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Convexity

• Another property often assumed is convexity
• The preference relation � is convex if the upper contour set
U�(x) = {y ∈ X |y � x} is convex

• i.e. for any x , z , y such that y � x and z � x and α ∈ (0, 1)

(αy + (1− α)z) � x

• What do convex indifference curves look like?
• Some alternative (equivalent) definitions of convexity

• If x � y then for any α (0, 1) αx + (1− α)y � y
• For all z = αx + (1− α)y either z � x or z � y



Convexity

• Proof that all are equivalent
• 1⇒ 2: Direct: x � y and y � y so αx + (1− α)y � y
• 2⇒ 3: Either x � y in which case z � y or y � x and so
z � x

• 3⇒ 1: WLOG assume y � z , then αy + (1− α)z � z � x



Convexity

Fact
A complete preference relation with a utility representation is
convex if and only if it can be represented by a quasi concave
utility function - i.e., for every x the set

{y ∈ X |u(y) ≥ u(x)}

is convex

Proof.
Immediate let y � x and z � x then u(y) ≥ u(x) and
u(z) ≥ u(x), by q concavity u(αy + (1− α)z) ≥ u(x) and so
αy + (1− α)z � x
Similarly, say u(y) ≥ u(x) and u(z) ≥ u(x) implies y � x and
z � x by convexity αy + (1− α)z � x and so
u(αy + (1− α)z) ≥ u(x)



Homothetic Preferences

Fact
A complete, strictly monotonic, continuous homothetic preference
relation with a utility representation can be represented with a
utility function which is homogenous of degree 1, i.e.

u(αx1, ...αxn) = αu(x1, ...xn)

Proof.
You have shown for homework that a utility representation for such
preferences is given by

u(x) = a| {a, a, ...a} ∼ x

If � is homothetic, then

{a, a, ...a} ∼ x → {αa, αa, ...αa} ∼ αx

⇒ u(αx) = αa = αu(x)



Quasi Linear Preferences

Fact
A complete, continuous strictly monotonic, quasi linear preference
relation with a utility representation can be represented with a
utility function of the form

u(x) = v(x2, ...xk ) + x1

Lemma
Under the conditions of the proof, for any x2, ....xk there exists a
v(x2, ....xk ) such that

(0, x2, ...xk ) ∼ (v(x2, ....xk ), 0, ..., 0)



Quasi Linear Preferences

Lemma

Proof.
(for k=2): We want to want to show that for every x2 there is
some x1 such that (x1, 0) ∼ (0, x2). Thus we need to show that
the following set is empty

T = {t| (0, t) � (x1, 0) ∀ x1}

Assume not



Quasi Linear Preferences

Proof.
[Proof (cont)] First assume m ∈ T . Then m > 0 and
(1,m) � (0,m) (MON) and an ε such that (1,m− ε) � (0,m)
(CONT) and so (1,m− ε) � (x1 + 1, 0) ∀ x1 (as M ∈ T ). As
m = inf T , there exists an x∗1 such that (x

∗
1 , 0) � (0,m− ε), but

by quasi linearity (x∗1 + 1, 0) � (1,m− ε) a contradiction
Next assume that m /∈ T . Then (x∗1 , 0) ∼ (0,m) for some x∗1 , and
by monotonicity (x∗1 + 1, 0) � (0,m). By continuity there exists
an ε > 0 such that (x∗1 + 1, 0) � (0, x2) for any m+ ε > x2 > m
meaning that such x2 are not in T and so m 6= inf T
Thus, by the standard argument, we can set
v(x2) = inf(x1|(x1, 0) � (0, x2)). We have just show that this set
is non-empty, and by continuity we know that this implies that
(v(x2), 0) ∼ (0, x2)



Quasi Linear Preferences

Proof.
[Proof (of Claim)] We want to show that x1 + v(x2, ...xk )
represents �. Note that for any x

(0, x1, ....xk ) ∼ (v(x2, ..., xk ), 0, ...0)⇒
(x1 + v(x2, ..., xk ), 0...0) ∼ x (by q linearity)

Thus by strong monotonicity we are done

x � y

⇒ (x1 + v(x2, ..., xk ), 0...0) � (y1 + v(y2, ..., yk ), 0...0)



Kuhn Tucker Conditions

Theorem
If � are strongly monotonic, convex, continuous and
differentiable∗, and

1 px∗ = w

2 for every k such that x∗k > 0

∂u(x ∗)
∂xk

pk
≥

∂u(x ∗)
∂xj

pj

Then x∗ is a solution to the consumer’s problem



Kuhn Tucker Conditions

Proof.
Assume not, then there exists a y such that py ≤ px∗ but y � x∗

Let µ =
∂u(x∗)

∂xk
pk

for all k st x∗k > 0 and note

0 ≥ p(y − x∗)
= ∑

k

pk (yk − x∗k )

≥ ∑
k

∂u(x∗)
∂xk

(yk − x∗k )
µ

This follows from the fact that if x∗k > 0 then p
k = ∂u(x ∗)

∂xk
/µ, and

if not (yk − x∗k ) ≥ 0 and pk ≥
∂u(x ∗)

∂xk
/µ

Thus
0 ≥ ∇u(x∗)(y − x∗)



Kuhn Tucker Conditions

Proof.
But the fact that y � x∗, along with strong monotonicity,
continuity, and convexity means that

λx∗ + (1− λ)y � x∗

(see Rubinstein)
Thus (y − x∗) is an improving direction - a contradiction



The Demand Function and Prices

Theorem
Let x be a rationalizable demand function that satisfies Walras’
law and I ′ = p′x(p, I ). Then

[p′ − p][x(p′, I ′)− x(p, I )] ≤ 0

Proof.
Assume p

[p′ − p][x(p′, I ′)− x(p, I )]
= p′x(p′, I ′)− p′x(p, I )− px(p′, I ′) + px(p, I )
= I ′ − I ′ + px(p, I )− px(p′, I ′)

If px(p.I )− px(p′, I ′) > 0 then x(p.I ) strictly preferred to x(p′, I ′)
But as p′x(p.I ) = I ′ x(p′, I ′) weakly preferred to x(p.I )



Properties of the Indirect Utility Function

• Property 3: v is quasiconvex: i.e. the set

{(p,w)|v(p,w) ≤ v̄}
is convex for all v̄

Proof.
Take p,w and p′,w ′ in the set and let p′′ = αp + (1− α)p′ and
w ′′ = αw + (1− α)w ′.
NTS that v(p′′,w ′′) ≤ v̄ . Assume not. Then there exists an x st
u(x) > v̄ and

p′′x ≤ w ′′ ⇒
αpx + (1− α)p′x ≤ αw + (1− α)w ′ ⇒

α (px − w) + (1− α)(p′x − w ′) ≤ 0

Proof.
Contradiction



Duality

Theorem
If u is monotonic and continuous then if x∗ is a solution to the
prime problem with prices p and wealth w it is a solution to the
dual problem with prices p and utility v(p,w)



Duality

Proof.

• Assume not, then there exists a bundle x̄ such that

u(x̄) ≥ v(p,w) = u(x∗)

with

∑ pi x̄i < ∑ pix∗i = w

• But this means, by monotonicity, that there exists an ε > 0
such that, for

x ′ =


x̄1 + ε
x̄2 + ε
...

x̄N + ε


∑ pix ′i < w



Duality

Proof.

• By monotonicity, we know that u(x ′) > u(x̄) ≥ u(x∗), and so
x∗ is not a solution to the prime problem



Duality

Theorem
If u is monotonic and continuous then if x∗ is a solution to the
dual problem with prices p and utility u∗ it is a solution to the
prime problem with prices p and wealth ∑ pix∗i



Duality

Proof.

• Assume not, then there exists a bundle x̄ such that

∑ pi x̄i ≤∑ pix∗i

with
u(x̄) > u(x∗) ≥ u∗

• By continuity, there exists an ε > 0 such that, for all
x ′ ∈ B(x̄ , ε), u(x ′) > u(x∗)



Duality

Proof.

• In particular, there is an ε > 0 such that

x ′ =


x̄1 − ε
x̄2 − ε
...

x̄N − ε


and u(x ′) > u(x∗) ≥ u∗

• But ∑ pix ′i < ∑ pi x̄i ≤ ∑ pix∗i , so x
∗ is not a solution to the

dual problem.



Properties of the Hicksian Demand Function

• Fact 3: If preferences are convex then h is a convex set. If
preferences are strictly convex then h is unique
• Proof: say that x and y are both in h(p, u). Then

∑ pi xi = ∑ pi yi = e(p, u)

• Implies that for any α ∈ (0, 1) and z = αx + (1− α)y

∑ pi zi = ∑ pi (αxi + (1− α)yi )

= α ∑ pi xi + (1− α)∑ pi yi
= e(p, u)

• Also, as preferences are convex, z � x , and so
u(z) ≥ u(x) = u

• If preferences are strictly convex, then z � x
• But, by continuity, exists ε > 0 such that z ′ � x all
z ′ ∈ B(z , ε)

• Implies that there is a z ′ such that u(z ′) > u and
∑ pi z ′i < ∑ pi xi



Properties of the Expenditure Function

• Fact 4: e is concave in p
• Proof: fix a ū. we need to show that

e(p′′, ū) ≥ αe(p, ū) + (1− α)e(p′, ū)

where
p′′ = αp + (1− α)p′

• Let x ′′ ∈ h(p′′, ū), then

e(p′′, ū) = ∑ p′′i x
′′
i

= ∑
(
αpi + (1− α)p′i

)
x ′′i

= α ∑ pi x
′′
i + (1− α)∑ p′i x

′′
i

≥ α ∑ pi xi + (1− α)∑ p′i x
′
i

= αe(p, ū) + (1− α)e ′(p, ū)

where x ∈ h(p, ū) and x ′ ∈ h(p′, ū)


