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Introduction

e Economists have an antisocial habit

e Sometimes, we describe our models in terms of axioms

— A set of logical propositions that are equivalent to that
model

e This has been considered
— Dogmatic/anti scientific
— Overly complicated
— Overly simplistic

— The pointless ramblings of an mathematically-obsessed
discipline that is completely divorced from reality



My Claim

These criticisms are not always justified

Axioms provide a handy approach for
addressing problems within economics

— How to test our models
This approach has aided model development

Neuroscience now facing some of the same
problems



Outline

e Example 1: Utility Maximization

* Discussion:
— What just happened?
— Why was it a good idea?
e Example 2: Reward Prediction Error



Example 1: Utility Maximization

How do we tell if people are
maximizing utility?



Stage 1: The Data

e We observe:
— The choices someone makes

— What they were choosing from

e Example: choices from different sets of snack foods
— Cf. Rangel Labs 2009, 2010, 2010, 2011, etc, etc ad

nauseum
Available Snacks Chosen Snack
Jaffa Cakes, Kit Kat Jaffa Cakes
Kit Kat, Lays Kit Kat
Lays, Jaffa Cakes Jaffa Cakes

Kit Kat, Jaffa Cakes, Lays Jaffa Cakes



Stage 2: The Model

We want to test the model of utility maximization
Every object has a fixed utility value attached to it

For example:

— U(jaffa cakes)=10

— U(kit kat) =5

— U(lays)=2

In any choice set, choose the object with highest
utility



The Question

* |s our data set consistent with the model of utility
maximization?
e Problem: Our model contains ‘unobservables’

— We do not observe utilities

— Kit Kats do not come with utility numbers stamped on
them

— Model says that people maximize utility, but |
experimenter does not observe utility

e How can we proceed?



Two Approaches

e The ‘Standard Approach’:
— Pick a particular utility function
— Test whether this utility function can explain the data
— Failure rules out that utility function

 The ‘Axiomatic Approach’:

— Ask whether there exists any utility function that can
explain the data?

— ldentify patterns of data that cannot be explained by
any utility function

— Failure rules out utility maximization
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Algenon’s Choices

Jaffa Cakes, Kit Kat

Kit Kat, Lays

Lays, Jaffa Cakes

Kit Kat, Jaffa Cakes, Lays

Jaffa Cakes
Kit Kat
Lays

Jaffa Cakes

Is there any utility function that can explain Algenon’s

choices

No!

— Choice 1 implies u(jaffa cake)>u(kit kat)
— Choice 2 implies u(kit kat)>u(lays)
— Choice 3 implies u(lays)>u(jaffa cakes)

Implies u(jaffa cake)>u(jaffa cake): Contradiction



Brittney’s Choices

1 Jaffa Cakes, Kit Kat Jaffa Cakes
2 Kit Kat, Lays Kit Kat
3 Lays, Jaffa Cakes Jaffa Cakes
4 Kit Kat, Jaffa Cakes, Lays Kit Kat

 What about Brittney’s Choices?

e No!
— Choice 1 implies u(jaffa cake)>u(kit kat)
— Choice 4 implies u(kit kat)>u(jaffa cakes)

e Contradiction



Colvin’s Choices

1 Jaffa Cakes, Kit Kat Jaffa Cakes
2 Kit Kat, Lays Kit Kat

3 Lays, Jaffa Cakes Jaffa Cakes
4 Kit Kat, Jaffa Cakes, Lays Jaffa Cakes

e How about Colvin’s Choices?
* Yes!

— u(jaffa cakes)>u(kit kat)>u(lays)
° Eg

— u(jaffa cakes)=3

— u(kit kat)=2

— U(lays)=1



A General Rule

e Question: Is there a general rule that differentiates data sets
that can be explained by some utility function from those that
can’t?



A General Rule

e Question: Is there a general rule that differentiates data sets
that can be explained by some utility function from those that
can’t?

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B



A General Rule

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B



A General Rule

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B

-0




A General Rule

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B




Independence of Irrelevant

Alternatives
1 Jaffa Cakes, Kit Kat
2 Kit Kat, Lays
3 Lays, Jaffa Cakes
4 Kit Kat, Jaffa Cakes, Lays

* In our example, whatever is chosen in set 4
must always be chosen when it is available



Algenon’s Choices

1 Jaffa Cakes, Kit Kat Jaffa Cakes
2 Kit Kat, Lays Kit Kat

3 Lays, Jaffa Cakes Lays

4 Kit Kat, Jaffa Cakes, Lays Jaffa Cakes

e Algenon’s choices violate these condition
— Jaffa cakes chosen in set 4
— Lays chosen in set 3



Brittney’s Choices

1 Jaffa Cakes, Kit Kat Jaffa Cakes
2 Kit Kat, Lays Kit Kat
3 Lays, Jaffa Cakes Jaffa Cakes
4 Kit Kat, Jaffa Cakes, Lays Kit Kat

e Also violated by Brittney’s choices
— Kit Kat chosen in set 4
— Jaffa cakes chosen in set 1



Colvin’s Choices

1 Jaffa Cakes, Kit Kat Jaffa Cakes
2 Kit Kat, Lays Kit Kat

3 Lays, Jaffa Cakes Jaffa Cakes
4 Kit Kat, Jaffa Cakes, Lays Jaffa Cakes

e Colvin’s choices satisfy IIA
— Jaffa cakes chosen in 4
— Also chosenin3and 1



A Necessary Condition

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B

* |f we observe a utility maximizer, then they must satisfy
A
e If xis chosen from A, must have a higher utility than
anything in A
e Bisasubsetof A
e X must have higher utility than anything in B

e Should be chosen from B



A Sufficient Condition

The Independence of Irrelevant Alternatives
Say x is chosen from a set of alternatives A
B is a subset of A that contains x
Then x must be chosen from B

* |fIIA holds then subject is a utility maximizer*®

 There exists some utility function such that
choices maximize utility according to that utility
function

e Not at all obvious

* Assuming that the set of all objects is finite, and we see choices from every subset



A (very quick) Outline of the Proof

Look at binary choices i.e. between two objects x and y

Define a binary preference relation P as xPy if is chosen
when offered a choice from x and y

Independence of Irrelevant Alternatives ensures that
e Pis transitive (xPy and yPz implies xPz)
P represents choices

e Take any set of alternatives A={x,y,z,w..}

e |f xis chosen from A then xPy, xPz, xPw...

Any complete, transitive preference relation (on a finite
set) can be represented by a utility function

e u(x)>=u(y) if and only if xPy



Our First Representation Theorem

if and only if

* Assuming that the set of all objects is finite, and we see choices from every subset



Our First Representation Theorem

if and only if

e Testing the model of utility maximization is the same thing as
testing lIA

* Assuming that the set of all objects is finite, and we see choices from every subset



A Note on Unigqueness

e |f choices satisfy the independence of irrelevant
alternatives, is the utility function that explains
those choices unique?

INEHEL RGBS Chosen Snack

1 Jaffa Cakes, Kit Kat Jaffa Cakes
2 Kit Kat, Lays Kit Kat

3 Lays, Jaffa Cakes Jaffa Cakes
4 Kit Kat, Jaffa Cakes, Lays Jaffa Cakes

 No! Take Colvin’s Choices
e u(jaffa cakes)=3, u(kit kat)=2, u(lays)=1
e u(jaffa cakes)=354, u(kit kat)=0, u(lays)=-110020



A Note on Unigqueness

e Utilities identified up to a strictly positive
transformation

e j.e.if urepresents choices, and v is another utility
function such that v(x)=T(u(x)) for some strictly
increasing function, then v will also represent

choices

e Any utility function that preserves ordering will do the
trick

 No point arguing about whether
e Utility of x is twice as big as the utility of y
e Utility of x minus utility of y is 7
e Utility of x is negative




Discussion

What did we just do, and did it make
sense



1.

2.

3.

4.

What Did We Just Do?

We defined a class of models

Utility maximization is a model class

We identified a data set on which to test this class

Choices from different set of objects

We identified a set of necessary and sufficient conditions
on the data set for a model in the class to explain data

If and only if the independence of irrelevant
alternatives holds there is a utility functions that can
explain the data

We described the size of the subset of the class of models
that can explain the data

Utilities unique up to a strictly positive transformation



Is This a Useful Strategy in General?

e We can test the whole class of models
* Provides exact implications of the model

e Tells us how ‘seriously’ to take unobservables
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Testing the Class of Models

e Standard approach: pick one element in the class
and test that

— i.e. define utility in some particular way, and test that

e Or some subset of class of models and test them

— e.g. Assume utility is a function of some properties of
the object

— Estimate parameters
— Take that as your candidate utility function



The ‘Standard’” Approach

e Sometimes this is easy to do
— E.g. choosing over amounts of money

e But how do we define utility over chocolate bars?

— Function of size, calories, cocoa content, nougat-
iness?

— Involves making arbitrary assumptions

— What if utility function needed to explain choices
between jaffa cakes and a spaniel?




The ‘Standard’” Approach

Resulting test is now of two assumptions

— Person maximizes utility
— Utility is as specified by researcher

If test fails, cannot reject class of utility
maximizing models, only this specific example

Axioms mean that we don’t need to make
additional assumption

— Axioms are a substitute for assumptions about
unobservable elements in our model



Why Was This A Good ldea?

e We can test the whole class of models
* Provides exact implications of the model

e Tells us how ‘seriously’ to take unobservables



Provides Exact Empirical Implications

 Axiomatic approach provides necessary and
sufficient conditions for model to be true

— If conditions hold, model is explains data
— If they don’t, it doesn’t

 There are at least three reasons why this might
be useful

— Tells you if your model has any predictions

— Tells you if the predictions are different from other
models

— Can tell you which bits of your model are driving
predictions



An Example: The Satisficing Model

e Consider the alternative model of choice
[Simon, 1955]
— Search through alternatives one by one

— Stop searching when reach an alternative that is
‘sood enough’

— Choose that alternative

e What are the predictions of this model?



Implications of Satisficing Model

 Depends on the assumptions made about the search

Process
e Search order can change between choices
— Model has no predictions
— Any set of choices can be explained this way
— Assume that all objects are ‘good enough’, and that the
chosen object is the first thing searched
e |f search order is fixed between choices
— Predictions are exactly the same as utility maximization

— People act in line with the satisficing model if and only if
they satisfy the independence of irrelevant alternatives



An Example: The Satisficing Model

e |f choices are our only data no point arguing
whether subject is satisficing or utility
maximizing
— Either assume search order is fixed, in which case

predictions are the same...
— ....0r assume it can vary, in which case we can
explain any choice

e (Herbert Simon knew this)



What About Regressions?

e Significant regression coefficients neither
necessary nor sufficient for utility maximization

— |If coefficients are not significant, could have wrong
definition of utility

— If they are significant still could be lots of violations of
utility maximization
e Say that jaffa cakes have more calories than kit kats which
have more calories that lays
e On weekdays | am healthy, and so prefer fewer calories
e On weekends | am unhealthy, and prefer more calories

e Regression of choice on calories could give significant
negative coefficient



Why Was This A Good ldea?

e We can test the whole class of models
* Provides exact implications of the model

e Tells us how ‘seriously’ to take unobservables



How seriously do we take
unobservables?

e Axiomatic approach treats unobservables as
output of rather than input to the modeling
process

— Utilities are derived from choices, rather than
assumed

* This approach tells us how ‘seriously’ to take
these numbers

— For utilities — only ordering matters, actual numbers
do not

— No more information can be extracted from choices



When Axioms Go Wrong

e A common criticism of axioms: they are
sensitive souls

* One ‘bad’ observation is enough to declare
model a failure

 For example

— we observe someone choosing jaffa cakes over kit
kats every day for a year

— On one day, they choose a kit kat over a jaffa cake

— Violate axioms — model of utility maximization
rejected



Are Axioms ‘Nearly’ Satisfied?

* One response

— This is correct — utility maximizing model is an
incorrect description of these choices

— Not a very useful response - all our models will be
wrong sometimes

e Can we have some measure of whether a data
set is close to satisfying axioms?
— Active area of research
— Some measures have been developed



Example: The Houtman Maks (HM)
Index

e Houtman-Maks [1985] Index

— Largest subset of data that satisfies a set of axioms

— e.g., remove choice observations until the remaining
set of data is consistent with utility maximization

e Benchmarking [Bronars 1987]

— Need some measure of power — was it possible for
axioms to be violated in a data set?

— Use random choice — compare HM index to the
distribution generated by a population generated by
random choosers



Do People Utility Maximize?

e Experimental Data: Choi, Fisman, Gale and
Kariv [2007]

e Subjects made 50 choices from different
budget sets

e Find largest subset of their choices that satisfy
rationality



Do People Utility Maximize?

e 22 of 93 subjects rational

* 91 out of 93 subjects above the 95t percentile
of random choices

HM Index Scores
Actual Subjects

ensity

HM Index Scores
o Simulations

HM



Example 2: Reward Prediction
Error

Does dopamine encode a reward
prediction error



Claim

 Neuroscience starting to use models with
variables that are not directly observable:

— Rewards

— Beliefs

— Salience

— Incentive Salience

* Approach that has proved useful in economics
may also prove useful in neuroscience

e Example: Reward Prediction Error



No prediction
Reward occurs
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Midbrain dopamine neurons are
thought to encode a reward
prediction error (RPE) used for
learning

RPE = experienced reward —
predicted reward



No prediction
Reward occurs

: (r.]o.
Reward predicted
Reward occurs
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Schultz et al., Science, 1997

e Midbrain dopamine neurons are
thought to encode a reward
prediction error (RPE) used for
learning

RPE = experienced reward —
predicted reward

e But: How is ‘experienced reward’
and ‘predicted reward’ defined?



RPE = experienced reward — predicted reward

 Experienced Reward
— Money?
— Fruit juice?
— Monotonic function?
— Linear function?




RPE = experienced reward — predicted reward

* Predicted Reward
— Bayesian Updating?
— Reinforcement Learning?
— Priors?
— Parameter Values?




RPE = experienced reward — predicted reward

* Difference
— Experienced Reward — Predicted Reward?
— Log difference?



A Familiar Problem?

e RPE model contains unobservables

— Rewards and beliefs equivalent to utility in our
model of choice

e Really a class of models

— Elements in class defined by assumptions about
beliefs and rewards

e Standard approach: Pick one element in the
class and test that



Example: O’Doherty et al. [2003]

 Experienced Reward:

— Equal to subjective reported liking ratings of fruit juice
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Example: O’Doherty et al. [2003]

 Experienced Reward:

— Equal to subjective reported liking ratings of fruit juice

e Predicted Reward:

— Temporal Difference Learning

V()= wit)x(t)

e Reward Prediction Errotr

o) =r{t)+ WV (t+1) -V (t)
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The problem

RPE
model class

Bayer & Glimcher (2005)
O’Doherty et al. (2003)



Axiomatic Approach

 The ‘Axiomatic Approach’:

— Ask whether there exists any reward and belief
functions that can explain the data?

— |dentify patterns of data that cannot be explained
by any reward and belief functions

— Failure rules out RPE



The Axiomatic Approach

eConsistent Experienced Reward:

eConsistent Predicted Reward:

eNo Surprise Equivalence:

Given (z, p),(z', p).(z, p'),(z', p') € A,
o(z,p)>o(z',p)=0d(z,p")>05(z',p")

Given (z, p),(z', p),(z, p'),(z',p') € A,
o(z,p)>0(z,p")=(z',p)>0o(z', p)

Givenz,z'e Z,
0(z,2)=0(2',7")
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Are exactly equivalent to the RPE hypothesis



The Axiomatic Approach

eConsistent Experienced Reward: Given (z,p),(z', p).(z, p').(Z', p') € A,
6(z,p)>6(z', p)=6(z,p) > 6(z', p')

eConsistent Predicted Reward: Given (z, p),(z', p),(z, p'),(z', p') € A
5(z,p)>0d(z,p')=o6(z,p)>5(z', p')

*No Surprise Equivalence: Givenz,z'e Z,
0(z,2)=0(2',7")

Are exactly equivalent to the RPE hypothesis

Testing class of RPE models the same as testing
axioms
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Environment

eObserve dopamine activity when prizes are obtained from
lotteries

ePrize: Win S5, Lose S5

elottery : e.g. 25% chance of winning S5, 75% chance of
losing S5

eAllows us to vary ‘experienced reward’ and ‘predicted
reward’ independently

e\/arying prizes: varying experience reward

eVarying lotteries: varying predicted reward



Neural activity

The axiomatic model

+85|-$5 —+$5

O .\.\-' - _$5

S o
O

-
—_—
-
-

Probablllty of wmnlng $5

e Neural activity is plotted
against probability of
winning S5 from five
different lotteries



Neural activity

Axiom 1: Consistent experienced reward

Violation No violations
—_—t$5 o
O e -$5
O
9 O "g \\'
r'd ] .
pX3p =
..... I A SURE B PO
' 4 © N
& > ®---9
2z o
o

Probablllty of Wlnnlng $5

Given (z, p),(z', p),(z, p'),(z', p') € A,
o(z,p)>06(z',p)=d(z,p")>5(z', p)

For a fixed lottery, a
better prize leads to more
neural activity

Lines do not cross



Neural activity

Axiom 2: Consistent predicted reward

Violation No violations
—+35 e Given(z,p),(z,p).(z,p").(z,p) e A
O wemn =35 5(z,p)>8(z, p') = 8(z', p) > 5(2', p))
= e For a fixed prize, a better
O Ip p’ O
[ ...... o O le-o--o--- P lottery leads to less
4y ~
*3. 5 oo neural activity
e..y O =2 o
@
e Lines are downward

sloping (co-monotonic,
Probablllty of Wlnnlng $5 more specifically)



Neural activity

Axiom 3: No surprise equivalence

Violation No violations
—t+$5
O O e -$5
\\' £
>
2.
------------ - et
! s [ *e
® > @
o (<}
“®---q =z (@)

Probablhty of W|nn|ng $5

Givenz,z'e Z,
0(z,2)=06(z2',7")

Any fully anticipated prize
should lead to the same
neural activity

Endpoints match



Summary

e [fand only if
— Lines do not cross
— Lines have same direction of slope
— Endpoints line up

e Then

— Data is consistent with RPE model


















Gambling task

Fixation
Options
Choice
Delay
-+ @b_[_@ @b ! Outcome
12500 ms @b
5000 ms
1250 ms
7500 ms

3750 ms

12 subjects, scanned 3 hours each, earned $100-5230.




Anatomically defined region of interest

the nucleus accumbens in
subjects.




Choice

Hemo, delay OPtiONS ¥ Delaz Outcome

Percent signal change (%)

BOLD time series were extracted
from the nucleus accumbens of each
subject.

Probability
Outcome of winning S5

— +$5, p=0.25
+$5, p=0.5
e +$5, p=0.75
+$5, p=1
-$5, p=0
— -$5, p=0.25
— -$5, p=0.5
—_— -$5, p=0.75




BOLD activity in nucleus accumbens

o ChoiceD I out

tions ela utcome

;\—é-. Hemo. delay N \ +$5, p=0.25
% 0.3 — +$5 p=0.5
% 0.2 e +$5 p=0.75
S +$5, p=1

© _ 5 p=0
g 0.1 $5.p

S 0 - m— -$5 p=0.25
E — -$5, p=0.5
O -0.1- — -$5, p=0.75
DG_J | | | | | |

n = 12 subjects, 2975 trials



BOLD activity

Testing the axioms
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BOLD activity

Testing the axioms

—+3%5
024 e _
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BOLD activity

Testing the axioms
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BOLD activity

Testing the axioms
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BOLD activity

0.2-

-0.1-

-0.2 -

Testing the axioms
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BOLD activity

Testing the axioms

—+3%5
L R — -$5 We cannot reject the class of
RPE models.
0.1+ }\Ki
BOLD activity in nucleus
0 - accumbens can serve as a RPE
® §~-..§\ é signal.
0.1 N
o
-0.2 -
| | | | |
0 0.5 1

Probability of winning $5
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What About Other Brain Areas?

insula
— +%$5
024 e -$5
= 01— ,/'é
= -
c e &
-
E_.I? N K A1
o X A2
o, Insula | @A3
T “Salience”
o . o5 1

Probability of winning $5



Summary

Axioms allow us to identify necessary and
sufficent conditions to test class of RPE model

Test these axioms in nucleus accumbens using
fMRI

Axioms hold

There is some definition of experienced and
predicted reward such that measured activity
encodes an RPE



Comparison to other models

Redish [2004] uses a different approach to think
abount dopamine activity (described in Sutton and
Barton [1998])

Adapted to this setting:
d(z, p)=R(2)-V(p)

Where

e States=lotteries

e V(p)is the value of state p

e R(z) is the reward of receiving prize z

Clearly, up to this point, same as the class of models we
have defined

e Without making assumptions on R and V, need our approach to test



Redish [2004]

Vi(p) =ad (z, p) +V,,(p)

e However, this model contains a rule for
determining V(p) at time t

e What are the predictions of this model?

e Depends on the data set



Redish [2004]

Vi(p) =ad (z, p) +V,,(p)

* |n data set used so far, then this model can
explain any observed dopamine activity

— We assume data is static: do not observe history of
rewards

— Need to assume experienced and predicted rewards
fixed

— Redish model allows predicted reward over time

* |In order to test model need to enrich the data set



Redish [2004]

Need to assume we observe histories of
reward/lottery pairs

Data is now

6,(z,, P, h(P,))

Z is prize received
P is lottery

h(p) is history of previous rewards from lottery
P



Redish [2004]

e For this data, model predicts |
5t(zt’ pt’h(pt)) = R(Zt)_ ZO!JR(ZJ-)

Jeh(p,)

=R(z) -V (h(p,))
e |s this model ‘axiom free’?
* By making specific assumption, has removed
onhe unobservable
— ‘Beliefs’ now observable
— Moved towards testing specific model in RPE class
— ‘Assumptions substitute for Axioms’



Redish [2004]

For this data, model predicts |
5t(zt’ pt’h(pt)) = R(Zt)_ ZO!JR(ZJ-)

Jeh(p,)

=R(z,)-V(h(p,))

Model still contains unobservables
Rewards are unobservable

Can either become completely specific (and
make assumptions about R(.))

Or develop new axioms



Pseudo Axioms

* Consistent Prize Ordering: If, after some history,
prize z leads to higher dopamine response than x,
this must be true for all histories

e Sequence Consistency: If z is a better prize that x
(in the sense above), then substituting z for x in a
history should lower dopamine activity

* Forgetting: For any prizes z and x, switching z for
X in a history should have a smaller effect the
further back in time the switch occurs



Summary



Summary

Economists often have models which contain
unobservable features

Axioms provide a way of testing these models,
without having to make additional assumption

Neuroscience is now using models with
unobservables

Axiomatic tools may be helpful in testing
these models



Thank You

Thanks to Andrew Caplin, Robb
Rutledge, Paul Glimcher and the
Glimcher Lab
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Problem #1: Model predictions were correlated

“‘Reward prediction error”

“‘Reward” r=0.79

“Salience’ r=0.16
H = Em..mm B B..-
—_—

Time



