
Copyright c© 2016 by Karl Sigman

1 Introduction to Discrete-Event Simulation

Here we will consider simulating a stochastic process, {X(t) : t ≥ 0}, with state space S
forwards in time, for purposes of computing or estimating various quantities of interest. The
basic idea is to sequentially keep moving in time to the next event, which in general refers to a
change of state; such as an arrival or departure from a queueing system. Typically, there are
several events, e1, e2, . . . , ek, scheduled and competing to be the next one. Once we determine
which one is next, we move forward to that time, update some system variables of interest,
generate some new random variable(s) (so as to schedule another such event) and continue.
In many cases, we have a pre-specified termination time t∗ at which time we plan to stop the
simulation. In some applications, t∗ is a random variable called a stopping time; such as “the
first time that the queue has 10 people in it”. It is best to illustrate through examples, which
we do next.

1.1 FIFO GI/GI/1 Queue

Recall that for the FIFO GI/GI/1 queue, we can use the recursion for customer delay:

(1) Dn+1 = (Dn + Sn − Tn)+, n ≥ 0.

Here {Sn} are iid service times distributed as G(x) = P (S ≤ x), x ≥ 0, and {Tn} are iid
interarrival times distributed as A(x) = P (T ≤ x), x ≥ 0. The two sequences are assumed
independent. This does not involve a discrete-event simulation.

But there are other quantities of interest besides delay, some of which are continuous-time
quantities, and here we will consider L(t) = the total number of customers in the system at
time t; where for simplicity of exposition we will assume that L(0) = 0; the system is initially
empty. Thus our stochastic process is {L(t) : t ≥ 0} and the state space is the non-negative
integers S = {0, 1, 2, . . .}.

We shall assume here that we are interested in computing L(t∗) and 1
t∗

∫ t∗

0 L(s)ds for a
pre-specified value of time t∗.

1.1.1 Events

There are two (2) events that occur over time : e1 = an arrival occurs, e2 = a departure occurs.

Let tn denote the arrival time of Cn (the nth customer), n ≥ 1, and let t
(d)
n denote the departure

time of Cn. At any given time t (current time), we let tA > t denote the time in the future
at which the next arrival will occur, and tD denote the time at which the next departure will
occur. As we move forward in time, the values of tA and tD need to be updated. Initially
at time t = 0, we generate the first interarrival time T ∼ A (such as via inverse-transform
T = A−1(U)) and set tA = T . No one is in service yet now at time 0, so for mathematical
convenience (trickery) we set tD =∞, by which we mean that we set tD = a very large number.
The point is that then we know that tA = min{tA, tD}, and hence an arrival will occur next
as should be. We thus move to time tA, by re-setting t = tA. We also increase the number in
system (denoted by n) by 1: re-set n = n + 1. (n = 0 initially.) Now we need to generate a
new T ∼ A, but also a service time S ∼ G for our first customer. Then we re-schedule the two
events: Re-set tA = t + T and tD = t + S.

We also must check to see wether we have passed by our desired time t∗. For example, if our

first arrival time tA = T > t∗, then we would stop and conclude that L(t∗) = 1
t∗

∫ t∗

0 L(s)ds = 0.

1



If our first arrival time TA < t∗, then we can begin to update both L(t∗) and
∫ t∗

0 L(s)ds as
we move along.

1.1.2 Three Cases for the Simulation

In general, as we move forward in time, we check to see which of the two events is next, and

wether or not we have exceeded our termination time t∗. Let INT =
∫ t
0 L(s)ds, the area under

the curve {L(s) : s ≥ 0} up to t. Initially (at time t = 0), INT = 0. Noting that this area is
simply the sum of the area of rectangles, we can easily update INT over time by adding on the
next rectangle area. Initially, n = 0 = L(0).

1. ARRIVAL IS NEXT (tA ≤ tD and tA ≤ t∗):

(a) Update the area INT : Re-set INT = INT + n(tA − t). (The new rectangle has
length tA − t and height n, hence area n(tA − t).)

(b) Update the number in system n: Re-set n = n + 1.

(c) Update time t: Re-set t = tA.

(d) Schedule next arrival and possibly next departure: Generate T ∼ A and re-set tA =
t + T . If n− 1 = 0 (recall (b) above), then this arrival found the system empty and
will enter service immediately, so generate S ∼ G and re-set tD = t+S. (Otherwise,
someone is still in service, so no need to schedule a new departure time.)

2. DEPARTURE IS NEXT (tD < tA and tD ≤ t∗):

(a) Update the area INT : Re-set INT = INT + n(tD − t). (The new rectangle has
length tD − t and height n, hence area n(tD − t).)

(b) Update the number in system n: Re-set n = n− 1.

(c) Update time t: Re-set t = tD.

(d) Schedule next departure: If n ≥ 1, then generate S ∼ G and re-set tD = t + S (the
next person in line entered service with this new service time S.). Otherwise n = 0
(the line is empty, hence no one is present to enter service), re-set tD =∞.

3. NEXT EVENT OCCURS AFTER TIME t∗ (min{tD, tA} > t∗):

(a) Update the area INT : Re-set INT = INT + n(t∗ − t). (The new rectangle (cut off
at time t∗) has length t∗ − t and height n, hence area n(t∗ − t).)

(b) Stop. Output n and INT/t∗ .

1.1.3 Estimating expected values E(L(t∗)), and E
[
1
t∗

∫ t∗

0 L(s)ds
]
.

By running the simulation independently m times (m large) to obtain m iid copies of L(t∗)

(denoted by L1, . . . , Lm) and 1
t∗

∫ t∗

0 L(s)ds (denoted by Y1, . . . , Ym), one can then utilize Monte
Carlo simulation to estimate the expected values:

E(L(t∗)) ≈ 1

m

m∑
i=1

Li,

E

[
1

t∗

∫ t∗

0
L(s)ds

]
≈ 1

m

m∑
i=1

Yi.

2



1.1.4 Collecting Additional Data During the Simulation for Output

It might be desirable to also collect along the way in the discrete-event simulation, further
information to output at the end. Examples might include: The number of arrivals that
occurred during (0, t∗], the number of departures that occurred during (0, t∗], and the list of
corresponding arrival and departure times.

For example, by letting NA denote the current total number of arrivals so far, and ND

the current total number of departures so far, we would, up front in CASE 1, add in a line
NA = NA + 1, and up front in CASE 2 add in a line ND = ND + 1. By also creating vectors
a[i] = arrival time of Ci, and d[i] = departure time of Ci, i ≥ 1, we also would attach the new
arrival and departure times when they occur:
CASE 1: NA = NA + 1 and a[NA] = tA
CASE 2: ND = ND + 1 and d[ND] = tD

Then at the end of the simulation we would also output
NA, ND, {a[i] : 1 ≤ i ≤ NA}, {d[i] : 1 ≤ i ≤ ND}. Thus we would be outputting the arrival

times (t1, . . . , tNA
), and departure times (t

(d)
1 , . . . , t

(d)
NA

).

1.2 Other Service Disciplines such as LIFO (Last-In-First-Out of line)

When a server chooses (or is sent) its next customer differently from FIFO, then the delay
sequence recursion 1.1 no longer holds; hence another reason why a discrete-event simulation
might be necessary/useful. As an example, let us consider LIFO. In this case, a new arrival joins
the front of the line instead of its end. We are also assuming here non-preemption, meaning
that once a customer enters service they are not bumped out by a new arrival; they complete
their service.

With a little thought, it is immediate that the stochastic process {L(t) : t ≥ 0} is the same
for FIFO and LIFO. That is because the iid service times are generated only when they are
needed, and the arrival process is the same; thus the jump times causing ±1 changes of state
for L(t) are the same across both models. But the delays of individual customers are different.
For example, consider D2, the delay of C2. Under LIFO If C2 arrives finding C1 still in service,
then C2 must wait in the line. But furthermore, unlike FIFO, if while C2 is waiting, C3 arrives,
then C2 must also wait until C3 is served and so on. Under FIFO, however, C2 only has to wait
for C1 to complete service. We will explain how to simulate LIFO D2 momentarily, but first
note that since {L(t) : t ≥ 0} is the same, we can obtain the same output for LIFO as we did for

FIFO; but we must be careful to re-interpret the departure times (t
(d)
1 , . . . , t

(d)
NA

). Under LIFO,

d[i] = the time of the ith departure, which is not necessarily t
(d)
i , the time that Ci departed. For

example d[2] might end up being the time at which C3 departed, t
(d)
3 . Under FIFO, customers

depart in the same order that they arrived so indeed d[i] = t
(d)
i is the departure time of Ci.

To obtain LIFO delays, we need to tag each customer so as to keep track of who they are
and collect the times at which they enter service. Let us illustrate by simulating a copy of D2.
Simulate {L(t)} until C2 arrives at time t2. At this point: If n = 0, then (since C1 already
departed) set D2 = 0. Otherwise, if n = 1 (C1 is still in service), then continue to simulate

{L(t)} under LIFO until finally C2 enters service, at a time denoted by t
(s)
2 . Then D2 = t

(s)
2 −t2.

The way to do this easily (when n = 1) is to imagine that C2 must wait is a separate chair,
and watch the system (including any new arrivals) until it empties. In other words, at time
t2 if n = 1, then we do not change the system state to n = 2; it remains at n = 1 and we
simulate the system {L(t)} under FIFO (not LIFO) but without C2 participating, until for the
first time in the future n = 0. We do not know apriori when this will occur, our termination

3



time t∗ = t
(s)
2 is now a random stopping time.

Algorithm for simulating D2 under LIFO

Simulate {L(t) : t ≥ 0} using FIFO until time t = t2. If n = 0, set D2 = 0; otherwise, if n = 1
continue simulating under FIFO but do not allow C2 to enter the line nor allow C2 to increase
n to n + 1 = 2; keep n = 1. Stop the simulation at time t∗ = min{t > t2 : L(t) = 0}. Define

t
(s)
2 = t∗, define D2 = t−(s)

2 . Stop. Output D2.

1.2.1 Random Selection

Another discipline which can be handled similarly is RS (Random selection). Under RS, when
a service completion occurs, the server randomly (equally likely) chooses a customer from the
line to be served next. Once again, {L(t) : t ≥ 0} remains the same as for FIFO, but individual
delays differ. In this case we would need to keep a record of the position in the line of each
customer. If there are k ≥ 1 in line right after a service completion, then the server will next
choose the customer in position i with probability 1/k, 1 ≤ i ≤ k. In this case, we label the
positions in the line from 1 (head of the queue) downwards. When a customer in position i is
chosen and enters service, we must move all customers below position i up by one position.

1.2.2 Processor Sharing (PS) GI/GI/1 queue

In this discipline, all customers enter service upon arrival (there is no line), but the server
simultaneously processes all of them proportional to how many are in service: If there are
n ≥ 1 in service, then each one has its service time processed at rate 1/n. Thus, workload,
{V (t)}, is the same as for FIFO; the total rate at which work is processed is still 1 if L(t) > 0.
Clearly, however, now both {L(t)} and delays and such are completely different from FIFO.

PS is used as an approximation to the way that (say) web servers share processing among
more than one job. A discrete-event simulation under PS involves keeping track over time of not
only n = L(t), but also the remaining service times (all in service) of these n customers. Given
n at a given time t and the remaining service times, denoted by (say) Y1, . . . , Yn, we know that
Yi will be completed at time t + nYi in the absence of any new arrivals or any departures. So
each time an arrival or departure occurs, we need to update/re-schedule the service completion
times of those remaining in service. In addition to simulating {L(t)}, it is of interest to simulate

customer sojourn times. The sojourn time Wj
def
= t

(d)
j − tj , is the total amount of time that Cj

spends in the system from arrival to departure. Even obtaining a copy of W1 requires some
non-trivial simulating: We place C1 in service alone and them keep simulating under PS until
C1 finally departs. We will simulate this model in detail later.

4


