Microeconomic Analysis

Mark Dean

Homework 2

Due Thursday 19th September

Question 1 Show that the two definitions of continuity we introduced in class are identical. Show they are also identical to the following conditions

- For any x the upper and lower contours $\{y|y\succeq x\}$ and $\{y|x\succeq y\}$ are closed
- For any x the sets $\{y|y \succ x\}$ and $\{y|x \succ y\}$ are open

Question 2 Some more continuity questions:

- 1. Can a continuous preference relation be represented by a discontinuous utility function?
- 2. Let $X = \mathbb{R}$. Show that the preferences represented by the utility function $u(x) = \max \{z \in \mathbb{Z} | x \ge z\}$ is not continuous. What about the preferences represented by $v(x) = \max \{z \in \mathbb{Z} | x > z\}$?
- Question 3 A preference relation \succeq on \mathbb{R}^N_+ is strictly increasing if x > y (i.e. $x_n \ge y_n \forall n$ and $x_n > y_n$ some n) implies $x \succ y$ for all $x, y \in \mathbb{R}^N_+$. Let \succeq be a continuous and strictly increasing preference relation on \mathbb{R}^N_+ . Define $u(x) = \max [\alpha \ge 0 | x \succeq (\alpha, \alpha, ..., \alpha)]$. Show that u is well defined, strictly increasing (i.e. x > y implies u(x) > u(y)), continuous and represents \succeq .

Question 4: In class we defined the transitive closure of a binary relation in the following way

Definition 1 A transitive closure of a binary relation R is a binary relation T(R) that is the smallest transitive binary relation that contains R.

- 1. In class we defined the notion of an extension for a partial order, but the same notion can be applied to any binary relation: a binary relation B is an extension to a binary relation R if
 - (a) xRy implies xBy
 - (b) xRy and not yRx implies xBy and not yBx

Give an example of a binary relation for which its transitive closure is not an extension

2. We also defined a transitive closure in the following way

Definition 2 For a binary relation R on a set X define the set of relations $\{R_i\}_{i=0}^{\infty}$ by

- (a) $R_1 = R$
- (b) For any $i \ge 2$, $x, y \in X$ then xR_iy if there exists a sequence $z_1, ..., z_{i-1}$ such that $xRz_1R....Rz_{i-1}Ry$

Then the transitive closure of R is defined as $T(R) = \bigcup_{i \in \mathbb{N}} R_i$

Show that these two definitions are equivalent

Question 5 Question 6 in problem set 2 from the Rubinstein book (note he isn't joking about part 3 being difficult. Have a go but if you get stuck ask for a hint).