Bounded Rationality

Behavioral Economics: Columbia University Mark Dean

Bounded Rationality

• We now know how to test the canonical model of economic decision making

$$C(A) = \max_{x \in A} u(A)$$

- · And have demonstrated cases in which it does not work
 - Leaving money on the table
 - Too much choice
 - Decision difficulty

Bounded Rationality

 $C(A) = \max_{x \in A} u(A)$

- Two ways we can adapt the model while remaining within the same framework
 - 1. Change preferences: What it is that the goal that the DM is trying to achive?
 - 2. Change constraints: Add additional costs and restrictions to the optimizing problem
- Much of behavioral economics takes approach 1
 - Loss aversion
 - Probability weighting
 - Ambiguity aversion
- Bounded rationality is the study of approach 2

Examples of Bounded Rationality

- Costs to acquiring or processing information
 E.g. Simon [1955], Stigler [1961], Sims [2003]
- Limits on reasoning
- E.g. Camerer [2004], Crawford [2005]
 Thinking aversion
- E.g. Ergin and Sarver [2010], Ortoleva [2013]
- Bounded memory - E.g. Wilson [2002]
- E.g. Piccione and Rubinstein [1993]
 Semi-Rational Models
- - E.g. Gabaix et al. [2008], Esponda [2008], Rabin and Vayanos [2010], Gabaix [2013],
- Heuristics
 - Tversky and Kahneman [1974], Gigerenzer [2000]

Examples of Bounded Rationality

- Costs to acquiring or processing information
 E.g. Simon [1955], Stigler [1961], Sims [2003]
- Limits on reasoning

 E.g. Camerer [2004], Crawford [2005]
 - Thinking aversion
- E.g. Ergin and Sarver [2010], Ortoleva [2013] Bounded memory
- E.g. Wilson [2002]
- Automata E.g. Piccione and Rubinstein [1993]
- Semi-Rational Models
 - E.g. Gabaix et al. [2008], Esponda [2008], Rabin and Vayanos [2010], Gabaix [2013],
- Heuristics
 - Tversky and Kahneman [1974], Gigerenzer [2000]

Costly Information Acquisition

- · The world has a lot of information in it
- The more information we gather/process, the better decisions we will make
- But there are costs associated with gathering and processing information
 - Monetary/effort costs of obtaining the information
 - Opportunity cost of time
 - Opportunity cost of cognitive resources
- Decision maker may choose not to gather/process all available information
 - Looks like they are making 'mistakes'
 - But such behavior may be optimal

Costly Information Acquisition

- DM's perception of the world may be different from what we as the research thinks it is
- Example 1: Consideration Sets:
 - We provide a decision maker with a choice set A, but they do not consider all available alternatives
 - Focus their attention on a subset of available alternatives
 - What marketers call a consideration set

Consideration Set

Choose the optimal Scotch

8

Consideration Set

- Maybe only consider a subset of drinks to seriously consider
- But how is that set determined?
 - Cheapest brands?
 - Brands that you have heard of?
 - Brands that you have had before?
 - Brands that stand out?
 - At random?
- How many alternatives do they consider?

Rational Inattention

- Consideration sets a good way to think about choice from a large set of simple alternatives
- What about a small set of complicated alternatives?
 - Deciding which of two houses to buy
 - Deciding which of two job to take?
- The best action may be knowable in principle, but it takes effort to uncover what it is
 - A simple experimental example....

10

Rational Inattention State 49 State 51 Act a \$10 \$0 Act b \$0 \$10

Rational Inattention

- Perhaps a better model for these situations is one in which the decision maker gets a noisy signal about the true state of the world
- The higher cost they pay, the better the quality of the signal
 - Spend 10 seconds thinking about the problem, can make an educated guess about the whether there are 49 or 51 red halls
 - Spend 10 minutes and you can count all the balls and know for sure
- How does the decision maker choose how accurate a signal to get?

12

Costly Information Acquisition

- Models of costly information acquisition can (potentially) explain some of the failures of rationality we have discussed
 - Framing Effects
 - Leaving money on the table
 - Status quo bias
 - Random choice

13

An Example

- Do people take into account all the relevant information when making their choices?
- Salience and Taxation: Chetty et al. [2009]
- Consider choice between two goods
 - y: normalized price of 1
 - x: pretax price of p with a sales tax t
 - Total price: (1+t)p
- Let x(p,t) be demand when price is p and tax rate is t
- Standard theory: x(p,t)=x(p(1+t),0)

.

Salience and Taxation

• BUT, prices are usually posted net of tax

 Perhaps changes in tax have a smaller effect on demand than changes in price?

15

Salience and Taxation

- le
 - $-\varepsilon_{xp} = -\frac{\partial \log x}{\partial \log p}$ be the elasticity of demand wrt price
 - $-\varepsilon_{u} = -\frac{\partial \log x}{\partial \log 1 + t}$ be the elasticity of demand wrt tax
- Hypothesis: $\mathcal{E}_{x,p} \neq \mathcal{E}_{x,t}$
- Perform two tests:
 - Compare demand when prices are posted net of tax to when they are posted with tax
 - Compare the effect of price and tax changes

10

Experiment 1

- Take 1 large supermarket
 - 30% of products have sales tax of 7.375% added at register
- Take three 'impulse purchase' product categories
 - Cosmetics, hair care accessories, deodorants
 - 750 products in total
- Add tags which displayed post tax price (as well as pre tax price)
 - Experiment lasted 3 weeks

17

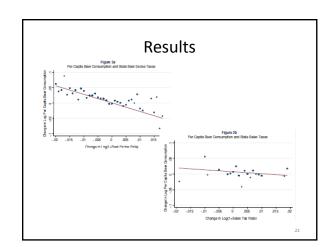
Experiment 1

- Empirical strategy: 'Difference in Difference'
 - Compare change in demand for treated goods to that of control groups
 - Control group 1: Different toiletries in same aisle of same store
 - Control group 2: All toiletries sold in two similar stores
 - Analysis performed at the 'category level'
 - 13 categories in treatment group
 - 95 in the control group

18

Results 26.48 (0.22) (5.510) 27.32 (0.67) (266)

Experiment 2: Alcohol!


- In the US, alcohol is subject to two types of tax
 - Excise tax included in the posted price
 - Sales tax added at the register
 - Total price is p(1+t)(1+e)
- These taxes change regularly and distinctly
- Standard theory, should have the same effect on demand
- Estimate

$$\Delta \log x_{i,t} = \alpha + \beta \Delta \log(1 + e_{i,t}) + \theta \beta \Delta \log(1 + t_{i,t}) + \rho X_{i,t} + \mu_{i,t}$$

Summary of Data

TABLE 5 Summary Statistics for State Beer Consumption, Taxes, and Regulation		
Per-Capita Beer Consumption (cans)	243.2 (46.1)	
State Beer Excise Tax (\$/case)	0.51 (0.50)	
State Beer Excise Tax (percent)	6.5 (8.2)	
Sales Tax (percent)	4.3 (1.9)	
Drinking Age is 21	0.73 (0.44)	
Drunk Driving Standard	0.65 (0.47)	
Any Alcohol Regulation Change	0.19 (0.39)	
N (number of state-year pairs)	1.666	

- 153 changes in sales tax
- 131 changes in excise tax
- Correlation 0.06
- Plenty of independent variation

Results

TABLE 6
cise and Sales Taxes on Beer Consumption

	Baseline (1)	Bus. Cycle (2)	Alc. Regulations (3)	Region Trends (4)
ΔLog(1+Exclse Tax Rate)	-0.88 (0.17)	-0.91 (0.17)	-0.89 (0.17)	-0.71 (0.18)
ΔLog(1+Sales Tax Rate)	-0.20 (0.30)	-0.01 (0.30)	-0.02 (0.30)	-0.05 (0.30)
∆Log(Population)	0.03 (0.06)	-0.07 (0.07)	-0.07 (0.07)	-0.09 (0.08)
∆Log(Income per Capita)		0.22 (0.05)	0.22 (0.05)	0.22 (0.05)
ΔLog(Unemployment Rate)		-0.01 (0.01)	-0.01 (0.01)	-0.01 (0.01)
Alcohol Regulation Controls			x	x
Year Fixed Effects	x	x	x	x
Region Fixed Effects				x
F-Test for Equality of Tax Elasticities (Prob>F)	0.05	0.01	0.01	0.06
Sample Size	1,607	1,487	1,487	1,487

Summary

- Bounded Rationality is the study of economic behavior taking into account cognitive constraints, e.g.

 Information processing costs
- Limits on reasoning
- Limited memory
- Such constraints can lead to a difference between
- The information presented to a decision maker
 The information on which they base their decision
- In principle this can explain many violations of 'rationality'
- Framing Effects
- Leaving money on the table
- Status quo bias Random choice
- We have seen that these effects are important in a real world context
 - Under react to taxes that are not salient

Summary

- In the following lectures we will study models of bounded rationality,
 - Search and satisficing
 - Rational Inattention
 - Level K thinking
- and its impact on economic behavior
 - Online consumer behavior
 - Pricing by firms
 - Marketing

25