Temptation and Self Control: Evidence

Mark Dean

Behavioral Economics Spring 2017

Introduction

- A sketch of the theoretical conclusions
 - People who suffer from temptation and who are
 - · Certain about the future
 - Sophisticated

Should exhibit preferences for commitment

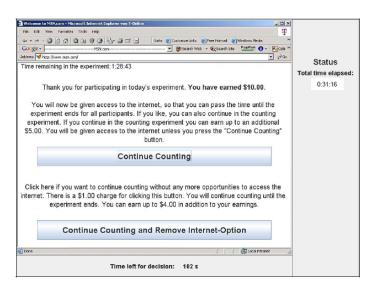
- Non-exponential discounting should lead to
 - Preference reversals in intertemporal choice
 - · Preference for commitment
- In this lecture we will talk about the evidence for
 - Preference for commitment
 - Preference for flexibility
 - Preference reversals in discounting experiments
 - The link between the two
 - Sophistication

Preference for Commitment

- Do we see much evidence for 'Preference for Commitment' in the field?
- Arguably not much
- Some evidence for 'informal' commitment devices
 - New year's resolutions
 - Joining a gym
 - ROSCAs
- Most formal commitment devices have been generated by behavioral economists
 - Stiikk
 - Beeminder
 - SMART
- And are relatively small in scale
 - e.g. Stickk has 329,000 'commitments'

Can We Generate A Preference for Commitment?

- Two examples:
- Lab: "Temptation and commitment in the laboratory," [Hauser et al 2010]
 - See also "Eliciting temptation and self-control through menu choices: a lab experiment" [Toussaert 2015]
- Field: "Self Control at Work" [Kaur et al 2015]
 - See also ""Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines," [Ashraf et al 2006]


Can We Generate A Preference for Commitment?

- Two examples:
- Lab: "Temptation and commitment in the laboratory," [Hauser et al 2010]
 - See also "Eliciting temptation and self-control through menu choices: a lab experiment" [Toussaert 2015]
- Field: "Self Control at Work" [Kaur et al 2015]
 - See also ""Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines," [Ashraf et al 2006]

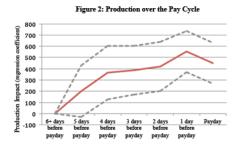
• Basic set up: Counting Task

Count the number of ones:	
101000010	Status Total time elapsed: 0:03:05
Submit	
Time left for decision: 10 s	

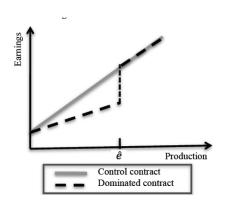
- Basic set up: Counting Task
 - Counting task appeared every 1, 2 or 3 minutes
 - Experiment lasts 2 hrs
 - Subjects earn \$15 if they get at least 70% of all counting tasks correct
 - (This is a really unpleasant task)
- Every so often, (and to their surprise) subjects would face a temptation screen

- Offered the chance to quit the task and surf the internet
 - Would only get a fraction of the \$15
- Could also choose to 'commit' to not surfing
 - Pay some amount (possibly \$0) not to see any more temptation screens

Phase	Duration	Number of counting tasks	Number of temptation screens	Commitment cost [in \$]	Final payoff if surfing [in \$]	Additional payoff for counting to end of experiment [in \$]
0	30 min	15	0			
1	45 min	12	6	C	P_1	$W_1 = 15 - P_1$
2	45 min	12	6	C	P_2	$W_2 = 15 - P_2$



- There are subjects who prefer commitment (40%)
 - Though few are prepared to pay for it (20%)
- Higher rewards lead to more preference for commitment
 - What one would expect if the pay enters u but not v
- Evidence of 'strict set betweenness'?
 - Subjects will ignore temptation and choose commitment
- Inefficient dynamics:
 - If you are going to pay for commitment, should pay for it straight away
- But there are problems with the design
 - Unmodelled dynamic problem
 - Subjects surprised by surfing screen
 - Temptation and commitment offered at the same time


Can We Generate A Preference for Commitment?

- Two examples:
- Lab: "Temptation and commitment in the laboratory," [Hauser et al 2010]
 - See also "Eliciting temptation and self-control through menu choices: a lab experiment" [Toussaert 2015]
- Field "Self Control at Work" [Kaur et al 2015]
 - See also ""Tying Odysseus to the Mast: Evidence from a Commitment Savings Product in the Philippines," [Ashraf et al 2006]

- Consider a job in which you get paid piece rate
 - Paid only at the end of the week
- What is the effect of temptation (e.g. quasi hyperbolic discounting)?
 - Pay day effects: work harder when reward is immediate
 - May work less hard in period t+1 than would like in period t:
 Creates a demand for commitment
- Test this using an experiment with a data entry firm in Mysore, India

- 102 workers over 8 months
- Number of additional fields (over a base of about 5000)
- Size of effect inconsistent with discounting
- Gradual slope: incommensurate with quasi-hyperbolic discounting?

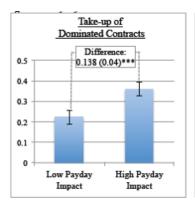
- Dominated Contracts: Reduce pay if target is not met
- A form of commitment, as it removes the possibility of producing less than the target at the same pay

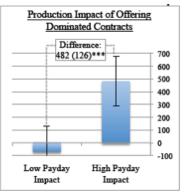
Table 3
Contract Treatments

	<u>=</u>
Panel A: Take-up of Dominated Contracts (Summary S	Statistics)
Dominated contract chosen: conditional on attendance	0.36 (0.31)
Dominated contract chosen: target=0 if absent	0.28 (0.26)

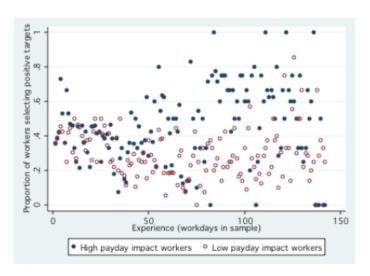
- In some weeks, workers offered the chance to choose a target
 b
- Receive half pay if fail to hit target
- t=0 the same as the standard contract

Dependent var: Attendance


Dependent variable:			
Production			
Control &	Control &	Full Sample	
Option Obs	Option Obs	run sample	
(1)	(2)	(3)	


Panel B: Treatment Effects of Contracts

Sample	Option Obs	Option Obs	Full Sample	Full Sample	
	(1)	(2)	(3)	(4)	
Option to choose dominated contract	120 (59)**				
Evening option to choose dominated contract		156 (69)**	150 (69)**	0.01 (0.01)	
Morning option to choose dominated contract		84 (69)	73 (69)	-0.00 (0.01)	
Target imposed: Low target		(11)	3 (90)	-0.00 (0.01)	
Target imposed: Medium target			213 (91)**	-0.01 (0.01)	
Target imposed: High target			334 (150)**	-0.01 (0.02)	
Observations: worker-days	6310	6310	8423	8423	
R2	0.60	0.60	0.59	0.15	
Dependent variable mean	5311	5311	5337	0.88	


• Targets increased output

- If they were self imposed (columns 1 and 2)
- Exogenously imposed (3)

- Those with high payday impacts more likely to take up dominated contract
- Output also more affected

 Those with high payday impacts also chose the dominated contract more with experience

Preference for Commitment

- So we can generate preference for commitment
- But (perhaps) surprisingly little of it
- Why?
- (At least) two possibilities
 - Preference for Flexibility (Discuss this now)
 - Lack of sophistication (Discuss after we have talked about time preference experiments)

Preference Uncertainty Model

- Preference uncertainty is the enemy of preference for commitment
 - Creates preference for flexibility
- Can we find evidence for preference uncertainty?
 - Dean and McNeill [2015]

Experimental Design

- Simulated workplace environment
- Subject perform real effort tasks for payment according to payment contracts
 - Choice from menus
- Subjects choose between different payment contracts
 - Choice between menus

• Simple addition tasks

Task 3

Time remaining in section: 13:43.

Contracts

Contract 11

Tasks completed	Payment
0-4	0.00
5-9	0.00
10-14	0.00
15-19	0.00
20-49	0.20
50+	0.20

Contract 25

CONTRACT EC				
Tasks completed	Payment			
0-4	0.00			
5-9	0.00			
10-14	0.00			
15-19	0.00			
20-49	0.00			
50+	0.40			

Contract 24

Tasks completed	Payment				
0-4	0.00				
5-9	0.00				
10-14	0.00				
15-19	0.00				
20-49	0.20				
50+	0.40				

• Low (L), High (H) and Flex (F)

Contracts

• Each contact offers two or three undominated options

Tasks	0	20	50
Payment	0	20	40
L	Yes	Yes	No
Н	Yes	No	Yes
F	Yes	Yes	Yes

• Note that $F = L \cup H$

Choice of Contracts

Contract 2	25	Contract 2	24
Tasks completed	Tasks completed Payment		Payment
0-4	0.00	0-4	0.00
5-9	0.00	5-9	0.00
10-14	0.00	10-14	0.00
15-19	0.00	15-19	0.00
20-49	0.00	20-49	0.20
50+	0.40	50+	0.40

© Contract 25 + \$0.50	Contract 24
Contract 25 + \$0.15	Contract 24
© Contract 25 + \$0.10	Contract 24
Contract 25 + \$0.05	Contract 24
© Contract 25 + \$0.01	Contract 24
Contract 25	Contract 24
Contract 25	Contract 24 + \$0.01
Contract 25	© Contract 24 + \$0.05
Contract 25	© Contract 24 + \$0.10
Contract 25	© Contract 24 + \$0.15
Contract 25	Contract 24 + \$0.50

• Three questions: H vs L, H vs F, L vs F

Evidence for Preference for Flexibility

- Can identify five types of subject
- Preference for flex

•
$$F \succ L$$
 and $F \succ H$

Standard

•
$$F \sim L \succ H$$
 or $F \sim H \succ L$

- Indifferent
 - F ~ L ~ H
- Commitment
 - $L \succ F$ or $H \succ F$
- Intransitive

Evidence for Preference for Flexibility

Type	N	Percent	Benchmark I	p-value	Benchmark II	p-value
Flexibility	43	35%	17%	0.00	6%	0.00
Standard	40	32%	17%	0.00	6%	0.00
Indifferent	23	19%	25%	0.12	13%	0.06
Commitment	7	6%	42%	0.00	16%	0.00
Intransitive	11	9%	-	-	59%	0.00

- Benchmark 1: Uniform random choice over transitive preference profiles
- Benchmark 2: Randomizing between preferences at each choice

Time Preference Experiments

- Typical time preference experiment [e.g Benhabib Bisin Schotter 2007]:
 - Identify \$x that is indifferent to \$y in 1 month's time
 - Identify \$z\$ in 1 month's time that is indifferent to \$w\$ in 2 month's time
- Approximate the discount rates as

$$\delta(0,1) = \frac{x}{y}$$
$$\delta(1,2) = \frac{z}{w}$$

• Evidence of present bias if

$$\frac{x}{y} < \frac{z}{w}$$

Time Preference Experiments

- Example: Dean and Ortoleva [2013]
- Indifferent between \$9.28 in 5 weeks and \$10 in 7 weeks
 - Implies discount rate of about 0.93
- Indifferent between \$8.94 today and \$10 in 2 weeks
 - Implies discount rate of about 0.89
- But there are problems with this approach
 - Trust/transaction costs
 - Money≠Utility
 - Arbitrage

Transaction Costs/Trust

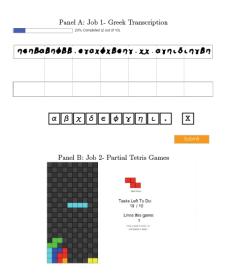
	week 1		week 2		week 3		
	A	В	A	В	A	В	
avg. switch at or below (CFA)	157.0	155.6	153.5	152.4	158.4	154.6	
correlation A	weeks 1 and 2: 0.61			weeks 2 and 3: 0.67			
correlation B	weeks 1 and 2: 0.62			week	weeks 2 and 3: 0.64		
A=B	64.40%		65.39%		69.82%		
more patient in A	18.47%		16.17%		13.32%		
more patient in B	17.13%		18.45%		16.86%		
pay neg. interest	9.66 %	8.15%	7.38%	5.52%	7.37%	6.86%	
inconsistent	14.76%	13.93%	10.16%	11.71%	11.13%	10.51%	
N	969		965		961		

- Experiment in urban Mali
- Surveyors came to the house every week
- No problem with transaction costs or trust
- No present bias!

Measuring Time Preferences

- So we can solve the trust/transaction costs problem
- But there are still issues with using money
- Arbitratge:
 - If you can get 5% interest at the local bank, why would you ever accept anything other than 5% in the experiment?
- Shocks
 - If your rent is due today, maybe money is more valuable today than it would be in a week
 - You would look present bias
- In neither case would you be learning about time preferences

Measuring Time Preferences

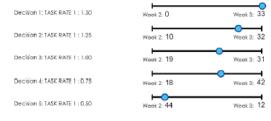

- How to solve the problem
- We could use something other than money
 - Primary Rewards: e.g. "Time Discounting for Primary Rewards" [McClure et al 2007]
 - Effort: e.g "Working Over Time: Dynamic Inconsistency in Real Effort Tasks" [Augenblick et al 2015]
- Does this solve the problem?
- Depends on whether people
 - Suffer shocks to the cost of effort
 - Can 'smooth' effort

Measuring Time Preferences

- Augenblick et al [2015]
- Discounting in a real effort experiment
- Have to complete a number of tasks in order to earn \$100
 - Greek translations
 - Tetris games (!)
- Can decide how to trade off tasks
 - Today vs next week
 - Next week vs week after
 - Using 'convex time budgets'

Working Over Time

Augenblick et al. [2015]


Working Over Time

Augenblick et al. [2015]

8

Job 1 Transcription

Please use the sliders to allocate tasks between Week 2 and Week 3.

Submit

Working Over Time

Augenblick et al. [2015]

	Monetary Discounting		Effort Discounting		
	(1) All Delay Lengths	(2) Three Week Delay Longthe	(3) Job 1 Greek	(4) Job 2 Tetris	(5) Combined
Present Bias Parameter: $\hat{\beta}$	0.974 (0.009)	0.988 (0.009)	0.900 (0.037)	0.877 (0.036)	0.888 (0.033)
Daily Discount Factor: $\hat{\delta}$	0.998 (0.000)	0.997 (0.000)	0.999 (0.004)	1.001 (0.004)	1.000 (0.004)
Monetary Curvature Parameter: $\hat{\alpha}$	0.975 (0.006)	0.976 (0.005)			
Cost of Effort Parameter: $\hat{\gamma}$			1.624 (0.114)	1.557 (0.099)	1.589 (0.104)
# Observations # Clusters Job Effects	1500 75	1125 75	800 80	800 80	1600 80 Yes
$H_0: \beta = 1$	$\chi^2(1) = 8.77$ (p < 0.01)	$\chi^2(1) = 1.96$ (p = 0.16)		$\chi^2(1) = 11.43$ $(p < 0.01)$	
$H_0: \beta(Col.\ 1) = \beta(Col.\ 5)$	$\chi^2(1) = 6.37$ (p = 0.01)				
$H_0: \beta(Col.\ 2) = \beta(Col.\ 5)$		$\chi^{2}(1) = 8.26$ $(p < 0.01)$			

Link Between Preference Reversals and Preference for Commitment

- Augenblick et al. [2015] find preference reversals in the real effort task
- Does this lead to a preference for commitment?
- Recall:

Non-exponential discounting

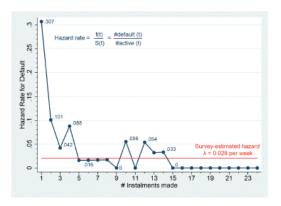
- ⇔ Preference reversals
- ⇔ Demand for commitment
- Subjects offered a commitment device
 - Choice for effort at t+1 vs t+2 made at time t and t+1
 - Commitment: Higher probability that time t choice would be operationalized

Link Between Preference Reversals and Preference for Commitment

Table 4: Monetary and Real Effort Discounting by Commitment

	Monetary 1	Discounting	Effort Discounting		
	Commit $(=0)$	$Commit\ (=1)$	Commit (=0)	$Commit\ (=1)$	
	(1) Tobit	(2) Tobit	(3) Tobit	(4) Tobit	
Present Bias Parameter: $\hat{\beta}$	0.999 (0.010)	0.981 (0.013)	0.965 (0.022)	0.835 (0.055)	
Daily Discount Factor: $\hat{\delta}$	0.997 (0.000)	0.997 (0.001)	0.988 (0.005)	1.009 (0.005)	
Monetary Curvature Parameter: $\hat{\alpha}$	0.981 (0.009)	0.973 (0.007)			
Cost of Effort Parameter: $\hat{\gamma}$			1.553 (0.165)	1.616 (0.134)	
# Observations # Clusters Job Effects	420 28 -	705 47 -	660 33 Yes	940 47 Yes	
$H_0: \beta = 1$	$\chi_2(1) = 0.01$ $(p = 0.94)$	$\begin{array}{c} \chi_2(1) = 2.15 \\ (p = 0.14) \end{array}$	$\chi_2(1) = 2.64$ $(p = 0.10)$	$\begin{array}{c} \chi_2(1) = 9.00 \\ (p < 0.01) \end{array}$	
$H_0: \beta(Col.\ 1) = \beta(Col.\ 2)$	$\chi_2(1) = 1.29$ (p = 0.26)				
$H_0: \beta(Col.\ 3) = \beta(Col.\ 4)$			$\chi_2(1) = 4.85 (p = 0.03)$		

- Subjects who commit have higher measured present bias
- However, as usual, hard to get people to pay for commitment


- Is the fact that present bias agents won't pay for commitment a sign of a lack of sophistication?
- Maybe present bias is not due to non-exponential discounting
- Do we have other evidence for lack of sophistication?

- "Paying Not to Go to the Gym" [DellaVigna and Malmendier, 2006]
- Test whether people have sophisticated beliefs about their future behavior
- Examine the contract choices of 7978 healthcare members
- Also examine their behavior (i.e. how often they go to the gym)
- Do people overestimate how much they will go the gym, and so choose the wrong contract?

- Three contracts
 - Monthly Contract automatically renews from month to month
 - Annual Contract does not automatically renew
 - Pay per usage

- Consumers appear to be overconfident
 - Overestimate future self control in doing costly tasks
 - Going to the gym
 - Cancelling contract
- 80% of customers who buy monthly contracts would be better off had they paid per visit (assuming same number of visits)
 - Average cost of \$17 vs \$10
- Customers predict 9.5 visits per month relative to 4.5 actual visits
- Customers who choose monthly contracts are 18% more likely to stay beyond a year than those who choose annual contract, and wait 2.29 months after last visit before cancelling

- Naivete can also lead people to take up commitment contracts which are bad for them
 - "When Commitment Fails Evidence from a Regular Saver Product in the Philippines" [John 2015]
- Subjects offered the chance to take up an "Achiever's Savings Account"
 - Had to make regular payments
 - · If they failed, paid a 'default cost'
 - Interest rate equal to the standard market rate

- 55% default on contract
- Largely do so 'immediately': unlikely to be due to shocks

Summary

- There are not a lot of naturally occurring commitment devices out there
- But people can be induced to take up commitment
 - Often will not pay for it
- Two possible reasons for this
 - Preference for flexibility
 - Lack of sophistication

There is evidence for both of these

- Time preference experiments run with money are problematic
- Other tasks may be better
 - Show more present bias
- There is a link between present bias and preference for commitment