Subjective Expected Utility Theory

Mark Dean

Behavioral Economics Spring 2017

- In the first class we drew a distinction betweem
 - Circumstances of **Risk** (roulette wheels)
 - Circumstances of Uncertainty (horse races)
- So far we have been talking about roulette wheels
- Now horse races!

Risk vs Uncertainty

- Remember the key difference between the two
- Risk: Probabilities are observable
 - There are 38 slots on a roulette wheel
 - Someone who places a \$10 bet on number 7 has a lottery with pays out \$350 with probability 1/38 and zero otherwise
 - (Yes, this is not a fair bet)
- Uncertainty: Probabilities are not observable
 - Say there are 3 horses in a race
 - Someone who places a \$10 bet on horse A does not necessarily have a 1/3 chance of winning
 - Maybe their horse only has three legs?

Subjective Expected Utility

- If we want to model situations of uncertainty, we cannot think about preferences over **lotteries**
- Because we don't know the probabilities
- We need a different set up
- We are going to thing about acts
- What is an act?

States of the World

- First we need to define states of the world
- We will do this with an example
- Consider a race between three horses
 - A(rchibald)
 - B(yron
 - C(umberbach)
- What are the possible oucomes of this race?
 - Excluding ties

States of the World

State	Ordering	
1	А, В ,С	
2	A, C, B	
3	B, A, C	
4	B, C, A	
5	С, А, В	
6	С, В, А	

- This is what we mean by the states of the world
 - An exclusive and exhaustive list of all the possible outcomes in a scenario
- An **act** is then an action which is defined by the oucome it gives in each state of the world
- Here are two examples
 - Act f: A \$10 even money bet that Archibald will win
 - Act g: A \$10 bet at odds of 2 to 1 that Cumberbach will win

Acts

State	Ordering	Payoff Act f	Payoff Act g
1	А, В ,С	\$10	-\$10
2	A, C, B	\$10	-\$10
3	B, A, C	-\$10	-\$10
4	B, C, A	-\$10	-\$10
5	С, А, В	-\$10	\$20
6	С, В, А	-\$10	\$20

Subjective Expected Utility Theory

- So, how would you choose between acts f and g?
- SEU assumes the following:
- Figure out the probability you would associate with each state of the world
- 2 Figure out the utility you would gain from each prize
- S Figure out the expected utility of each act according to those probabilities and utilities
- **4** Choose the act with the highest utility

Subjective Expected Utility Theory

- So, in the above example
- Utility from *f* :

$$\begin{aligned} & [\pi(ABC) + \pi(ACB)] \, u(10) \\ & + \left[\pi(BAC) + \pi(BCA)\right] u(-10) \\ & + \left[\pi(CBA) + \pi(CAB)\right] u(-10) \end{aligned}$$

where π is the probability of each act

• Utility from g :

$$\begin{aligned} & [\pi(ABC) + \pi(ACB)] \, u(-10) \\ & + [\pi(BAC) + \pi(BCA)] \, u(-10) \\ & + [\pi(CBA) + \pi(CAB)] \, u(20) \end{aligned}$$

• Assuming utility is linear f is preferred to g if

$$\frac{[\pi(ABC) + \pi(ACB)]}{[\pi(CBA) + \pi(CAB)]} \ge \frac{3}{2}$$

• Or the probability of A winning is more than 3/2 times the probability of C winning

Definition

Let X be a set of prizes, Ω be a (finite) set of states of the world and F be the resulting set of acts (i.e. F is the set of all functions $f: \Omega \to X$). We say that preferences \succeq on the set of acts F has a subjective expected utility representation if there exists a utility function $u: X \to \mathbb{R}$ and probability function $\pi: \Omega \to [0, 1]$ such that $\sum_{\omega \in \Omega} \pi(\omega) = 1$ and

$$\begin{array}{ll} \mathbf{f} &\succeq \mathbf{g} \\ \Leftrightarrow & \sum_{\omega \in \Omega} \pi(\omega) \mathbf{u}\left(\mathbf{f}(\omega)\right) \geq \sum_{\omega \in \Omega} \pi(\omega) \mathbf{u}\left(\mathbf{g}(\omega)\right) \end{array}$$

Subjective Expected Utility Theory

Notes

- Notice that we now have **two** things to recover: Utility and preferences
- Axioms beyond the scope of this course: has been done twice first by Savage¹ and later (using a trick to make the process a lot simpler) by Anscombe and Aumann²
- Utility pinned down to positive affine transform
- Probabilities are unique

The Annals of Mathematical Statistics 34 (1963), no. 1, .

¹Savage, Leonard J. 1954. The Foundations of Statistics. New York, Wiley.

²Anscombe, F. J.; Aumann, R. J. A Definition of Subjective Probability.

- Unfortunately, while simple and intuitive, SEU theory has some problems when it comes to describing behavior
- These problems are most elegantly demostrated by the Ellsberg paradox
 - A version of which you have answered as a class
- This thought experiment has sparked a whole field of decision theory
- Fun fact: Danlel Ellsberg was the defence analysis who released the Pentagon papers (!)

The Ellsberg Paradox - A Reminder

- Choice 1: The 'risky bag'
 - Fill a bag with 20 red and 20 black tokens
 - Offer your subject the opportunity to place a \$10 bet on the color of their choice
 - Then elicit the amount x such that the subject is indifferent between playing the gamble and receiving \$x for sure.
- Choice 2: The 'ambiguous bag'
 - Repeat the above experiment, but provide the subject with no information about the number of red and black tokens
 - Then elicit the amount y such that the subject is indifferent between playing the gamble and receiving \$y for sure.

- Typical finding
 - x >> y
 - People much prefer to bet on the risky bag
- This behavior cannot be explained by SEU?
- Why?

- What is the utility of betting on the risky bag?
- The probability of drawing a red ball is the same as the probability of drawing a black ball at 0.5
- So whichever act you choose to bet on, the utility of the gamble is

0.5u(\$10)

- What is the utility of betting on the ambiguous bag?
- Here we need to apply SEU
- What are the states of the world?
 - Red ball is drawn or black ball is drawn
- What are the acts?
 - Bet on red or bet on black

State	r	b
red	10	0
black	0	10

- How do we calculate the utility of these two acts?
 - Need to decide how likely each state is
 - Assign probabilities $\pi(r) = 1 \pi(b)$
 - Note that these do ${\bf not}$ have to be 50%
 - Maybe you think I like red chips!

• Utility of betting on the red outcome is therefore

 $\pi(r)u(\$10)$

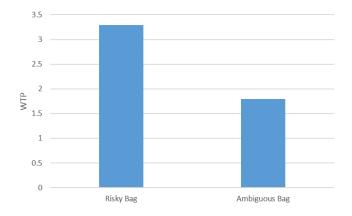
• Utility of betting on the black outcome is

$$\pi(b)u(\$10) = (1 - \pi(r))u(\$10)$$

 Because you get to choose which color to bet on, the gamble on the ambiguous urn is

$$\max\left\{\pi(r)u(\$10), (1-\pi(r))u(\$10)\right\}$$

- is equal to 0.5u(\$10) if $\pi(r) = 0.5$
- otherwise is greater than 0.5u(\$10)
- should always (weakly) prefer to bet on the ambiguous urn
- intuition: if you can choose what to bet on, 0.5 is the worst probability



- 61% of you exhibit the Ellsberg paradox
- For more details see Halevy, Yoram. "Ellsberg revisited: An experimental study." Econometrica 75.2 (2007): 503-536.

Maxmin Expected Utility

- So, as usual, we are left needing a new model to explain behavior
- There have been many such attempts since the Ellsberg paradox was first described
- We will focus on 'Maxmin Expected Utility' by Gilboa and Schmeidler³

³Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.

- Maxmin expected utility has a very natural interpretation....
- The world is out to get you!
 - Imagine that in the Ellsberg experiment was run by an evil and sneaky experimenter
 - After you have chosen whether to bet on red or black, they will increase your chances of losing
 - They will sneak some chips into the bag of the **opposite** color to the one you bet on
 - So if you bet on red they will put black chips in and visa versa

- How should we think about this?
- Rather than their being a single probability distribution, there is a **range** of possible distributions
- After you chose your act, you evaluate it using the **worst** of these distributions
- This is maxmin expected utility
 - you **maximize** the **minimum** utility that you can get across different probability distributions
- Has links to robust control theory in engineering
 - This is basically how you design aircraft

Maxmin Expected Utility

Definition

Let X be a set of prizes, Ω be a (finite) set of states of the world and F be the resulting set of acts (i.e. F is the set of all functions $f: \Omega \to X$). We say that preferences \succeq on the set of acts F has a Maxmin expected utility representation if there exists a utility function $u: X \to \mathbb{R}$ and convex set of probability functions Π and

$$\begin{array}{rcl} f &\succeq & g \\ \Leftrightarrow & \min_{\pi \in \Pi} \sum_{\omega \in \Omega} \pi(\omega) f(\omega) \geq \min_{\pi \in \Pi} \sum_{\omega \in \Omega} \pi(\omega) g(\omega) \end{array}$$

Maxmin Expected Utility

- Maxmin expected utility can explain the Ellsberg paradox
 - Assume that u(x) = x
 - Assume that you think $\pi(r)$ is between 0.25 and 0.75
 - Utility of betting on the risky bag is 0.5u(x) = 5
 - What is the utility of betting on red from the ambiguous bag?

$$\min_{\pi(r)\in[0.25,0.75]}\pi(r)u(\$10) = 0.25u(\$10) = 2.5$$

· Similary, the utility from betting on black is

$$\min_{\pi(r)\in[0.25,0.75]} (1 - \pi(r)) u(\$10) = 0.25u(\$10) = 2.5$$

• Maximal utility from betting on the ambiguous bag is lower than that from the risky bag

- Models of ambiguity aversion have been used to explain a number of phenomena in economics and finance
- One example: the existence of a 'no trade' region in asset prices⁴
 - Imagine that there is a financial asset that pays \$10 if a company is a success, and \$0 otherwise.
 - The price of the asset is *p*.
 - As an investor, you are can buy 1 unit of this asset, or you can short sell 1 unit of the asset.
 - If you buy the asset you pay p and receive \$10 if the company is a success.
 - If you short sell the asset, then you have receive *p* for sure, but have to pay \$10 if the company does well.

⁴Dow, James & Werlang, Sergio Ribeiro da Costa, 1992. "Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio," Econometrica, Econometric Society, vol. 60(1), pages 197-204, January.

- How would an SEU person decide what to do?
- Let $\pi(g)$ be the probability they assign to the company doing well
- Assume utility is linear
- Utility from buying the asset is

$$\pi(g) (10 - p) + (1 - \pi(g))(-p)$$

• Utility from selling the asset is

$$\pi(g)(p-10) + (1 - \pi(g))(p)$$

• Utility from doing neither is 0

So, if

$$p < 10\pi(g)$$

Then the best option is to buy, whereas if

 $p > 10\pi(g)$

the best option is to short sell

- Key point: they would like to trade at any p
 - At $p = 10\pi(good)$ they will be indifferent

- What about a Maxmin expected utility person?
- Let's say they have a range of possible probabilities of the firm doing well
 - $\pi^*(g)$ is the highest
 - π_{*}(g) is the lowest

with $\pi^*(\mathbf{g}) > \pi_*(\mathbf{g})$

- Which probability will they use to assess buying the asset?
 - The value of the asset is increasing in $\pi(g)$,
 - Will use the **lowest** value $\pi_*(g)$
 - So the value of buying the asset is

$$\pi_*(g) (10 - p) + (1 - \pi_*(g))(-p)$$

• will buy if

 $p < 10\pi_*(g)$

- Which probability will they use to assess short selling the asset?
 - The value of the short selling the asset is decreasing in $\pi(g)$,
 - Will use the **highest** value $\pi^*(g)$
 - So the value of buying the asset is

$$\pi^*(g) (10 - p) + (1 - \pi^*(g))(-p)$$

• will buy if

 $p>10\pi^*(g)$

- Unlike for the SEU guy there is a **no trade region** for prices
- If we have

$$10\pi_*(g)$$

- Then the DM will not want to sell or buy the asset
- This is because they use different probabilities to assess each case