
1

A Numerical Analysis for 2-D Navier-Stokes Equations by FDM and FVM

Lei LEI

Department of Mechanical Engineering, Columbia University

Abstract: Two-dimensional unsteady Navier-Stokes equation was numerically discretized using

projection method in finite difference and SIMPLE algorithm in finite volume on a staggered grid

system. The projection method was achieved via Python script and validated by standard CFD test

case – driven cavity flow. Potential affecting factors, including grid size, boundary conditions,

were analyzed and results matched pretty well with those from benchmark paper.

Keywords: 2-D Navier-Stokes equation, finite difference method, finite volume method

NOMENCLATURE

u local velocity vector with components (u, v)

p local averaged pressure

 fluid density, constant in this case

 kinematic molecular viscosity

 tolerance of iteration

 solution domain of interest

O order of magnitude of a quantity

 divergent operator,
x y

   
  

 

 finite change in quantity

n

U numerical solution of velocity at time step n, with element Un and Vn

1. INTRODUCTION

2

Navier-Stokes (NS) equations, derived from Newton’s 2nd law and 1st law of thermodynamics,

are a set of nonlinear partial differential equations describing the motion and energy balance of the

viscous fluid substances. Together with supplemental relations, conservation of mass for example,

and well defined boundary conditions, NS equations have capability of modeling various scientific

and engineering situations accurately and effectively. Regardless of their extensive applications in

practice, the nonlinearity makes it troublesome (or sometimes impossible in 3D) to come up with

analytical solutions, which introduces numerical analysis into the scheme.

The goal of the work presented is to numerically simulate the transient Navier-Stokes equations

for two-dimension incompressible viscous flow with both finite difference method (FDM) and

finite volume method (FVM) using Python script. The characteristics of both methods, including

stability and convergence, are investigated in further detail by applying them to a classical test-

case study of cavity flow.

2. METHODS

The NS momentum equations for 2D incompressible flow in the Cartesian coordinate can be

expressed in the vector form as follows (Eq. 1), which would be discretized by both FDM and

FVM respectively with second-order accuracy in space and at least first order in time.

   21
tu u u p u


        (Eq. 1)

2.1 Finite Difference Method

In FDM, Ω is discretized into a staggered grid with the pressure in the cell centers while the

velocities placed on the midpoints of interfaces (Fig.1). The projection method developed by

Patenker and Spalding [4] was adopted to discretize the original Navier-Stokes equation. In this

3

scheme, an intermediate velocity u* was introduced for momentum correction (Eq.2) which,

however, did not satisfy the continuity equation. For both velocity components on staggered grids,

the viscosity term was treated implicitly from (Eq.3), where U** is a velocity correction term.

  
*

2
n

nU U
U

t


 


 (Eq. 2)

  
** *

*
2U U

U
t




 


 (Eq. 3)

Fig. 1 Staggered Grids of Calculation for FDM (left) and FVM (right)

Pressure terms are evaluated using velocity correction terms and velocities at (n+1)th time step.

1 **

11
n

nU U
p

t 




  


 (Eq. 4)

Such that (Eq.1) was the summation of (Eq.2), (Eq.3) and (Eq.4). As Un+1 and Vn+1 together must

fulfill the continuity equation (Eq.5) such that a Poisson pressure equation was established (Eq.6).

1

1 1 0
n

n n

x yU U V


     (Eq. 5)

4

2 1

n
np U

t

  


 (Eq. 6)

Central difference approximations were applied to second derivatives of both x- and y-directions

(Eq.7a). The first derivatives, required for pressure calculation, were simulated differently at the

center of gird where pressure field was stored (Eq.7b).

     1, , 1, , 1 , , 12

, 2 2, ,

2 2n n n n n n

i j i j i j i j i j i jn n n

i j xx yyi j i j

U U U U U U
U U U

x y

      
     

 
 (Eq. 7a)

   1, ,
1

,
2

n n

i j i jn

x i j

U U
U

x









 (Eq. 7b)

The approach to dealing with nonlinear term
2

U was tricky as x- and y- velocities were defined

at different positions (Fig.1). As an example of U updating, UU and UV were needed and should

be evaluated at the locations of velocity U. An effective way is to average the adjacent values and

take the derivative to averaged term as (Eq.2) to yield the desired expression (Eq.8).

2*

, ,

1 1 1 1 1 1
, , , , , ,

2 2 2 2 2 2

1 1

4 4

n

i j i j n n n n n n

i j i j i j i j i j i j
yx

U U
U U U U V V

t      

        
           

          

 (Eq. 8a)

2*

, ,

1 1 1 1 1 1
, , , , , ,

2 2 2 2 2 2

1 1

4 4

n

i j i j n n n n n n

i j i j i j i j i j i j
xy

V V
V V U U V V

t      

        
           

          

 (Eq. 8b)

The procedures below were followed in the numerical solution to 2-D NS equations.

(1) Evaluate intermediate velocity field (Eq.8) to get
* n

U U t H   .

(2) Solve Poisson pressure equation (Eq.6), yielding  1 ,np x y
.

(3) Compute velocity correction term form (Eq.3) to get  ** * *
2U U t U    .

(4) Update the velocity field with
1 **

1
n

nt
U U p






   .

5

By expanding terms using Taylor series at point  ,i j and time t, it could be show that the FDM

applied here was second-order accurate in space and first-order in time. The existence and

uniqueness of strong solution to 2-D NS equations had already been proved by Mattingly [5].

2.2 Finite Volume Method

In contrast to finite difference method where computational domain is divided into hexahedral

cells and discretized equations, derived from differential form of governing equation, are evaluated

on the basis of dependent variable values stored at the nodes, a finite volume method constructs

discretization via the integral form of PDE and approximates it with interpolated face-center values

of each control volume (Fig.1). Advantages of FVM over FDM have been profoundly investigated

and reported by many researches, including better suitability for complex geometry, stronger

fulfillment of conservation law at grid scale [3] and etc. A staggered grid was adopted where

pressure data was stored at the apexes (slashed dots) while velocity was evaluated at centroids

(black dots) and face centers (hollow dots) were used as bridges to relate adjacent grids.

The first step of implementing FVM is to integrate governing equation with respect to time and

space on the velocity control volume. For x-momentum equation in (Eq. 2), by assuming the face-

averaged values equal to the values at center of faces, the integral form was expressed as follows.

     

 

1 1 1 1 1

, , , ,

n n n n n n

w w C P P C W W C nw nw C sw sw

P W

P W nw sw

u u x y t y u u u u t x v u v u

t y u u u u
p p t y t x

x x y y
 



            

              
                  

             

 (Eq. 8)

Where 'Cu s and 'Cv s are known as convecting velocities, which are approximated by average of

the centroids coincident to the face. , , ,W P nw swu u u u are convected velocities, a representative of

convection momentum transferring through the surfaces. A second-order upwind method were

6

introduced in FVM such that for flow moving along positive x,y-direction, the convected velocities

at face P and sw (uP and unw) would be approximated respectively as (Eq.9).

3 1 3 1

2 2 2 2
P w ww nw w Swu u u u u u    (Eq. 9)

For the diffusion terms, central difference was applied such that

e w Nw w

P nw

u u u uu u

x x y y

    
   

      
 (Eq. 10)

Substituting the above expressions into (Eq.8) yielded an explicit relation among neighboring grids

1 1 1

, , ,

n n n n

w i i w w w

i e ww Sw Nw

u u u S   



   (Eq. 11)

With the coefficients 'i s and source term n

PS defined as follows

 , , 2 2 2 2

3 3 2 2
1 , , ,

2 2
w C P C Nw e Nw

t t t t t t
u v

x y x y x y

   
  

     
      

     
 (Eq. 12a)

 , , , ,2 2

3 3
, ,

2 2 2 2
ww C P C ww Sw C nw C sw

t t t t t t
u u v v

x x x y y y

 
 

     
     

     
 (Eq.12b)

  1 1 1

, ,
2 2

n n n n n

p C W www C sw SSw P W

t t t
S u u v u p p

x y x

    
      

  
 (Eq.12c)

Similar iteration expression can be derived for y-velocity. As in the FDM scheme, pressure still

remains implicit, in order to proceed, the Semi-Implicit Pressure Linked Equations (SIMPLE)

algorithm was applied. SIMPLE decomposes the velocities and pressure into guessed values and

correction terms (Eq. 13) and simulates their distribution filed with two equations, one linking the

velocity correction to the pressure correction and the other solving the pressure correction to update

original guess. The illustrated procedures were taken to evaluate NS equations in this study.

(1) Decomposition of target values into guess (*) and correction (') terms.

7

* * *' ' 'u u u v v v p p p      (Eq. 13)

The guessed values must fulfill the discretized momentum PDE (Eq.11) such that guessed velocity

at time step n+1 can be evaluated by (Eq.14).

      
* * *

1 1 1

, , ,

n n n n

w i i w w w

i e ww Sw Nw

u u u S   



   (Eq. 14)

Where 'i s were the same as (Eq.11) while  
*

n

wS was computed from guessed values.

(2) Construction of velocity-pressure correction relations by subtracting (Eq.14) from original

expression (Eq.11), yielding the correction relations (Eq. 14 for x-component).

        1 1 1 1

, , , ,

' ' ' 'n n n n

w i i P W

i e ww Sw Nw SSw

t
u u p p

x




   




   
 

 (Eq. 15)

SIMPLE algorithm assumes zero velocity corrections for previous time steps and drops all other

correction terms of neighboring cells at current time step, above expressions can be reduced into

a straightforward form as follows.

            1 1 1 1 1 1' ' ' ' ' 'n n n n n n

w P W n N P

t t
u p p v p p

x y 

      
        
    

 (Eq. 16)

(3) Solving for pressure correction terms and updating velocities. To do so, continuity equation

(Eq.17) were considered and integrated along the pressure cells (Eq.18).

 0
u v

x y

 
 

 
 (Eq. 17)

    1 1 1 1 0n n n n

e w n su u y v v x         (Eq. 18)

By decomposing velocities terms and substituting the corresponding expressions in (Eq.16), the

pressure-correction equation was given by (Eq.19).

8

    
2 1 1

' ' ' ' ' 0E W P N S

t t t
P P P P P

x x y y  

   
       

    
 (Eq. 19)

The pressure correction terms can then be solved implicitly and plugged back into (Eq.16) for

velocity corrections and (Eq.13) for calculated velocities at (n+1)th time step.

(4) Use velocities at time step (n+1) as new guessed values, repeat procedures (1) to (3) until

the prescribed convergence tolerance is achieved.

3. CASE STUDY SET-UP

Numerical methods described above were justified by examining a standard and classical case

in computational fluid dynamics (CFD) where upper boundary kept moving above a rectangular

cavity. The geometry and boundary conditions for the cavity flow were illustrated in Fig.2.

Fig. 2 Geometry and Boundary conditions of Cavity Flow

 The validation began with the simplest case where solution domain was set to be a square with

1.0L H  and a Dirichlet boundary condition of 1.0u  and 0v  was assumed for the upper

surface. The process proceeded with various combinations of upper boundary velocities, meshing

9

strategies, aspect ratios and time intervals (Table 1) to explore the stability and reliability of given

methods with a tolerance of 0.001  .

Table 1 Various Combinations for Validation

Combination
Moving

Boundary

Mesh

 X Y

Aspect Ratio

 :L H
Time Interval

1 1.0, 0u v  41 41 1:1 0.01s

2 1.0, 0u v  82 41 1:1 0.01s

3 3.0, 0u v  41 41 1:1 0.01s

4 1.0, 0u v  41 41 1:1 0.001s

5 1.0, 0u v  82 41 2 :1 0.01s

4. RESULTS AND DISCUSSION

Note that because of time limit, FVM code could not be debugged as expected. The presented

results all came from FDM. But efforts would be continuously spent in improving FVM.

4.1 Convergence

For the prescribed 0.001  , combinations 1 to 5 respectively took 1092, 807, 940, 1288, and

3826 times to reach convergence, residual curves (Fig.3) were monotonously decreasing smooth

for both u and v, indicating that the FDM was fairly stable and reliable, which is in accordance

with the previous analysis.

The results demonstrated that although the shape of the curves were quite similar to each other,

the impacts of various factors on convergence were incomparable. The refinement on grid size

would decrease the number of iteration but dramatically increase the calculation for every step and

consequent computing time. A higher upper boundary velocity would accelerate convergence due

to a greater energy input and a severer mixing of the fluid inside cavity. The changes in dimensions

of  but not of grids barely affected convergence behavior, reflecting a weak dependence of

10

stability performance on solution geometry at least for simple cases. Refinement on t would

obviously decelerate convergence, while the nominal converged flow time was reduced from 10.92

seconds to 3.826 seconds, providing an approach to short-time investigation.

Fig. 3 Typical Converging Curve of Absolute Residuals (Order of Combinations)

4.2 Pressure and Velocity Distribution

11

When upper boundary began to flow above the still fluid inside cavity, fluid in the upper layer

got accelerated by molecular viscosity, resulting in a pressure drop relative to the rest of the cavity

as implied by Bernoulli equation. The pressure gradients then drove the cavity fluid floating up,

Fig. 4 Predicted Pressure and Velocity Distribution (Order of Combinations)

12

leaving “empty space” that was immediately and continuously filled by downstream fluid. The

phenomenon kept happening until the flow reached rigid and impenetrable right boundary where

it stagnated and sank to complement leaving fluid. Near the stagnation point, the pressure grew

dramatically as a natural result of kinetic energy conversion. As a result, vortex was formed in the

middle of the cavity. The predicted pressure contours and velocity vector distribution shown below

were coincident with the theoretical analysis.

As before, grid size, time steps and upper boundary velocity were three significant dominants

to performance of the predictions. A finer mesh would definitely produce more representative and

somehow more accurate results. The influence of boundary conditions on the pressure and velocity

distribution came from physical essence of the problem, higher velocity, higher pressure gradients

and consequently severer mixing. Observation was also made that the maximum pressure, which

occurred at stagnation point, would also increase with finer grids or higher boundary velocity. This

was kind of responsible for the difference between combination 1 and 2. As stated previously, the

smaller t provided more information on the development of the phenomenon in the cost of

computing effort. The optimal combination of the factors depends on the specific problem and

purposes and interest of the research.

4. 3 Velocity Components Contours

Combinations 1 and 4, 2 and 3 separately shared the similar velocity components (u and v)

distribution, thus only three velocity contours were displayed in Fig.5. Basically, v was positive at

the left half of  , meaning the fluid was floating, and negative at the rest half where flow reached

stagnation point and sank. The circular shape of the velocity contours indicated that there were

actually vortices formation within the cavity. The v contour became denser around both upper

corners for all cases, implying a great velocity gradient due to the stagnation effect. While all other

13

v contours were concentrated, the contours for combination 5 got detached near x = 0.5, which

could result from a slower bottom velocity and a consequently weaker y-pressure gradient due to

enlarging of the domain. For x-component velocity, the contours were simple determined by

competition of the pressure gradients and stagnation effects. Therefore, u contours possessed alike

shapes and distribution, denser near the upper surface due to pressure and neat the corners because

of stagnation. Special attention should be cast to the bottom corners where secondary vortex and

even tertiary vortex, if velocity was large enough, would take place.

The above results were last compared to the those from benchmark papers [6], significant

agreement was observed, demonstrating the reliability of the FDM proposed.

14

Fig .5 Velocity Components for Combination 1, 2, 5

5. CONCLUSION

This paper presented the derivation of two numerical discretization of 2-D unsteady Navier-

Stokes equation using either FDM or FVM on a staggered grid system. The FDM discretization

was based on the projection method with central difference in space and forward difference in time.

While the FVM one was derived from SIMPLE algorithm with second-order upwind difference

for convection terms, central difference for diffuse terms and forward difference for time. By

applying Taylor series expansion for discretized equations, it can be shown that the methods were

first-order accurate in time and second-order accurate in space.

The FDM was coded using Python script and validated by analyzing driven cavity flow. Results

shows that grid sizes and boundary conditions were the dominant factors to influence pressure and

velocity fields. The dimension of solution domain would have impact on velocity profiles but not

on pressure or convergence behavior. Refinement on time step would decelerate the converging

but could provide additional information on flow development.

15

Future efforts would be cast in achieving SIMPLE algorithm and optimizing compatibility and

overall performance of both FVM and FDM by testing and improving the program on more

complicated and various geometries and boundary conditions.

REFRENCE

[1] Thien Hiep Le et al. Pegase: A Navier-Stokes Solver for Direct Numerical Simulation of

Incompressible Flows, International Journal for Numerical Methods in Fluids, 1997, VOL.

24, 833–861.

[2] Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow

of fluid with free surface. Phys. Fluids. 1965; 8:2182-2189.

[3] Joaquim Peiro and Spencer Sherwin, Finite Difference, Finite Element and Finite Volume

Methods for Partial Differential Equations, Handbook of Materials Modeling. Volume I:

Methods and Models, 1–32.

[4] S. V. Patankar and D. B. Spalding, A Calculation Procedure for Heat, Mass and Momentum

Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Transfer, vol. 15, p. 1787,

1972.

[5] J. C. Mattingly and Ya. G. Sinai, An Elementary Proof of the Existence and Uniqueness

Theorem for the Navier-Stokes Equations, Commun. Contemp. Math. 01, 497 (1999).

[6] Erturk E., Corke T.C. and Gokcol C., "Numerical Solutions of 2-D Steady Incompressible

Driven Cavity Flow at High Reynolds Numbers", International Journal for Numerical Methods

in Fluids, Vol 48, pp 747 - 774, 2005.

[7] Tu, Yeoh, and Liu, Computational Fluid Dynamics: A Practical Approach, Elsevier, 2013.

[8] Numerical Python Manual 1.10, http://docs.scipy.org/doc/numpy/reference/.

[9] Matplotlib User Guide, Release 1.5.1, http://matplotlib.org/Matplotlib.pdf.

APPENDIX

Please refer to attachment for Python source code for FDM.

