G5212: Game Theory

Mark Dean

Spring 2017

Static Bayesian Games - Applications

- Now we have a sense of how to use Bayesian Games to model strategic situations with imperfect information
- We will now look at two classic applications
 - Auctions
 - ② Global Games

- The design of auctions is a huge area in the applied and theoretical micro literature
- Basic idea
 - One entity has some objects to sell
 - A set (usually more than 1) of potential buyers
 - Buyers submit bids
 - Based on these bids the auction design determines
 - Who gets the object
 - 2 Who pays what

- Many variants in the set up
 - Who knows what?
 - Private value vs common value?
 - Single good or bundles?
- Huge number of choices when it comes to auction design
 - First price vs second price
 - Dynamic vs Static
 - All pay
 - Reserve prices

- Lots of questions: How do different mechanisms affect
 - Profit
 - Welfare/Efficiency
 - Ability to collude
- Both in theory and in practice
- Lots of applications (worth billions of dollars)
 - Ebay
 - Wireless Spectrum Auction
 - Treasury bills
 - Art market

- We will focus on two of the simplest cases
- Independent private value
 - Sealed Bid Second Price Auction
 - Sealed Bid First Price Auction
- Revenue Equivalence
- If you are interested take Advanced Micro in the summer!

Independent Private Value Set Up

- This Independent Private Value set up is described as follows
 - A seller has one indivisible object.
 - There are n bidders whose valuations for the object are drawn independently from a continuous distribution F on $[v_*, v^*]$
 - Valuations private information

- Second Price Sealed Bid Auction is a mechanism for determining who gets what
 - The bidders simultaneously submit bids $s_i \in [0, \infty)$.
 - The highest bidder wins the object and pays the *second highest* bid.
 - Given a profile of bids, s, let $W(s) \equiv \{k : \forall j, s_k \ge s_j\}$ be the set of highest bidders.
 - Then the game is simply the following:

$$u_i\left(s_i, s_{-i}\right) = \begin{cases} v_i - \max_{j \neq i} s_j & \text{if } s_i > \max_{j \neq i} s_j \\ \frac{1}{|W(s)|} (v_i - s_i) & \text{if } s_i = \max_{j \neq i} s_j \\ 0 & \text{if } s_i < \max_{j \neq i} s_j. \end{cases}$$

- What strategies form an equilibrium in this game
 - Reminder: Strategy is a mapping from types to bids
- Claim: It is weakly dominant to bid one's own valuationWhy?

- Consider the player with value v who bids s > v
- \bullet Compare this to the strategy of bidding v
- For any strategy $s_j : [v_*, v^*] \to \mathbb{R}_+$ of the other players, and for any set of values v_j for the other players the only important metric is

$$\bar{s} = \max_{j \neq i} s_j(v_j)$$

- If s̄ ≤ v then bidding s and v give the same payoff
 win the item and pay s̄
- If $\bar{s} > s$ then bidding s and v give the same payoff
 - Do not win the item and get 0
- Only difference is if $\bar{s} \in (v, \bar{s}]$
 - In this case bidding v means a payoff of 0
 - Bidding s means winning the object but paying $\bar{s} > v$
 - Negative payoff
- Similar logic shows that bidding v weakly dominates bidding s < v

• In a Second Price Sealed Bid Auction it is a symmetric BNE for every player to have a bidding strategy

$$s_i(v_i) = v_i$$

- Easy to show as this strategy weakly dominates all others for each player and each type, it is a best response any strategy of any other player
- Is this the only BNE?

- Consider an auction with two players
- Player 1 always bids v_* regardless of type
- Player 2 always bids v^* regardless of type
- Payoff or player 1 is 0
- Payoff of player 2 is $v v_*$
- Can either player do better by deviating?

- No!
- In order to win the auction, player 1 would have to bid $v > v^*$, guaranteeing negative payoff
- If player two deviated to a lower bid, would still always win the auction and pay v_{\ast}

- First Price Sealed Bid Auction is a different mechanism
 - The bidders simultaneously submit bids $s_i \in [0, \infty)$.
 - The highest bidder wins the object and pays their bid.
 - Given a profile of bids, s, let W(s) ≡ {k : ∀j, s_k ≥ s_j} be the set of highest bidders.
 - Then the game is simply the following:

$$u_i\left(s_i, s_{-i}\right) = \begin{cases} v_i - s_i & \text{if } s_i > \max_{j \neq i} s_j \\ \frac{1}{|W(s)|} (v_i - s_i) & \text{if } s_i = \max_{j \neq i} s_j \\ 0 & \text{if } s_i < \max_{j \neq i} s_j. \end{cases}$$

- Is it optimal to bid your value in a first price auction?
- No!
- This strategy guarantees a payoff of 0
- Whereas (for example) bidding half your value will provide a positive payoff on average
- Want to 'shade down' your bid
- But by how much?
 - Benefit: get more when you win the auction
 - Cost: lower chance of winning

 \bullet Optimization problem for person with value v

$$\max_{s} (v - s) P(\bar{s} < s)$$

- Lets make things a little simpler
- Assume that values are uniformly distributed on [0, 1]
- Guess and verify that every one uses a linear bidding strategy $s=\theta v$

• Optimization problem becomes

$$\max_{s} (v - s^*) P(s_1 \leq s^*, s_2 \leq s^*, \ldots)$$

$$= \max_{s} (v - s^*) P(\theta v_1 \leq s^*, \theta v_2 \leq s^*, \ldots)$$

$$= \max_{s} (v - s^*) P(v_1 \leq \frac{s^*}{\theta}, v_2 \leq \frac{s^*}{\theta}, \ldots)$$

$$= \max_{s} (v - s^*) \left(\frac{s^*}{\theta}\right)^{n-1}$$

• Gives FOC

$$\frac{(n-1)(v-s^*)}{\theta} \left(\frac{s^*}{\theta}\right)^{n-2} - \left(\frac{s^*}{\theta}\right)^{n-1} = 0$$
$$\frac{(n-1)(v-s^*)}{\theta} = \frac{s^*}{\theta}$$
$$s^* = \frac{n-1}{n}v$$

- Verifies linear bid strategy
- Bid 'shaded down' by $\frac{n-1}{n}$
 - when n = 2, bid half your value
 - as $n \to \infty$ bid approaches value

- Lets think about a more general case
- Valuations not necessarily distributed uniformly

$$\begin{aligned} (v-s^*)P(\bar{s} < s^*) \\ &= (v-s^*)P(s_1 \le s^*, s_2 \le s^*, \ldots) \\ &= (v-s^*)P(s(v_1) \le s^*, s(v_2) \le s^*, \ldots) \\ &= (v-s^*)P(v_1 \le s^{-1}(s^*), v_2 \le s^{-1}(s^*), \ldots) \\ &= (v-s^*)F\left(s^{-1}(s^*)\right)^{n-1} \end{aligned}$$

• Assume that solution is a function is a bid strategy which is strictly increasing and continuous in v

First Price Sealed Bid Auction

• First order conditions

$$(v-s^*)(n-1)f(s^{-1}(s^*))s^{-1'}(s^*)F(s^{-1}(s^*))^{n-2} - F(s^{-1}(s^*))^{n-1}$$
$$= 0$$
$$\Rightarrow F(s^{-1}(s^*)) = \frac{(v-s^*)(n-1)f(s^{-1}(s^*))}{s'(s^{-1}(s^*))}$$

• For symmetric equilibrium $s^{-1}(s^*) = v$

$$F(v) = \frac{(v - s(v))(n - 1)f(v)}{s'(v)}$$

• Where we replace s^* with s(v)

First Price Sealed Bid Auction

- This is a differential equation in v
- Can be solved using the initial condition that $s(v_*) = v_*$

$$s(v) = v - \frac{\int_{v_*}^v F^{n-1}(x) dx}{F^{n-1}(v)}$$

Comparing Revenue

- So we now have two different auction mechanisms
- And have figured out the optimal bidding procedure in each case
- If you wanted to maximize revenue, which would you choose?

Comparing Revenue

- To make things simple, let's concentrate on the uniform distribution case.
- Type v bids

$$\frac{n-1}{n}v$$

• So expected revenue is

$$\frac{n-1}{n} E \{ \max(v_1, ...v_n) \}$$

= $\frac{n-1}{n} \int_0^1 v f_{(1)}(v) dv$

- where $f_{(1)}(v)$ is the 1st order statistic of the possible values
 - i.e. the distribution of the maximal value of n draws from U[0,1]
 - We can look this up:

$$f_{(1)}(v) = nv^{n-1}$$

Comparing Revenue

• Plugging in gives

$$= \frac{n-1}{n} \int_0^1 v n v^{n-1} dv$$
$$= (n-1) \int_0^1 v^n dv$$
$$= \frac{(n-1)}{(n+1)}$$

Comparing Revenue

- How about the second price revenue
- Here, everyone bids their value, but we get the second highest bid
- So expected revenue is

$$\int_0^1 v f_{(2)}(v) dv$$

- where $f_{(2)}(v)$ is the 2nd order statistic of the possible values
 - i.e. the distribution of the second highest value of n draws from U[0,1]
 - We can look this up:

$$f_{(1)}(v) = n(n-1)(v^{n-2} - v^{n-1})$$

Comparing Revenue

• Plugging in

$$\int_0^1 vn(n-1)(v^{n-2} - v^{n-1})dv$$

= $n(n-1) \left[\int_0^1 v^{n-1}dv - \int_0^1 v^n dv \right]$
= $n(n-1) \left[\frac{1}{n} - \frac{1}{n+1} \right] = \frac{n-1}{n+1}$

• Magic!

Revenue Equivalence Theorem

- Is this something special about the particular set up we chose?
- No!

Theorem (Revenue Equivalence)

For an auction amongst n bidders the values of which are independently and identically distributed with some continuous distribution F, any mechanism which

- Always awards the object to the bidder with the highest value
- **2** Gives bidder with valuation v_* zero profits

Generates the same revenue in expectation

Coordination Game

- Consider the following situation:
- Two investors are deciding whether to attack a currency
- If they both attack they will move the currency
- But there is a cost to being the only person to attach

A Global Game

	In	Out
In	θ, θ	$\theta - t, 0$
Out	$0, \theta - t$	0,0

- Players choose 'in' or 'out'
 - θ value of coordinating action (state of nature)
 - t cost of failure to coordinate
- Full information case: if $0 \le \theta \le t$ two equilibria
 - {In, In} (Payoff Dominant)
 - {Out, Out} (Risk Dominant)

A Global Game

	In	Out
In	θ, θ	$\theta - t, 0$
Out	$0, \theta - t$	0, 0

- What if there is uncertainty about θ ? [Carlsson and van Damme 1993]
 - Each agent receives an independent signal $z=\theta+\varepsilon$
- Equilibrium a pair of threshold strategies (\bar{z}, \bar{z})
 - As variance of ε goes to zero, $\overline{z} \to \frac{t}{2}$
- For small variance, coordination is 'difficult': for $0 < z < \frac{t}{2}$
 - {In, In} is 'almost certainly' an equilibrium for underlying game
 - But 'out' is unique equilibrium strategy

A Global Game

	In	Out
In	θ, θ	$\theta - t, 0$
Out	$0, \theta - t$	0, 0

- Intuition: lack of common knowledge leads to unravelling
 - $\bullet\,$ Say threshold is \bar{z}
 - If I received signal of exactly z, then there is exactly a $\frac{1}{2}$ chance that the other player will choose in
 - Payoff of playing 'in' is

$$E(\theta|\bar{z}) - \frac{t}{2}$$

• As the variance of ε goes to zero, this becomes negative for any $\bar{z} < \frac{t}{2}$