Utility Maximization 2: Extensions - Proofs

Mark Dean

GR6211 - Microeconomic Analysis 1

Lexicographic Preferences

• Proof:

- Assume that such a utility function exists
- Then, for every $a \in \mathbb{R}$ it must be the case that u(a,2) > u(a,1)
- Moreover, for every b > a

- Thus, every a ∈ ℝ generates an interval on the real line, and these intervals are non-overlapping
- Each such interval includes a rational number
- Contradicts the remark that the rational numbers are countable and the real numbers are not.

Utility Representation with Countable X

• Proof:

- Let $\{x_n\}$ be an enumeration of X
- Let *x*₀ = 0
- Assign a utility number *u* to each *x*_{*n*+1} as in the finite case, by using the utility representation that worked for *x*₁,*x*_{*n*} and then assigning a number that works for *x*_{*n*+1}
- This procedure assigns utility numbers to each $x \in X$
- And we know that for any x_n the utility function represents preferences between x_n and x_m for $m \le n$
- Now take $x, y \in X$. WLOG $x = x_n, y = x_m$ for $m \le n$
- We know that $x \succeq y \iff x_n \succeq x_m \iff u(x_n) \ge u(x_m)$
- Why does this proof not work if X is uncountable?

Continuity

Theorem

If a preference relation \succeq can be represented by a continuous utility function then it is continuous

Proof.

Assume \succeq is not continuous, then there exists a sequence $x_n \to x$ and $y_n \to y$ such that

$$x_n \succeq y_n$$
 but $y \succ x$

But this implies that $u(x_n) \ge u(y_n) \forall n \text{ but } u(y) > u(x)$ contradicting continuity of u.

To see this let $\delta = \frac{u(y)-u(x)}{2} > 0$ and note that by the continuity of u there must exist some ε such that for x_n and y_n such that

$$\begin{aligned} d(x_n, x) &\leq \varepsilon, |u(x_n) - u(x))| < \delta. \\ d(y_n, y) &\leq \varepsilon, |u(y_n) - u(y))| < \delta. \end{aligned}$$

Theorem

Proof.

As $x_n \to x$ and $y_n \to y$ this implies that there must be some N such that, for n > N

$$d(x_n, x) \leq \varepsilon.$$

 $d(y_n, y) \leq \varepsilon$

and so u

$$u(x_n) < u(x) + \delta$$

$$u(y_n) > u(y) - \delta.$$

Continuity

Theorem

Proof.

but

So

$$\delta + u(x) = \frac{u(y) + u(x)}{2} = u(y) - \delta.$$
$$u(y_n) > u(x_n)$$

A contradiction

Lemma

If \succeq is a continuous complete preference relation on a convex subset of \mathbb{R}^n and $x \succ y$ then there exists $z \in X$ such that $x \succ z \succ y$

• Proof: Assume not

- · Construct the following sequence inductively
- Set $x_0 = x$ and $y_0 = y$
- At step n+1 assume that $x_n \succeq x$ and $y \succeq y_n$
- Take the point m between x_n and y_n
- It must be the case that either m ≥ x or y ≥ m (otherwise we have x > m > y which we have ruled out by assumption)
- In the former case set x_{n+1} to m and y_{n+1} to y_n . In the latter case, set x_{n+1} to x_n and y_{n+1} to m
- This generates two sequences which converge to the same point *z*
- By continuity of preferences, as $x_n \succeq x$ for every *n* it must be $z \succeq x$
- Similarly, as $y \succeq y_n$ every *n* it must be that $y \succeq z$
- Implies by transitivity that $y \succeq x$ contradiction

• We will need one more definition

Definition

A set Y is **dense** in the set X if, for every $x \in X$ and $\varepsilon > 0$ there exists $y \in Y$ in $B(x, \varepsilon)$

Fact

 \mathbb{R}^{n} has a countable dense subset (e.g. the members of \mathbb{R}^{n} where each coordinate is rational)

- We can now prove our theorem
- - In fact, we can restrict this function to be between -1 and 1
- **Step 2:** Define *u* as follows. For any $x \in X$

$$u(x) = \sup \{v(z) | z \in Y \text{ and } x \succ z\}$$

• If no y exists such that $x \succ y$ let u(x) = -1

- - First note that if $x \sim y$ then $x \succ z$ if and only if $y \succ z$ and so

$$u(x) = \sup \{v(z) | z \in Y \text{ and } x \succ z\}$$

= sup $\{v(z) | z \in Y \text{ and } y \succ z\}$
= $u(y)$

- Step 4: If x ≻ y then, by previous lemma, there exists z₁ and z₂ such that x ≻ z₁ ≻ z₂ ≻ y
 - By continuity this means that we can pick z₃ and z₄ ∈ Y such that x ≻ z₃ ≻ z₄ ≻ y
 - Thus

$$u(x) \geq u(z_3) \\ > u(z_4) \\ \geq u(y)$$

The Generalized Axiom of Revealed Preference

• Proof: GARP implies representation

- First, note that *R* is transitive (and without loss of generality we can assume it is reflexive)
- Also note that, by GARP, S is the asymmetric part of R

 $\begin{array}{rcl} xRy \text{ implies } x &\succeq & y \\ xSy \text{ implies } x &\succ & y \end{array}$

The Generalized Axiom of Revealed Preference

$$C(A) = \{ x \in A | x \succeq y \text{ all } y \in A \}$$

Again, need to show two things

$$1 x \in C(A) \Rightarrow x \succeq y \text{ all } y \in A$$

 This follows from the fact that x ∈ C(A) ⇒ xR^Dy ∀ y ∈ A and so x ≽ y ∀ y ∈ A

2 $x \in A$ and $x \succeq y$ all $y \in A \Rightarrow x \in C(A)$

- Assume by way of contradiction $x \notin C(A)$, and take $y \in C(A)$
- This implies that ySx and so $y \succ x$ and therefore not $x \succeq y$
- Contradiction