Bounded Rationality Lecture 1

Mark Dean

Princeton - Behavioral Economics

Plan for this Part of Course

- Bounded Rationality (4 lectures)
- Reference dependence (3 lectures)
- Neuroeconomics (2 lectures)
- Temptation and Self control (3 lectures)

(Tentative) Plan for Bounded Rationality

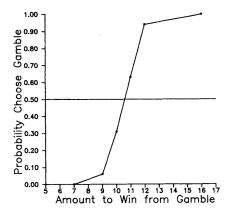
- Introduction, Costly information acquisition I: Models of Sequential Search and Satisficing
- 2 Costly Information acquisition II: Rational Inattention
- 3 Applications of costly information
- 4 Costly Thinking

What is Bounded Rationality?

- "Optimizing behavior with additional constraints"
- Costly information acquisition or processing
 - Stigler 1961, Sims 2002
- Bounded Memory
 - Wilson 2003, Rubinstein 1984
- Thinking/consideration costs
 - Bolton and Faure-Grimaud 2009, Ortoleva 2012

What is Bounded Rationality?

- Compare to other forms of behavioral economics
- Mess around with preferences
 - Loss Aversion
- Models which assume mistakes
 - Rabin and Vayanos 2010
- Potentially, both can be seen as 'reduced form' of bounded rationality


Advantages and Disadvantages of Bounded Rationality

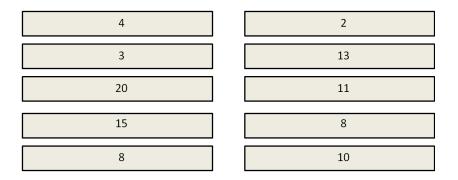
- Advantage:
 - Can 'microfound' behavioral models explain how behavioral phenomena can change with the environment
- Disadvantages:
 - What is correct constraint?
 - Regress issue

- Random Choice
- Status Quo Bias
- Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

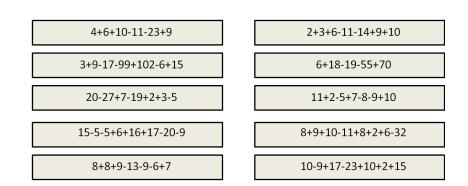
- Random Choice
- Status Quo Bias
- Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

Random Choice (Mosteller and Nogee 1951)

- Gamble is $\frac{1}{3}$ probability win amount and $\frac{2}{3}$ loss of 5c
- Each bet offered 14 times


- Random Choice
- Status Quo Bias
- Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

Status Quo Bias/Inertia (Madrian and Shea 2001)


- Observe behavior of workers in firms that offer 401k savings plans
- Two types of plans
 - Opt In
 - Opt Out
- Average take up after 3-15 months of tenure
 - Opt In: 37%
 - Opt Out: 86%
- Effect reduces with tenure
- Also an effect on those not automatically enrolled

- Random Choice
- Status Quo Bias
- Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

Failure to Choose the Best Option (Caplin, Dean, Martin 2011)

Failure to Choose the Best Option (Caplin, Dean, Martin 2011)

Choice Objects

• 6 treatments

- 2 x complexity (3 and 7 operations)
- 3 × choice set size (10, 20 and 40 options)
- No time limit

Size 10, Complexity 3

Round	Current selection:		
2 of 30	four plus eight minus four		
Choose one:			
0	zero		
0	three plus five minus seven		
0	four plus two plus zero		
0	four plus three minus six		
<u>R</u>	four plus eight minus four		
Ő	three minus three plus one		
0	five plus one minus one		
0	eight plus two minus five		
0	three plus six minus five		
0	four minus two minus one		
0	five plus five minus one		

Finished

Size 20, Complexity 7

\odot	zero
\odot	seven minus four minus two minus four minus two plus eleven minus four
\odot	six plus five minus eight plus two minus nine plus one plus four
\odot	seven minus two minus four plus three plus four minus three minus three
\odot	seven plus five minus two minus two minus three plus zero minus two
\odot	six plus seven plus six minus two minus six minus eight plus four
\odot	six plus two plus five minus four minus two minus seven plus three
\odot	six minus four minus one minus one plus five plus three minus six
٥	two plus six plus seven minus two minus four minus two plus zero
\odot	two minus three minus five plus nine minus one plus five minus three
\odot	three plus zero plus two plus zero plus one minus three minus one
\odot	four plus three plus zero minus two plus three plus four minus ten
\odot	seven plus two plus seven minus seven plus three minus two minus two
\odot	three plus three minus two plus zero plus zero minus four plus five
\odot	two minus two plus zero plus nine minus two minus one minus one
\odot	three plus four minus three plus three minus four plus three minus four
\odot	three plus five plus seven plus five minus two minus seven minus ten
\odot	three plus six minus eight plus one plus two minus two plus zero
\odot	three plus five plus zero plus four plus three minus four minus two
\odot	eight minus one plus one minus four minus four minus five plus six
\odot	four minus five plus four minus one minus four plus zero plus four

Finished

Results Failure rates (%) (22 subjects, 657 choices)

Failure rate			
	Complexity		
Set size	3	7	
10	7%	24%	
20	22%	56%	
40	29%	65%	

Results Average Loss (\$)

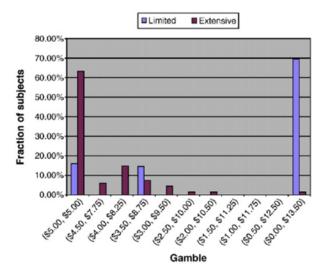
Average Loss (\$)			
	Complexity		
Set size	3	7	
10	0.41	1.69	
20	1.10	4.00	
40	2.30	7.12	

- Random Choice
- Status Quo Bias
- Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

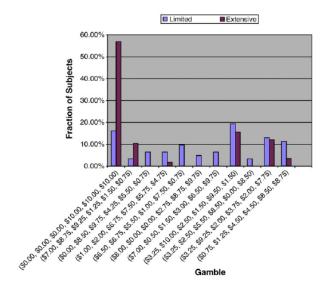
Salience (Chetty, Looney and Kroft, 2009)

- Experiment in supermarket
- Posted prices usually exclude sales tax
- Post (in addition) prices including sales tax
- Reduced demand for these good by about 8%
- In same supermarket, archival data shows that, for alcohol, elasticity with respect to sales tax changes order of magnitude less that elasticity with respect to price changes

- Random Choice
- Status Quo Bias
- Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

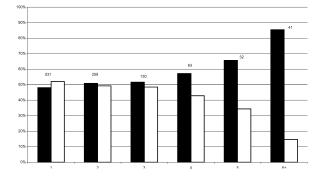

Too Much Choice (Iyengar and Lepper 2000)

- Set up a display of jams in a local supermarket
- Two treatments:
 - Limited choice 6 Jams
 - Extensive choice 24 Jams
- Record what proportion of people stopped at each display
- And proportion of people bought jam conditional on stopping


Too Much Choice (Iyengar and Lepper 2000)

- Slightly more people stopped to look at the display in the extensive choice treatment:
 - 60% Extensive choice treatment
 - 40% Limited choice treatment
- Far more people chose to buy jam, conditional on stopping, in the Limited choice treatment
 - 3% Extensive choice treatment
 - 31% Limited choice treatment

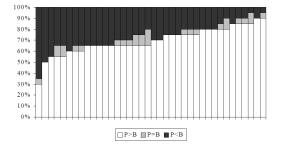
Gamble #	If heads	If tails
Extensive condition		
1	\$5.00	\$5.00
2	\$4.50	\$7.75
3	\$4.00	\$8.25
4	\$3.50	\$8.75
5	\$3.00	\$9.50
6	\$2.50	\$10.00
7	\$2.00	\$10.50
8	\$1.50	\$11.25
9	\$1.00	\$11.75
10	\$0.50	\$12.50
11	\$0.00	\$13.50
Limited condition		
1	\$5.00	\$5.00
2	\$3.50	\$8.75
3	\$0.00	\$13.50



Extensive condition						
Gamble #	lf 🖸	lf 💽	If 🖸	lf ∷	If 🗵	If 🔢
1	\$0.00	\$0.00	\$0.00	\$10.00	\$10.00	\$10.00
2	\$1.50	\$9.25	\$8.75	\$7.00	\$0.75	\$1.25
3	\$4.25	\$5.50	\$9.75	\$8.50	\$0.00	\$0.75
4	\$1.00	\$2.00	\$6.75	\$7.50	\$5.75	\$4.75
5	\$5.50	\$1.00	\$0.75	\$6.50	\$7.50	\$6.75
6	\$0.00	\$0.00	\$8.75	\$2.75	\$9.75	\$8.00
7	\$9.75	\$3.00	\$7.00	\$6.50	\$0.50	\$1.50
8	\$9.50	\$1.50	\$1.50	\$2.50	\$3.25	\$10.00
9	\$5.50	\$8.50	\$3.25	\$0.00	\$8.50	\$2.50
10	\$9.25	\$7.75	\$3.75	\$2.00	\$3.25	\$2.00
11	\$1.25	\$4.50	\$8.50	\$8.75	\$4.50	\$0.75

- Random Choice
- Status Quo Bias
- Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

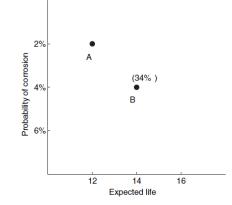
Gambler's Fallacy (Croson and Sundali 2005)

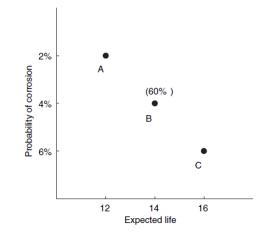


• Proportion of Gambler's Fallacy bets in casino gambling

Hot Hands Fallacy (Offerman and Sonnemans 2000)

- Two types of coin
 - 'Fair': Independent
 - 'Unfair': Repeat last outcome with probability 70%
- Prior distribution: 50/50
- Subjects observe 20 coin flips, then report probability of unfair coin


Gambler's Fallacy (Croson and Sundali 2005)


• For each subject, proportion that overestimate probability of unfair coin

- Random Choice
- Status Quo Bias
- Failure to Choose the Best Option
- Salience/Framing Effects
- Too Much Choice
- Statistical Biases
- Compromise Effect

Compromise Effect (Simonsen 1989)

Compromise Effect (Simonsen 1989)

Satisficing as Optimal Stopping

- Satisficing model: Simon [1955]
- Very simple model:
 - Decision maker faced with a set of alternatives A
 - Searches through this set one by one
 - If they find alternative that is better than some threshold, stop search and choose that alternative
 - If all objects are searched, choose best alternative

- Usually presented as a compelling description of a 'choice procedure'
- Can also be derived as optimal behavior as a simple sequential search model with search costs
- Primitives
 - A set A containing M items from a set X
 - A utility function $u: X \to \mathbb{R}$
 - A probability distribution *f* :decision maker's beliefs about the value of each option
 - A per object search cost k

The Stopping Problem

- At any point DM has two options
- Stop searching, and choose the best alternative so far seen (search with recall)
- **2** Search another item and pay the cost k

- Solve by backwards induction
- Choice when there is 1 more object to search and current best alternative has utility $\bar{\boldsymbol{u}}$
- 1 Stop searching: $\bar{u} (M-1)k$
- **2** Search the final item:

$$\int_{-\infty}^{\bar{u}} \bar{u}f(u)du + \int_{\bar{u}}^{\infty} uf(u)du - Mk$$

Optimal Stopping

• Stop searching if

$$ar{u} - (M-1)k \leq \int_{-\infty}^{ar{u}} ar{u}f(u)du + \int_{ar{u}}^{\infty} uf(u)du - Mk$$

Implying

$$k \leq \int_{\bar{u}}^{\infty} \left(u - \bar{u} \right) f(u) du$$

• Cutoff strategy: search continues if $\bar{u} > u^*$ solving

$$k = \int_{u^*}^{\infty} \left(u - u^* \right) f(u) du \tag{1}$$

- Now consider behavior when there are 2 items remaining
- $\bar{u} < u^*$ Search will continue
 - Search optimal if one object remaining
 - Can always operate continuation strategy of stopping after searching only one more option
- $\bar{u} > u^*$ search will stop
 - Not optimal to search one more item only
 - Search will stop next period, as $\bar{u} > u^*$

Optimal Stopping

- Optimal stopping strategy is satisficing:
- Find u^{*} that solves

$$k = \int_{u^*}^{\infty} \left(u - u^* \right) f(u) du$$

- Continue searching until find an object with $u > u^*$, then stop
- Predictions about how reservation level changes with environment
 - *u*^{*} decreasing in *k*
 - increasing in variance of f (for well behaved distributions)
 - Unaffected by the size of the choice set
- Comes from optimization, not reduced form satisficing model

Testing Satisficing: The Problem

- Satisficing models difficult to test using choice data alone
 - If search order is fixed, prediction is just WARP
 - If it can vary, any behavior can be explained
- Two ways out:
 - Make more assumptions
 - Enrich data set
- Consider the latter:- Choice Process Data
 - Campbell (1978)
 - Caplin and Dean (2010)
 - Caplin, Dean and Martin (2011)

Characterizing the Satisficing Model

- Two main assumptions
- 1 Search is alternative-based
 - DM searches through items in choice set sequentially
 - Completely understands each item before moving on to the next
- 2 Stopping is due to a fixed reservation rule
 - Subjects have a fixed reservation utility level
 - Stop searching if and only if find an item with utility above that level

- In order to test predictions of our model we introduce 'choice process' data
- Records how choice changes with contemplation time
 - C(A): Standard choice data choice from set A
 - C_A(t): Choice process data choice made from set A after contemplation time t

Notation

- X : Finite grand choice set
- \mathcal{X} : Non-empty subsets of X
- $Z \in \{Z_t\}_t^\infty$: Sequences of elements of \mathcal{X}
- \mathcal{Z} set of sequences Z
- $\mathcal{Z}_A \subset \mathcal{Z}$: set of sequences s.t. $Z_t \subset A \in \mathcal{X}$

A Definition of Choice Process

Definition

A Choice Process Data Set (X, C) comprises of:

- finite set X
- choice function $C: \mathcal{X} \to \mathcal{Z}$

such that $C(A) \in \mathcal{Z}_A \ \forall \ A \in \mathcal{X}$

• $C_A(t)$: choice made from set A after contemplation time t

- DM has a fixed utility function
- Searches sequentially through the available options,
- Always chooses the best alternative of those searched
- May not search the entire choice set
- 'Standard' model of information search within economics
 - Stigler [1960]
 - McCall [1970]
- (We will consider other forms of information acquisition next lecture)

• DM is equipped with a utility function

$$u: X \to \mathbb{R}$$

• and a search correspondence

$$S: \mathcal{X} \to \mathcal{Z}$$

with $S_A(t) \subseteq S_A(t+s)$

Such that the DM always chooses best option of those searched

$$\mathcal{C}_{\mathcal{A}}(t) = rg\max_{x\in\mathcal{S}_{\mathcal{A}}(t)}u(x)$$

- Finally choosing x over y does not imply (strict) revealed preference
 - DM may not know that y was available
- Replacing y with x does imply (strict) revealed preference
 - DM must know that y is available, as previously chose it
 - Now chooses x, so must prefer x over y
- Choosing x and y at the same time reveals indifference
- Use \succ^{ABS} to indicate ABS strict revealed preference
- Use \sim^{ABS} to indicate revealed indifference

Characterizing ABS

• Choice process data will have an ABS representation if and only if \succ^{ABS} and \sim^{ABS} can be represented by a utility function u

$$\begin{array}{rcl} x & \succ & {}^{ABS}y \Rightarrow u(x) > u(y) \\ x & \sim & {}^{ABS}y \Rightarrow u(x) = u(y) \end{array}$$

- Necessary and sufficient conditions for utility representation well known:
 - Let $\succeq^{ABS} = \succ^{ABS} \cup \sim^{ABS}$
 - Then if

$$x_1 \succeq^{ABS} x_2, ..., x_{n-1} \succeq^{ABS} x_n \succeq^{ABS} x_1$$

- then there is no k such that $x_k \succ^{ABS} x_{k+1}$
- We call this condition Only Weak Cycles

Theorem 1

Theorem Choice process data admits an ABS representation if and only if \succ^{ABS} and \sim^{ABS} satisfy Only Weak Cycles

- Choice process data admits an **satisficing representation** if we can find
 - An ABS representation (u, S)
 - A reservation level ρ
- Such that search stops if and only if an above reservation object is found
 - If the highest utility object in $S_A(t)$ is above ho, search stops
 - If it is below ρ , then search continues
- Implies complete search of sets comprising only of below-reservation objects

Revealed Preference and Satisficing

- Final choice can now contain revealed preference information
 - If final choice is below-reservation utility
- How do we know if an object is below reservation?
- If they are **non-terminal**: Search continues after that object has been chosen

Directly and Indirectly Non-Terminal Sets

- Directly Non-Terminal: $x \in X^N$ if
 - $x \in C_A(t)$
 - $C_A(t) \neq C_A(t+s)$
- Indirectly Non Terminal: $x \in X^{I}$ if
 - for some $y \in X^N$
 - $x, y \in A$ and $y \in \lim_{t \to \infty} C_A(t)$
- Let $X^{IN} = X^I \cup X^N$

Add New Revealed Preference Information

• If

- one of $x, y \in A$ is in X^{IN}
- x is finally chosen from some set A when y is not,
- then, $x \succ^{S} y$
 - If x is is in X^{IN}, then A must have been fully searched, and so x must be preferred to y
 - If y is in X^{IN}, then either x is below reservation level, in which case the set is fully searched, or x is above reservation utility

• Let
$$\succ = \succ^{S} \cup \succ^{ABS}$$

Theorem 2

Theorem Choice process data admits an satisficing representation if and only if \succ and \sim^{ABS} satisfy Only Weak Cycles

• Experimental design has two aims

- Identify choice 'mistakes'
- Test satisficing model as an explanation for these mistakes
- Two design challenges
 - Find a set of choice objects for which 'choice quality' is obvious and subjects do not always choose best option
 - Find a way of eliciting 'choice process data'
- We first test for 'mistakes' in a standard choice task...
- ... then add choice process data in same environment

• Subjects choose between 'sums'

four plus eight minus four

- Value of option is the value of the sum
- 'Full information' ranking obvious, but uncovering value takes effort
- 6 treatments
 - 2 x complexity (3 and 7 operations)
 - 3 x choice set size (10, 20 and 40 options)
- No time limit

Size 10, Complexity 3

Round	Current selection: four plus eight minus four	
2 of 30		
Choose one:		
0	zero	
0	three plus five minus seven	
0	four plus two plus zero	
0	four plus three minus six	
R	four plus eight minus four	
C C	three minus three plus one	
0	five plus one minus one	
0	eight plus two minus five	
0	three plus six minus five	
0	four minus two minus one	
0	five plus five minus one	1

Finished

Size 20, Complexity 7

\bigcirc	Zero
\bigcirc	seven minus four minus two minus four minus two plus eleven minus four
\bigcirc	six plus five minus eight plus two minus nine plus one plus four
\bigcirc	seven minus two minus four plus three plus four minus three minus three
\bigcirc	seven plus five minus two minus two minus three plus zero minus two
\bigcirc	six plus seven plus six minus two minus six minus eight plus four
\bigcirc	six plus two plus five minus four minus two minus seven plus three
\bigcirc	six minus four minus one minus one plus five plus three minus six
٥	two plus six plus seven minus two minus four minus two plus zero
\bigcirc	two minus three minus five plus nine minus one plus five minus three
\bigcirc	three plus zero plus two plus zero plus one minus three minus one
\bigcirc	four plus three plus zero minus two plus three plus four minus ten
\bigcirc	seven plus two plus seven minus seven plus three minus two minus two
\bigcirc	three plus three minus two plus zero plus zero minus four plus five
\bigcirc	two minus two plus zero plus nine minus two minus one minus one
\bigcirc	three plus four minus three plus three minus four plus three minus four
\bigcirc	three plus five plus seven plus five minus two minus seven minus ten
\bigcirc	three plus six minus eight plus one plus two minus two plus zero
\bigcirc	three plus five plus zero plus four plus three minus four minus two
\bigcirc	eight minus one plus one minus four minus four minus five plus six
\bigcirc	four minus five plus four minus one minus four plus zero plus four

Finished

Results Failure rates (%) (22 subjects, 657 choices)

Failure rate				
	Complexity			
Set size	3	7		
10	7%	24%		
20	22%	56%		
40	29%	65%		

Results Average Loss (\$)

Average Loss (\$)				
	Complexity			
Set size	3	7		
10	0.41	1.69		
20	1.10	4.00		
40	2.30	7.12		

Eliciting Choice Process Data

- 1 Allow subjects to select any alternative at any time
 - Can change selection as often as they like
- 2 Choice will be recorded at a random time between 0 and 120 seconds unknown to subject
 - Incentivizes subjects to always keep selected current best alternative
 - Treat the sequence of selections as choice process data
- 3 Round can end in two ways
 - After 120 seconds has elapsed
 - When subject presses the 'finish' button
 - We discard any rounds in which subjects do not press 'finish'

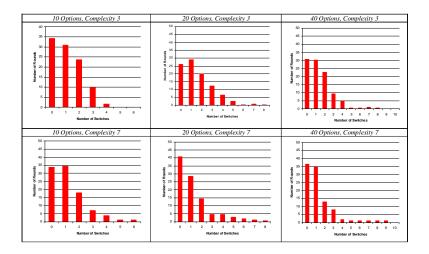
Stage 1: Selection

Round 2 of 30	Current selection: four plus eight minus four	
Choose one:		
0	Zero	
0	three plus five minus seven	
0	four plus two plus zero	
0	four plus three minus six	
<u>R</u>	four plus eight minus four	
Ň	three minus three plus one	
0	five plus one minus one	
0	eight plus two minus five	
0	three plus six minus five	
0	four minus two minus one	
0	five plus five minus one	

Finished

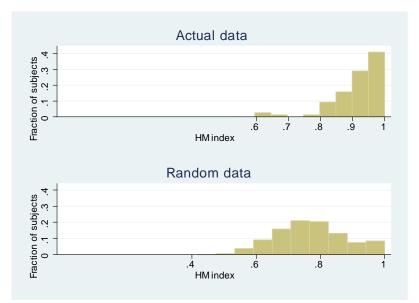
Stage 2: Choice Recorded

Choice Recorded

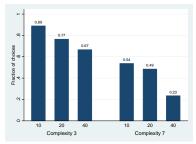

In this round, your choice was recorded after 9 seconds. At that time, you had selected:

four plus four minus six

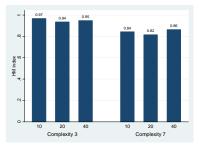
Next


Do We Get Richer Data from Choice Process Methodology?

978 Rounds, 76 Subjects


- Choice process data has ABS representation if ≻^{ABS} is consistent
- Assume that more money is preferred to less
- Implies subjects must always switch to higher-valued objects (Condition 1)
- Calculate Houtman-Maks index for Condition 1
 - Largest subset of choice data that is consistent with condition

Houtman-Maks Measure for ABS

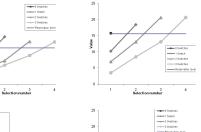


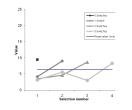
Traditional vs ABS Revealed Preference

Traditional

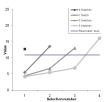
ABS

Satisficing Behavior




Value

Value



Selection number

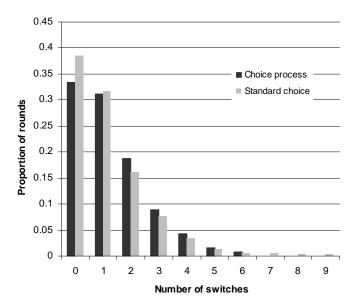
- Choice process data allows observation of subjects
 - Stopping search
 - Continuing to search
- Allows us to estimate reservation levels
- Assume that reservation level is calculated with some noise at each switch
- Can estimate reservation levels for each treatment using maximum likelihood

Estimated Reservation Levels

	Complexity				
Set size	3		Set size 3 7		7
10	9.54	(0.20)	6.36	(0.13)	
20	11.18	(0.12)	9.95	(0.10)	
40	15.54	(0.11)	10.84	(0.10)	

Estimating Reservation Levels

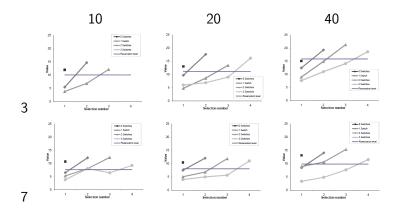
- Increase with 'Cost of Search'
 - In line with model predictions
- Increase with size of choice set
 - In violation of model predictions


HM Indices for Estimated Reservation Levels

	Complexity		
Set size	3	7	
10	0.90	0.81	
20	0.87	0.78	
40	0.82	0.78	

Does Choice Process Elicitation Change Behavior?

- In 'standard choice' experiment subjects could make intermediate selections
- Were not incentivized to do so, but did so anyway
- Can use this to explore the effect of choice process elicitation


Question 1: Does Choice Process Elicitation Change Behavior?

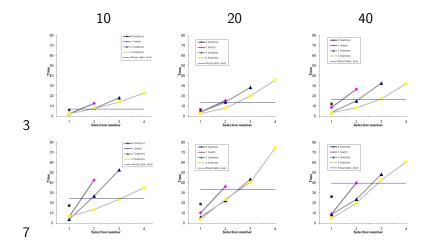
Does Standard Choice Experiment Also Have Sequential Search?

Satisficing Behavior in Standard Choice Environment

- Frame as an optimal stopping problem (within ABS framework)
- Assume
 - Fixed cost of search
 - Value of objects drawn from a fixed distribution
- Can formulate optimal strategy

Differences in Optimal Strategy

- **Fixed** reservation optimal in standard choice but **declining** reservation optimal in choice process
 - No good evidence for declining reservation level in either case
- Choice process environment should also always have lower reservation levels that standard choice
 - Weak evidence for this


Estimated Reservation Levels

		Complexity	
Set size		3	7
10	Choice process	10.17	6.34
	Standard choice	10.05	8.41
20	Choice process	11.22	8.92
	Standard choice	11.73	8.39
40	Choice process	15.15	10.07
	Standard choice	16.38	10.39

Alternative Models

- Reservation stopping time
- Complete search with calculation errors

Reservation Stopping Time?

Complete Search with Calculation Errors

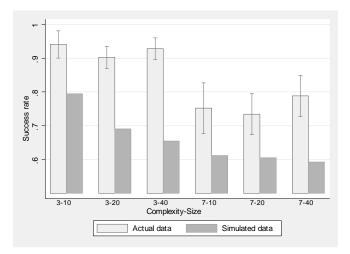
- An alternative explanation for suboptimal choice
- Subjects look at all objects, but make calculation errors
- Estimate logistic random error model of choices
 - Scale factor allowed to vary between treatment
- Select scale factor to maximize likelihood of observed choices

Calculation Errors

• Extremely large errors needed to explain mistakes

	Complexity	
Set size	3	7
10	1.90	3.34
20	2.48	4.75
40	3.57	6.50

Estimated standard deviations


Calculation Errors

• Still underpredict magnitude of losses

Failure Rate				
		Complexity		
10	Actual choices	11.38	46.53	
	Simulated choices	8.35	32.47	
20	Actual choices	26.03	58.72	
	Simulated choices	20.13	37.81	
40	Actual choices	37.95	80.86	
	Simulated choices	25.26	44.39	

Calculation Errors

• But overpredict violations of ABS

- Incomplete information search provides a good explanation for suboptimal choice in this environment
- Subjects behave in line with satisficing model
 - Search sequentially through choice set
 - Stop searching when finding object above reservation utility
- Environmental factors change behavior, but within satisficing framework

- Previous studies have used eye tracking/mouselab to examine process of information search
 - Payne, Bettman and Johnson [1993]
 - Gabaix, Laibson, Moloche and Weinberg [2006]
 - Reutskaja, Pulst-Korenberg, Nagel, Camerer and Rangel.[2008]
- Modelled choice data with consideration sets and ordered search
 - Rubinstein and Salant [2006]
 - Manzini and Mariotti [2007]
 - Masatlioglu and Nakajima [2008]

Results

Experiment 1

Table 1: Magnitude of Mistakes, Experiment 1				
Set Size		Complexity		Total
		3	7	
10	Failure Rate (%)	6.78	23.61	16.03
	Average Loss (\$)	0.41	1.69	1.11
	Average Loss (%)	3.44	13.66	9.05
	Observations	59	72	131
20	Failure Rate (%)	21.97	56.06	39.02
	Average Loss (\$)	1.10	4.00	2.55
	Average Loss (%)	7.07	24.70	15.89
	Observations	132	132	264
40	Failure Rate (%)	28.79	65.38	46.95
	Average Loss (\$)	2.30	7.12	4.69
	Average Loss (%)	10.49	33.25	21.79
	Observations	132	130	262
Total	Failure Rate (%)	21.98	52.69	37.60
	Average Loss (\$)	1.46	4.72	3.12
	Average Loss (%)	7.81	25.65	16.88
	Observations	323	334	657

Results

Experiment 2

Absolute Loss					
Set Size		Complexity		Total	
		3	7		
10	Choice Process	0.42	3.69	1.90	
	Normal Choice	0.41	1.69	1.11	
20	Choice Process	1.63	4.51	2.88	
	Normal Choice	1.10	4.00	2.55	
40	Choice Process	2.26	8.30	5.00	
	Normal Choice	2.30	7.12	4.69	
Total	Choice Process	1.58	5.73	3.43	
	Normal Choice	1.46	4.72	3.12	
	Number of Observations - Choice Process				
Set Size		Complexity Tota		Total	
		3	7		
10		123	101	224	
20		225	172	397	
40		195	162	357	
Total		543	435	978	