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Abstract

In many inverse problems, the measurement operator, which maps objects of
interest to available measurements, is a smoothing (regularizing) operator.
Its inverse is therefore unbounded and as a consequence, only the low-
frequency component of the object of interest is accessible from inevitably
noisy measurements. In many inverse problems however, the neglected high-
frequency component may significantly affect the measured data. Using
simple scaling arguments, we characterize the influence of the high-frequency
component. We then consider situations where the correlation function of such
an influence may be estimated by asymptotic expansions, for instance as a
random corrector in homogenization theory. This allows us to consistently
eliminate the high-frequency component and derive a closed form, more
accurate, inverse problem for the low-frequency component of the object of
interest. We present the asymptotic expression of the correlation matrix of the
eigenvalues in a Sturm-Liouville problem with unknown potential. We propose
an iterative algorithm for the reconstruction of the potential from knowledge
of the eigenvalues and show that using the approximate correlation matrix
significantly improves the reconstructions.

1. Introduction

Consider a general inverse problem of the form
y =M(x) +n, (1)

where x is the unknown quantity, 97 is the measurement operator, n is some noise term and
y is the available noisy measurements. We assume that the linearization of 91 is a compact,
hence smoothing, operator. We also assume that x and y are represented in given bases, which
may be chosen because the linear approximation of 91 is sparse for these bases (for instance
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as the bases in the singular value decomposition of the linearization of 90t) or because objects
of interest are sparsely represented with such a choice.

The effect of the noise then typically implies that the low-frequency component of x may be
reconstructed relatively accurately while the high-frequency component of x is not accessible.
Such a high-frequency component is then usually eliminated from the reconstruction by
choosing an appropriate regularization R, of the inverse map 91!, even though its effects on
the measured data may not be negligible.

We propose a framework that allows us to account for errors in the measurements generated
by the high-frequency component of x. More specifically, let us define x as the low-frequency
part of x and x, = x — xp its high-frequency part. Here, low frequency refers to the first
coordinates of x in the chosen basis that we believe we can reconstruct, whereas high frequency
refers to the rest of x. Upon linearizing (1) in the vicinity of x(, we obtain the new (possibly)
nonlinear inverse problem for xg:

yo = M (xo) + M (x0)x, + . ()

Here, y, stands for the low-frequency part of y. We may set yo = y if all the data are retained or
Yo as a low-frequency projection of y if we believe that some components of the measurements
are too noisy to be of any use in the reconstruction. The matrix 9V = 9 (x¢) models the
coupling between the high-frequency part of x and the low-frequency part of y. It may vanish
in certain situations, for instance when 91 is linear and x and y are decomposed in the bases
used in the singular decomposition of 9t. When 90V does not vanish, the non-recoverable
component of x implicitly increases the noise component in yy.

Since x,, is not known, 9%'x,, is difficult to compute or even estimate. It may however
be modeled statistically, i.e., as the realization of a random distribution, in which case 9Vx,
may at least be estimated statistically. Unfortunately, in many practical situations, x, is a
high-dimensional object. Its modeling and the estimation of the parameters involved in the
modeling are therefore rather delicate and often outright impractical. Fortunately, such a
complex modeling and estimation problem may not be necessary in practical situations where
sufficient statistical averaging takes place.

This leads us to the main regime of interest in this paper. We assume that x,, is a spatially
highly oscillatory object and that yy is a set of measurements of a differential equation involving
the object x,. Moreover, we assume the existence of a macroscopic theory that provides a
simple expression (hence, easily parameterizable) for the law of the vector y, in terms of that
of x,,. The macroscopic model we have in mind here comes from homogenization theory, and
more precisely as an analysis of the random corrector to homogenization. Explicit asymptotic
expressions then allow us to approximately characterize the law of y, as a function of the law
of x,,.

Under such (admittedly restrictive) assumptions, a strategy for the inverse problem may
be formulated as follows. From an initial guess for xj, we obtain the approximate law for
M’ (x0)x,. This allows us to obtain an updated reconstruction of x, for instance by minimizing
its variance using the appropriate approximation for yy,. The two-step procedure is applied
iteratively until convergence.

What we gain from this is a relatively inexpensive, physics-based, asymptotically optimal
mitigation of the measurement noise induced by fluctuations of the un-recoverable high-
frequency components of a parameter of interest. The resulting correlation matrix for
such measurements is typically far from being diagonal and thus may provide far superior
reconstructions for xo than when the influence of x, on the measurements is ignored.

In section 3, we apply the methodology to the reconstruction of the potential in a one-
dimensional Schrodinger (Sturm-Liouville) equation from the measurement of two sets of
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eigenvalues corresponding to different boundary conditions. Because of inaccuracies in the
measurements of large eigenvalues, the small-scale structure of the potential is not accessible.
It is then replaced by a highly oscillatory random process. Recent results on central limit
corrections to homogenization [1] then allow us to approximately characterize the influence
of the randomness on the measured eigenvalues, which form a highly correlated vector. The
resulting correlation matrix for the measured eigenvalues depends on one unknown scaling
parameter, which measures the strength of the oscillatory random process. We will see that in
some situations, the proposed method significantly reduces the variance of the reconstructed
potential at the cost of estimating one unknown parameter modeling the influence of the
unrecoverable high-frequency parameters.

The rest of the paper is structured as follows. Section 2 analyzes the scaling properties of
a simplified version of (2). We then describe the physical setting and proposed reconstruction
method for the one-dimensional inverse spectral problem in section 3. Numerical simulations
that allow us to quantify the interest of the method are presented in section 4.

2. Scaling and regularization

We now consider the influence of the various noise contributions in the following extremely
simplified yet plausible scenario. We refer the reader to e.g. [3] for extensions to other
regularization methods.

Linearization and high-frequency cut-off. We consider a linearization of the nonlinear
problem (1) of the form

y = Ax +n. 3)

Let us assume that x and y are functions of a spatial variable ¢ in R? and that A is the diagonal
in the Fourier domain and has for symbol (Fourier multiplier)

A® =™, ) =v1I+E2 a>0. “4)

This means that Ax = F~'(A(£)£(€)), where £(£) is the Fourier transform of x(7) and F !
is the inverse Fourier transform. Let us assume moreover that x € H? for some 8 > 0, where
H? with norm I-llg is the Hilbert space of functions with B square integrable derivatives or
equivalently such that fRd (E)?P12(8)|? dE < 0.

Then the linear inverse problem (3) may be inverted as follows. Denote by § = ||n|| the
norm of the noise term, where | -|| is the L norm. We can define R, with symbol R.(§) as

. (&), &l < &
R.(§) = 5
© 0 & > &, )

as an approximate inverse for A and xy := R,y as an approximate solution to (3). Then,
classically [3], we obtain the following error estimate:
Ix = xoll < NRS + I(ReA = Dx|| < (598 + (&) llxll g,
where we also denote by ||-|| the norm of linear bounded operators in £(L?). It remains to
1
choose (&) = (67" ||x|| p)“# to obtain that the error is bounded by

ap L
llx = xoll = llx, |l < llxllg™ 857 (6)

1
The above result provides us with a spatial resolution & = (£,)~! ~ §#7
This extremely simplified example displays the main features of the inverse problem of
interest in this paper. The oscillations of x at a larger scale than ¢ are reconstructed in x( while
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the oscillations of x at a smaller scale than ¢ are not reconstructed because of the presence of
noise 7 in (3).

High- and low-frequency coupling. Let us now come back to (1), which we replace by (2)
assuming that x, is small as was shown above. We further linearize (2) about a guessed value
X0 and obtain the following equation for §xg:

8y0 == yo — M(xo) = Aodxo + M (x0)x, + . (7
Here, we have replaced 9t(xo + 8x¢) by its linearization M (xo) + Agdxo.

Now (7) has the form (3) with a noise term given by 9% (x¢)x,, + 7. A worst-case-scenario
estimate for the new noise contribution is

= 5

199 (xo)2xa [| < N9V (o) 1 I = N9 Cxo) Il x Ml 7 87 ®)
This estimate shows a new contribution potentially significantly larger than § = ||n||. Such
an estimate is quite pessimistic in two ways. First of all, it is really R, 9% (x¢)x,, that should

be estimated, where R, is an approximation to the unbounded operator A, ! assuming that A,
is of the same form as A in (4) above, i.e., is a smoothing operator of order —« (it smoothes

by @ > 0 anti-derivatives). We know that the error term R.n is of order (Sﬁ as was shown
in (6). Assuming that || RV (xo)|| is of order || R.||||97 (xo) ||, the worst-case-scenario bound
for RO (x¢)x, corresponding to (8) is

| RN (xo) x| < (IR (xo) 11X I < ||9ﬁ/(xo)||||x||§+ﬁ5%-
This may be pessimistic because ||R. I (xo)|| might in some applications be significantly
smaller than ||R.|| |9 (xo)||, for instance when 91 (x() is also a smoothing operator. The
above bound assumes that 9t (x¢)x,, is more or less constant on the whole domain 0 < || < &,
of definition of R,. This is a realistic assumption in the inverse spectral application in light of
(16), where we observe that the norm of the corrector is independent of the spectral parameter
(the parameter £ in this section and m in (16)).

Of more fundamental interest in this paper, the estimate in (8) is also quite pessimistic in
many practical settings because x,, is highly oscillatory as it oscillates at the scale & ~ 5.
Because x,, is unknown and will remain unknown to us assuming that ¢ has been chosen
correctly, it makes sense to model x, as the realization of a random field. Let ¢ € R? denote
the spatial variable. Since x, oscillates at the scale ¢, it is then reasonable to model x,, as

xn(t) = x(é) ©)

where r(¢) is a random field. As an element in a relatively general class of random processes,
we assume for concreteness that p(z) is a bounded, mean-zero, stationary process with an
integrable correlation function

00 > o2 =R(0) = / R(¢) dt, R(t) = E{x(t + u)r(u)). (10)
Rt’

. . . . ey A
To be consistent with our regularity assumptions on x,, we may assume that o = ||x|| b §as .
A simple calculation then shows that

t
Ellx,|* = f R<—> dr = 0. (11)
R \€

In other words, the root-mean-square norm of x,, i.e., the square root of the ensemble average

of ||x,I%, is ¢% times smaller than its maximal value so that under plausible assumptions, we
find, using formal scaling arguments, the more realistic expression
/ 2144 ’ 4.8 g B+ %
ELM (x0)xn 1712 < 19V (xo)[lo g2 7 ~ 89, g= Bta (12)
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Such a formal estimate has to be justified for each specific application of interest. The error
on §x obtained by solving (7) is now of the form

ol g «

E(IRN (xo)xn + ) 2D < (19 (o) llo8 7o + 157 67%). (13)
When d > 2«, then the new noise contribution is smaller than the original noise n and the
proposed correction is asymptotically negligible. This is the case when the linear operator
Ap does not damp high frequencies too strongly when mapping the unknown vector x to the
measurement data y so that « is small. When « is large so that d < 2, then we are in a
situation where the noise generated by the unaccessible high-frequency component x, of x
dominates the measurement error. In such situations, it is important to have access to a good
model for the correlation function of the measurements y if one wants to accurately reconstruct
the low-frequency component xy of x.

3. Inverse spectral problem

‘We now consider the reconstruction of the potential in a one-dimensional Schrodinger equation
from knowledge of two sets of eigenvalues. For the practical, theoretical and numerical aspects
of the inverse spectral problem, we refer the reader to e.g. [2, 4-6, 8—12]. Let the potential
q(t) be decomposed as

q(t) = qo(t) + g (1),

where we assume that xo = g (#) is the identifiable low-frequency component and x,, = g.(¢)
is the non-identifiable high-frequency part of the potential. We assume that g.(t) = Q(é),
where Q is a mean-zero, stationary, bounded random process with the integrable correlation
function as in (10). The Schrodinger (Sturm—Liouville) equation on the interval (0, 1) is given

by

2u8
—g @0 + (O, =,
(14)
d &
u;,(0) =0, ;t;"(l)+Hufn(l) =0.

We impose Dirichlet conditions at ¢ = 0 to simplify and denote by (A,, uf,) and (uf,, vf,) the
eigenvalues and eigenvectors obtained by setting H = H; and H = H,, respectively, with
H, # H,.

To conform with the notation of the preceding section, we note that

y= ()\'fﬂ’ /“(’lsn) :m(QO(t)+C]g(f))+n. (15)

Asymptotic law of physical random fluctuations. We denote by u,, and 1, the solutions of the
unperturbed spectral equation (14) where ¢, is set to zero. With the above decomposition into
slowly and rapidly oscillatory components of the potential, we can use the results obtained in
[1] to show that under reasonably general assumptions on the random process Q(¢), we have

1
()»f,,)_l = ()" +8%o/ ul (t) dw,, (16)
0

plus lower-order contributions (in the sense of distributions), where dW, is standard Wiener
measure (spatial white noise). In other words, the above central limit result shows that
the measured eigenvalues are approximately deterministic plus a normal contribution with
a variance of order . We have a similar expression for u; , and consequently an explicit
expression for the correlation matrix of the random measurements y. The latter expression,
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however, depends on the unknown eigenvectors u,,, which are nonlinear functionals of the
low-frequency component ¢o.
Up to lower-order contributions, the expansion (16) may be used to find that
1
A = dy — )\;e%o/ uZ (1) dW,. (17)
0
Note that the Wiener measure dW; is the same for all values of m and for both spectral A, and

Wm. The above formula thus allows us to calculate the approximate covariance matrix of the
eigenvalues and obtain that

1
o (qo) == E{(X, — An) (A5 — 1)} = wzxfnxﬁf ul (Hu?(r)dt, (18)
0

and similar expressions for the covariances involving the eigenvalues u?,. To relate the above
expansion with the asymptotic expansion (2), we may define M (qo) := (Am, Um)m>1 the
unperturbed measurements for the low-frequency component of the potential and identify the
fluctuations as

1 1
W)= (eto [ 2w, —uielo [ o)
0 0 m>1
where the high-frequency component of the potential g.(#) now asymptotically appears only
in the stochastic integral and the constant o. Note that 2V’ (go) does indeed depend on ¢ via
Am and u,,. This allows us to recast the inverse problem as

A = M(qo) + Ne(qo) +n, (19)

where N, + n = N;:(qo) + n is a discrete Gaussian process with explicit covariance matrix
¥ = X(qo) provided that n is Gaussian. When n is independent of the high-frequency
component g, (¢), then X(qp) = s (go) + =, where % (qy) is the covariance matrix in (18) and
¥, that of the process n.

Scaling and noise terms. Consider the Dirichlet problem with H = oco. We know that for
bounded potentials (see, e.g. [8] and references therein)

1 1
Ao =m27r2+/ q(t)dr — <1 + 0(l>>/ q(t) cos(2mmt) dt.
0 m 0

Let us assume that noise n = n(m) grows like §m®* for a fixed constant §, which is rather
optimistic for @ < 2 as noise may be considered as proportional to A,,, i.e., proportional to m?.
Then we see that the mth even Fourier coefficient g,, of g(#) may be reconstructed provided

that its influence is larger than the noise level. Assuming that §,, decays like m#, the cut-off

. . . . __L .
b= dm¢, i.e., as in the preceding section, m. = § =% = 1 Asin the

frequency is thus m, .
preceding section, o quantifies how high frequencies of the object of interest are damped in
the measurements and § quantifies a priori regularity on the object of interest.

We thus define g as the sum over all Fourier modes with indices below the critical value
m. and g, (t) as the rest of the potential, which may indeed be written as a function of £.

Based on the asymptotic expansion available in (17), we thus obtain that the high-frequency

1
component of the potential generates a noise of order g1 = 87 . Such a noise contribution
will dominate the standard noise n with norm ||n|| = § as soon as 2(«+ ) > 1 and so certainly
as soon as 2« > 1 independently of the value of S.

Inverse problem and MAP estimator. It remains to devise an algorithm that solves the inverse
problem (19) for go. Since we have constructed a probabilistic framework for the rapidly
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oscillating component g., we might as well assume that g is drawn from a prior distribution,
which here we assume follows a Gaussian distribution with diagonal covariance matrix y [
with y a small (non-negative) constant [7]. The typical role of y is to construct biased
estimators of gq that overall reduce the average error on the reconstruction of gj.

Now that we have constructed a prior model for go and that we have our likelihood
function in (19), we may use Bayes’ theorem to infer that the posterior distribution IT(g)
based on the available data is given by

1
I (qo) o exp (‘E(A — M(q0)) - = (qo) (A — im(qo») exp <—§|qo|2>. (20)

In what follows, we present the potential gy that maximizes the above functional (the maximal
a posteriori, or MAP, solution) and so do not need to calculate the normalizing constant that
makes the right-hand side in (20) a probability density.

To simplify the presentation, we assume here and below that X, = 0 so that the noise
contribution in the measured eigenvalues is generated by the random part g. (¢) of the potential.
Because the asymptotic correlation matrix ¥ = X (go) defined in (18) depends on the unknown
parameter g, the reconstruction is necessarily iterative. Let N (resp. N + 1) be the number of
available measurements for the p (resp. A) spectrum so that the total vector of measurements
y is represented by a M = 2N + 1 vector. Asymptotic expansions show that for large values
of m, we have

1
Am & (mm)? + f qo(t) dt. 1)
0

Assuming a constant initial guess qg, we estimate it as qg = Ay — (Nm)?. Assuming that
g has been constructed, we estimate the variance £ (gg) by using the explicit formula (17),
which requires solving an eigenvalue problem. We then calculate g&*' by maximizing

exp (—5(n = m(at™)) - = af) (& ~ (e ) o (=5 1" ) @

The solution to this classical minimization problem is obtained by using a Newton method
[13]. The iterative method converged quite rapidly and robustly in the numerical simulations
that were considered.

Note that the approximate correlation matrix X of the eigenvalues defined in (18) depends
on the eigenvectors u”, which are estimated iteratively in the above algorithm, and on the
strength parameter £>0. We observe that, asymptotically, X is proportional to eo2. We also
observe that the maximization in (20) is not modified when both ¥ ~!(g¢) and y are multiplied
by a constant. In other words, maximizing (20) is equivalent to maximizing

1 2
exp (_E(A — M(qo)) - (e*a X (go)) (A — 9)?(6]0))) exp <—€ 7 |QO|2)-

2

It is therefore e20y that should be estimated rather than e20 and y independently. When
that parameter is unknown, a discrepancy principle, such as the Morozov principle, may then
be used to figure out which parameter best fits available data [3]. In this paper, we assume
that 20y is known a priori and in our numerical experiments, we choose that parameter
so that Tr(e?0 X' (q)) = Tr(s?oy 1), i.e., the influences from the noise e2c and from the
regularization y are comparable.

The solution to the above algorithm very much depends on the structure of the extra-
diagonal terms in £20 £7'(gg). The asymptotic formula (17) is useful precisely in that it
provides an approximate model for the extra-diagonal components of the correlation matrix,
which are difficult to estimate in practice and are often neglected, at the price of possibly
severe inaccuracies in the reconstruction as the following section demonstrates.
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4. Numerical simulations

In what follows, we assume that the Gaussian noise n is set to 0. This may be justified
by assuming that noise is overwhelming for large eigenvalues, so that N need to be finite,
and that noise is relatively mild for the eigenvalues that are measured. This simplifying
assumption allows us to concentrate on the effects of the spatial random fluctuations, which
is the main object of interest in this paper. We also assume that the regularization parameter
y and the strength of the ‘nonlinear’ noise €20 are such that Tr(e20 X7 (go)) = Tr(s*oy 1)
as was indicated in the preceding section. We consider six different reconstructions, all based
on maximizing the posterior distribution (20), but with different choices of the correlation
matrix X.
In each simulation, gy is deterministic and chosen of the form

K
qo(t) = Y cre” N, (23)

k=—K

with K = 2 and K = 10 depending on the simulation so that 2K + 1 parameters need be
reconstructed. Since g is real valued, we have c_; = c¢;. The two spectra A and p are obtained
by setting H; = oo and H, = 0. The number of measured eigenvalues M is equal to 5, 21 or
41 in the simulations below. One more eigenvalue comes from the A spectrum than from the
spectrum. The practically relevant cases are M = 2K + 1 =5and M = 2K + 1 = 21 where
the number of measurements equals the number of coefficients we believe we can reconstruct.
We also consider over-determined reconstructions with M > 2K + 1.
The accuracy of the reconstruction g is measured in the relative L? norm

1
E _x lex —&1%)?
€ = Cipiar lee = &F)" (24)

(Z|k|<K |Ck|2)%

In our simulations, € is estimated by averaging over 200 realizations of the noise g, (¢); their
standard deviation was found to be extremely small (less than 5% of the mean), which implies
that the relative L norm is very stable statistically.

The random coefficient g, () is modeled as a superposition of coefficients as in (23),
where |k| now runs from 11 to 50 and where the coefficients ¢; are chosen at random (so that
q. is real valued) with a flat power spectrum (i.e., the variance of ¢ is independent of k). The
tail of the power spectrum is in fact not very important since the influence of each mode ¢y is

1

roughly of order & ~ k2 by application of the central limit result in (16). When K = 10,
there is no ‘spectral gap’ between the last mode of gy, which is considered deterministic, and
the first mode of ¢g., which is considered random. This is the realistic situation physically.
When K = 2, we then have a spectral gap between the deterministic and random parts, which
may only happen under quite restrictive physical assumptions.

In what follows, we call ‘3’ the iterative solution obtained by applying the iterative
algorithm described in (22). We compare this solution to five solutions obtained with different
correlation matrices. The first three correlation matrices are not observable a priori: they are
given by the exact correlation matrix 3, obtained by solving the eigenvalue problems a large
number of times (500 times in our simulations) with the (known in synthetic experiments
but unknown in practice) exact statistics for g, and exact low-frequency component gy. The
correlation matrix X, is obtained by applying the asymptotic formula (16) with the exact
low-frequency component gg. The correlation matrix ¥4 is given by the diagonal of £,. Such
a matrix thus completely misses the cross-correlations between the measured eigenvalues.
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Figure 1. Reconstructions of the potential go(x) (solid) with covariance matrices X, (dot-dashed),
X, (dashed) and X (dotted). The potential gy consists of 2K + 1 = 5 Fourier modes and M = 5
eigenvalues are used in each reconstruction.

Table 1. Relative L? error ¢ (in percentages) on the reconstruction of the potential go using
different correlation matrices. In bold are the L? norms of the errors in the columns corresponding
to M = 2K + 1. Underlined are the results obtained from the accessible (observable) correlations

¥, ¥, and X,.
M =21 M =41
€0 M=5
Covariance 2K+1=5 2K+1=5 2K+1=21 2K+1=5 2K+1=21
x 9.3% 7.6% 8.5% 6.2% 6.7%
PP 4.7% 4.0% 4.4% 3.3% 4.0%
Zp 11.9% 10.0% 12.3% 7.9% 11.0%
P 19.5% 13.8% 16.7% 8.9% 15.8%
p¥ 28.5% 22.6% 19.8% 17.4% 21.9%
e 36.7% 26.% 29.4% 19.5% 26.9%

The last two correlation matrices are accessible experimentally. The first matrix 3 is
given by the asymptotic formula (16) by using the first constant guess qg, for which the
eigenvectors are given by explicit sin and cos functions by the method of separation of
variables. This intermediate matrix does not require us to iterate in (22) although it still
requires an asymptotic model of the form (16). Finally, the last correlation matrix 3 is
simply given by identity.

The errors we obtained on the reconstruction of gq in the scenarios described above are
collected in table 1. Typical realizations of the reconstructed potentials using the correlations
¥, ¥, and X, are presented in figures 1-3 for M = 5, M = 21, and M = 41, respectively.
We observe that the asymptotic correlation ¥ provides reconstructions that are visually of
similar quality to those obtained using the unaccessible exact correlation X,. The use of the
diagonal correlation X, which is the best one can do in the absence of any prior knowledge
for the correlations or any asymptotic expansion such as (16), generates significantly worse
reconstructions.
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_2 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 2. Reconstructions of the potential go (x) (solid) with covariance matrices X, (dot-dashed),
X, (dashed) and X (dotted). Top: go consists of 2K + 1 = 5 Fourier modes; bottom: go consists
of 2K + 1 = 21 Fourier modes. M = 21 eigenvalues are used in each reconstruction.

As expected, the minimum variance in the reconstruction is obtained when the exact
statistics X, are used to model the measurement noise. The error made is less than 5% for all
such reconstructions. This is the minimal error that can be made as it assumes full knowledge
of the statistics of the measured eigenvalues (A, ty,)-

The iterative reconstruction based on the asymptotic correlation ¥ provides solutions of
similar quality with errors on the order of 8-9%. Whereas the construction of X, requires full
knowledge of the statistics of the measurements, no information other than the measurements
of the M eigenvalues is necessary in the construction of . We have therefore a parameter-free
reconstruction method that performs almost as well (it roughly doubles the error) as a method
requiring knowledge of the full statistical description of the measurements.
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0 0.2 0.4 0.6 0.8 1

Figure 3. Reconstructions of the potential go(x) (solid) with covariance matrices X, (dot-dashed),
X, (dashed) and X (dotted). Top: go consists of 2K + 1 = 5 Fourier modes; bottom: go consists
of 2K + 1 = 21 Fourier modes. M = 41 eigenvalues are used in each reconstruction.

A significantly larger error, of order 15-20% is obtained by using the correlation X,
which is constructed by using the asymptotic expression (16) with a constant potential qg.
This shows that the asymptotic correlations generated by g are significantly different from
those obtained by the constant potential qg. It is therefore necessary to iterate as specified in
(22) to obtain a decent approximation of the correlation matrix X,.

The reconstructions based on X, are somewhat less accurate than those based on X. By
insisting that the correlation be based on the asymptotic expansion of the true (unknown)
qo, we obtain a larger variance than by letting the correlation adapt iteratively to the optimal
potential gg. That X, performs significantly less accurately than ¥, shows that the asymptotic
expansion (16) is not extraordinarily accurate. This is to be expected since ¢ in our simulations
is rather large as only the modes corresponding to |k| > 11 (as opposed to |k| > 101, say)

11
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are supposed random. We expect reconstructions based on X to perform between the optimal
reconstructions based on X, and those based on X, and the asymptotic formula (16). This has
been verified in all of our numerical experiments.

These errors should be contrasted with the solutions obtained by assuming that the
correlation is proportional to identity or is diagonal, which in the absence of any physical
model, may be the best available option. For both models based on (quite different) diagonal
assumptions, namely X, and X, the errors in the reconstructions, on the order of 30%, are
significantly larger. This shows the importance of modeling the off-diagonal component of
the correlation matrix in a reasonably accurate manner.

Finally, we observe that over-determined measurements (e.g., M = 41) only somewhat
marginally improve the reconstructions. This is to be expected since we assume that the
eigenvalues for all values of M are fairly accurately measured. Our noise contribution
is exclusively coming from the randomness in the potential g.. The reconstructions
corresponding to 2K + 1 = 5 and based on a spectral gap (since the coefficients ¢, for
|k| between 3 and 10 are set to 0) also perform marginally better than the more physical
reconstructions based on 2K + 1 = 21 for over-determined measurements M = 21 and
M = 41.

5. Summary

Inverse problems are characterized by the degree of smoothness of the measurement operator
mapping the object x = x( + x,, we are interested in reconstructing to what we may measure.
When that operator is significantly smoothing (o above is positive), then the (properly defined)
high-frequency component x, of the object of interest is invisible to the inevitably noisy
available data. We are concerned with situations in which the measurement operator efficiently
couples the high-frequency component x,, to the available data so that neglecting to account
for the presence of x,, may generate sizeable errors in the reconstruction. This is for instance
the case in the Sturm—Liouville problem considered in this paper.

Since x,, is not accessible, it has to be modeled a priori. Statistical descriptions are then
quite satisfactory in the generic setting where the detailed structure of x,, may not be guessed.
It remains to infer the parameters used in the statistical description either from prior knowledge
or from the available data. Fortunately, such a description is not necessary when self-averaging
mechanisms (e.g., of central limit type) simplify the influence of the random field x, on the
available data. In the Sturm-Liouville problem and in other problems with a physical origin,
it turns out that the influence of x, on the measured data may be approximated by an explicit
Gaussian law. Moreover, that Gaussian law is essentially modeled by one unknown scaling
parameter o.

Theoretical estimates for the cut-off frequency &, separating xo from x, have been
presented in section 2 based on the smoothing properties of the measurement operator and the
prior regularity in H# imposed on x. Once the cut-off frequency has been chosen or estimated
(a difficult and problem-dependent question that was addressed in an ad hoc manner in our
numerical inversion of the Sturm—Liouville problem), two terms contribute to errors in the
reconstruction of xp. The first term in (6) is simply the error made by neglecting x,, in the
reconstruction (this term was omitted in our numerical simulations) while the second term in
(13) quantifies the influence of x,, on the available measurement. The formal estimates in (12)
and (13) are the main theoretical result of the paper. Although they have to be justified for each
problem of interest, they provide a reasonable estimate for the influence of the invisible part
X, on the reconstruction of xo. That the statistical description of x,, asymptotically reduces
to one parameter as an application of the central limit theorem is exemplified by the inverse
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spectral problem considered in section 3 and more concretely by the expression (17) describing
available measurements.

The frequency cut-off in our numerical simulations of the inverse spectral problem, for
instance with M = 21 measured eigenvalues, is rather arbitrary and reflects our belief that only
those M = 21 first eigenvalues may be measured accurately. Once this cut-off is chosen, we
apply the classical MAP algorithm and the iterative scheme (22) to solve the inverse spectral
problem. A common feature of this and many other inversion algorithms (such as e.g. least
square algorithms), is the importance of the correlation matrix %, which weighs the measured
data according to the confidence we have in them. The main advantage of modeling the
influence of x,, on the measured data is precisely that it allows one to obtain a more accurate
description of the correlation matrix ¥ than when x,, is simply treated as uncorrelated noise.

In the absence of any model for x,,, the only choice for X is to assume that it is proportional
to identity. This lack of understanding of the correlations in the available measurements
generated a reconstruction of x, with an average of 29.4% error in the L? sense according
to table 1. Prior knowledge of the exact correlation ¥, provides a much more accurate
reconstructions, with an average error dropping to 4.4%. Such prior knowledge is unrealistic
in many settings. Reconstructions performed using the central limit-based asymptotic
formula (17) provide quite accurate reconstructions, with an average error equal to 8.5%
and do not require the estimation (or prior knowledge) of any additional parameters. In the
configuration considered in this paper, the parameter-free asymptotic modeling of x,, allows us
to obtain much more accurate reconstructions of the low-frequency component of the potential
than methods that do not model x,, or treat it as uncorrelated ‘white’ noise.
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