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Convexity

e Another property often assumed is convexity

o The preference relation > is convex if the upper contour set
U-(x) = {y € X|y = x} is convex
e ie. forany x,z,y such that y = x and z > x and & € (0,1)

(ay+(1—a)z) = x

e What do convex indifference curves look like?
e Some alternative (equivalent) definitions of convexity

o If x = y then for any « (0,1) ax+ (L —a)y = y
e Forallz=ax+ (1—a)y eitherz>=xorz>y



Convexity

e Proof that all are equivalent
e 1=2: Direct: x=yandy=ysoax+(l—a)y =y
e 2 = 3: Either x >~ y in which case z > y or y = x and so

zZ>= X
e 3=1: WLOG assume y = z, thenay + (1 —a)z = z = x



Convexity

Fact

A complete preference relation with a utility representation is
convex if and only if it can be represented by a quasi concave
utility function - i.e., for every x the set

{y € X[u(y) = u(x)}

Proof.

Immediate let y > x and z > x then u(y) > u(x) and

u(z) > u(x), by q concavity u(ay + (1 —a)z) > u(x) and so
ay+ (1—a)z = x

Similarly, say u(y) > u(x) and u(z) > u(x) implies y > x and

z = x by convexity ay + (1 —a)z = x and so

u(ay + (1 —a)z) > u(x) O



Homothetic Preferences

Fact

A complete, strictly monotonic, continuous homothetic preference
relation with a utility representation can be represented with a
utility function which is homogenous of degree 1, i.e.

u(axy, ..exp) = au(xy, ...xp)

Proof.
You have shown for homework that a utility representation for such
preferences is given by

u(x)=al{a a,..a} ~x
If > is homothetic, then

{a,a,..a} ~ x—{aaaa, ..aa} ~ ax
= u(ax) = aa = au(x)



Quasi Linear Preferences

Fact

A complete, continuous strictly monotonic, quasi linear preference
relation with a utility representation can be represented with a
utility function of the form

u(x) = vi(xa, ..xx) +x1
Lemma

Under the conditions of the proof, for any xo, ....xx there exists a
v(x2, ....xx) such that

(0,x2, ..xk) ~ (v(x2, ....x), 0, ..., 0)



Quasi Linear Preferences

Lemma
Proof.

(for k=2): We want to want to show that for every x, there is
some xy such that (x1,0) ~ (0,x2). Thus we need to show that
the following set is empty

T ={t(0,t) = (x,0) ¥V x1}

Assume not U



Quasi Linear Preferences

Proof.

[Proof (cont)] First assume m € T. Then m > 0 and

(1, m) > (0, m) (MON) and an € such that (1, m—¢) > (0, m)
(CONT) andso (1, m—e¢) > (x1+1,0) Vx; (asM e T). As

m = inf T, there exists an x;* such that (x;,0) = (0, m —¢), but
by quasi linearity (x; +1,0) = (1, m —¢) a contradiction

Next assume that m ¢ T. Then (x;,0) ~ (0, m) for some x{, and
by monotonicity (x; 4+ 1,0) > (0, m). By continuity there exists
an ¢ > 0 such that (x; +1,0) > (0, x) for any m+¢€ > x; > m
meaning that such x, are not in T and so m # inf T

Thus, by the standard argument, we can set

v(x2) = inf(x1|(x1,0) = (0, x2)). We have just show that this set
is non-empty, and by continuity we know that this implies that
(v(x2),0) ~ (0, x) O



Quasi Linear Preferences

Proof.
[Proof (of Claim)] We want to show that x; + v(xg, ...xk)
represents >. Note that for any x

(0,x1,...xc) ~ (v(x2,....x),0,...0) =
(x1 +v(x2,...,x¢),0..0) ~ x (by q linearity)

Thus by strong monotonicity we are done

= (x1+v(x,....x),0..0) = (1 +v(y2, ..., ), 0...0)



Kuhn Tucker Conditions

Theorem
If = are strongly monotonic, convex, continuous and
differentiable®, and

O px'=w
@® for every k such that x; > 0

du(x*) du(x")
OXy >

an

Pk p;

Then x* is a solution to the consumer’s problem



Kuhn Tucker Conditions

Proof.

Assume not, then there exists a y such that py < px* but y > x*
du(x*)

Let u =

for all k st x; > 0 and note

0 > p(y—x%)

= ZP Yk — Xk)

du(x) Yk — x¢)
; an ‘u :

This follows from the fact that if X,f > 0 then p¥ = %/]J, and

if not (yx — x;) > 0 and pk > 9 axk /y
Thus
0> Vulx')(y — x')

OJ



Kuhn Tucker Conditions

Proof.
But the fact that y > x*, along with strong monotonicity,
continuity, and convexity means that

A+ (1—=A)y = x*

(see Rubinstein)
Thus (y — x*) is an improving direction - a contradiction O



The Demand Function and Prices

Theorem

Let x be a rationalizable demand function that satisfies Walras’

law and I = p’x(p, ). Then
[p" = plx(p' ") = x(p, 1)] < 0

Proof.

Assume p

[p" = plx(p' ") = x(p, 1)]
= px(p ") = p'x(p. 1) = px(p", 1) + px(p. 1)
"= +pX(p,/)— (p/,/')

If px(p.l) — px(p’,1") > 0 then x(p.l) strictly preferred to x(p’, ")

But as p’x(p.1) = I’ x(p',I") weakly preferred to x(p.I)

]



Properties of the Indirect Utility Function

e Property 3: v is quasiconvex: i.e. the set
{(p.w)lv(p,w) < v}

is convex for all v

Proof.

Take p,w and p’, w' in the set and let p” = ap+ (1 —a)p’ and
w” =aw+ (1—a)w'

NTS that v(p”, w”) < v. Assume not. Then there exists an x st
u(x) > v and

2 7

px < w =
apx + (1—a)p’x < aw+ (1 —a)w' =
a(px—w)+(1—a)(p’x—w') < 0

Proof.
Contradiction O



Duality

Theorem

If u is monotonic and continuous then if x* is a solution to the
prime problem with prices p and wealth w it is a solution to the
dual problem with prices p and utility v(p, w)



Duality

Proof.

e Assume not, then there exists a bundle x such that
u(x) > v(p,w) = u(x¥)
with

ZPV‘G < ZP/X,-* =w

e But this means, by monotonicity, that there exists an ¢ > 0
such that, for

X1+ €

Xy + €

XN+ €

Zp;x,-/ <w



Duality

Proof.

e By monotonicity, we know that u(x’") > u(x) > u(x*), and so

x* is not a solution to the prime problem

O



Duality

Theorem

If u is monotonic and continuous then if x* is a solution to the
dual problem with prices p and utility u* it is a solution to the
prime problem with prices p and wealth ) p;x;



Proof.

e Assume not, then there exists a bundle X such that

ZP/Z’ < ZP;X,-*
with
u(x) > u(x*) > u*
e By continuity, there exists an € > 0 such that, for all
x' € B(x,€), u(x") > u(x*)

Duality

O



Duality

Proof.
e In particular, there is an ¢ > 0 such that
X1 — €
o Xo — €
Xy — €

and u(x") > u(x*) > u*
e But }_pix/ < Y pix; <Y pix*, so x* is not a solution to the

dual problem.
O]



Properties of the Hicksian Demand Function

e Fact 3: If preferences are convex then h is a convex set. If
preferences are strictly convex then h is unique

e Proof: say that x and y are both in h(p, u). Then

ZP/X,' = ZP/’)’/ =e(p, u)

e Implies that for any « € (0,1) and z = ax+ (1 —a)y

Y pizi = Y pilaxi+(1—a)y)
= a) pixi+(1—a)) piyi
= e(p.u)
e Also, as preferences are convex, z >~ x, and so
u(z) > u(x)=u
o |f preferences are strictly convex, then z > x
e But, by continuity, exists ¢ > 0 such that z’ > x all
7' € B(z,¢)
e Implies that there is a z’ such that u(z’) > v and
Y pizl < L pixi



Properties of the Expenditure Function

Fact 4: e is concave in p

e Proof: fix a ii. we need to show that
e(p”, ) > we(p, ) + (1 —a)e(p’, o)
where
P = ap+ (1 706)p/
o Let X" € h(p”, @), then

el w) = Ypl

Y (api+ (1= a)pj) x/

a) pixi +(1—a))_ pix’
a) pixi+(1—a)) pixi

ae(p, @) + (1 —a)e'(p, o)

AV ||

where x € h(p,0) and x’ € h(p', &)



