Social Preferences

Mark Dean

Behavioral Economics Spring 2017

Social Preferences

- So now we need a model that allows us to capture the fact that people have 'other regarding preferences'
 - Ultimatum game experiments offer a 'smoking gun'
 - But intuition (and other evidence) tells us it goes much further than that
- Starting point: What psychological processes do we think are important here
- We will focus on two
 - Inequality aversion
 - Fairness
- Notice: Altruism is also interesting but
 - Easier to fit into standard model
 - Can't explain ultimatum game results

- One of the earliest and most influential models of other regarding preferences is that of **inequality aversion**
 - Fehr and Schmidt [1999]
 - Bolton and Ochenfels [2000]
- Basic idea is, well, people don't like inequality (!)
- Comes in two forms
 - Dislike of having more than other people
 - Dislike having less than other people

Inequality Aversion

- Consider a game between two players
- What utility does player 1 get if they end up with x₁ and player 2 ends up with x₂?

$$u_1(x_1, x_2) = x_1 - \alpha \max\{x_2 - x_1, 0\} - \beta \max\{x_1 - x_2, 0\}$$

- Three parts
 - 1 Standard utility
 - 2 Dislike of having less that the other player
 - max $\{x_2 x_1, 0\} = 0$ if player 1 has more
 - 3 Dislike of having more than the other player
 - max $\{x_1 x_2, 0\} = 0$ if player 2 has more

Inequality Aversion

- Utility function has a kink at x₂
- β assumed to be less than 1

- What does the inequality aversion model say about play in the ultimatum game?
- Assume pie is of size \$10
- What will player 2 do if player 1 offers to keep x and give player 2 (10 x)
- Remember that player 2's utility is

$$u_2(x_1, x_2) = x_2 - \alpha \max\{x_1 - x_2, 0\} - \beta \max\{x_2 - x_1, 0\}$$

• The choice is to reject the offer, in which case

$$x_1=x_2=0$$

• or accept the offer, in which case

$$x_1 = x$$
, $x_2 = (10 - x)$

- Utility of reject is obviously 0
- What is the utility of accept?

- Depends on whether x is more or less than \$5
- If it is **less** than \$5, then player 2 is getting more than player 1
 - Utility of accepting is

$$(10 - x) - \beta((10 - x) - x)$$

= $(1 - \beta)(10 - x) + \beta x \ge 0$

• Will always accept such an offer

- If it is more than \$5 then player 2 is getting less than player 1
 - Utility of accepting such an offer is

$$(10-x) - \alpha(x - (10-x)) = (1+\alpha)(10-x) - \alpha x$$

• Will reject such an offer if

$$x > \frac{(1+\alpha)}{(1+2\alpha)} 10$$

- This is the maximal share of the pie that player 1 can get
 - If $\alpha = 0$ then this is 10
 - As $\alpha \to \infty$, this fraction goes to $\frac{1}{2}10$

- What about player 1?
- First, notice they can always guarantee themselves a payoff of 5
 - Offer *x* = 5
 - We know that this is accepted
- This means that they will never make an offer which is rejected
- So they will make an offer somewhere between 5 and $\frac{(1+\alpha)}{(1+2\alpha)}$ 10

- Where depends on their utility function
 - In this range, Player 1 is getting more than player 2
 - Utility is given by

$$u_1(x, (10-x)) = x - \beta(x - (10-x)) = x - \beta(2x - 10)$$

Taking derivatives WRT x gives

$$\frac{\partial u_1(x_1, x_2)}{\partial x} = 1 - 2\beta$$

- If β < ¹/₂ utility is increasing in x, will take the maximum amount they can: ^(1+α)/_(1+2α)10
- If $\beta > \frac{1}{2}$ utility is decreasing in x, will take the 50/50 split

Inequality Aversion

5

 $\frac{1+lpha}{1+2lpha}$ 10 x_1

- The Fehr-Schmidt model provides one mechanism by which people may have social preferences
 - Inequality aversion
- However this is not the only possibility
- Consider this thought experiment
 - Take the standard ultimatum game
 - But now restrict the strategy space of player 1 so that the **maximum** they can offer player 2 is \$2
 - How would you respond to an offer of \$2 as player 2?

- The Fehr-Schmidt model says that if you rejected \$2 in the original game, you must also reject it in this game
 - The only thing that matters is **outcomes**
- However, you may think that this is not reasonable
 - In the first game rejected \$2 because player 1 was being unfair
 - In the second game they were not being unfair, so you would accept it
- This intuition was formalized in a model by Rabin [1993]
 - The details of which are a bit hairy
 - Will try to give you the intuition

- Two key ideas
- People are willing to sacrifice their own payoff to help those that they think have been kind to them
- 2 The are prepared to give up their own payoff to punish those that they think have been unkind
- i.e. this is a model of fairness and reciprocity
- In order to operationalize this we need some way of measuring how kind one player is being to another

Let

- S_1 be the set of strategies that player 1 can choose from
- S_2 be the set of strategies that player 2 can choose from
- π₁(s₁, s₂) the (materiel) payoff from player 1 if strategies s₁ and s₂ are played
- π₂(s₁, s₂) the (materiel) payoff from player 2 if strategies s₁ and s₂ are played
- We want to develop a kindness function

$$f_1(a_1, b_1)$$

 How kind does player 1 think they are being if they play a₁, and they think that player 2 will play b₁

An Example

Player 1's actions	<i>b</i> ₂
a_1^1	3,9
a_1^2	4, 5
a_1^3	7,1
a_1^4	-1, -1

- Note
 - a_1^1 gives player 2 the highest possible payoff
 - a_1^4 is Pareto dominated
 - a_1^3 gives player 2 the lowest possible payoff ignoring pareto dominated options
- How would you measure fairness?

Fairness Function

- $\pi^h_2(b_2)$ be the highest payoff that player 1 could give player 2
 - In this example 9
- $\pi'_2(b_2)$ be the lowest payoff amongst pareto efficient points
 - In this example 1
- The equitable payoff is given by

$$\pi_2^{\mathsf{e}}(b_2) = \frac{\pi_2^{\mathsf{h}}(b_2) + \pi_2^{\mathsf{l}}(b_2)}{2}$$

- In this example 5
- let $\pi_2^{\min}(b_2)$ be the worst possible outcome for player 2
 - in our example -1

Fairness Function

Rabin defines the kindness of player 1 to player 2 as

$$\begin{aligned} f_1(\textbf{a}_1, \textbf{b}_2) &= \frac{\pi_2(\textbf{a}_1, \textbf{b}_2) - \pi_2^e(\textbf{b}_2)}{\pi_2^h(\textbf{b}_2) - \pi_2^{\min}(\textbf{b}_2)} \text{ if } \pi_2^h(\textbf{b}_2) \neq \pi_2^{\min}(\textbf{b}_2) \\ &= 0 \text{ otherwise} \end{aligned}$$

- Player 1 is being 'kind' if they give player 2 more that the equitable split given what they believe about player 2
- The degree of kindness is scaled by the range of possible outcomes that player 2 could have received.
- In our example, a_1^1 would be a kind act, as

$$f_1(a_1, b_2) = \frac{9-5}{9-(-1)} = 0.4$$

Fairness Function

- So we now have a way to capture fairness
- But we also want to capture reciprocity
 - P1 wants to be kind to P2 if they think P2 has treated them kindly
 - P1 wants to be nasty to P2 if they think that P2 has treated them badly
- We use

$$\begin{split} \bar{f}_2(b_2,c_1) &= \frac{\pi_1(c_1,b_2) - \pi_1^{\mathsf{e}}(c_1)}{\pi_1^{h}(c_1) - \pi_1^{\min}(c_1)} \text{ if } \pi_1^{h}(c_1) \neq \pi_1^{\min}(c_1) \\ &= 0 \text{ otherwise} \end{split}$$

- To capture P1's beliefs about how kind they think P2 is being to them
 - b_2 is the action they think P2 is taking
 - c₁ is what P1 thinks P2 thinks P1 is playing (!)

• We can now write down the Rabin fairness utility function

$$u_1(a_1, b_2, c_1) = \pi_1(a_1, b_1) + \bar{f}_2(b_2, c_1)f_1(a_1, b_2)$$

- First bit is standard utility
- Second bit is fairness utility
- Payoff increasing in f_1 if $\overline{f}_2(b_2, c_1) > 0$ (i.e. P2 is being fair)
- Payoff decreasing in f_1 if $\bar{f}_2(b_2, c_1) < 0$ (i.e. P2 is being unfair)

- In order to predict what happens in the game we need a concept of **equilibrium**
- 1 Players are doing the best thing, given their beliefs
- 2 Their beliefs are correct, given their information

Definition

An equilibrium of a Rabin Fairness game is a set of actions a_1 , a_2 , first order beliefs b_1 , b_2 and second order beliefs c_1 , c_2 such that

1
$$a_i = \arg \max_{a_i \in S_i} u_i(a_i, b_j, c_i)$$
 for $i = 1, 2 \ j = 1, 2, \ i \neq j$
2 $a_i = b_i = c_i$ for $i = 1, 2$

- What does this mean for behavior in the ultimatum game?
- First thing to note is that P2 will always accept P1's offer if it is the highest offer they can make
 - Let *p* be the size of the pie
 - Let *m* be the maximum that player 1 is allowed to offer
- We want to check whether it is an equilibrium for P2 to accept *m*
 - Assume that *m* is being offered and that player 2 will accept
 - See if there is any benefit to deviating

$$u_2(A, m, T) = \pi_2(A, m) + \bar{f}_1(m, T) f_2(A, m)$$

- Where
 - A is the strategy 'accept'
 - *m* is the offer of P1
 - T is the minimum amount that P2 would accept
- Notice that
 - $\bar{f}_1(m, T) \ge 0$ as pm is the most P1 can give P2
 - f₂(A, m) ≥ 0, as accepting gives P1 (1 − m)p ≥ 0, which is what they would get if P2 rejects

• Thus we have

$$u_{2}(A, m, S) = \pi_{2}(A, m) + \bar{f}_{1}(m, S)f_{2}(A, m)$$

$$\geq \pi_{2}(A, m)$$

$$> 0$$

$$\geq \pi_{2}(R, m) + \bar{f}_{1}(m, S)f_{2}(R, m)$$

$$= u_{2}(R, m, S)$$

• Where the last inequality comes from the fact that $f_2(R,m) \leq 0$

- However, the same offer might be rejected if P1 could have offered the whole pie
- Assume
 - *p* = 1 *m* = 1
- We can show that a receiver will reject an offer of 0.2
- Assume that receiver would accept any offer greater than $z \leq 0.2$
- We can show that this is not an equilibrium

• What is the kindness of offering 0.2 in this situation?

•
$$\pi_2^h(z) = 1$$

• $\pi_2^l(z) = z$
• $\pi_2^e(z) = \frac{(1+z)}{2}$
• $\pi_2^{\min}(z) = 0$

• Thus, the kindness of an offer 0.2 is given by

$$\bar{f}_1(x,z) = \frac{\pi_2(x,z) - \pi_2^e(z)}{\pi_2^h(z) - \pi_2^{\min}(z)} \\ = \frac{0.2 - \frac{(1+z)}{2}}{1} \\ = 0.2 - \frac{(1+z)}{2} < 0$$

- Is it better to accept or reject that offer?
- Accepting has a fairness of 0, as it is the only pareto dominated option
 - Utility is therefore 0.2
- What is the fairness of rejecting?

•
$$\pi_1^h(0.2) = 0.8$$

- $\pi'_1(0.2) = 0.8$ • $\pi^e(z) = 0.8$
- $\pi_1^{\overline{e}}(z) = 0.8$
- $\pi_1^{\min}(z) = 0$
- Fairness is -1

• Utility of rejecting is therefore

$$\pi_1(a_1, b_1) + \bar{f}_2(b_2, c_1)f_1(a_1, b_2) \\ = -\left(0.2 - \frac{(1+z)}{2}\right)$$

• Rejecting is better if

$$\begin{array}{rrr} 0.2 & \leq & -0.2 + \frac{(1+z)}{2} \\ \Rightarrow & 0.8 \leq 1+z \\ \Rightarrow & -0.2 \leq z \end{array}$$

• Which it is

- The Rabin model of fairness can allow for a 20% offer to be
 - Accepted if that is the most that P1 could offer
 - Rejected otherwise
- This is not something that the Fehr-Schmidt model can allow for