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Introduction

• Up until now, we have thought of subjects choosing between
objects

• Used cars
• Hamburgers
• Monetary amounts

• However, often the outcome of the choices that we make are
not known

• You are deciding whether or not to buy a share in AIG
• You are deciding whether or not to put your student loan on
black at the roulette table

• You are deciding whether or not to buy a house that straddles
the San Andreas fault line

• In each case you understand what it is that you are choosing
between, but you don’t know the outcome of that choice

• In fact, many things can happen, you just don’t know which
one



Risk vs Uncertainty

• We are going to differentiate between two different ways in
which the future may not be know

• Horse races
• Roulette wheels

• What is the difference?



Risk vs Uncertainty

• When playing a roulette wheel the probabilities are known
• Everyone agrees on the likelihood of black
• So we (the researcher) can treat this as something we can
observe

• Probabilities are objective
• This is a situation of risk



Risk vs Uncertainty

• When betting on a horse race the probabilities are unknown
• Different people may apply different probabilities to a horse
winning

• We cannot directly observe a person’s beliefs
• Probabilities are subjective
• This is a situation of uncertainty (or ambiguity)



Choices Under Risk

• So, how should you make choices under risk?
• Let’s consider the following (very boring) fairground game

• You flip a coin
• If it comes down heads you get $10
• If it comes down tails you get $0

• What is the maximum amount x that you would pay in order
to play this game?



Approach 1: Expected Value

• You have the following two options
1 Not play the game and get $0 for sure
2 Play the game and get −$x with probability 50% and $10− x
with probability 50%

• Approach 1: Expected value
• The expected amount that you would earn from playing the
game is

0.5(−x) + 0.5(10− x)
• This is bigger than 0 if

0.5(−x) + 0.5(10− x) ≥ 0

5 ≥ x

• Should pay at most $5 to play the game



The St. Petersburg Paradox

• This was basically the accepted approach until Daniel
Bernoulli suggested the following modification of the game

• Flip a coin
• If it comes down heads you get $2
• If tails, flip again
• If that coin comes down heads you get $4
• If tails, flip again
• If that comes down heads, you get $8
• Otherwise flip again
• and so on

• How much would you pay to play this game?



The St. Petersburg Paradox

• The expected value is

1
2

$2+
1
4

$4+
1
8

$8+
1
16

$16+ ...

= $1+ $1+ $1+ $1+ ......
= ∞

• So you should pay an infinite amount of money to play this
game

• Which is why this is the St. Petersburg paradox



The St. Petersburg Paradox

• So what is going wrong here?
• Consider the following example:

Example
Say a pauper finds a magic lottery ticket, that has a 50% chance
of $1 million and a 50% chance of nothing. A rich person offers to
buy the ticket off him for $499,999 for sure. According to our
‘expected value’method’, the pauper should refuse the rich
person’s offer!



The St. Petersburg Paradox

• It seems ridiculous (and irrational) that the pauper would
reject the offer

• Why?
• Because the difference in life outcomes between $0 and
$499,999 is massive

• Get to eat, buy clothes, etc

• Whereas the difference between $499,999 and $1,000,000 is
relatively small

• A third pair of silk pyjamas

• Thus, by keeping the lottery, the pauper risks losing an awful
lot ($0 vs $499,999) against gaining relatively little ($499,999
vs $1,000,000)



Marginal Utility

• Bernoulli argued that people should be maximizing expected
utility not expected value
• u(x) is the expected utility of an amount x

• Moreover, marginal utility should be decreasing
• The value of an additional dollar gets lower the more money
you have

• For example

u($0) = 0

u($499, 999) = 10

u($1, 000, 000) = 16



Marginal Utility

• Under this scheme, the pauper should choose the rich person’s
offer as long as

1
2
u($1, 000, 000) +

1
2
u($0) < u($499, 999)

• Using the numbers on the previous slide, LHS=8, RHS=10
• Pauper should accept the rich persons offer

• Bernoulli suggested u(x) = ln(x)
• Also explains the St. Petersberg paradox
• Using this utility function, should pay about $64 to play the
game



Risk Aversion

• Notice that if people
• Maximize expected utility
• Have decreasing marginal utility (i.e. utility is concave)

• They will be risk averse
• Will always reject a lottery in favor of receiving its expected
value for sure



Expected Utility

• Expected Utility Theory is the workhorse model of choice
under risk

• Unfortunately, it is another model which has something
unobservable

• The utility of every possible outcome of a lottery

• So we have to figure out how to test it
• We have already gone through this process for the model of
’standard’(i.e. not expected) utility maximization

• Is this enough for expected utility maximization?



Data

• In order to answer this question we need to state what our
data is

• We are going to take as our primitve preferences �
• Not choices
• But we know how to go from choices to preferences, yes?

• But preferences over what?
• In the beginning we had preferences over ‘objects’
• For temptation and self control we used ’menus’
• Now ‘lotteries’!



Lotteries

• What is a lottery?
• Like any lottery ticket, it gives you a probability of winning a
number of prizes

• Let’s imagine there are four possible prizes
• a(pple), b(anana), c(elery), d(ragonfruit)

• Then a lottery is just a probability distribution over those
prizes 

0.15
0.35
0.5
0


• This is a lottery that gives 15% chance of winning a, 35%
chance of winning b, 50% of winning c and 0% chance of
winning d



Lotteries

• More generally, a lottery is any

p =


pa
pb
pc
pd


• Such that

• px ≥ 0
• ∑x px = 1



Expected Utility

• We say that preferences � have an expected utility
representation if we can
• Find utilities on prizes
• i.e. u(a), u(b), u(c), u(d)

• Such that
p � q if and only if

pau(a) + pbu(b) + pcu(c) + pdu(d)

> qau(a) + qbu(b) + qcu(c) + qdu(d)

• i.e ∑x pxu(x) ≥ ∑x qxu(x)



Expected Utility

• What needs to be true about preferences for us to be able to
find an expected utility representation?

• Hint: you know a partial answer to this

• An expected utility representation is still a utility
representation

• So preferences must be
• Complete
• Transitive
• Reflexive



Expected Utility

• Unsurprisingly, this is not enough
• We need two further axioms

1 The Independence Axiom
2 The Archimedian Axiom



The Independence Axiom

Question: Think of two different lotteries, p and q. Just for
concreteness, let’s say that p is a 25% chance of
winning the apple and a 75% chance of winning the
banana, while q is a 75% chance of winning the
apple and a 25% chance of winning the banana. Say
you prefer the lottery p to the lottery q. Now I offer
you the following choice between option 1 and 2

1 I flip a coin. If it comes up heads, then you get
p. Otherwise you get the lottery that gives you
the celery for sure

2 I flip a coin. If it comes up heads, you get q.
Otherwise you get the lottery that gives you the
celery for sure

Which do you prefer?



The Independence Axiom

• The independence axiom says that if you must prefer p to q
you must prefer option 1 to option 2
• If I prefer p to q, I must prefer a mixture of p with another
lottery to q with another lottery

The Independence Axiom Say a consumer prefers lottery p to
lottery q. Then, for any other lottery r and number
0 < α ≤ 1 they must prefer

αp + (1− α)r

to
αq + (1− α)r

• Notice that, while the independence axiom may seem intutive,
that is dependent on the setting
• Maybe you prefer ice cream to gravy, but you don’t prefer ice
cream mixed with steak to gravy mixed with steak



The Archimedean Axiom

• The other axiom we need is more techincal

• It basically says that no lottery is infinitely good or infinitely
bad

The Archimedean Axiom For all lotteries p, q and r such that
p � q � r , there must exist an a and b in (0, 1) such
that

ap + (1− a)r � q � bp + (1− b)r



The Expected Utility Theorem

• It turns out that these two axioms, when added to the
‘standard’ones, are necessary and suffi cient for an expected
utility representation

Theorem
Let X be a finite set of prizes , ∆(X ) be the set of lotteries on X .
Let � be a binary relation on ∆(X ). Then � is complete,
reflexive, transitive and satisfies the Independence and
Archimedean axioms if and only if there exists a u : X → R such
that, for any p, q ∈ ∆(X ),

p � q

if and only if ∑
x∈X

pxu(x) ≥ ∑
x∈X

qxu(x)



The Expected Utility Theorem

• Proof?
• Do you want us to go through the proof?
• Oh, alright then
• Actually, Necessity is easy

• You will do it for homework

• Suffi ciency is harder
• Will sketch it here
• You can ignore for exam purposes



The Expected Utility Theorem

• Step 1
• Find the best prize - in other words the prize such that getting
that prize for sure is preferred to all other lotteries. Give that
prize utility 1 (for convenience, let’s say that a is the best prize)

• Step 2
• Find the worst prize - in other words the prize such that all
lotteries are preferred to getting that prize for sure. Give that
prize utility 0 (for convenience, let’s say that d is the worse
prize)

• Step 3
• Show that, if a > b, then

aδa + (1− a)δd � bδa + (1− b)δd

where δx is the lottery that gives prize x for sure (this is
intuitively obvious, but needs to be proved from the
independence axiom)



The Expected Utility Theorem

• Step 4
• For other prizes (e.g. b), find the probability λ such that the
consumer is indifferent between getting apples with probability
λ and dragonfruit with probability (1− λ), and bananas for
sure. Let u(b) = λ. i.e.

0
1
0
0

 ∼ u(b)

1
0
0
0

+ (1− u(b))

0
0
0
1


(for us to know such a λ exists requires the Archimedean
axiom)

• Step 5
• Do the same for c , so

0
0
1
0

 ∼ u(c)

1
0
0
0

+ (1− u(c))

0
0
0
1





The Expected Utility Theorem

• So now we have found utility numbers for every prize
• All we have to do is show that p � q if and only if

∑x∈X pxu(x) ≥ ∑x∈X qxu(x)

• Let’s do a simple example

p =


0
0.25
0.75
0

 , q =


0
0.75
0.25
0





The Expected Utility Theorem

• First, notice that

p =


0
0.25
0.75
0

 = 0.25


0
1
0
0

+ 0.75

0
0
1
0


• But



The Expected Utility Theorem

• But 
0
1
0
0

 ∼ u(b)

1
0
0
0

+ (1− u(b))

0
0
0
1


and 

0
0
1
0

 ∼ u(c)

1
0
0
0

+ (1− u(c))

0
0
0
1





The Expected Utility Theorem

p ∼ 0.25

u(b)

1
0
0
0

+ (1− u(b))

0
0
0
1




+0.75

u(c)

1
0
0
0

+ (1− u(c))

0
0
0
1






The Expected Utility Theorem

= (0.25u(b) + 0.75u(c))


1
0
0
0

+

(1− 0.25u(b)− 0.75u(c))


0
0
0
1





The Expected Utility Theorem

• So p is indifferent to a lottery that puts probability

(0.25u(b) + 0.75u(c))

on the best prize (and the remainder on the worst prize)

• But this is just the expected utility of p
• Similarly q is indfferent to a lottery that puts

(0.75u(b) + 0.25u(c))

on the best prize

• But this is just the expected utility of q



The Expected Utility Theorem

• So p will be preferred to q if the expected utility of p is higher
than the expected utility of q

• This is because this means that p is indifferent to a lottery
which puts a higher weight on the best prize than does q

• QED (ish)



Expected Utility Numbers

• Remember that when we talked about ’standard’utility
theory, the numbers themselves didn’t mean very much

• Only the order mattered
• So, for example

u(a) = 1 v(a) = 1

u(b) = 2 v(b) = 4

u(c) = 3 v(c) = 9

u(d) = 4 v(c) = 16

• Would represent the same preferences



Expected Utility Numbers

• Is the same true here?
• No!
• According to the first preferences

1
2
u(a) +

1
2
u(c) = 2 = u(b)

and so
1
2
a+

1
2
c ∼ b

• But according to the second set of utilities

1
2
v(a) +

1
2
v(c) = 5 > v(b)

and so
1
2
a+

1
2
c � b



Expected Utility Numbers

• So we have to take utility numbers more seriously here
• Magnitudes matter

• How much more seriously?

Theorem
Let � be a set of preferences on ∆(X ) and u : X → R form an
expected utility representation of �. Then v : X → R also forms
an expected utility representation of � if and only if

v(x) = au(x) + b ∀ x ∈ X

for some a ∈ R++, b ∈ R

Proof.
Homework
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