G5212: Game Theory

Mark Dean

Spring 2017

Nash Equilibrium

- We now have one way of solving (i.e make predictions) in games
 - We assume common knowledge of rationality
 - This allows us to focus on the set of strategies which are rationalizable/survive IDSDS
- But this may be unsatisfactory for two reasons
- Predictions may not be very tight
 - Think matching pennies
- We may find it unrealistic to assume that people have beliefs which are wrong

Nash Equilibrium

- Our next refinement is therefore to put further restrictions on beliefs
- In particular we will demand that the beliefs μ that we introduced last time are consistent with play in the game
 - Allows us to make more precise predictions
 - Insists that beliefs are correct
- We will insist
 - Players best respond to beliefs
 - e Beliefs are generated by the play of other players i.e. for mixed strategies σ^{*}_i

$$\mu_i = \prod\nolimits_{j \neq i} \sigma_j^*$$

• Note, that this means that we can drop beliefs from the definition

Nash Equilibrium in Pure Strategies

Definition

A Nash equilibrium in pure strategies is a strategy profile $(s_1^*, ..., s_n^*)$ such that, for all i, for all $s_i \in \Delta S_i$, $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$.

- Each player is doing the best thing, given what others are doing
- Note: A Nash equilibrium always assigns a strategy to each player!
 - If I ask for a Nash equilibrium, and you do not give me a strategy for each player, then you have done something wrong

Prisoner's Dilemma

Example

Prisoner's Dilemma

• C, C is unique Nash Equilibrium in Pure Strategies

Bach or Stravinsky

Example

Prisoner's Dilemma

		Bob	
		Bach	$\operatorname{Stravinsky}$
Anne	Bach	2, 1	0,0
	Stravinsky	0,0	1, 2

- Anne and Bob are picking a concert to go to
- Both prefer to go together than to go alone
- Anne prefers Bach while Bob prefers Stravinsky
- B, B and S, S are the two N.E. in pure strategies

A Game With No Name

Example

A Game with No Name

• D, Y is the NE in pure strategies

Matching Pennies

Example

Matching Pennies

- No NE in pure strategies
- Note this shows we can have strategies which are rationalizable, but not part of a NE
- Yikes! Economists like
 - Existence
 - Uniquence
- Maybe NE is not useful if we can't guarantee existence

Nash Equilibrium in Mixed Strategies

• Maybe we can get further if we allow for **mixed** strategies?

Definition

A Nash equilibrium is a strategy profile $(\sigma_1^*, ..., \sigma_n^*)$ such that, for all i, for all $\sigma_i \in \Delta(S_i)$, $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*)$.

- Again, this is based in the idea that each player is doing the best thing given what everyone else is doing
- Let's make this formal
 - Define the concept of a best response (or best reply)

Best Reply

Lemma

Fix a strategy profile $(\sigma_i^*, \sigma_{-i}^*)$. The following statements are equivalent:

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*) \text{ for all } \sigma_i \in \Delta(S_i)$$

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(s_i, \sigma_{-i}^*) \text{ for all } s_i \in S_i$$

Definition

We say σ_i^* is a **best reply** to σ_{-i}^* if one of the above conditions is satisfied. We write $\phi_i(\sigma_{-i}^*) := \arg \max_{\sigma_i \in \Delta(S_i)} u_i(\sigma_i, \sigma_{-i}^*)$ as the **best reply correspondence.**

Definition

 σ_i^* is a **best reply** to σ_{-i}^* if $\sigma_i^* \in \phi_i(\sigma_{-i}^*)$. A **Nash equilibrium** is a strategy profile $(\sigma_1^*, ..., \sigma_n^*)$ such that σ_i^* is a best reply to σ_{-i}^* , i.e., $\sigma_i^* \in \phi_i(\sigma_{-i}^*)$, for any *i*.

- Effectively we have been figuring out the best response to find pure strategy Nash Equilbria
- If σ_i^* is a best response, all the stratgies s_i' such that $\sigma_i^*(s_i') > 0$ must have the same payoff
- Does a best response always exist?

Examples

Example

Matching Pennies

$$\begin{array}{c|ccccc}
L & R \\
T & 1, -1 & -1, 1 \\
B & -1, 1 & 1, -1
\end{array}$$

 $\Delta(S_1) = \Delta(S_2) = [0, 1], p_T = \Pr(T) \text{ and } p_L = \Pr(L)$. What is player 1's best reply to player 2's strategy p_L ?

$$\phi_1(p_L) = \begin{cases} \{1\} & \text{if } p_L > \frac{1}{2} \\ [0,1] & \text{if } p_L = \frac{1}{2} \\ \{0\} & \text{if } p_L < \frac{1}{2} \end{cases}$$

Examples

Example

Matching Pennies

$$\begin{array}{c|ccccc}
L & R \\
\Gamma & 1, -1 & -1, 1 \\
B & -1, 1 & 1, -1
\end{array}$$

 $\Delta(S_1) = \Delta(S_2) = [0, 1], p_T = \Pr(T) \text{ and } p_L = \Pr(L).$

$$\phi_1(p_L) = \begin{cases} \{1\} & \text{if } p_L > \frac{1}{2} \\ [0,1] & \text{if } p_L = \frac{1}{2} \\ \{0\} & \text{if } p_L < \frac{1}{2} \end{cases}; \phi_2(p_T) = \begin{cases} \{1\} & \text{if } p_T < \frac{1}{2} \\ [0,1] & \text{if } p_T = \frac{1}{2} \\ \{0\} & \text{if } p_T > \frac{1}{2} \end{cases}$$

Examples

Example

$$\begin{array}{c|ccc}
L & R \\
T & 2,1 & 0,0 \\
B & 0,0 & 1,1
\end{array}$$

Pure strategy Nash equilibrium (T, L) and (B, R). Mixed strategy Nash equilibrium? $p_T = \Pr(T)$ and $p_L = \Pr(L)$.

$$\phi_1(p_L) = \begin{cases} \{1\} & \text{if } p_L > \frac{1}{3} \\ [0,1] & \text{if } p_L = \frac{1}{3} \\ \{0\} & \text{if } p_L < \frac{1}{3} \end{cases}; \phi_2(p_T) = \begin{cases} \{1\} & \text{if } p_T > \frac{1}{2} \\ [0,1] & \text{if } p_T = \frac{1}{2} \\ \{0\} & \text{if } p_T < \frac{1}{2} \end{cases}$$

Existence Theorem

- We have shown that allowing for mixed strategies means that we can find NE in games that have no pure strategy NE
- But is it enough to **guarantee** existence?
- Recall that Nash equilibrium is a strategy profile σ^* such that $\sigma_i^* \in \phi_i(\sigma_{-i}^*)$ for each *i*.
- Let us define a correspondence

$$\phi: \prod_{j=1}^{n} \Delta\left(S_{j}\right) \Longrightarrow \prod_{j=1}^{n} \Delta\left(S_{j}\right)$$

such that $\phi(\sigma) := (\phi_1(\sigma_{-1}), ..., \phi_n(\sigma_{-n})) = (\phi_i(\sigma_{-i})).$

Then, σ* is a Nash equilibrium iff σ* ∈ φ(σ*), i.e., σ* is a fixed point of φ.

Fixed point theorems

Theorem

(Brouwer's fixed point theorem) Let X be a non-empty, convex and compact subset of \mathbb{R}^N for some finite N. Suppose $f: X \to X$ is a continuous function. Then f has a fixed point, i.e., there exists $x^* \in X$ such that $x^* = f(x^*)$.

Theorem

(Kakutani's fixed point theorem) Let X be a non-empty, convex and compact subset of \mathbb{R}^N for some finite N and $F: X \rightrightarrows X$. Suppose

• F(x) is non-empty and convex for all $x \in X$

 F is upper-hemi-continuous, i.e., F has a closed graph: $(x^k, y^k) → (x, y) ∈ ℝ^{2N}$ and $y^k ∈ F(x^k)$ imply y ∈ F(x).

Then F has a fixed point, i.e., there exists $x^* \in X$ such that $x^* \in F(x^*)$.

Nash Equilibrium

Existence of Nash Equilibrium

Theorem

Every finite game has a Nash equilibrium.

Nash Existence (1950 PNAS)

- Recall that $\Delta(S_i) \subset \mathbb{R}^{|S_i|}$. Consider $X := \prod_{i=1}^n \Delta(S_i) \subset \mathbb{R}^{\sum_i |S_i|}$, which is non-empty, convex, and compact.
- **2** Consider the correspondence $\phi : X \rightrightarrows X$

$$\phi\left(\sigma\right) := \left(\phi_{1}\left(\sigma_{-1}\right), ..., \phi_{n}\left(\sigma_{-n}\right)\right) = \left(\phi_{i}\left(\sigma_{-i}\right)\right).$$

- By definition, $\phi_i(\sigma_{-i}) = \arg \max_{\sigma_i} u_i(\sigma_i, \sigma_{-i})$. We can show, $\phi(\sigma)$ is convex.
- Since u_i is continuous (?) in (σ_i, σ_{-i}) , $\phi_i(\sigma_{-i}) = \arg \max_{\sigma_i} u_i(\sigma_i, \sigma_{-i})$ is non-empty and upper-hemi-continuous by the theorem of maximum (MWG M.K.6). Thus ϕ is also non-empty and u.h.c.

Kakutani's fixed point theorem implies that ϕ has a fixed point.

Nash (1951 Annals of Mathematics)

• $X := \prod_{i=1}^{n} \Delta(S_i).$ • Define $f : X \to X$ as follows. For each $\sigma \in \prod_{i=1}^{n} \Delta(S_i),$ $\sigma' = f(\sigma)$ is defined such that for each $s_i,$ $\sigma'_i(s_i) = \frac{\sigma_i(s_i) + \max\{0, u_i(s_i, \sigma_{-i}) - u_i(\sigma)\}}{1 + \sum_{s'} \max\{0, u_i(s'_i, \sigma_{-i}) - u_i(\sigma)\}}.$

3 Claim: $\sigma = f(\sigma)$ if and only if σ is a Nash equilibrium.

- That a NE has the property is obvious. Can we show that this implies NE?
- Since $u_i(\sigma) = \sum_{s_i} u_i(s_i, \sigma_{-i}) \sigma_i(s_i)$, there exists at least one s_i such that $\sigma_i(s_i) > 0$ and $u_i(s_i, \sigma_{-i}) \le u_i(\sigma)$.
- For this s_i , the above equation becomes (setting $\sigma' = \sigma$),

$$\sigma_{i}\left(s_{i}\right) = \frac{\sigma_{i}\left(s_{i}\right)}{1 + \sum_{s'_{i}} \max\left\{0, u_{i}\left(s'_{i}, \sigma_{-i}\right) - u_{i}\left(\sigma\right)\right\}}$$

hence $u_i(s'_i, \sigma_{-i}) - u_i(\sigma) \le 0$ for all for all s'_i Thus it must be the case that $u_i(s'_i, \sigma_{-i}) = u_i(\sigma)$

Nash (1951 Annals of Mathematics)

- u_i is continuous in σ ; max $\{0, x\}$ is continuous in x: hence $\sigma'_i(s_i)$ is continuous in σ .
- Hence $f(\sigma)$ is a continuous function in σ . Then Brouwer.

More general strategy space

Theorem

(Fan and Glicksberg) Let X be a nonempty compact convex subset of a convex Hausdorff topological vector space. Let $F: X \rightrightarrows X$ be an upper hemi-continuous convex valued correspondence. Then F has a fixed point.

Theorem

Let S_i be a compact (bounded and closed) and convex subset of \mathbb{R}^N . Suppose $u_i : S \to \mathbb{R}$ is continuous. Then there exists a Nash equilibrium (in mixed strategies). Suppose, in addition, u_i is quasi-concave. Then there exists a Nash equilibrium in pure strategies. (Proof Skipped)