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Approximately Optimal Control of Fluid Networks 

Lisa Fleischer* Jay Sethuraman t 

Abst rac t  

We give an approximation algorithm for the optimal control 
problem in fluid networks. Such problems arise as fluid 
relaxations of  multiclass queueing networks, and are used to 
find approximate solutions to complex job shop scheduling 
problems. In a network with linear flow costs and linear, 
per-unit-time holding costs, our algorithm finds a drainage 
of  the network, that for given constants e > 0 and 5 > 0 
has total cost (1 + e )OPT + 5, where OPT  is the cost of  the 
minimum cost drainage. The complexity of  our algorithm is 
polynomial in the size of  the input network, 7,1 and log ~. 
The fluid relaxation is a continuous problem. While the 
problem is known to have a piecewise constant solution, it 
is not known to have a polynomially-sized solution. We 
introduce a natural discretization of  polynomial size and 
prove that this discretization produces a solution with low 
cost. This is the first polynomial time algorithm with a 
provable approximarion guarantee for fluid relaxations. 

1 Introduction 

1.1 Problem description and formulat ion.  
Motivated by the optimal control of  multiclass queueing 

networks, we consider a class of  continuous-time multicom- 
modity flow problems in a directed network. Specifically, 
we are given a directed network Af = (V U (s},  A), with 
commodities k = 1 , . . . ,  K ,  and a sink s; all capacities and 
costs are non-negative and commodity-dependent. For com- 
modity k, node v has storage capacity ak(v),  per-unit-time 
linear holding cost hk(v), and initial supply of  commodity 
k of  d~(v); edge e has flow-rate capacity #k(e),  and linear 
flow cost ck(e). The flow-rate capacity is an upper bound of  
the flow-rate of  commodity k on edge e if e is fully devoted 
to commodity k. If  the use of  edge e is divided among sev- 
eral commodities, then the flow-rate capacity for commod- 
ity k is #k(e) multiplied by the fraction of  edge e alloted 
to commodity k. This can be represented by the following 

constraint, 

A(e,t________) < 1, 
k ~ K  ~ k ( e )  - -  

where fk(e, t) is the flow-rate of  commodity k on e at time 
t. 

The  multiflow problem with holding costs (MHC):  
We seek a flow (over time) that eventually drains all sup- 
pries to the sink s, obeys all the capacity constraints, while 
minimizing total flow and holding costs.t For this problem, 
it is possible that the optimal solution has exponential com- 
plexity: the number of  changes in the flow pattern may be 
exponential in the network size. Our main result is an ef- 
ficient algorithm for finding a near-optimal feasible flow: 
given constants e > 0 and 5 > 0, we find a solution with 
total cost at most (1 + e )OPT + 5, where OPT  is the cost 
of  the minimum cost drainage. The complexity of  our algo- 
rithm is polynomial in the size of  the input network, ~, and 

1 log ~. 
We consider two versions of  this problem, and give the 

same guarantee for both. The free flow version, in which 
flow of  commodity k is allowed to travel on any set of  paths 
to reach the sink s; and thefixed paths version, where flow 
of  commodity k must travel along a pre-specified path (or set 
of  paths), and the problem is to determine when to continue 
flow along each arc in the path. 

The problem of  finding the optimal flow rates f ( . ,  .) 
for the free-flow version may be formulated as a continuous 
linear programming problem as described below. We discuss 
modifications necessary to handle the fixed-paths version in 
Section 4.2. 
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l r ~ e  the problem is defined with only one sink, this is without loss of 
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Minimize 

/o ~ [ ~  ck(e) fk(e,t) dt + 
k E K  e~A 

E h k ( v )  dk(v,t)dt] 
vEV 

subject to 
Y v E V,t E R+, 
dk(v, t) = 

d~(v) - for[ E fk(e,O)-- 
eE~+(v) 

A ( e ,  O)]dO 
e~5- (v) 

Ve E A, t  E R+, 
A ( e , t )  < 1 

keK ~k(e)  -- 

VvEV,  t E R + , k E K ,  O<dk(v,t)<_ak(v) 

Ve E A, t E R+,k E K, fk(e,t) > O 

In this formulation, dk(v, t) represents the storage of 
commodity k in node v at time t. The first constraint 
conserves flow for each commodity-node pair at each point 
in time; the second constraint restricts the total amount of 
work an edge can perform at any moment of time; and 
the final constraint enforces the storage capacity for each 
commodity-node pair at each time. 

Continuous linear programs were introduced by Bell- 
man [7, 8], who studied a linear optimal control problem in 
production planning. In spite of a tremendous amount of ef- 
fort, general continuous linear programs remain difficult to 
solve [2]. Our interest in these problems is due to their abil- 
ity to model a variety of dynamic resource allocation prob- 
lems, described next; fortunately, the problems of interest in 
the applications have a special structure [2, 29], which we 
exploit to provide efficient solutions. 

1.2 Motivation. 
The production planning problem faced by a manufacturer 

owning a network of flexible machines can be described as 
follows. The manufacturer produces K products, and a priori 
estimates of the demand for each product is available. Each 
product is produced by processing raw material through a 
fixed sequence of machines ("stages"), requiring varying 
amounts of processing time at each of the machines in this 
sequence. Holding costs are used at each stage for each 
product to capture the opportunity cost of the resources 
invested. The objective is to produce the required quantities 
of the various products at minimum cost. 

If all of the data are known with certainty, this is a 
simply a job shop scheduling problem with the holding 
cost objective, which is already notoriously difficult to solve 
exactly. Moreover, an optimal schedule is usually not robust 

to changes in problem data. TMs is an important limitation 
because, in practice, several additional difficulties arise: 
the processing time for each product at each stage may be 
random; the demand estimates may need to change because 
of additional orders or cancellations for certain products. 
These additional features can be modeled using stochastic 
processes, leading to the notion of a multiclass queueing 
network. 

Multiclass queueing networks serve as useful models for 
problems in which several types of activities compete for a 
limited number of shared resources [13, 15, 20]. Examples 
include shared computer systems, manufacturing systems 
that produce different types of products, and telecommu- 
nication systems where heterogeneous traffic types (email, 
file transfers, video etc.) share common resources (buses 
in a local area network, routers in gateways). The opti- 
mal control problem in a multiclass queueing network is to 
find an optimal allocation of the available resources to ac- 
tivities over time. Recognizing the importance and the in- 
herent intractability of this problem, the research commu- 
nity has focused its attention, for the most part, on develop- 
ing tractable approximations [4, 11, 12, 21, 22, 25, 27, 33]. 
Two promising classes of approximations have emerged as 
a result: Brownian approximations and Fluid approxima- 
tions. Both of these approximations arise as formal limits 
of multiclass queueing networks under (different) time and 
space scalings. Brownian models typically make use of the 
mean and variance of the associated stochastic processes in 
deriving a simpler control problem; unfortunately, except 
for problems that are essentially one dimensional, this con- 
trol problem is itself intractable [20]. Fluid relaxations, the 
subject of this paper, ignore the variance of the associated 
stochastic processes, and depend only on their mean. 

Fluid relaxations are deterministic, continuous approx- 
imations to stochastic, discrete networks. Essentially, we 
replace discrete jobs moving stochastically through a net- 
work by a continuous, deterministic fluid flow. In addition, 
we allow a resource to be "shared" among multiple activi- 
ties simultaneously. Any optimal control problem in a mul- 
ticlass queueing network can be addressed using a three-step 
approach: (a) formulate the appropriate fluid relaxation of 
the problem; (b) solve the fluid relaxation; and (c) use the 
optimal solution to the fluid relaxation to derive an imple- 
mentable solution for the original control problem. (This 
is similar in spirit to deriving reasonable solutions to in- 
teger programs based on solving their linear programming 
relaxations.) In fact, the most successful methods for con- 
trolling multiclass queueing networks rely on the BIGSTEP 
approach [22], which results in discrete-review policies. In 
such a policy, the state of the queueing network is reviewed 
at discrete points in time. At each review point, a process- 
ing plan is formulated for the next review period based on the 
work present in the system. The computation of this process- 
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ing plan is essentially a fluid relaxation (of the sort described 
earlier) in which the initial supplies are the observed work- 
load. This plan is then translated to an implementable plan in 
the actual system, at the end of which the system is reviewed 
again. The implementation question is also non-trivial be- 
cause the jobs are discrete, processing times are variable, 
etc. The success of this approach depends on the efficiency 
of solving the fluid relaxation and the effectiveness of the 
"translation" scheme. 

Given an optimal (or near-optimal) solution to the fluid 
relaxation, effective translation schemes have been designed 
for various problem classes. Recent applications of this ap- 
proach include near-optimal schedules for deterministic job 
shop problems with the makespan and holding cost objec- 
tives [9, 10], asymptotically optimal schedules for stochas- 
tic job shops with the makespan objective [14], and asymp- 
totically optimal schedules for multiclass queueing net- 
works [6, 26]. All of these results rely on the solution to 
associated fluid relaxation(s). While the fluid relaxation for 
the makespan objective is solvable in closed form, the case 
of linear holding costs is significantly more difficult. In this 
paper, we shall focus on the problem of solving this fluid 
relaxation efficiently. For this and related problems, we pro- 
vide the first efficient algorithm with a provable performance 
guarantee. 

1.3 Previous work and related problems. 
Fluid relaxations belong to a specially structured class of 

continuous linear programs called state constrained sepa- 
rated continuous linear programs (SCSCLP). In the absence 
of upper bounds on storage, these are called separated con- 
tinuous linear programs (SCLP). The flow-rate functions on 
the edges are the "control" variables, and the storage at the 
nodes are the "state" variables; the term "separated" refers 
to the absence of state feedback. SCLPs were first intro- 
duced by Anderson [1] as a continuous model for job shop 
scheduling. Anderson, Nash, and Perold [3] characterized 
the extreme point solutions to SCLP. In addition, for prob- 
lems with linear data, they showed the existence of an opti- 
mal solution in which the flow-rate functions are piecewise 
constant (hence, piecewise linear node-storages) with a fi- 
nite number of pieces. The complexity of SCLP is still un- 
resolved; in fact, it is not known if the size of the optimal 
solution is polynomially bounded by the input size. 

In a series of papers [29, 30, 31, 32], Pullan carried out 
an extensive study of SCLPs and variants; he proposed an 
elegant dual for this problem, established strong duafity, and 
designed a class of convergent algorithms, based on time- 
discretization. Pullan's algorithm starts with a guess of the 
breakpoints in the optimal solution. With respect to this 
fixed set of breakpoints, the problem can be solved as a 
linear program. To compute a lower bound, another linear 
program with twice as many breakpoints is constructed, 

with a slightly modified cost function; the cost function 
is modified in such a way that every feasible solution to 
its dual can be used to construct a feasible solution to 
the dual of the original continuous linear program with 
identical cost. Thus, by solving these two (ordinary) linear 
programs, one can estimate the duality gap. If  the gap is 
not small enough, the number of breakpoints is doubled, 
with a new breakpoint added at the midpoints of the original 
breakpoints. As one can see, a naive implementation of 
this algorithm becomes impractical soon; to overcome this 
difficulty, variants have been developed in which redundant 
breakpoints are identified and removed every once in a 
while [28], leading to the so-called adaptive discretization 
algorithms. Luo and Bertsimas [24] introduced SCSCLE 
established strong duality, and proposed a convergent class 
of algorithms for this problem. Their algorithm is also based 
on time discretization, removes redundant breakpoints, but 
solves quadratic programs in intermediate steps. All of 
these algorithms guarantee convergence, but provide neither 
a bound on the number of iterations needed, nor a bound on 
the number of breakpoints in the solution computed. 

In the special case when all holding costs are equal, the 
problem is solved by a flow that minimizes the total supply 
left in the network at every moment in time. Optimal so- 
lutions for this problem (called a universally quickest trans- 
shipment) along with polynomial time algorithms to com- 
pute it are described in [19, 16]. A more complicated prob- 
lem that is not known to have a polynomial sized solution is 
the problem of minimizing the total time flow takes to reach 
the sink t from a specified source s when it takes flow time 
to travel from the tail of an edge to the head of an edge. This 
is the universally quickest flow problem with transit times. 
For this problem, Hoppe and Tardos describe a fully polyno- 
mial approximation scheme [23]. When in addition there are 
multiple sources, a fully polynomial approximation scheme 
is described in [17]. 

One key difference between universally quickest flows 
(with uniform holding costs and with or without travel times) 
and MHC (with general holding costs) is that an optimal 
solution to MHC may require sending flow on non-simple 
paths, while optimal solutions to universally quickest flows 
never require this. 

The MHC problem on a line - a tandem network - for 
the special case when holding costs are nondecreasing as 
they approach the sink s is solvable in polynomial time [5]. 

1.4 Our Contribution. 
Our main contribution is the first provably efficient algo- 

rithm for approximately solving MHC: our algorithm works 
for both the free-flow and the fixed-paths versions. Given 
constants ~ > 0 and 6 > 0, we find a solution with total 
cost at most (1 + e)OPT + 6, where OPT is the cost of the 
minimum cost drainage. The complexity of our algorithm is 
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polynomial in the size of the input network, ~, and log ~. 
Our algorithm also uses time discretization, but, in 

contrast to previous approaches for MHC and SCLP, our 
algorithm works with a fixed time partition. A fixed time 
partition is used previously in the approximation scheme to 
minimize total time the flow spends in the network when 
there are transit times and multiple sources [17]. We prove 
that the optimal instantaneous holding cost function is a 
convex, decreasing function, and use this to devise strong 
lower bounds for the problem based on the time partition. 
We use a time expanded network with side constraints, with 
network copies representing geometrically increasing units 
of time. Our algorithm finds a flow with constant flow 
rates within each time interval in the partition. This is 
in contrast to prior discretization-based algorithms [29, 24] 
which adaptively reline the discretization, and are unable to 
bound the number of breakpoints in the computed solution. 
Our approximation scheme provides a systematic way to 
control the solution complexity: if a solution with a small 
number of breakpoints is desired, our scheme could be 
adapted by suitably choosing c and 5. 

In addition to providing the desired solution, our algo- 
rithm also provides a bound on the sub-optimality of the 
given solution. In particular, our algorithm may be used in an 
adaptive setting: given a solution produced by our algorithm, 
the contribution towards improving the approximation guar- 
antee of individual breakpoints can be assessed, and then re- 
moved if deemed small enough. Alternatively, the algorithm 
can start with a coarse discretization and then the returned 
solution and bound will suggest which intervals would be 
best to reline in order to improve the value of the solution. 

This is especially significant because the number of 
pieces in an optimal solution may not be polynomiaUy 
bounded in the input size; moreover, solutions with fre- 
quently changing controls may be unusable in practice. 

2 Preliminaries 

Input form and size. Our network has n = IV[ vertices 
and m = IE[ arcs. While the control problem in fluid 
networks is defined for arbitrary input, we assume that we 
are handling numerical input specified as the ratio of two 
integers, the maximum of which is bounded by U. Thus 
the size of the input to the problem can be expressed as a 
polynomial in terms of n, ra, and log U. 

Without loss of generality, we assume that the capac- 
ity function u is integral. This can be done by multiplying 
capacities and demands by the least common multiple of ca- 
pacity denominators, and dividing the costs by the identical 
number. The solution to the resulting problem has the same 
cost as the original, and can be transformed into a solution to 
the original problem simply by dividing the flow rate at each 
moment of time by the same scaling factor. 

Notation. We use f(t) to denote control f at time t. We 
use f ( e )  to denote the K-component vector of functions of 
time that descnbe the control of each commodity on arc e. 
We use f(e, t) to denote the vector of specific commodity 
flow values on e at time t. An optimal control is denoted f*.  

Control f and initial storage d ° induce a vector of vertex 
storage functions, denoted dr. We use df (t) to denote df 
vector evaluated at time t. We use df  (v) to denote the storage 
function at v. We use df(v,t) to denote the storage at v at 
time t. When f is clear from context, we may use d instead 
of dr. The storage function vector of an optimal control f*  
is denoted d*. 

We abbreviate the objective function 

Ek~K[ EeeACk(e) f~Yk(e ,  t) dt + Evevhk(v )  
f ~  dk(v, t) dt] as f [  cTy(t) + hid(t) dr, for an appropri- 
ate upper bound T, and refer to the instantaneous value at t 
as eVf(t) + hid(t). 

3 Structure and Use of the Discretization 

A key tool in our algorithm is a non-uniform time expanded 
network. Section 3.1 describes the structure and properties 
of this network. Section 3.2 describes some structure of the 
optimal solution. Section 3.3 combines the content of these 
two previous sections to develop a new lower bound for the 
optimal control problem that we use to prove approximate 
optimality of our algorithm. 

3.1 Time-expanded networks. 
We can compute a feasible, but not, in general, optimal 

control by using a uniform time-expanded network. A time- 
expanded network of Af = (V, A) with time horizon T is 
denoted.A/w and contains a copy of.Af for every time interval 
in [0, T) of the form [0, 0 + 1) for 0 = 0, 1 , . . . ,  T - 1. The 
copy for interval [/9, 0 + 1) is denoted Vo. The copies of 
vertex v and arc e in Vo are denoted vo and e0, respectively. 
The flow capacity restrictions on e E A are interpreted as 
flow capacity restrictions for e0 for each 0 = 0 , . . . ,  T - 1. 
In addition, if storage is permitted at v, then there is a 
holdover arc from vo to VO+l of capacity ak(v) for each 
commodity k = 1 , . . . ,  K ,  for all/9 = 0 , . . . ,  T - 1. Finally, 
there are holdover arcs (so, so+l) of infinite capacity for all 
0 =  0 , . . . , T -  1. 

A trivial upper bound on the amount of time required 
by the optimal flow, if finite, to empty the network is simply 
ZkEK EveV d~(v), since at worst, the network drains flow 
at a rate equal to the minimum capacity, which is at least one 
if the problem is feasible. Thus, for the rest of the paper, 
we assume T = ~ k  K ~v vd~(v) < n lV l  '~ A flow in 

E E - -  ' 

the time-expanded network N T corresponds to the control f 
obtained by interpreting the flow on arc e0 as the flow rate 
on e in the interval [0, 0 + 1) and interpreting the flow on 
arc (vo, v0+l) as the storage level at v at time/9 + 1. Since 
the obtained flow rates are constant on unit intervals, this 
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completely specifies f .  Similarly, any control f corresponds 
to a flow x in ArT: x is obtained by averaging f on unit 
intervals. 

We will use variants of  .Af T to obtain upper and lower 
bounds on the cost of  an optimal control. To motivate the 
structure and costs associated with these variants, we begin 
with some intuition for why Af T, even when based on a 
very fine discretization, will not typically yield an optimal 
solution: A solution computed using .Af T has the property 
that it is constant over the time intervals in the discretization. 
If  the optimal control is fitted to the discretization, it would 
be necessary to average the flow over each interval. While 
averaging will maintain feasibility and flow costs, it does not 
maintain holding costs: consider a buffer with holding cost 
1 and one unit of  flow, and an arc leaving the buffer with 
capacity ten. If  the flow is sent at maximum capacity from 

the start, then the holding cost is f01/1°(1  - lOx)dx = 1/20. 
If  the flow is kept in the buffer as long as possible and sent at 
maximum capacity at the end of  the unit interval, the holding 

cost is 9 /10  + f01/l°(1 - lOx)dx = 19/20. The average 
of  either of  these flows is the flow that sends flow at rate 
1/10 of  capacity throughout the unit interval, and this has 

holding cost f01(1 - x)dx = 1/2. There are symmetric cost 
disparities for the case of  flow that is entering the buffer. 

Since JV "T is computing a flow that is constant over 
intervals, we assign holding costs to arcs entering nodes and 
leaving nodes in Vo to capture the resulting costs. Each 
vertex vo is associated with its own copy of  holdover arcs 
entering and leaving vo. The cost on the entering arc captures 
the holding cost of  flow that starts the interval at v, and the 
cost on the leaving arc captures the holding cost of  flow that 
ends the interval at v. Thus flow that stays at v in the interval 
incurs both costs. Since flow is sent at a constant rate out of  
and into v, the holding cost for flow at v in the unit interval 
is the product of  the holding cost at v, times the length of  
the interval represented by Vo, in this case 1, and the average 
of  the interval's initial and final storage levels at v. Thus the 
cost on the entering arc should the product of  1/2 the holding 
cost at v, and the cost on the leaving arc should be the same. 

We implement this as follows: The time-expanded net- 
work with costs modifies a time expanded network AfT by 
creating a new vertex v~ for each vertex vo in .Af T. The 
arc set of  .Af T is modified by replacing each holdover arc 
(vo, v0+l) with two arcs (vo, v~+ 1) and (v~+l, V0+l). The 
new arcs each have the capacity of  the old arc, and cost 
hk(v)/2 for commodity k. For each vertex v • V, the arc 
(v~, v0) is introduced with capacity d~(v) and cost hk(v)/2 
for commodity k, k = 1 , . . . ,  K .  Arc e0 has cost ek(e) for 
commodity k. For X T, denote this modified network with 
costs as dV~ r .  Note that, aside from the first vertex v~, the set 
of  added vertices are unnecessary for accurate computation. 
We add them for the sake of  clarity. 

THEOREM 3.1. A flow x in .hff that sends, for all v • V, 
k • K, d~(v) units offlowfrom v~ to ST corresponds to a 
control f in .hf with the same cost. 

Proof. Given x, let f be the piecewise constant flow ob- 
tained by interpreting xk (e0) as the flow rate of  commodity 
k o n e i n [ O , O + l ) f o r a l l k  • { 0 , . . . , K } , e  • A. Since f is 
constant on unit intervals, the rate of  drainage from v • V in 
[0, 0 + 1) is constant on this interval. Thus the holding cost at 
v in this interval is E k e  K ½ hk (v)[dk (v, O) -- dk (v, 0 + 1)l + 
hk(v)min{dk(v,O),dk(v,O + 1)}. For 0 _< 0 <_ T - 2, 
this is captured by x as the cost of  the flow of  commod- 
ity k on (v~, v0) plus the cost of  the flow of  commodity k 
on (Vo,V~+i). For 0 = T - 1, this is the cost of  flow of  
commodity k on (V~_l ,  VT-1), since dk(v, T) = 0 for all 
k • K.  The flow cost on this interval is simply the sum of  
the flow costs on arcs in Vo. [] 

COROLLARY 3.1. I f  f* sends flow at a rate that is constant 
on unit intervals, then a minimum cost flow in JV'f yields a 
minimum cost control. 

Unfortunately, we cannot use Corollary 3.1 to obtain an 
optimal control f*  in general since there is no guarantee that 
f*  is constant on unit intervals. I f  f*  sends a lot of  flow at 
the beginning of  an interval, and very little at the end, then its 
holding cost will be significantly lower than the holding cost 
of  its average over the interval. We describe how to obtain a 
low cost approximation to f*  in Section 4. 

However, even if f*  is constant over unit intervals, the 
algorithm implied by computing a minimum cost flow in A f f  
is pseudopolynomial: its complexity depends polynomially 
on IUI, and hence is exponential in the size of  the input 
parameter log IUI. Thus, to obtain a polynomial algorithm, 
it is necessary to work with smaller networks. 

Instead of  using Vo to represent one unit of  time, we 
can instead use Vo to represent a time interval of  length 
A. Then, the capacity of  commodity k E K on each arc 
in Vo is multiplied by A, and the cost on arcs entering 
and leaving Vo are also multiplied by ~x. (That is, cost of  
commodity k E K on (v~, vo) and (vo, v~+ 1) is multiplied 
by ~ for all v E V, k c K.)  Condensed time expanded 
networks are introduced in [17]. Our version differs from 
this previous version in that it allows condensing time over 
arbitrary intervals, not just intervals of  uniform or increasing 
size. Flow in such a "condensed" time-expanded network 
corresponds to a control by dividing the flow on arc e0 by 
~x: If  Vo corresponds to the interval [a, a -4- A)  then the 
control sends flow onto e0 at rate x ( e 0 ) / A  for this entire 
interval. The storage level of  commodity k at v at time 
a + a A  for a • [0, 1] is ( 1 - a )  xk(v~, vo)+a xk(vo, v~+l). 
The effect on the corresponding control of  condensing the 
interval [a, a + 2x) in the time-expanded network to just one 
copy of  Af is to average the control over a longer interval - 
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an interval of length A. Thus, the coarser the time-expanded 
network, the higher the cost of the minimum cost flow and 
the corresponding control. 

Given a set 27 of disjoint intervals that completely cover 
[0, T), we denote the corresponding time-expanded network 
as ~c,z.  The proof of the following theorem is similar to the 
proof of Theorem 3.1. 

THEOREM 3.2. A flow x in ~c ,z  that sends, for all v E V, 
k E K,  d~(v) units off lowfrom v~ to ST corresponds to a 
control f in H with the same cost. 

3.2 Structure of an Optimal Solution. 
In this section, we describe the structure of an optimal 

solution and show that the optimal instantaneous holding 
cost function is convex and decreasing. This is used crucially 
is establishing lower bounds for the fluid relaxation. 

Anderson, Nash, and Perold [3] characterized the ex- 
treme point solutions to a class of continuous linear programs 
that include fluid relaxations. In particular, they proved the 
following (proof omitted), but do not give any bound on the 
number of breakpoints of f*.  

LEMMA 3.1. ([3] THEOREM 4) For any instance of MHC, 
there always exists a piecewise constant f*. 

COROLLARY 3.2. cZ f * ( t ) is a piecewise constant function 
oft. 

It is easy to see that an optimal solution may send flow 
on non-simple paths. In particular, it may be better to send 
excess suppfies to a vertex with cheap holding costs while 
waiting for sufficient capacity to the sink. However, as the 
following leinma impfies, the the total holding cost accrued 
in a unit interval decreases with time. 

LEMMA 3.2. h T d * ( t ) is a convex, decreasing function oft. 

Proof If h id  * is not convex, then there is a lower tangent 
I to h id  * with discontinuous intersection with h i d  *. Let 
0 < tl  < t3 < t2 be such that h'rd*(tl) and hld*(t2) are 
on l, hTd * (t3) is not on l, and for all tl _< t < t2, h id  * (t) is 
on or above l. Modify f on the interval [tl, t2) by replacing 

1 f (e ,  t) with the average flow rate ~ ftt~ f (e ,  t) dt for 
all e E A and all t E [tl,t2). Call the new control 
f .  Since f obeys capacity constraints, so does f .  Note 
that dr(t1) = d*(tl) and dr(t2) = d*(t2) but that for 
t E (t l , t2),  d] changes finearly from d*(tl)  to d*(t2); 

t ~ - t  .s* l* "~ i.e. dr(t) = t2_tlt~ 1,~1) + tt2~tld*(t2). Since d* is 
nonnegative, so is d p  By choice of tl  and t2, the total 
holding cost over [tl, t2) is strictly less with dr. Since in 

addition f:~ cT f*( t )  d t =  f:~ eT f ( t )  dr, this contradicts the 

optimafity of f*.  Hence hTd * is convex. 
Since hTd * (0) = h id  ° > O, h id  * (T) = O, and h id  * is 

convex, hTd * is also decreasing. [] 

Notice that the above proof extends to show that hTd * (t) 
is convex decreasing even when f*  is restricted to send flow 
of commodity k along a prespecified path. 

This proof extends trivially to the case of a control 
computed via a minimum cost flow in .AfcTz. We summarize 
this in the following corollary. 

COROLLARY 3.3. The piecewise constant control f ob- 
tained from a minimum cost flow in ~c ,z  yields a storage 
function vector d(t) so that hmd(t) is a convex, decreasing 
function of t. 

3.3 A Strong Lower Bound. 
Theorem 3.1 describes how to obtain upper bounds on the 

cost of a minimum cost control. To obtain a lower bound, we 
combine ideas of sections 3.1 and 3.2. 

LEMMA 3.3. For any interval partition Z with correspond- 
ing breakpoints 0 = bo < bl < , . .  < br = T, 
(a) the cost of the control obtained by setting the flow rate 
in an interval of Z to be the average o f f *  over the interval 

1 T o r is f T c T  f*( t )  dt + ~h d + EO=l(bo - bo-1) hmd*(bo)); 

(b) foTcm f*( t )  t " d + ~o=l(bo - bo-1) hVd*(bo)) is a lower 
bound on the cost of an optimal control f*. 

" b Proof. To show (b), it suffices to show that h := ~0=1(  0 - 
bo- 1) h Td* (bo)) is a lower bound on the holding cost of the 
optimal control. Note that h is the integral of the decreasing 
step function l(t) := hTd*(bo) for all t E (bo-x,bo], for 
all 0 = 1 , . . . r .  By Lemma 3.2, hTd*(t) is convex and 
decreasing function of t, hence l(t) <_ hTd*(t) for all 

t E (0, T] and thus f0 T l ( t )d( t )d t  _< fo T hTd*(t) dt. 
For (a), the cost of f*  averaged over intervals in Z is 

the sum of the flow costs and the holding costs. The sum 
of the averaged flow costs is independent of Z and equal to 

f T  cXf .  (t) dt. The sum of the resulting holding costs is 

r 

½(bo -bo-1) [h T + h T d*(bo-1)] 
0=1  

r 

__-- ! E ( b o  _ 50-1) hTd*(bo) + 
2 

0=1  
r 

1 E ( b o  _ bo-1) hTd*(bo-1) (3.1) 
0=1  

T 

= ½hTe°+ (bo-bo_l)hle*(bo), 
0 = 1  

where the last equality follows from hTd*(br) = 
hTd *(T) = O. [] 

Without knowing f*,  we cannot compute the lower 
bound described in Lemma 3.3. The following lemma gives 
a computable lower bound. 
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LEMMA 3.4. If  x is a minimum cost flow in.hfcT, z for  interval 
partition Z with corresponding breakpoints 0 = bo < 
bl < . . .  < b,. = T, f is the corresponding control, 
and d is the corn~sponding vector of storage functions, then 
f0 T cTf ( t )  dt + 2_,O=lL 0 - bo-1) h-rd(bo) _< f [  cT f*(t)  + 
h id  * (t)dt. 

Proof. Since x yields a minimum cost piecewise-constant 
control with breakpoints in B = {b0, h i , . . . ,  b~} it mini- 
mizes the integral of  the piecewise linear cost curve of the 
corresponding control with breakpoints in B.  The integral 
breaks down into sum of the area under two curves: cTf  and 
hrd. Using (3.1) with d* replaced by d, we have that the area 
under h id  is 1 r o r b 7h d + ~ 0 = 1 (  0 - bo-1) hTd(bo). Since the 
first term in this expression is a constant independent from 

x, we have that x minimizes f ~  cTf(t)  dt + E ~ = l ( b 0  - 
bo-1) hXd(bo), subject to ff being piecewise constant with 
breakpoints in B.  Since this is at most the lower bound in 

Lemma 3.3 (b), this is at most f [  cXf*(t) + hrd*(t) dt. [] 

4 An Approximation Scheme for Min imum Cost 
Control 

We first describe the approximation scheme for MHC with 
free flow. In section 4.2, we show how to modify this in the 
setting of both simple and nonsimple fixed flow paths. 

4.1 Free  flow controls.  
Our approximation scheme for MHC uses a time expanded 

network with network copies representing geometrically in- 
creasing units of  time. A similar idea, but with a more 
complicated network to handle transit times, was introduced 
in [17] for approximating universally quickest flows with 
transit times. 

The discretization uses ~ ([log ThTd°~ I1J~ copies of  Af. 
r~ T h  T d ° These copies are partitioned into q := /log - - ~ - - /  sets of  

cardinality ~ each. Denote these sets by No, N 1 , . . . ,  Nq_ 1. 
2a coveting interval No is the set of  intervals of  size hWTz 

2a covering [0, ~ ) .  N1 is the set of  intervals of  size h~rffz 
interval ~ 2~ [;h~'r~, 7~'r7~). For 1 < i < q - 1, N~ is the set of  

intervals of  size h~rdz2'~ covering interval [TffrTz , 2 ' - ~  7W~e).2'~ Nq-1 
is the set of  intervals of  size ~ covering interval [~,  T) .  
Let Z t be the set of  all these intervals, and let B ~ be the set 
corresponding to the endpoints of  these intervals. 

THEOREM 4.1. The control that corresponds to the mini- 
mum cost flow x in the time-expanded network based on in- 
tervals Z ~ has cost at most (1 + e ) O P T  + ~. 

Proof. We compare the cost of  the control f obtained by 
averaging f*  over each interval in Z ~ to the lower bound 
implied by f as described in Lemma 3.3(b). Let d be the 
supplies induced by d ° and f .  This lower bound is the sum 

of ~ cXf*(t) dt and the integral of  the decreasing step 
function l(t) :=  hTd*(bo) for all t E (bo-1, bo], for all 
0 = 1 , . . .  r. We show that 

T f0 T (4.2) fO hXd(t) dt < 5 + (1 + ~) l(t) dt. 

Since f corresponds to a flow in the discretized time ex- 
panded network, the control f corresponding to x has 
cost at most the cost of  f .  Combined with the fact that 
f [  cT f * (t) dt = f [  cT f ( t )  dt and Lemma 3.3, this obser- 
vation and (4.2) imply the theorem. 

Since h-rd(t) and l(t) are decreasing functions on (0, T], 
we can evaluate their integrals by considering the area under 
each curve in horizontal strips. Note that hTd(t) = l(t) for 
all t E B'. 

Consider first the horizontal strip from h T d ( ~ )  to 
hTd ° as depicted in Figure 1. The area of  the difference 
hXd(t) - l(t) in this strip can be broken down to the sum 
of areas of  h i d ( t )  - l(t) over each interval of  size 2~ 

Since h r d  is convex, decreasing, and equals the decreasing 
step function l at the end points, this difference is the sum 
of areas of  triangles each with base 2~ hKrffe, and total height 
bounded by hTd °. Thus the difference in the areas in this 
topmost strip is at most ~. 

Now consider any horizontal strip defined by the interval 
[hrd(T/2J-1) ,  hTd(T/2J)] for j = 0 , . . . ,  q -- 1. We will 
show that the area under curve hXd(t) that intersects this 
strip is at most 1 + e times the area under curve l(t) that 
intersects this strip. Since this is true for all j ;  and summed 
over all j ,  these strips cover the interval T - 2~ [0, h d ( ~ ) ] ,  this 
implies inequality (4.2). 

First note that l(t) and hrd(t)  meet at both t = T/2J 
and t = T /2  j-1.  Thus, both areas include the area of  the 
strip to the left of  t = ~ :  this is the area of  the rectangle 
with height H j  :=  hrd(T/2 j) - hTd(T/2  j -  1) and width 2~. 

T Consider Both areas include no area to the right of  t = ~-:-r. 
T now the area in the strip along the horizontal axis from 

T In this interval, time is discretized into intervals of  to ~=r- • 
size T~ 77" Since l(t) and h-rd agree at all endpoints of  these 
intervals, the area between the h-rd and l(t) in this strip is 
the area of  the triangle with height equal to the height of  the 
strip and base equal to the size of  the discretized interval. 

T~ With our previous observations Thus this area is H j  x 2~+~" 
on the area to the left and right in this strip, this implies that 
in this strip, the ratio of  the area under hTd(t) to the ratio 
under l(t) is at most (1 + e). [] 

Remarks .  1. While Theorem 4.1 yields a firm guaran- 
tee on the quality of  the solution obtained, Lemma 3.4 may 
be used to obtain a specific guarantee for each particular in- 
stance. The specific guarantee may show that the actual ap- 
proximation is of  better quality than Theorem 4.1 promises. 
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hrc 

Holding 
cost 
hrd 

- -  l ( t )  

 hTd(t) 

. . . . .  . - - 7 - -  . . . . . . . . . . . . . . . . . . . . .  

i 

5 25 Time 45 
25 ehrd o ~hTd o ehTd o 

hrd: ~ Figure l: The medium shaded region corresponds to the area of hTd(t) - l(t) between points hTd ° and ~7~ '~ :  on 
the vertical axis. The lightly shaded region is the strip for j = q - 2. The dark shaded region corresponds to the area of 
h i d ( t )  - l(t) between points h T d ( T / 2  q-3) and hT d ( T / 2  q-2) on the vertical axis. 

Thus, Lemma 3.4 in conjunction with Theorem 3.2 can be 
used in an iterative manner to find a good discretization for 
any specific instance: starting with a very coarse discretiza- 
tion, one could iteratively refine only those intervals with 
large difference between the upper and lower bounds, while 
leaving large areas of the discretization at a coarse level. 

2. In practice, it is desirable to have a control with few 
breakpoints. Thus, after computing the approximate flow, 
we can use Lemma 3.4 to remove breakpoints that are not 
necessary for the approximation guarantee. 

3. Theorem 4.1 also holds in the setting of convex flow 
costs c, as averaging c over an interval only reduces total 
costs. 

4.2 Fixed flow paths. 
In tMs secdon we show how to modify the approach de- 

scribed in the previous sections to handle versions of the 
problem where the flow path for a commodity is fixed a pri- 
ori. 

Simple paths. If the supply originating at vertex v 
must follow a fixed path to the sink, we can incorporate 
this into the discretization by treating the supply from this 
sink as a single commodity. In the case when the path is 
simple, we can force it to follow the path by changing the 

capacity of arcs not on this path to 0 for this commodity. 
The resulting problem is a multicommodity flow problem 
on a polynomially sized network, which can be solved in 
polynomial time via linear programming. 

Nonsimple paths. In the case when the path is not sim- 
ple, we handle the path specification more carefully. In this 
case, it is not sufficient to restrict the flow of the commodity 
to arcs on the path, since the flow could then "skip" the cy- 
cle, or travel the cycle more times than specified. Instead, we 
could explicitly fist the paths in the time-expanded network 
that the flow could follow. There are an exponential number 
of such paths, however, so we cannot afford to list them all 
explicitly. We argue here that the resulting, path-based linear 
program can be solved in polynomial time by keeping only 
an implicit representation of the paths. 

We start by describing the path-based linear program 
corresponding to the time-expanded network with intervals 

corresponding to breakpoint set B. Let 7~k be the set of 
permissible paths for commodity k. For a vector, such as 
c, defined on the arcs in the time expanded network, we let 
e(p) := E~o~p c(ee). 
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minimize 

subject to 

c (P)x (P)  
PE~k 

Z x(P) >_ dk, V k E K  
PE~k 

1, 
kEK PE'Pk:eoEP 

V e E A ,  V O E B  

This LP has an exponential number of  variables. The 
column pricing problem is, given vectors w E RIBIxA, 
find for each commodity k, the permissible path P E T~k 
nummlzmg 

c ( P ) +  Z w¢°" 
eoEP ~ze 

We can define the distance of  edge e for commodity k as 
c(e) + Weo/#e, reducing the pricing problem to a restricted 
shortest path problem. This shortest path problem can be 
solved exactly by a simple labefing algorithm even if the 
permissible path for commodity k is non-simple. Fix a 
commodity k; suppose its associated path visits a node v 
l times. Then the label for each copy vo of  v in the time 
expanded network will be an 1 tuple (bl, b2 , . . . ,  bt), with bi 
representing the shortest path from the source to vo with i 
visits to v (including the last). The entry bi for node vo 
depends only bi for node vo-1 and the label of  its predecessor 
in this path, and so can be computed efficiently. This labefing 
scheme can be used to identify the shortest path P E Pk, 
solving the pricing problem. This implies, via the ellipsoid 
algorithm [18], that we can solve the LP in polynomial time. 

In practice, we would embed the polynomial time, 
approximate restricted shortest path subroutine within a 
column-generation framework for solving these linear pro- 
grams. 

4.3 Heuristic improvement. 
In addition to the modification suggested at the end of  

section 4, we suggest a modification here that will improve 
the number of  discretizations needed in the case that there are 
infinite capacity arcs. In particular, we show how to improve 
the estimate of  the cost computed in the first moments 
of  time in such a case. This is not covered in general 
by Corollary 3.1, since one simple usefulness of  infinite 
capacity arcs is to allow an arbitrary amount of  flow to be 
transported instantaneously from one node to another. Any 
flow using infinite capacity arcs in such a manner will not 
be constant over any non-zero interval of  time in which they 
are used. This is pa~icularly important in the first interval of  
time. To capture the usage of  infinite capacity arcs at time 0, 
we modify 2¢~ by adding the infinite capacity arcs of.Af to 
the vertex set Vd :=  {v~ I v E V U {s}}. That is, for each 

arc e E A that has infinite capacity, we include a copy e~ in 
V~ with infinite capacity and 0 cost. This modified network 
now allows for instantaneous shipment of  flow along infinite 
capacity arcs at the start of  an otherwise piecewise constant 
control f .  
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