G5212: Game Theory

Mark Dean

Spring 2017

The Story So Far...

- Last week we
 - Introduced the concept of a dynamic (or extensive form) game
 - The strategic (or normal) form of that game
- In terms of solution concepts we
 - Described the Nash equilibrium of a dynamic game as the Nash equilibrium of the associated normal form game
 - Showed that some NE were 'non-credible'
 - Introduced 'backward induction' as a way of identifying credible NE
 - Showed that this was the same as assuming 'Common Knowledge of Sequential Rationality'

This Lecture

- This lecture we will
 - Extend the concept of backward induction to that of subgame perfect Nash equilibrium
 - Discuss a potential problem with backward induction
 - Apply SPNE to bargaining games

Limits on Backward Induction

- What are the Nash Equilibria of this game?
- What survives Backward Induction?

Limits on Backward Induction

How to do backward induction for this game?

Limits on Backward Induction

Example

How to do backward induction for this game?

Subgame Perfect (Nash) Equilibrium

- There are two cases in which backwards induction cannot be applied
- If the game has an infinite horizon
- **②** If it is a game of incomplete information
 - To tackle such cases, we need a sightly more sophisticated concept
 - Subgame Perfect Nash Equilibrium

Defining A Subgame

Definition

A subgame is any part (a subset) of a game that meets the following criteria

- It has a single initial node that is the only member of that node's information set (i.e. the initial node is in a singleton information set).
- If a node is contained in the subgame then so are all of its successors.
- If a node in a particular information set is in the subgame then all members of that information set belong to the subgame.

Defining A Subgame

Example

• How many subgames does this game have?

Defining A Subgame

• How many subgames does this game have?

Defining A Subgame

Example

• How many subgames does this game have?

Subgame Perfect (Nash) Equilibrium

- Subgame Perfect (Nash) Equilibrium (SPNE) is a refinement of Nash equilibrium
- A strategy profile forms a SPNE if:
 - It is a Nash Equilibrium
 - When restricted to any subgame, it forms a Nash equilibrium for that subgame.
- In finite games of complete information, set of SPNE is the set of strategy profiles one gets from backward induction
- But the concept of SPNE can also be applied to infinite games and games of incomplete information

Subgame Perfect Nash Equilibrium - Example

Example

SPNE is a NE in each game

Subgame Perfect Nash Equilibrium - Example

• Subgame 1: The whole game:

• Three NE: (XT, L), (XB, L) and (LT, R)

Subgame Perfect Nash Equilibrium - Example

Example

SPNE is a NE in each game

• Subgame 2

Subgame Perfect Nash Equilibrium - Example

• Subgame 2:

	\mathbf{L}	\mathbf{R}
Т	(0,1)	(3,2)
В	(-1,3)	(1.5)

• One NE: (L, R)

Subgame Perfect Nash Equilibrium - Example

- Thus (LT, R) is the only NE in the first game that also induces a NE in all other subgames
 - Kills (XT, L) and (XB, L)
- Allows us to carry over the backward induction reasoning into settings where backward induction cannot be applied

SPNE and One Shot Deviation Principle

- It seems like there is a **lot** to check when it comes to determining whether a strategy is a SPNE
- Luckily, we can use a handy trick
- The one shot deviation principle

Definition

For any strategy in an extensive form game, a one-shot deviation is a strategy that varies only in the action taken at the initial node

Theorem

For any finite game, a strategy profile $(s_1, ..., s_n)$ is a SPNE if and only if for every player and every subgame there is no one shot deviation that leads to a higher payoff

• This will be particularly handy when we talk about repeated games in the next lecture

A Potential Problem with SPNE

Example

BoS with outside option

A Potential Problem with SPNE

- What are the SPNE of this game?
- Subgame 1: The whole game:

• Two equilibria: (GB, B), (BB, S) and (BS, S)

A Potential Problem with SPNE

- What are the SPNE of this game?
- Subgame 2: The BoS game

• Two equilibria (B, B) and (S, S)

A Potential Problem with SPNE

- Two SPNE
 - (GB, B) and (BS, S)
- Are both equally convincing?
- Arguably not
 - Imagine that Trump finds himself playing the BoS game
 - Is it reasonable to think that Putin has played S?
 - Probably not. Put in could have guaranteed himself 2 by playing B
 - Why would he enter a subgame and play in a manner in which he is only going to get 1
 - Arguably (BS, S) is not reasonable, despite being SPNE
- This is an example of **forward induction** reasoning

Backward Induction vs Forward Induction

• What are the SPNE of this game?

- (c, e) is the only NE of the second game
- (bc, e) is the unique SPNE

Backward Induction vs Forward Induction

Example

- What about 'forward induction'?
 - If Trump finds himself at the second stage game, what should he assume?
 - Knows that Putin can guarantee himself 3
 - Must think he is getting 4 and so playing d
 - Best response is f

Backward Induction vs Forward Induction

- Forward Induction is not a refinement of SPNE
 - Central to the Forward Induction concept is that previous play tells you something about future play
 - Subgames cannot be treated in isolation
- Despite intuitive plausibility, formalizing notion of Forward Induction has proved tricky
 - Beyond the scope of this course
 - For those interested see: Govindan, Srihari, and Robert Wilson. "On forward induction." Econometrica 77.1 (2009): 1-28.