimate for the third break
point. The procedure is repeated untilm breaks are obtained.
In practice, the number of breaks, m, is unknown. In the above

one-at-a-time approach, a test for existence of break point can
be applied to each subsample before estimating a break point.
Alternatively, onemay use information criteria such as AIC and BIC
to determine the number of breaks, see Bai and Perron (2003) and
the references therein. However, for panel data, the corresponding
criteria are not well understood. Our preliminary analysis shows
that, under fixed T , the AIC criterion is consistent and the BIC is
not, contrary to conventional wisdom. The latter is consistent if T
is large. Further investigation is called for.

7. Concluding remarks

This paper develops some statistical theory for common breaks
in panel data. Some unique properties for the estimated break
point are derived. For example, a break point can be consistently
estimated even when a regime contains a single observation. This
property is appealing when the objective is to locate as quickly as
possible the onset of a new regime or the turning point, without
the need of waiting for many observations from the new regime.
Asymptotic theory is developed as N → ∞ with T either fixed
or growing to infinity. We also propose a new framework for
developing the limiting distribution for the estimated break point
and we show how to use the limiting distribution to construct
confidence intervals. Both the least squares method and the quasi-
maximum likelihood method (QML) are studied. The QML method
can consistently estimate the break points occurring in either
means or variances. In general, QML ismore efficient than the least
squares method even in the absence of breaks in variances.
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Appendix

We first establish a number of preliminary results, which are
concerned with properties of the sum of squared residuals as k
varies in [1, T ]. Define

UNT (k) =
1
NT
SSR(k) =

1
NT

N∑
i=1

SiT (k).

Lemma A.1. For bounded or unbounded T ,

sup
1≤k≤T

|UNT (k)− EUNT (k)| = Op

(
1
√
NT

)
.

This lemma says that the deviation of UNT (k) from its expected
value is small uniformly in k.Wenext argue that the expected value
of UNT (k) attains its unique minimum at k0.

Proof of Lemma A.1. Due to symmetry, it is sufficient to consider
the case of k ≤ k0. For k ≤ k0,

Ȳi1 = µi1 +
1
k

k∑
t=1

eit ,

Ȳi2 = µi1 +
T − k0
T − k

(µi2 − µi1)+
1

T − k

T∑
t=k+1

eit

=
k0 − k
T − k

(µi1 − µi2)+ µi2 +
1

T − k

T∑
t=k+1

eit .

Each of the two alternative expressions for Ȳi2 will be used later.
Introduce

ēi1 =
1
k

k∑
t=1

eit , ēi2 =
1

T − k

T∑
t=k+1

eit

their dependence on k is suppressed. Furthermore, let

aik =
T − k0
T − k

(µi2 − µi1), bik =
k0 − k
T − k

(µi1 − µi2).

It follows that

Ȳi1 = µi1 + ēi1
Ȳi2 = µi1 + aik + ēi2
= µi2 + bik + ēi2.
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By the definition of SiT (k), we have

SiT (k) =
k∑
t=1

(eit − ēi1)2 +
k0∑

t=k+1

(eit − aik − ēi2)2

+

T∑
t=k0+1

(eit − bik − ēi2)2.

Note that for k = k0, the sum
∑k0
t=k+1 is defined to be zero.

Expanding and combining terms, we have

SiT (k) =
k∑
t=1

(eit − ēi1)2 +
T∑

t=k+1

(eit − ēi2)2

+ (k0 − k)a2ik + (T − k0)b
2
ik

− 2aik
k0∑

t=k+1

(eit − ēi2)− 2bik
T∑

t=k0+1

(eit − ēi2).

The first two expressions on the right can be written as
k∑
t=1

(eit − ēi1)2 +
T∑

t=k+1

(eit − ēi2)2 =
T∑
t=1

e2it − kē
2
i1 − (T − k)ē

2
i2.

Combining terms and summing over i, we obtain

SSR(k) = (k0 − k)
N∑
i=1

a2ik + (T − k)
N∑
i=1

b2ik

+

N∑
i=1

T∑
t=1

e2it −
N∑
i=1

kē2i1 −
N∑
i=1

(T − k)ē2i2

− 2
N∑
i=1

aik
k0∑

t=k+1

(eit − ēi2)− 2
N∑
i=1

bik
T∑

t=k0+1

(eit − ēi2). (20)

Diving SSR(k) by NT , and then subtracting its expected value, we
obtain

UNT (k)− EUNT (k) =
1
NT

N∑
i=1

T∑
t=1

(
e2it − Ee

2
it

)
−
1
NT

N∑
i=1

k[ē2i1 − Eē
2
i1] −

1
NT

N∑
i=1

(T − k)[ē2i2 − Eē
2
i2]

−
2
NT

N∑
i=1

k0∑
t=k+1

aik(eit − ēi2)−
2
NT

N∑
i=1

T∑
t=k0+1

bik(eit − ēi2).

From |aik| ≤ |µi2 − µi1| and |bik| ≤ (k0/(T − k0)|µi2 − µi1|),
and aik and bik are independent of eit , the last two terms are each
OP([NT ]−1/2). The first term on the right hand side is OP([NT ]−1/2)
by assumptions on eit . It remains to consider the middle terms.
Now

(NT )−1
N∑
i=1

k[ē2i1 − E(ē
2
i1)] = T

−1N−1/2ηk

where

ηk =
1
√
N

N∑
i=1

[( 1
√
k

k∑
t=1

eit
)2
− E

( 1
√
k

k∑
t=1

eit
)2]

.

The assumption on eit implies that E(ηk)2 ≤ M for all k. Thus
max1≤k≤T |ηk| is boundedbyOp(T 1/2). This implies thatN−1/2T−1ηk
is bounded by Op([NT ]−1/2) uniformly in k. Similarly, (NT )−1∑N
i=1(T − k)[ē

2
i2 − Eē

2
i2] = Op([NT ]

−1/2) uniformly in k. This com-
pletes the proof of Lemma A.1. �
Lemma A.2. For all k ∈ [1, T ], the expected value of UNT (k) satisfies

EUNT (k)− EUNT (k0) ≥ λNC |k− k0|/(NT )

where λN =
∑N
i=1(µi2 − µi1)

2 and for some C > 0.

Proof of Lemma A.2. Again, by symmetry, it is sufficient to
consider k ≤ k0. Note kē2i1 = k

−1(
∑k
t=1 eit)

2 and (T − k)ē2i2 =
(
∑T
t=k+1 eit)

2/(T − k). In addition, aik = bik = 0 for k = k0. Thus
from (20), we have

UNT (k)− UNT (k0) = (k0 − k)
1
NT

N∑
i=1

a2ik + (T − k0)
1
NT

N∑
i=1

b2ik

−
1
NT

N∑
i=1

[
1
k

( k∑
t=1

eit
)2
−
1
k0

( k0∑
t=1

eit
)2]

−
1
NT

N∑
i=1

[
1

T − k

( T∑
t=k+1

eit
)2
−

1
T − k0

( T∑
t=k0+1

eit
)2]

−
2
NT

N∑
i=1

aik
k0∑

t=k+1

eit −
2
NT

N∑
i=1

bik
T∑

t=k0+1

eit

+
2
NT

N∑
i=1

[(k0 − k)aik + (T − k0)bik]ēi2.

All terms on the right hand side have zero mean except the first
two terms, which are nonnegative. Thus

E[UNT (k)] − E[UNT (k0)] ≥ (k0 − k)
1
NT

N∑
i=1

a2ik

= (k0 − k)
(
T − k0
T − k

)2 1
NT

N∑
i=1

(µi2 − µi1)
2.

For the case of k > k0, the above inequality holdswith (T−k0)/(T−
k) replacedby k0/k. Note that (T−k0)/(T−k) ≥ (1−k0/T ) = 1−τ0
for k ≤ k0 and k0/k ≥ k0/T = τ0 for k > k0, Thus, the lemma is
proved for C = min[(1− τ0)2, τ 20 ]. �

Remark 3. When T is fixed, no restriction on k0 is imposed so C
can take on the minimum value 1/T when k0 = 1 or k0 = T − 1.
Since T is fixed, this minimum value is still a fixed positive number
(limits are taken as N → ∞ only). For the case of T → ∞, in
view of k0 = [Tτ0] or simply k0 = Tτ0 (to avoid the niceties),
C = min[(1 − τ0)2, τ 20 ] is a fixed number. In either case, C can
be treated as a fixed constant. Even for the case T → ∞, we can
remove the requirement of k0 = Tτ0 so that a regime can have a
single observation, and C can take on the value 1/T . In this case, we
would require condition N−1

∑N
i=1(µi1 − µi2)

2
≥ c > 0 instead

of (2) to obtain |k̂ − k0| → 0. This simply follows from (21) with
C = 1/T , we have

|k̂− k0| ≤
( T
N

)3/2[ 1
N

N∑
i=1

(µi2 − µ
2
i1)
]−1
Op(1)→ 0

if T/N → 0. In summary, even if T → ∞, we can still allow a
regime to contain a single observation provided that N is much
larger than T and N−1

∑N
i=1(µi1 − µi2)

2
≥ c > 0.

By Lemma A.1, UNT (k) is uniformly closed to its expected value,
and by Lemma A.2, the expected value has a unique minimum at
k0, it is thus reasonable to expect thatUNT (k) achieves itsminimum
close to k0. This is the essence for the argument of Theorem 3.1.We
now provide a formal proof of the theorem.
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Proof of Theorem 3.1. First note that k̂ = argminkSSR(k) =
argminkUNT (k). Adding and subtracting,

UNT (k)− UNT (k0) = UNT (k)− EUNT (k)− [UNT (k0)− EUNT (k0)]
+ EUNT (k)− EUNT (k0)
≥ −2 sup

1≤j≤T
|UNT (j)− EUNT (j)| + EUNT (k)− EUNT (k0)

≥ −2 sup
1≤j≤T
|UNT (j)− EUNT (j)| + λNC |k− k0|/(NT ).

The last inequality follows from Lemma A.2. The above inequality
holds for each k ∈ [1, T ] and particularly, it holds for k̂. Noting that
UN(k̂)− UNT (k0) ≤ 0, we have

|k̂− k0| ≤ 2λ−1N C
−1(NT ) sup

1≤j≤T
|UNT (j)− EUNT (j)|

= 2C−1(NT )1/2
[ N∑
i=1

(µi2 − µi1)
2
]−1
Op(1) (21)

the last expression follows from Lemma A.1.

Case 1: T is fixed. For this case, |k̂− k0|
p
−→ 0 follows immediately

from (21) and N1/2[
∑N
i=1(µi2 − µ

2
i1)]
−1
→ 0, as N → ∞ by

assumption (2).
Case 2: T is unbounded. From (21),

|k̂− k0| = op(
√
T ).

It follows that for any given δ > 0, |k̂ − k0| ≤ δT for all large T ,
with probability tending to 1. Because k0 = [Tτ0] and 0 < τ0 < 1,
there exists an η > 0 such that

P(k̂ ∈ [ηT , (1− η)T ])→ 1

as T tends to infinity. That is

P(k̂ ∈ D)→ 1

where D = {k; ηT ≤ k ≤ (1− η)T }.
Define the set D(k0) = D \ {k0} so that D(k0) excludes k0 from

D. Then

P(k̂ 6= k0) = P(k̂ 6∈ D)+ P(k̂ ∈ D, k̂ 6= k0)

= P(k̂ 6∈ D)+ P(k̂ ∈ D(k0)).

By definition, UNT (k̂) ≤ UNT (k0). So a necessary condition for
k̂ ∈ D(k0) is mink∈D(k0) UNT (k) − UNT (k0) ≤ 0. But this event has
a probability tending to zero by Lemma A.3, which implies that
P(k̂ ∈ D(k0))→ 0. Thus

P(k̂ 6= k0) = P(k̂ 6∈ D)+ P(k̂ ∈ D(k0))→ 0.

This completes the proof of Theorem 3.1. �

Lemma A.3. Let D(k0) be as defined in the proof of Theorem 3.1, as
N, T →∞,

P
(
min
k∈D(k0)

UNT (k)− UNT (k0) ≤ 0
)
→ 0.

This lemma says UNT (k) cannot achieve its minimumwhen k 6= k0.

Proof of Lemma A.3. From UNT (k) = SSR(k)/(NT ), the lemma is
equivalent to

P
(
min

k∈D,k6=k0

[
SSR(k)− SSR(k0)

]
> 0

)
→ 1.

It is again sufficient to consider k ≤ k0 due to symmetry. Multi-
plying NT on each side of UNT (k) − UNT (k0) (see the proof of the
previous lemma), we have

SSR(k)− SSR(k0) = (k0 − k)
N∑
i=1

a2ik + (T − k0)
N∑
i=1

b2ik

−

N∑
i=1

[
1
k

( k∑
t=1

eit
)2
−
1
k0

( k0∑
t=1

eit
)2]

−

N∑
i=1

[
1

T − k

( T∑
t=k+1

eit
)2
−

1
T − k0

( T∑
t=k0+1

eit
)2]

− 2
N∑
i=1

aik
k0∑

t=k+1

eit − 2
N∑
i=1

bik
T∑

t=k0+1

eit

+ 2
N∑
i=1

[(k0 − k)aik + (T − k0)bik]ēi2. (22)

Consider each term on the right hand side. For the first term,

(k0 − k)
N∑
i=1

a2ik = (k0 − k)
(T − k0
T − k

)2 N∑
i=1

(µi2 − µi1)
2,

and (T − k0)/(T − k) ≥ (T − k0)/T = 1 − τ0 > 0 for k ≤ k0.
Thus the first term is no smaller than (k0 − k)(1 − τ0)2

√
NdN ,

where dN = N−1/2
∑N
i=1(µi2 − µi1)

2. By (2), dN → ∞. We
next show all other terms are either nonnegative and can be ig-
nored or dominated by the first term with the largest term being
of (k0 − k)

√
NOp(1) so that SSR(k)− SSR(k0)→+∞.

The second term on the right is nonnegative and can be ignored.
For k ∈ D, k satisfies k ≥ ηT . This is, kmust be a positive fraction
of the sample size. Therefore, 1k (

∑k
t=1 eit)

2
= Op(1) uniformly in

k ∈ D by the invariance principle. From E 1k (
∑k
t=1 eit)

2
= σ 2i for all

k, adding and subtracting terms, the third term can be rewritten as

√
N
{
N−1/2

N∑
i=1

[1
k

( k∑
t=1

eit
)2
− σ 2i

]
− N−1/2

×

N∑
i=1

[ 1
k0

( k0∑
t=1

eit
)2
− σ 2i

]}
.

The two expressions inside the braces are each Op(1). Thus the
third term is of

√
NOp(1). Similarly, the fourth term on the right

of hand side is
√
NOp(1). Next,

2
N∑
i=1

aik
k0∑

t=k+1

eit = 2(k0 − k)
√
N
[ 1
k0 − k

k0∑
t=k+1

(
N−1/2

N∑
i=1

eit
)]

which is (k0 − k)
√
NOp(1), where Op(1) is uniform in k ≤ k0 − 1.

The sixth term

2
N∑
i=1

bik
T∑

t=k0+1

eit = 2(k0 − k)
√
N
T − k0
T − k

×

[ 1
T − k0

1
√
N

T∑
t=k0+1

N∑
i=1

(ui2 − µi1)eit
]

which is (k0 − k)
√
NOp(T−1/2) in view of (T − k0)/(T − k) ≤ 1

for k ≤ k0. The last term is equal to, noting that (k0 − k)aik =
(T − k0)bik,

4
N∑
i=1

(k0 − k)aikēi2 = 4(k0 − k)
√
N
T − k0
T − k

×

[
1

T − k
1
√
N

T∑
t=k+1

N∑
i=1

(µi2 − µi1)eit

]
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which is (k0−k)
√
NOp(T−1/2) uniformly in k ≤ k0. In summary, all

terms are dominated by the first term, which diverges to positive
infinity for k 6= k0. This completes the proof of Lemma A.3. �

Lemma A.4. Under assumptions of Theorem 3.2, Lemma A.3 still
holds. That is,

P
(
min
k∈D(k0)

UNT (k)− UNT (k0) ≤ 0
)
→ 0,

where D(k0) is defined in the proof of Theorem 3.1.

Proof of Lemma A.4. The proof is similar to but more delicate
than that of LemmaA.3. The first term on the right hand side of (22)
is

(k0 − k)
(
T − k0
T − k

)2 N∑
i=1

(µi2 − µi1)
2
≥ (k0 − k)(1− τ0)2λN (23)

where λN =
∑N
i=1(µi1 − µi2)

2
→∞ by assumption. We next ar-

gue that all other terms are either dominated by the first term or
are nonnegative and can be ignored. The second term is nonnega-
tive and is thus ignored. For the third term, rewrite

1
k

( k∑
t=1

eit
)2
−
1
k0

( k0∑
t=1

eit
)2

=
k0 − k
k0

1
k

( k∑
t=1

eit
)2
− 2

1
k0

( k∑
t=1

eit
)( k0∑
t=k+1

eit
)

−
k0 − k
k0

1
k0 − k

( k0∑
t=k+1

eit
)2
.

Summing over i, we have

N∑
i=1

1
k

(
k∑
t=1

eit

)2
−
1
k0

(
k0∑
t=1

eit

)2
= (k0 − k)

 Nk0 1N
N∑
i=1

(
1
√
k

k∑
t=1

eit

)2

− 2

√
N
√
k0

1
√
N

N∑
i=1

[(
1
√
k0

k∑
t=1

eit

)(
1

k0 − k

k0∑
t=k+1

eit

)]

−
N
k0

1
N

N∑
i=1

(
1

√
k0 − k

k0∑
t=k+1

eit

)2 . (24)

We shall argue each expression inside the braces is op(1). For k ∈ D,
k ≥ Tη and so the first expression has uniformly bounded (in k)
summands, thus it can be written as (N/k0)Op(1) = op(1) be-
cause N/[Tτ0] → 0. For the second expression in the braces,
the summand is uniformly bounded in k, and it has zero mean if
eit are uncorrelated over t . For serially correlated eit , let ξit,k =∑k
t=1 eit

∑k0
t=k+1 eit . Lemma 11 of Bai (1997a) shows that γik =

E(ξit,k) are uniformly bounded in k. Also, γik are uniformly bounded
in i by Assumption 1. Thus, there exists γ such that |γik| ≤ γ .
Adding and subtracting terms,

N−1/2
N∑
i=1

1
√
k0

1
k0 − k

ξit,k = N−1/2
N∑
i=1

1
√
k0

1
k0 − k

(ξit,k − γik)

+N−1/2
N∑
i=1

1
√
k0

1
k0 − k

γik.
The first term on the right hand side is Op(1) because the sum-
mands are allOp(1) randomvariables and have zeromean. The sec-
ond term is bounded by γ

√
N/k0 because |γik| ≤ γ and 1

k0−k
≤ 1

for k0 6= k. In summary, the second expression inside the braces of
(23) is Op(

√
N/k0)+ Op(N/k0), which is op(1).

For the last expression inside the braces, the summand is
uniformly bounded by 2 log(log(T )) (as k varies from 1 to k0)
due to the law of iterated logarithm, so the last expression is
Op(log(log(T )))N/Tτ0 = op(1) by (5). Therefore (24) is (k0 −
k)op(1), and thus is dominated by the first term in (23). Similarly,
the fourth term is (k0 − k)op(1). Next consider the fifth term.

N∑
i=1

aik
k0∑

t=k+1

eit = (k0 − k)
(
T − k0
T − k

)
1

k0 − k

k0∑
t=k+1

×

[
N∑
i=1

(µi2 − µi1)eit

]
. (25)

Note (T − k0)/(T − k) ≤ 1. Denote ηt =
∑N
i=1(µi2 − µi1)eit , by

the Hajek–Renyi inequality (see Bai, 1994), for some C < ∞, and
for any δ > 0,

P
(
sup
k≤k0−1

1
k0 − k

k0∑
t=k+1

ηt > δλN

)
<
Var(ηt)
δ2λ2N

C

=

N∑
i=1
(µi2 − µi1)

2σ 2i

δλ2N
C ≤

σ̄ 2λN

δ2λ2N
C =

σ̄ 2

δ2λN
C → 0 (26)

because λN →∞ by assumption (4), where σ̄ 2 = maxi σ 2i < ∞.
Thus the fifth term is dominated by (k0− k)δλN for arbitrary small
δ, thus is dominated by the first term, see (23).
The remaining three terms are all smaller magnitude. They are

in the order of (k0 − k)λNOp(T−1/2), thus dominated by the first
term. This completes the proof. �

Proof of Theorem 3.2. From (21), we have

|k̂− k0| ≤ 2C−1(NT )1/2
[ N∑
i=1

(µi2 − µi1)
2
]−1
Op(1).

Divide T on each side,∣∣∣∣∣ k̂T − k0T
∣∣∣∣∣ ≤ 2C−1(NT )1/2[

N∑
i=1

(µi2 − µi1)
2
]−1
Op(1)

p
−→ 0 (27)

either because (N/T ) → 0 by assumption (5) or because λN =∑N
i=1(µi1 − µi2)

2 goes to infinity by assumption (4). Thus for the
same set D defined in the proof of Theorem 3.1, we have

P(k̂ ∈ D)→ 1.

The rest of proof is the same as that of Theorem 3.1, except that we
invoke Lemma A.4 instead of Lemma A.3. �

Proof of Lemma 4.1. The proof is similar to the that of Theo-
rem 3.2. By (27), |τ̂ − τ0|

p
−→ 0, thus for the same set D as in

the proof of Theorem 3.2,

P(k̂ ∈ D)→ 1.

Lemma 4.1 is equivalent to the statement that for every ε > 0,
there existsM > 0 such that

P(|k̂− k0| > M) < ε.



90 J. Bai / Journal of Econometrics 157 (2010) 78–92
Thus it is sufficient to show for any δ > 0, there exists anM <∞

such that

P
(

min
k∈D,|k−k0|>M

SSR(k)− SSR(k0) ≤ 0
)
< ε

for all large N, T satisfying (5). We show this by showing SSR(k)−
SSR(k0) > 0 for k ∈ D and |k − k0| > M . Again, we focus on the
case of k < k0. When k < k0, SSR(k) − SSR(k0) is given by (22).
Similar to the previous lemmas, we show that the first term on the
right hand side of (22) dominates all other terms for k < k0 − M
and for largeM . The first term is no smaller than, see (23)

(k0 − k)(1− τ0)2λN

which isO(1) by not o(1) because λN → λ > 0 by assumption. The
second term is nonnegative and can be ignored. The third and the
fourth termare shown to be (k0−k)op(1) in the proof of LemmaA.4
and are thus dominated by the first term. Consider the fifth term,
which is given by (25). Using similar argument as in (26), for any
given small δ > 0, by the Hajek and Renyi inequality, for some
C <∞,

P
(
sup

k≤k0−M

1
k0 − k

k0∑
t=k+1

ηt > δλN

)
<
Var(ηt)
Mδ2λ2N

C

=

N∑
i=1
(ui2 − µi1)2σ 2i

Mδλ2N
C ≤

σ̄ 2λN

Mδ2λ2N
C =

σ̄ 2

Mδ2λN
C < ε

as long as M is large. Thus the fifth term is dominated by (k0 −
k)δλN , thus dominated by the first term. The remaining terms are
all (k0−k)λNOp(T−1/2) and thus dominated by the first term. Since
the first term is positive and dominates all other terms, SSR(k) −
SSR(k0) is positive. This complete the proof of Lemma 4.1. �

Proof of Theorem 4.2. We examine the behavior of SSR(k) −
SSR(k0) for |k − k0| on bounded set because Lemma 4.1 shows
that |k̂ − k0| is Op(1). For the terms on the right hand side of (22),
The previous lemma shows that the first and the fifth terms are
(k0 − k)Op(1) and all other terms are (k0 − k)op(1). Now the first
term is

(k0 − k)
N∑
i=1

(µi2 − µi1)
2

plus an negligible term because (T − k0)/(T − k)→ 1 for k− k0 =
Op(1). Similarly, the fifth term is equal to the following plus an
negligible term

−2
k0∑

t=k+1

[ N∑
i=1

(µi2 − µi1)eit
]
= −2

k0∑
t=k+1

N−1/2
N∑
i=1

∆ieit

= −2
√
φN

k0∑
t=k+1

(
N−1/2

N∑
i=1

wieit
)

where

wi =
∆i
√
φN
=

∆i(
1
N

N∑
j=1
∆2j σ

2
j

)1/2 .

By assumption (9), φN =
1
N

∑N
j=1∆

2
j σ
2
j → φ, and

N−1/2
∑N
i=1wieit → Zt , where Zt is N(0, 1). This follows from the

central limit theorem as N → ∞ and Var(N−1/2
∑N
i=1wieit) = 1.
Thus the limit of the fifth term is 2φ1/2
∑k0
t=k+1 Zt (note Zt and−Zt

have the same distribution). In summary, for k ≤ k0,

SSR(k)− SSR(k0)
d
−→ (k0 − k)λ+ 2φ1/2

k0∑
t=k+1

Zt .

Similarly for k > k0, we can show that

SSR(k)− SSR(k0)
d
−→ (k− k0)λ+ 2φ1/2

k∑
t=k0+1

Zt .

This is equivalent to the statement of Theorem 4.2. �

Proof of (14). Consider the numerator of AN . We shall show

N∑
i=1

(µ̂i2 − µ̂i1)
2
=

N∑
i=1

(µi2 − µi1)
2
+ op(1). (28)

From k̂ = k0+Op(1), it is easy to show that the asymptotic behavior
of µ̂i2−µ̂i1 is not affected by assuming k̂ is equal to k0.With k̂ being
k0, we have

µ̂i2 − µ̂i1 = µi2 − µi1 +
1

T − k0

T∑
t=k0+1

eit −
1
k0

k0∑
t=1

eit .

Thus
N∑
i=1

(µ̂i2 − µ̂i1)
2
=

N∑
i=1

(µi2 − µi1)
2
+

N∑
i=1

(µi2 − µi1)ξi +

N∑
i=1

ξ 2i

where ξi = 1
T−k0

∑T
t=k0+1

eit − 1
k0

∑k0
t=1 eit . From k0 = [Tτ0],

we have ξi = Op(T−1/2) and ξ 2i = Op(T
−1) for each i. It follows

that
∑N
i=1 ξ

2
i = (N/T ) 1N

∑N
i=1(Tξ

2
i ) = Op(N/T ) = op(1) by

condition (5). Next, by (8)
N∑
i=1

(µi2 − µi1)ξi = T−1/2
1
√
N

N∑
i=1

∆i(
√
Tξi)

= Op(T−1/2) = op(1).

This proves (28). Similarly, for the denominator of AN , we can show
N∑
i=1

(µ̂i2 − µ̂i1)
2σ̂ 2i =

N∑
i=1

(µi2 − µi1)
2σ 2i + op(1).

Combining results, we obtain ÂN = AN + op(1). �

Proof of Theorem 5.1. Subtract from the objective function (16)
of the following term

k0
N∑
i=1

log σ 2i1 + (T − k0)
N∑
i=1

log σ 2i2

we obtain a ‘‘centered’’ objective function

k
N∑
i=1

log σ̂ 2i1(k)+ (T − k)
N∑
i=1

log σ̂ 2i2(k)

− k0
N∑
i=1

log σ 2i1 − (T − k0)
N∑
i=1

log σ 2i2. (29)

This does not alter k̂ since the subtracted term does not depend on
k. When context is clear, we simply write σ̂ 2i1 for σ̂

2
i1(k) and σ̂

2
i2 for

σ̂ 2i2(k). From

k log σ̂ 2i1 − k0 log σ
2
i1 = k log

(
σ̂ 2i1

σ 2i1

)
+ (k− k0) log σ 2i1, and
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(T − k) log σ̂ 2i2 − (T − k0) log σ
2
i2 = (T − k) log

(
σ̂ 2i2

σ 2i2

)
− (k− k0) log σ 2i2

the centered objective function can be rewritten as

N∑
i=1

[
k log

(
σ̂ 2i1

σ 2i1

)
+ (T − k) log

(
σ̂ 2i2

σ 2i2

)
− (k0 − k) log

(
σ 2i1

σ 2i2

)]
.

For any given N , it is known that k̂ = k0 + Op(1), see Bai et al.
(1998) and Bai (2000). This implies that σ̂ 2i1 = σ 2i1 + Op(T

−1/2).
From log(1+ x) = x+ O(x2) for x = o(1), we have

log
(
σ̂ 2i1

σ 2i1

)
=
σ̂ 2i1 − σ

2
i1

σ 2i1
+ Op(T−1).

The first term on the right hand side is Op(T−1/2), thereby domi-
nates the last term. Thuswe can ignore theOp(T−1) term andwrite
log(σ̂ 2i1/σ

2
i1) ≈ σ̂ 2i1/σ

2
i1 − 1. Similarly log(σ̂

2
i2/σ

2
i2) ≈ σ̂ 2i2/σ

2
i2 − 1.

Thus the objective function can be approximated by

N∑
i=1

[
kσ̂ 2i1/σ

2
i1 + (T − k)σ̂

2
i2/σ

2
i2 − T − (k0 − k) log(σ

2
i1/σ

2
i2)
]
. (30)

It is noted in passing that if σi1 = σi2 for all i, the last term is zero;
the remaining term coincides with the generalized least squares
objective function

∑N
i=1 σ

−2
i SiT (k). This means that QML is asymp-

totically equivalent to GLS in absence of breaks in variance.
Again by symmetry, we only consider the case of k < k0, and

show that the objective function cannot achieve its minimum for
k < k0. We first prove the theorem for the simple case in which
there are no mean parameters thus no mean breaks. That is, we
first consider the model Yit = σi1ηit for t ≤ k0 and Y2t = σ2tηit
for t > k0. For k < k0. Then σ̂ 2i1(k) = σ

2
i1
1
k

∑k
t=1 η

2
it , and σ̂

2
i2(k) =

1
T−kσ

2
i1
∑k0
t=k+1 η

2
it +

1
T−kσ

2
i2
∑T
t=k0+1

η2it . It follows that

N∑
i=1

[
kσ̂ 2i1/σ

2
i1 + (T − k)σ̂

2
i2/σ

2
i2

]
=

N∑
i=1

[
k∑
t=1

η2it +
σ 2i1

σ 2i2

k0∑
t=k+1

η2it +

T∑
t=k0+1

η2it

]
.

Subtract from the objective function the term
∑N
i=1
∑T
t=1 η

2
it so

that (30) becomes

V (k) =
N∑
i=1

di
k0∑

t=k+1

(η2it − 1)+ (k0 − k)
N∑
i=1

f (1+ di) (31)

where di = σ 2i1/σ
2
i2 − 1. Note that f (1 + di) = f (σ

2
i1/σ

2
i2) with

f (x) = x − 1 − log(x). Clearly, V (k0) = 0. We shall show that
for any k < k0, the above objective function diverges to infinity as
N → ∞ so that its minimum cannot be achieved at a point other
than k0. Because the second term on the right hand side diverges
to infinity by assumption, it is sufficient to show the first term is
dominated by the second term. Divide V (k) by k0 − k,

V (k)
k0 − k

=

N∑
i=1

diξik +
N∑
i=1

f (1+ di) = G(k), say

where ξik = 1
k0−k

∑k0
t=k+1(η

2
it−1). The variables ξik have zeromean

and are independent over i. In addition, var(ξik) ≤ M for all i and k,
for someM < ∞. By assumption,

∑N
i=1 f (1 + di)→∞. To show
G(k) → ∞ with probability tending to 1, it is sufficient to show
that the first term of G(k) is dominated by the second, i.e.,

N∑
i=1
diξik

N∑
i=1
f (1+ di)

p
−→ 0.

But the variance of above is bounded by

M

N∑
i=1
d2i[

N∑
i=1
f (1+ di)

]2 . (32)

It suffices to show this variance goes to zero. Consider the case in
which di is small for all i so that f (1 + di) = 1

2d
2
i + o(d

3
i ). Write

aN =
∑N
i=1 f (1+ di). Thus

N∑
i=1
d2i[

N∑
i=1
f (1+ di)

]2 =
N∑
i=1
d2i

aN
N∑
i=1
[2−1d2i + o(d

3
i )]

=
1
aN
O(1)→ 0

because aN →∞ by assumption. Next consider the case in which
all di are large such that |di| > c. We shall assume di is bounded
above such that |di| ≤ C (this in fact is not necessary, but other-
wise, technical niceties are needed and they do not provide any
further insight). The numerator of (32) is O(N), and the denom-
inator is O(N2) because f (1 + di) > c1 for all i. It follows that
(32) goes to zero. Next suppose that some di are small and some
are large. Choose c ∈ (0, 1) such that for |di| ≤ c , the expansion
f (1+ di) = 2−1d2i + o(d

3
i ) ≥ 3

−1d2i holds. Let A = {i; |di| ≤ c} and
B = {i; |di| > c}. Let N2 be the number of elements in B. For i ∈ B,
f (1+ di) > c1 for some c1 > 0. Then

N∑
i=1
d2i[

N∑
i=1
f (1+ di)

]2 ≤ 1
aN


∑
i∈A
d2i + N2C

3−1
∑
i∈A
d2i + N2c1

 = 1
aN
O(1)→ 0.

In the above, the term inside the brackets is O(1). This proves the
theorem for the case of no mean parameters.
Next consider the existence of breaks in bothmean and variance

parameters. From the definition of σ̂ 2ik(k)(k = 1, 2), the objective
function (30) is equal to (ignore the term−T ),
N∑
i=1

[
1
σ 2i1

k∑
t=1

(Yit − Ȳi1)2 +
1
σ 2i2

T∑
t=k+1

(Yit − Ȳi2)2

− (k0 − k) log(σ 2i1/σ
2
i2)

]
. (33)

Again, it is sufficient to consider the case of k < k0 by symmetry.
In view of k̂ = k0 + Op(1), we only need to consider those k such
that |k− k0| is bounded. Together with k0 = [Tτ0], τ0 ∈ (0, 1), we
have Ȳi1 = ui1 + Op(T−1/2) and Ȳi2 = ui2 + Op(T−1/2). Thus

Yit − Ȳi1 = Yit − µi1 + (µi1 − Ȳi1) = σi1ηit − (Ȳi1 − µi1)
= σi1ηit + Op(T−1/2), for t ≤ k;

Yit − Ȳi2 = Yit − µi1 + (µi1 − µi2)− (Ȳi2 − µi2)
= σi1ηit + (µi1 − µi2)− (Ȳi2 − µi2)
= σi1ηit + (µi1 − µi2)+ Op(T−1/2), for k+ 1 ≤ t ≤ k0;

Yit − Ȳi2 = Yit − µi2 − (Ȳi2 − µi2) = σi2ηit − (Ȳi2 − µi2)
= σi2ηit + Op(T−1/2), for t > k0.
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Plug in these expressions into (33), and ignore expressions involv-
ing Op(T−1) because they are dominated by the remaining terms,
we can rewrite (33) as

N∑
i=1

[ k∑
t=1

η2i1 +
1
σ 2i2

k0∑
t=k+1

[σi1ηit + µi1 − µi2]
2

+

T∑
t=k0+1

η2it − (k0 − k) log(σ
2
i1/σ

2
i2)

]
. (34)

Expanding the middle term, and subtracting
∑N
i=1
∑T
t=1 η

2
it , the

above can be rewritten as
N∑
i=1

[(
σ 2i1

σ 2i2
− 1

) k0∑
t=k+1

η2it + 2
σi1

σ 2i2
(µi1 − µi2)

k0∑
t=k+1

ηit

+
1
σ 2i2
(k0 − k)(µi1 − µi2)2 − (k0 − k) log(σ 2i1/σ

2
i2)

]

= 2
N∑
i=1

σi1

σi2
ai

k0∑
t=k+1

ηit + (k0 − k)
N∑
i=1

a2i (35)

+

N∑
i=1

di
k0∑

t=k+1

(η2it − 1)+ (k0 − k)
N∑
i=1

f (1+ di) (36)

where ai = (µi1−µi2)/σi2 and di = (σ 2i1/σ
2
i2)−1. Eq. (35) is due to

breaks in mean, and Eq. (36) is due to breaks in variance. The latter
is already analyzed, see (31). The same argument will show that
the first term in (35) is dominated by the second term, for k < k0
and under (18). This means that for k < k0, (35) diverges to infin-
ity, thus the objective function cannot achieve its minimum. This
completes the proof of Theorem 5.1. �

Proof of Theorem 5.2. We need to derive the limits of (35) and
(36). By the definition of ai,

∑N
i=1 a

2
i =

∑N
i=1(µi1 − µi2)

2/σ 2i2 =
1
N

∑N
i=1∆

2
i /σ

2
i2 → τ . By the definition of di, di = (σi1/σi2 −

1)(σi1/σi2 + 1), we have σi1/σi2 = 1 + di/(1 + σi1/σi2) =
1 + O(N−1/2) because di = O(N−1/2). Thus (σi1/σi2)ai = ai +
aiO(N−1/2) = ai + O(N−1). It follows that
N∑
i=1

σi1

σi2
ai ηit =

N∑
i=1

ai ηit + op(1)

= N−1/2
N∑
i=1

(∆i/σi2)ηit
d
−→
√
τZt

where Zt is N(0, 1) by the central limit theory. We have used the
fact that ηit are zero mean and unit variance random variables and
are independent over i, and N−1

∑N
i=1∆

2
i /σi2 → τ . Thus (35)

converges in distribution for each fixed k to 2
√
τ
∑k0
t=k+1 Zt+(k0−

k)τ , for k ≤ k0. Similarly, for k > k0 and by symmetry, the limit is
2
√
τ
∑k
t=k0+1

Zt+(k−k0)τ . Renaming k−k0 = `, the limit can be
written as 2

√
τW1(`)+|`|τ , whereW1(`) is a two-sided Gaussian

random walk.
To derive the limit of (36) notice that for small di, f (1 +

di) = 2−1d2i + O(d
3
i ) = 2

−1N−1δ2i + O(N
−3/2). Thus

∑N
i=1 f (1 +

di) = 2−1N−1
∑N
i=1 δ

2
i + O(N

−1/2) → 2−1ω by assumption.
Next,

∑N
i=1 di(η

2
it − 1) = N−1/2

∑N
i=1 δi(η

2
it − 1). The variance

of δi(η2it − 1) is equal to δ
2
i (κ + 2). By the central limit theorem,

N−1/2
∑N
i=1 δi(η

2
it − 1)

d
−→

√
(κ + 2)ωZ∗t , where Z

∗
t is N(0, 1).

Thus for k ≤ k0, the limit of (36) is
√
(κ + 2)ω

∑k0
t=k+1 Z

∗
t +

(k0 − k)2−1ω. Combining with the case of k > k0, the limit can
be rewritten as

√
(κ + 2)ωW2(`) + |`|2−1ω, where ` = k − k0,
and W2(`) is a two-sided Gaussian random walk. Adding up the
limits of (35) and (36) leads to Theorem 5.2.
Let ZNt = N−1/2

∑N
i=1(∆i/σi2)ηit and Z

∗

Nt = N
−1/2∑N

i=1 δi(η
2
it−

1). The above analysis shows ZNt
d
−→

√
τZt and Z∗Nt

d
−→

[(κ + 2)ω]1/2Z∗t . The variables ZNt and Z
∗

Nt are asymptotically
independent if E(η3it) = 0, or N−1

∑N
i=1(∆i/σi2)δi → 0. This

follows from E(ZNtZ∗Nt)→ 0 in either case, asN →∞. This verifies
the claim in Remark 1. To prove (19) in Remark 2, let µ3 and π
be defined there. Then (ZNt , Z∗Nt)

′ converges jointly to a bivariate
normal vector with covariance matrix[
τ µ3π
µ3π (κ + 2)ω

]
.

Thus 2ZNt + Z∗Nt
d
−→ 2[τ + (κ + 2)ω/4 + µ3π ]1/2Z

Ď
t , where Z

Ď
t

is N(0, 1). The nonrandom component
∑N
i=1 a

2
i +

∑N
i=1 f (1 + di)

in (35) and (36) has a limit τ + 2−1ω, as argued earlier. Combining
the results we obtain (19). �
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