
56

Approximately Optimal Control of Fluid Networks

Lisa Fleischer* Jay Sethuraman t

Abst rac t

We give an approximation algorithm for the optimal control
problem in fluid networks. Such problems arise as fluid
relaxations of multiclass queueing networks, and are used to
find approximate solutions to complex job shop scheduling
problems. In a network with linear flow costs and linear,
per-unit-time holding costs, our algorithm finds a drainage
of the network, that for given constants e > 0 and 5 > 0
has total cost (1 + e)OPT + 5, where OPT is the cost of the
minimum cost drainage. The complexity of our algorithm is
polynomial in the size of the input network, 7,1 and log ~.
The fluid relaxation is a continuous problem. While the
problem is known to have a piecewise constant solution, it
is not known to have a polynomially-sized solution. We
introduce a natural discretization of polynomial size and
prove that this discretization produces a solution with low
cost. This is the first polynomial time algorithm with a
provable approximarion guarantee for fluid relaxations.

1 Introduction

1.1 Problem description and formulat ion.
Motivated by the optimal control of multiclass queueing

networks, we consider a class of continuous-time multicom-
modity flow problems in a directed network. Specifically,
we are given a directed network Af = (V U (s}, A), with
commodities k = 1 , . . . , K , and a sink s; all capacities and
costs are non-negative and commodity-dependent. For com-
modity k, node v has storage capacity ak(v), per-unit-time
linear holding cost hk(v), and initial supply of commodity
k of d~(v); edge e has flow-rate capacity #k(e), and linear
flow cost ck(e). The flow-rate capacity is an upper bound of
the flow-rate of commodity k on edge e if e is fully devoted
to commodity k. If the use of edge e is divided among sev-
eral commodities, then the flow-rate capacity for commod-
ity k is #k(e) multiplied by the fraction of edge e alloted
to commodity k. This can be represented by the following

constraint,

A(e,t________) < 1,
k ~ K ~ k (e) - -

where fk(e, t) is the flow-rate of commodity k on e at time
t.

The multiflow problem with holding costs (MHC):
We seek a flow (over time) that eventually drains all sup-
pries to the sink s, obeys all the capacity constraints, while
minimizing total flow and holding costs.t For this problem,
it is possible that the optimal solution has exponential com-
plexity: the number of changes in the flow pattern may be
exponential in the network size. Our main result is an ef-
ficient algorithm for finding a near-optimal feasible flow:
given constants e > 0 and 5 > 0, we find a solution with
total cost at most (1 + e)OPT + 5, where OPT is the cost
of the minimum cost drainage. The complexity of our algo-
rithm is polynomial in the size of the input network, ~, and

1 log ~.
We consider two versions of this problem, and give the

same guarantee for both. The free flow version, in which
flow of commodity k is allowed to travel on any set of paths
to reach the sink s; and thefixed paths version, where flow
of commodity k must travel along a pre-specified path (or set
of paths), and the problem is to determine when to continue
flow along each arc in the path.

The problem of finding the optimal flow rates f (. , .)
for the free-flow version may be formulated as a continuous
linear programming problem as described below. We discuss
modifications necessary to handle the fixed-paths version in
Section 4.2.

--~r~duate School of Industrial Administration, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA, Emml: lkf@andrew, cmu. edu. Sup-
ported in part through NSF CAREER Award CCR-0049071 and NSF Award
EIA-0049084.

t Department of Industrial Engineering and Operations Re-
search, Columbia University, New York, NY 10027, USA, Emaih
j ay@ieor, columbia, edu. Supported in part through NSF CAREER
Award DMI-0093981 and IBM Faculty Partnership Award.

l r ~ e the problem is defined with only one sink, this is without loss of
generality: for any v 6 V with hk (v) = 0 we create an arc from v to s with
infinite capacity, zero cost, (for commodity k) and impose an infinitesimal
holding cost on v.

57

Minimize

/o ~ [~ ck(e) fk(e,t) dt +
k E K e~A

E h k (v) dk(v,t)dt]
vEV

subject to
Y v E V,t E R+,
dk(v, t) =

d~(v) - for[E fk(e,O)--
eE~+(v)

A (e , O)]dO
e~5- (v)

Ve E A, t E R+,
A (e , t) < 1

keK ~k(e) --

VvEV, t E R + , k E K , O<dk(v,t)<_ak(v)

Ve E A, t E R+,k E K, fk(e,t) > O

In this formulation, dk(v, t) represents the storage of
commodity k in node v at time t. The first constraint
conserves flow for each commodity-node pair at each point
in time; the second constraint restricts the total amount of
work an edge can perform at any moment of time; and
the final constraint enforces the storage capacity for each
commodity-node pair at each time.

Continuous linear programs were introduced by Bell-
man [7, 8], who studied a linear optimal control problem in
production planning. In spite of a tremendous amount of ef-
fort, general continuous linear programs remain difficult to
solve [2]. Our interest in these problems is due to their abil-
ity to model a variety of dynamic resource allocation prob-
lems, described next; fortunately, the problems of interest in
the applications have a special structure [2, 29], which we
exploit to provide efficient solutions.

1.2 Motivation.
The production planning problem faced by a manufacturer

owning a network of flexible machines can be described as
follows. The manufacturer produces K products, and a priori
estimates of the demand for each product is available. Each
product is produced by processing raw material through a
fixed sequence of machines ("stages"), requiring varying
amounts of processing time at each of the machines in this
sequence. Holding costs are used at each stage for each
product to capture the opportunity cost of the resources
invested. The objective is to produce the required quantities
of the various products at minimum cost.

If all of the data are known with certainty, this is a
simply a job shop scheduling problem with the holding
cost objective, which is already notoriously difficult to solve
exactly. Moreover, an optimal schedule is usually not robust

to changes in problem data. TMs is an important limitation
because, in practice, several additional difficulties arise:
the processing time for each product at each stage may be
random; the demand estimates may need to change because
of additional orders or cancellations for certain products.
These additional features can be modeled using stochastic
processes, leading to the notion of a multiclass queueing
network.

Multiclass queueing networks serve as useful models for
problems in which several types of activities compete for a
limited number of shared resources [13, 15, 20]. Examples
include shared computer systems, manufacturing systems
that produce different types of products, and telecommu-
nication systems where heterogeneous traffic types (email,
file transfers, video etc.) share common resources (buses
in a local area network, routers in gateways). The opti-
mal control problem in a multiclass queueing network is to
find an optimal allocation of the available resources to ac-
tivities over time. Recognizing the importance and the in-
herent intractability of this problem, the research commu-
nity has focused its attention, for the most part, on develop-
ing tractable approximations [4, 11, 12, 21, 22, 25, 27, 33].
Two promising classes of approximations have emerged as
a result: Brownian approximations and Fluid approxima-
tions. Both of these approximations arise as formal limits
of multiclass queueing networks under (different) time and
space scalings. Brownian models typically make use of the
mean and variance of the associated stochastic processes in
deriving a simpler control problem; unfortunately, except
for problems that are essentially one dimensional, this con-
trol problem is itself intractable [20]. Fluid relaxations, the
subject of this paper, ignore the variance of the associated
stochastic processes, and depend only on their mean.

Fluid relaxations are deterministic, continuous approx-
imations to stochastic, discrete networks. Essentially, we
replace discrete jobs moving stochastically through a net-
work by a continuous, deterministic fluid flow. In addition,
we allow a resource to be "shared" among multiple activi-
ties simultaneously. Any optimal control problem in a mul-
ticlass queueing network can be addressed using a three-step
approach: (a) formulate the appropriate fluid relaxation of
the problem; (b) solve the fluid relaxation; and (c) use the
optimal solution to the fluid relaxation to derive an imple-
mentable solution for the original control problem. (This
is similar in spirit to deriving reasonable solutions to in-
teger programs based on solving their linear programming
relaxations.) In fact, the most successful methods for con-
trolling multiclass queueing networks rely on the BIGSTEP
approach [22], which results in discrete-review policies. In
such a policy, the state of the queueing network is reviewed
at discrete points in time. At each review point, a process-
ing plan is formulated for the next review period based on the
work present in the system. The computation of this process-

58

ing plan is essentially a fluid relaxation (of the sort described
earlier) in which the initial supplies are the observed work-
load. This plan is then translated to an implementable plan in
the actual system, at the end of which the system is reviewed
again. The implementation question is also non-trivial be-
cause the jobs are discrete, processing times are variable,
etc. The success of this approach depends on the efficiency
of solving the fluid relaxation and the effectiveness of the
"translation" scheme.

Given an optimal (or near-optimal) solution to the fluid
relaxation, effective translation schemes have been designed
for various problem classes. Recent applications of this ap-
proach include near-optimal schedules for deterministic job
shop problems with the makespan and holding cost objec-
tives [9, 10], asymptotically optimal schedules for stochas-
tic job shops with the makespan objective [14], and asymp-
totically optimal schedules for multiclass queueing net-
works [6, 26]. All of these results rely on the solution to
associated fluid relaxation(s). While the fluid relaxation for
the makespan objective is solvable in closed form, the case
of linear holding costs is significantly more difficult. In this
paper, we shall focus on the problem of solving this fluid
relaxation efficiently. For this and related problems, we pro-
vide the first efficient algorithm with a provable performance
guarantee.

1.3 Previous work and related problems.
Fluid relaxations belong to a specially structured class of

continuous linear programs called state constrained sepa-
rated continuous linear programs (SCSCLP). In the absence
of upper bounds on storage, these are called separated con-
tinuous linear programs (SCLP). The flow-rate functions on
the edges are the "control" variables, and the storage at the
nodes are the "state" variables; the term "separated" refers
to the absence of state feedback. SCLPs were first intro-
duced by Anderson [1] as a continuous model for job shop
scheduling. Anderson, Nash, and Perold [3] characterized
the extreme point solutions to SCLP. In addition, for prob-
lems with linear data, they showed the existence of an opti-
mal solution in which the flow-rate functions are piecewise
constant (hence, piecewise linear node-storages) with a fi-
nite number of pieces. The complexity of SCLP is still un-
resolved; in fact, it is not known if the size of the optimal
solution is polynomially bounded by the input size.

In a series of papers [29, 30, 31, 32], Pullan carried out
an extensive study of SCLPs and variants; he proposed an
elegant dual for this problem, established strong duafity, and
designed a class of convergent algorithms, based on time-
discretization. Pullan's algorithm starts with a guess of the
breakpoints in the optimal solution. With respect to this
fixed set of breakpoints, the problem can be solved as a
linear program. To compute a lower bound, another linear
program with twice as many breakpoints is constructed,

with a slightly modified cost function; the cost function
is modified in such a way that every feasible solution to
its dual can be used to construct a feasible solution to
the dual of the original continuous linear program with
identical cost. Thus, by solving these two (ordinary) linear
programs, one can estimate the duality gap. If the gap is
not small enough, the number of breakpoints is doubled,
with a new breakpoint added at the midpoints of the original
breakpoints. As one can see, a naive implementation of
this algorithm becomes impractical soon; to overcome this
difficulty, variants have been developed in which redundant
breakpoints are identified and removed every once in a
while [28], leading to the so-called adaptive discretization
algorithms. Luo and Bertsimas [24] introduced SCSCLE
established strong duality, and proposed a convergent class
of algorithms for this problem. Their algorithm is also based
on time discretization, removes redundant breakpoints, but
solves quadratic programs in intermediate steps. All of
these algorithms guarantee convergence, but provide neither
a bound on the number of iterations needed, nor a bound on
the number of breakpoints in the solution computed.

In the special case when all holding costs are equal, the
problem is solved by a flow that minimizes the total supply
left in the network at every moment in time. Optimal so-
lutions for this problem (called a universally quickest trans-
shipment) along with polynomial time algorithms to com-
pute it are described in [19, 16]. A more complicated prob-
lem that is not known to have a polynomial sized solution is
the problem of minimizing the total time flow takes to reach
the sink t from a specified source s when it takes flow time
to travel from the tail of an edge to the head of an edge. This
is the universally quickest flow problem with transit times.
For this problem, Hoppe and Tardos describe a fully polyno-
mial approximation scheme [23]. When in addition there are
multiple sources, a fully polynomial approximation scheme
is described in [17].

One key difference between universally quickest flows
(with uniform holding costs and with or without travel times)
and MHC (with general holding costs) is that an optimal
solution to MHC may require sending flow on non-simple
paths, while optimal solutions to universally quickest flows
never require this.

The MHC problem on a line - a tandem network - for
the special case when holding costs are nondecreasing as
they approach the sink s is solvable in polynomial time [5].

1.4 Our Contribution.
Our main contribution is the first provably efficient algo-

rithm for approximately solving MHC: our algorithm works
for both the free-flow and the fixed-paths versions. Given
constants ~ > 0 and 6 > 0, we find a solution with total
cost at most (1 + e)OPT + 6, where OPT is the cost of the
minimum cost drainage. The complexity of our algorithm is

59

polynomial in the size of the input network, ~, and log ~.
Our algorithm also uses time discretization, but, in

contrast to previous approaches for MHC and SCLP, our
algorithm works with a fixed time partition. A fixed time
partition is used previously in the approximation scheme to
minimize total time the flow spends in the network when
there are transit times and multiple sources [17]. We prove
that the optimal instantaneous holding cost function is a
convex, decreasing function, and use this to devise strong
lower bounds for the problem based on the time partition.
We use a time expanded network with side constraints, with
network copies representing geometrically increasing units
of time. Our algorithm finds a flow with constant flow
rates within each time interval in the partition. This is
in contrast to prior discretization-based algorithms [29, 24]
which adaptively reline the discretization, and are unable to
bound the number of breakpoints in the computed solution.
Our approximation scheme provides a systematic way to
control the solution complexity: if a solution with a small
number of breakpoints is desired, our scheme could be
adapted by suitably choosing c and 5.

In addition to providing the desired solution, our algo-
rithm also provides a bound on the sub-optimality of the
given solution. In particular, our algorithm may be used in an
adaptive setting: given a solution produced by our algorithm,
the contribution towards improving the approximation guar-
antee of individual breakpoints can be assessed, and then re-
moved if deemed small enough. Alternatively, the algorithm
can start with a coarse discretization and then the returned
solution and bound will suggest which intervals would be
best to reline in order to improve the value of the solution.

This is especially significant because the number of
pieces in an optimal solution may not be polynomiaUy
bounded in the input size; moreover, solutions with fre-
quently changing controls may be unusable in practice.

2 Preliminaries

Input form and size. Our network has n = IV[vertices
and m = IE[arcs. While the control problem in fluid
networks is defined for arbitrary input, we assume that we
are handling numerical input specified as the ratio of two
integers, the maximum of which is bounded by U. Thus
the size of the input to the problem can be expressed as a
polynomial in terms of n, ra, and log U.

Without loss of generality, we assume that the capac-
ity function u is integral. This can be done by multiplying
capacities and demands by the least common multiple of ca-
pacity denominators, and dividing the costs by the identical
number. The solution to the resulting problem has the same
cost as the original, and can be transformed into a solution to
the original problem simply by dividing the flow rate at each
moment of time by the same scaling factor.

Notation. We use f(t) to denote control f at time t. We
use f (e) to denote the K-component vector of functions of
time that descnbe the control of each commodity on arc e.
We use f(e, t) to denote the vector of specific commodity
flow values on e at time t. An optimal control is denoted f*.

Control f and initial storage d ° induce a vector of vertex
storage functions, denoted dr. We use df (t) to denote df
vector evaluated at time t. We use df (v) to denote the storage
function at v. We use df(v,t) to denote the storage at v at
time t. When f is clear from context, we may use d instead
of dr. The storage function vector of an optimal control f*
is denoted d*.

We abbreviate the objective function

Ek~K[EeeACk(e) f~Yk(e , t) dt + Evevhk(v)
f ~ dk(v, t) dt] as f [cTy(t) + hid(t) dr, for an appropri-
ate upper bound T, and refer to the instantaneous value at t
as eVf(t) + hid(t).

3 Structure and Use of the Discretization

A key tool in our algorithm is a non-uniform time expanded
network. Section 3.1 describes the structure and properties
of this network. Section 3.2 describes some structure of the
optimal solution. Section 3.3 combines the content of these
two previous sections to develop a new lower bound for the
optimal control problem that we use to prove approximate
optimality of our algorithm.

3.1 Time-expanded networks.
We can compute a feasible, but not, in general, optimal

control by using a uniform time-expanded network. A time-
expanded network of Af = (V, A) with time horizon T is
denoted.A/w and contains a copy of.Af for every time interval
in [0, T) of the form [0, 0 + 1) for 0 = 0, 1 , . . . , T - 1. The
copy for interval [/9, 0 + 1) is denoted Vo. The copies of
vertex v and arc e in Vo are denoted vo and e0, respectively.
The flow capacity restrictions on e E A are interpreted as
flow capacity restrictions for e0 for each 0 = 0 , . . . , T - 1.
In addition, if storage is permitted at v, then there is a
holdover arc from vo to VO+l of capacity ak(v) for each
commodity k = 1 , . . . , K , for all/9 = 0 , . . . , T - 1. Finally,
there are holdover arcs (so, so+l) of infinite capacity for all
0 = 0 , . . . , T - 1.

A trivial upper bound on the amount of time required
by the optimal flow, if finite, to empty the network is simply
ZkEK EveV d~(v), since at worst, the network drains flow
at a rate equal to the minimum capacity, which is at least one
if the problem is feasible. Thus, for the rest of the paper,
we assume T = ~ k K ~v vd~(v) < n lV l '~ A flow in

E E - - '

the time-expanded network N T corresponds to the control f
obtained by interpreting the flow on arc e0 as the flow rate
on e in the interval [0, 0 + 1) and interpreting the flow on
arc (vo, v0+l) as the storage level at v at time/9 + 1. Since
the obtained flow rates are constant on unit intervals, this

6 0

completely specifies f . Similarly, any control f corresponds
to a flow x in ArT: x is obtained by averaging f on unit
intervals.

We will use variants of .Af T to obtain upper and lower
bounds on the cost of an optimal control. To motivate the
structure and costs associated with these variants, we begin
with some intuition for why Af T, even when based on a
very fine discretization, will not typically yield an optimal
solution: A solution computed using .Af T has the property
that it is constant over the time intervals in the discretization.
If the optimal control is fitted to the discretization, it would
be necessary to average the flow over each interval. While
averaging will maintain feasibility and flow costs, it does not
maintain holding costs: consider a buffer with holding cost
1 and one unit of flow, and an arc leaving the buffer with
capacity ten. If the flow is sent at maximum capacity from

the start, then the holding cost is f01/1°(1 - lOx)dx = 1/20.
If the flow is kept in the buffer as long as possible and sent at
maximum capacity at the end of the unit interval, the holding

cost is 9 /10 + f01/l°(1 - lOx)dx = 19/20. The average
of either of these flows is the flow that sends flow at rate
1/10 of capacity throughout the unit interval, and this has

holding cost f01(1 - x)dx = 1/2. There are symmetric cost
disparities for the case of flow that is entering the buffer.

Since JV "T is computing a flow that is constant over
intervals, we assign holding costs to arcs entering nodes and
leaving nodes in Vo to capture the resulting costs. Each
vertex vo is associated with its own copy of holdover arcs
entering and leaving vo. The cost on the entering arc captures
the holding cost of flow that starts the interval at v, and the
cost on the leaving arc captures the holding cost of flow that
ends the interval at v. Thus flow that stays at v in the interval
incurs both costs. Since flow is sent at a constant rate out of
and into v, the holding cost for flow at v in the unit interval
is the product of the holding cost at v, times the length of
the interval represented by Vo, in this case 1, and the average
of the interval's initial and final storage levels at v. Thus the
cost on the entering arc should the product of 1/2 the holding
cost at v, and the cost on the leaving arc should be the same.

We implement this as follows: The time-expanded net-
work with costs modifies a time expanded network AfT by
creating a new vertex v~ for each vertex vo in .Af T. The
arc set of .Af T is modified by replacing each holdover arc
(vo, v0+l) with two arcs (vo, v~+ 1) and (v~+l, V0+l). The
new arcs each have the capacity of the old arc, and cost
hk(v)/2 for commodity k. For each vertex v • V, the arc
(v~, v0) is introduced with capacity d~(v) and cost hk(v)/2
for commodity k, k = 1 , . . . , K . Arc e0 has cost ek(e) for
commodity k. For X T, denote this modified network with
costs as dV~ r . Note that, aside from the first vertex v~, the set
of added vertices are unnecessary for accurate computation.
We add them for the sake of clarity.

THEOREM 3.1. A flow x in .hff that sends, for all v • V,
k • K, d~(v) units offlowfrom v~ to ST corresponds to a
control f in .hf with the same cost.

Proof. Given x, let f be the piecewise constant flow ob-
tained by interpreting xk (e0) as the flow rate of commodity
k o n e i n [O , O + l) f o r a l l k • { 0 , . . . , K } , e • A. Since f is
constant on unit intervals, the rate of drainage from v • V in
[0, 0 + 1) is constant on this interval. Thus the holding cost at
v in this interval is E k e K ½ hk (v)[dk (v, O) -- dk (v, 0 + 1)l +
hk(v)min{dk(v,O),dk(v,O + 1)}. For 0 _< 0 <_ T - 2,
this is captured by x as the cost of the flow of commod-
ity k on (v~, v0) plus the cost of the flow of commodity k
on (Vo,V~+i). For 0 = T - 1, this is the cost of flow of
commodity k on (V~_l , VT-1), since dk(v, T) = 0 for all
k • K. The flow cost on this interval is simply the sum of
the flow costs on arcs in Vo. []

COROLLARY 3.1. I f f* sends flow at a rate that is constant
on unit intervals, then a minimum cost flow in JV'f yields a
minimum cost control.

Unfortunately, we cannot use Corollary 3.1 to obtain an
optimal control f* in general since there is no guarantee that
f* is constant on unit intervals. I f f* sends a lot of flow at
the beginning of an interval, and very little at the end, then its
holding cost will be significantly lower than the holding cost
of its average over the interval. We describe how to obtain a
low cost approximation to f* in Section 4.

However, even if f* is constant over unit intervals, the
algorithm implied by computing a minimum cost flow in A f f
is pseudopolynomial: its complexity depends polynomially
on IUI, and hence is exponential in the size of the input
parameter log IUI. Thus, to obtain a polynomial algorithm,
it is necessary to work with smaller networks.

Instead of using Vo to represent one unit of time, we
can instead use Vo to represent a time interval of length
A. Then, the capacity of commodity k E K on each arc
in Vo is multiplied by A, and the cost on arcs entering
and leaving Vo are also multiplied by ~x. (That is, cost of
commodity k E K on (v~, vo) and (vo, v~+ 1) is multiplied
by ~ for all v E V, k c K.) Condensed time expanded
networks are introduced in [17]. Our version differs from
this previous version in that it allows condensing time over
arbitrary intervals, not just intervals of uniform or increasing
size. Flow in such a "condensed" time-expanded network
corresponds to a control by dividing the flow on arc e0 by
~x: If Vo corresponds to the interval [a, a -4- A) then the
control sends flow onto e0 at rate x (e 0) / A for this entire
interval. The storage level of commodity k at v at time
a + a A for a • [0, 1] is (1 - a) xk(v~, vo)+a xk(vo, v~+l).
The effect on the corresponding control of condensing the
interval [a, a + 2x) in the time-expanded network to just one
copy of Af is to average the control over a longer interval -

61

an interval of length A. Thus, the coarser the time-expanded
network, the higher the cost of the minimum cost flow and
the corresponding control.

Given a set 27 of disjoint intervals that completely cover
[0, T), we denote the corresponding time-expanded network
as ~c,z. The proof of the following theorem is similar to the
proof of Theorem 3.1.

THEOREM 3.2. A flow x in ~c ,z that sends, for all v E V,
k E K, d~(v) units off lowfrom v~ to ST corresponds to a
control f in H with the same cost.

3.2 Structure of an Optimal Solution.
In this section, we describe the structure of an optimal

solution and show that the optimal instantaneous holding
cost function is convex and decreasing. This is used crucially
is establishing lower bounds for the fluid relaxation.

Anderson, Nash, and Perold [3] characterized the ex-
treme point solutions to a class of continuous linear programs
that include fluid relaxations. In particular, they proved the
following (proof omitted), but do not give any bound on the
number of breakpoints of f*.

LEMMA 3.1. ([3] THEOREM 4) For any instance of MHC,
there always exists a piecewise constant f*.

COROLLARY 3.2. cZ f * (t) is a piecewise constant function
oft.

It is easy to see that an optimal solution may send flow
on non-simple paths. In particular, it may be better to send
excess suppfies to a vertex with cheap holding costs while
waiting for sufficient capacity to the sink. However, as the
following leinma impfies, the the total holding cost accrued
in a unit interval decreases with time.

LEMMA 3.2. h T d * (t) is a convex, decreasing function oft.

Proof If h id * is not convex, then there is a lower tangent
I to h id * with discontinuous intersection with h i d *. Let
0 < tl < t3 < t2 be such that h'rd*(tl) and hld*(t2) are
on l, hTd * (t3) is not on l, and for all tl _< t < t2, h id * (t) is
on or above l. Modify f on the interval [tl, t2) by replacing

1 f (e , t) with the average flow rate ~ ftt~ f (e , t) dt for
all e E A and all t E [tl,t2). Call the new control
f . Since f obeys capacity constraints, so does f . Note
that dr(t1) = d*(tl) and dr(t2) = d*(t2) but that for
t E (t l , t2), d] changes finearly from d*(tl) to d*(t2);

t ~ - t .s* l* "~ i.e. dr(t) = t2_tlt~ 1,~1) + tt2~tld*(t2). Since d* is
nonnegative, so is d p By choice of tl and t2, the total
holding cost over [tl, t2) is strictly less with dr. Since in

addition f:~ cT f*(t) d t = f:~ eT f (t) dr, this contradicts the

optimafity of f*. Hence hTd * is convex.
Since hTd * (0) = h id ° > O, h id * (T) = O, and h id * is

convex, hTd * is also decreasing. []

Notice that the above proof extends to show that hTd * (t)
is convex decreasing even when f* is restricted to send flow
of commodity k along a prespecified path.

This proof extends trivially to the case of a control
computed via a minimum cost flow in .AfcTz. We summarize
this in the following corollary.

COROLLARY 3.3. The piecewise constant control f ob-
tained from a minimum cost flow in ~c ,z yields a storage
function vector d(t) so that hmd(t) is a convex, decreasing
function of t.

3.3 A Strong Lower Bound.
Theorem 3.1 describes how to obtain upper bounds on the

cost of a minimum cost control. To obtain a lower bound, we
combine ideas of sections 3.1 and 3.2.

LEMMA 3.3. For any interval partition Z with correspond-
ing breakpoints 0 = bo < bl < , . . < br = T,
(a) the cost of the control obtained by setting the flow rate
in an interval of Z to be the average o f f * over the interval

1 T o r is f T c T f*(t) dt + ~h d + EO=l(bo - bo-1) hmd*(bo));

(b) foTcm f*(t) t " d + ~o=l(bo - bo-1) hVd*(bo)) is a lower
bound on the cost of an optimal control f*.

" b Proof. To show (b), it suffices to show that h := ~0=1(0 -
bo- 1) h Td* (bo)) is a lower bound on the holding cost of the
optimal control. Note that h is the integral of the decreasing
step function l(t) := hTd*(bo) for all t E (bo-x,bo], for
all 0 = 1 , . . . r . By Lemma 3.2, hTd*(t) is convex and
decreasing function of t, hence l(t) <_ hTd*(t) for all

t E (0, T] and thus f0 T l (t)d(t)d t _< fo T hTd*(t) dt.
For (a), the cost of f* averaged over intervals in Z is

the sum of the flow costs and the holding costs. The sum
of the averaged flow costs is independent of Z and equal to

f T cXf . (t) dt. The sum of the resulting holding costs is

r

½(bo -bo-1) [h T + h T d*(bo-1)]
0=1

r

__-- ! E (b o _ 50-1) hTd*(bo) +
2

0=1
r

1 E (b o _ bo-1) hTd*(bo-1) (3.1)
0=1

T

= ½hTe°+ (bo-bo_l)hle*(bo),
0 = 1

where the last equality follows from hTd*(br) =
hTd *(T) = O. []

Without knowing f*, we cannot compute the lower
bound described in Lemma 3.3. The following lemma gives
a computable lower bound.

6 2

LEMMA 3.4. If x is a minimum cost flow in.hfcT, z for interval
partition Z with corresponding breakpoints 0 = bo <
bl < . . . < b,. = T, f is the corresponding control,
and d is the corn~sponding vector of storage functions, then
f0 T cTf (t) dt + 2_,O=lL 0 - bo-1) h-rd(bo) _< f [cT f*(t) +
h id * (t)dt.

Proof. Since x yields a minimum cost piecewise-constant
control with breakpoints in B = {b0, h i , . . . , b~} it mini-
mizes the integral of the piecewise linear cost curve of the
corresponding control with breakpoints in B. The integral
breaks down into sum of the area under two curves: cTf and
hrd. Using (3.1) with d* replaced by d, we have that the area
under h id is 1 r o r b 7h d + ~ 0 = 1 (0 - bo-1) hTd(bo). Since the
first term in this expression is a constant independent from

x, we have that x minimizes f ~ cTf(t) dt + E ~ = l (b 0 -
bo-1) hXd(bo), subject to ff being piecewise constant with
breakpoints in B. Since this is at most the lower bound in

Lemma 3.3 (b), this is at most f [cXf*(t) + hrd*(t) dt. []

4 An Approximation Scheme for Min imum Cost
Control

We first describe the approximation scheme for MHC with
free flow. In section 4.2, we show how to modify this in the
setting of both simple and nonsimple fixed flow paths.

4.1 Free flow controls.
Our approximation scheme for MHC uses a time expanded

network with network copies representing geometrically in-
creasing units of time. A similar idea, but with a more
complicated network to handle transit times, was introduced
in [17] for approximating universally quickest flows with
transit times.

The discretization uses ~ ([log ThTd°~ I1J~ copies of Af.
r~ T h T d ° These copies are partitioned into q := /log - - ~ - - / sets of

cardinality ~ each. Denote these sets by No, N 1 , . . . , Nq_ 1.
2a coveting interval No is the set of intervals of size hWTz

2a covering [0, ~) . N1 is the set of intervals of size h~rffz
interval ~ 2~ [;h~'r~, 7~'r7~). For 1 < i < q - 1, N~ is the set of

intervals of size h~rdz2'~ covering interval [TffrTz , 2 ' - ~ 7W~e).2'~ Nq-1
is the set of intervals of size ~ covering interval [~, T) .
Let Z t be the set of all these intervals, and let B ~ be the set
corresponding to the endpoints of these intervals.

THEOREM 4.1. The control that corresponds to the mini-
mum cost flow x in the time-expanded network based on in-
tervals Z ~ has cost at most (1 + e) O P T + ~.

Proof. We compare the cost of the control f obtained by
averaging f* over each interval in Z ~ to the lower bound
implied by f as described in Lemma 3.3(b). Let d be the
supplies induced by d ° and f . This lower bound is the sum

of ~ cXf*(t) dt and the integral of the decreasing step
function l(t) := hTd*(bo) for all t E (bo-1, bo], for all
0 = 1 , . . . r. We show that

T f0 T (4.2) fO hXd(t) dt < 5 + (1 + ~) l(t) dt.

Since f corresponds to a flow in the discretized time ex-
panded network, the control f corresponding to x has
cost at most the cost of f . Combined with the fact that
f [cT f * (t) dt = f [cT f (t) dt and Lemma 3.3, this obser-
vation and (4.2) imply the theorem.

Since h-rd(t) and l(t) are decreasing functions on (0, T],
we can evaluate their integrals by considering the area under
each curve in horizontal strips. Note that hTd(t) = l(t) for
all t E B'.

Consider first the horizontal strip from h T d (~) to
hTd ° as depicted in Figure 1. The area of the difference
hXd(t) - l(t) in this strip can be broken down to the sum
of areas of h i d (t) - l(t) over each interval of size 2~

Since h r d is convex, decreasing, and equals the decreasing
step function l at the end points, this difference is the sum
of areas of triangles each with base 2~ hKrffe, and total height
bounded by hTd °. Thus the difference in the areas in this
topmost strip is at most ~.

Now consider any horizontal strip defined by the interval
[hrd(T/2J-1) , hTd(T/2J)] for j = 0 , . . . , q -- 1. We will
show that the area under curve hXd(t) that intersects this
strip is at most 1 + e times the area under curve l(t) that
intersects this strip. Since this is true for all j ; and summed
over all j , these strips cover the interval T - 2~ [0, h d (~)] , this
implies inequality (4.2).

First note that l(t) and hrd(t) meet at both t = T/2J
and t = T /2 j-1. Thus, both areas include the area of the
strip to the left of t = ~ : this is the area of the rectangle
with height H j := hrd(T/2 j) - hTd(T/2 j - 1) and width 2~.

T Consider Both areas include no area to the right of t = ~-:-r.
T now the area in the strip along the horizontal axis from

T In this interval, time is discretized into intervals of to ~=r- •
size T~ 77" Since l(t) and h-rd agree at all endpoints of these
intervals, the area between the h-rd and l(t) in this strip is
the area of the triangle with height equal to the height of the
strip and base equal to the size of the discretized interval.

T~ With our previous observations Thus this area is H j x 2~+~"
on the area to the left and right in this strip, this implies that
in this strip, the ratio of the area under hTd(t) to the ratio
under l(t) is at most (1 + e). []

Remarks . 1. While Theorem 4.1 yields a firm guaran-
tee on the quality of the solution obtained, Lemma 3.4 may
be used to obtain a specific guarantee for each particular in-
stance. The specific guarantee may show that the actual ap-
proximation is of better quality than Theorem 4.1 promises.

63

hrc

Holding
cost
hrd

- - l (t)

 hTd(t)

. - - 7 - - .

i

5 25 Time 45
25 ehrd o ~hTd o ehTd o

hrd: ~ Figure l: The medium shaded region corresponds to the area of hTd(t) - l(t) between points hTd ° and ~7~ '~ : on
the vertical axis. The lightly shaded region is the strip for j = q - 2. The dark shaded region corresponds to the area of
h i d (t) - l(t) between points h T d (T / 2 q-3) and hT d (T / 2 q-2) on the vertical axis.

Thus, Lemma 3.4 in conjunction with Theorem 3.2 can be
used in an iterative manner to find a good discretization for
any specific instance: starting with a very coarse discretiza-
tion, one could iteratively refine only those intervals with
large difference between the upper and lower bounds, while
leaving large areas of the discretization at a coarse level.

2. In practice, it is desirable to have a control with few
breakpoints. Thus, after computing the approximate flow,
we can use Lemma 3.4 to remove breakpoints that are not
necessary for the approximation guarantee.

3. Theorem 4.1 also holds in the setting of convex flow
costs c, as averaging c over an interval only reduces total
costs.

4.2 Fixed flow paths.
In tMs secdon we show how to modify the approach de-

scribed in the previous sections to handle versions of the
problem where the flow path for a commodity is fixed a pri-
ori.

Simple paths. If the supply originating at vertex v
must follow a fixed path to the sink, we can incorporate
this into the discretization by treating the supply from this
sink as a single commodity. In the case when the path is
simple, we can force it to follow the path by changing the

capacity of arcs not on this path to 0 for this commodity.
The resulting problem is a multicommodity flow problem
on a polynomially sized network, which can be solved in
polynomial time via linear programming.

Nonsimple paths. In the case when the path is not sim-
ple, we handle the path specification more carefully. In this
case, it is not sufficient to restrict the flow of the commodity
to arcs on the path, since the flow could then "skip" the cy-
cle, or travel the cycle more times than specified. Instead, we
could explicitly fist the paths in the time-expanded network
that the flow could follow. There are an exponential number
of such paths, however, so we cannot afford to list them all
explicitly. We argue here that the resulting, path-based linear
program can be solved in polynomial time by keeping only
an implicit representation of the paths.

We start by describing the path-based linear program
corresponding to the time-expanded network with intervals

corresponding to breakpoint set B. Let 7~k be the set of
permissible paths for commodity k. For a vector, such as
c, defined on the arcs in the time expanded network, we let
e(p) := E~o~p c(ee).

64

minimize

subject to

c (P)x (P)
PE~k

Z x(P) >_ dk, V k E K
PE~k

1,
kEK PE'Pk:eoEP

V e E A , V O E B

This LP has an exponential number of variables. The
column pricing problem is, given vectors w E RIBIxA,
find for each commodity k, the permissible path P E T~k
nummlzmg

c (P) + Z w¢°"
eoEP ~ze

We can define the distance of edge e for commodity k as
c(e) + Weo/#e, reducing the pricing problem to a restricted
shortest path problem. This shortest path problem can be
solved exactly by a simple labefing algorithm even if the
permissible path for commodity k is non-simple. Fix a
commodity k; suppose its associated path visits a node v
l times. Then the label for each copy vo of v in the time
expanded network will be an 1 tuple (bl, b2 , . . . , bt), with bi
representing the shortest path from the source to vo with i
visits to v (including the last). The entry bi for node vo
depends only bi for node vo-1 and the label of its predecessor
in this path, and so can be computed efficiently. This labefing
scheme can be used to identify the shortest path P E Pk,
solving the pricing problem. This implies, via the ellipsoid
algorithm [18], that we can solve the LP in polynomial time.

In practice, we would embed the polynomial time,
approximate restricted shortest path subroutine within a
column-generation framework for solving these linear pro-
grams.

4.3 Heuristic improvement.
In addition to the modification suggested at the end of

section 4, we suggest a modification here that will improve
the number of discretizations needed in the case that there are
infinite capacity arcs. In particular, we show how to improve
the estimate of the cost computed in the first moments
of time in such a case. This is not covered in general
by Corollary 3.1, since one simple usefulness of infinite
capacity arcs is to allow an arbitrary amount of flow to be
transported instantaneously from one node to another. Any
flow using infinite capacity arcs in such a manner will not
be constant over any non-zero interval of time in which they
are used. This is pa~icularly important in the first interval of
time. To capture the usage of infinite capacity arcs at time 0,
we modify 2¢~ by adding the infinite capacity arcs of.Af to
the vertex set Vd := {v~ I v E V U {s}}. That is, for each

arc e E A that has infinite capacity, we include a copy e~ in
V~ with infinite capacity and 0 cost. This modified network
now allows for instantaneous shipment of flow along infinite
capacity arcs at the start of an otherwise piecewise constant
control f .

References

[1] E. J. Anderson. A continuous model for job-shop scheduling.
PhD thesis, University of Cambridge, 1978.

[2] E.J. Anderson and P. Nash. Linear Programming in Infinite-
Dimensional Spaces. John Wiley & Sons, New York, 1987.

[3] E.J. Anderson, P. Nash, and A. F. Perold. Some properties of
a class of continuous linear programs. SIAM J. Control and
Optimization, 21:758-765, 1983.

[4] F. Avram, D. Bertsimas, and M. Ricard. Fluid models
of sequencing problems in open queueing networks: an
optimal control approach. In E P. Kelly and R. J. Williams,
editors, Stochastic Networks, volume 71 of Proceedings of
the International Mathematics Association, pages 199-234.
Springer-Verlag, New York, 1995.

[5] E Avram, D. Bertsimas, and J. Sethuraman. Optimal control
of fluid tandem networks. Manuscript in preparation, 2002.

[6] N. Bauerle. Asymptotic optimality of tracking policies
in stochastic networks. Annals of Applied Probability,
10(4): 1065-1083, 2000.

[7] R. Bellman. Bottleneck problem and dynamic programming.
Proc. Nat. Acad. Sci., 39:947-951, 1953.

[8] R. Bellman. Dynamic Programming. Princeton University
Press, New Jersey, 1957.

[9] D. Bertsimas, D. Gamarnik, and J. Sethuraman. From fluid
relaxations to practical algorithms for high multiplicity job
shop schedufing: the holding cost objective. Operations
Research, accepted for publication, 2002.

[10] D. Bertsimas and J. Sethuraman. From fluid relaxations to
practical algorithms for job shop scheduling: the makespan
objective. Mathematical Programming, 92(1):61-102, 2002.

[l l] H. Chen and A. Mandelbaum. Discrete flow networks:
Bottleneck analysis and fluid approximations. Mathematics
of Operations Research, 16(2):408-446, 1991.

[12] H. Chen and A. Mandelbaum. Hierarchical modeling of
stochastic networks, part i: fluid models. In D. D. Yao, editor,
Stochastic Modeling and Analysis of Manufacturing Systems,
pages 47-105, New York, NY, 1994. Spfinger-Veflag.

[13] H. Chen and D. D. Yao. Fundamentals of Queueing
Networks: Performance, Asymptotics, and Optimization.
Spnnger-Verlag, New York, 2001.

[14] J. G. Dal and G. Weiss. A fluid heuristic for minimizing
makespan in job-shops. Operations Research, to appear,
2002.

[15] J. Filipiak. Modelling and Control of Dynamic Flows in
Communication Networks. Springer Verlag, Berlin, 1988.

[16] L. Fleischer. Faster algorithms for the quickest transshipment
problem. SIAM J. on Optimization, 12(l): 18-35,200 I.

[17] L. Fleischer and M. Skutella. The quickest multicommodity
flow problem. In 9th International Integer Programming and
Combinatorial Optimization Conference, pages 36-53, 2002.

65

[18] M. Gr6tschel, L. Lovhsz, and A. Schrijver. The ellipsoid
method and its consequences in combinatorial optimization.
Combinatorica, 1:169-197, 1981.

[19] B. Hajek and R. G. Ogier. Optimal dynamic routing in
communication networks with continuous traffic. Networks,
14:457--487, 1984.

[20] J.M. Harrison. Brownian motion and stochastic flow systems.
John Wiley & Sons, 1985.

[21] J. M. Harrison. Brownian models of queueing networks
with heterogenous customer populations. In W. Fleming
and P. L. Lions, editors, Stochastic Differential Systems,
Stochastic Control Theory and Applications, Proceedings of
the International Mathematics Association, pages 147-186.
Springer-Verlag, 1988.

[22] J. M. Harrison. The bigstep approach to flow management in
stochastic processing networks. In E P. Kelly, S. Zachary,
and I. Ziedins, editors, Stochastic Networks: Theory and
Applications, pages 57-90. Oxford University Press, 1996.

[23] B. Hoppe and 1~. Tardos. Polynomial time algorithms for
some evacuation problems. In Proc. of 5th Annual ACM-
SlAM Symp. on Discrete Algorithms, pages 433--441, 1994.

[24] X. Luo and D. Bertsimas. A new algorithm for state-
constrained separated continuous linear programs. S/AM
Journal on control and optimization, 37(1): 177-210, 1999.

[25] C. Maglaras. Dynamic Control of Stochastic Processing
Networks: A Fluid Model Approach. PhD thesis, Stanford
University, August 1998.

[26] C. Maglaras. Discrete-review policies for scheduling stochas-
tic networks: Trajectory tracking and fluid-scale asymptotic
optimality. Annals of Applied Probability, 10(3):897-929,
2000.

[27] S. E Meyn. Stability and optimization of queueing networks
and their fluid models. In G. G. Yin and Q. Zhang, edi-
tors, Mathematics of Stochastic Manufacturing Systems, vol-
ume 33 of Lectures in Applied Mathematics, pages 175-200.
American Mathematical Society, 1997.

[28] A. B. Phllpott and M. Craddock. An adaptive discretization
algorithm for a class of continuous network programs. Net-
works, 26:1-11, 1995.

[29] M. C. Pullan. An algorithm for a class of continuous linear
programs. SIAM Journal on Control and Optimization,
31(6):1558-1577, November 1993.

[30] M. C. Pullan. On the solution of a class of continuous
linear programs. SIAM Journal on Control and Optimization,
32:1289-1296, 1994.

[31] M. C. Pullan. Forms of optimal solutions for separated
continuous linear programs. SIAM Journal on Control and
Optimization, 33(6): 1952-1977, November 1995.

[32] M. C. Pullan. A duality theory for separated continuous
linear programs. SIAM Journal on Control and Optimization,
34(3):931-965, May 1996.

[33] J. Sethuraman. Scheduling Multiclass Queueing Networks
and Job Shops using Fluid and Semidefinite Relaxations.
PhD thesis, Massachusetts Institute of Technology, Septem-
ber 1999.

