Introduction to Adverse Selection

G5212: Game Theory

Mark Dean

Spring 2017

Introduction to Adverse Selection

Introduction to Adverse Selection

- In the today's lecture, we will do two things
 - Give an example of why adverse selection problems are important
 - ② Give an introduction to Mechanism Design -
 - A broader class of problems of which adverse selection is one example

- Consider the following scenario (and see if it reminds you of anything):
 - The population consists of people who have different probabilities of being sick
 - Probability of getting sick is uniformly drawn from 0 to 100%
 - Treatment costs \$100
 - A company wants to offer insurance
 - Individuals know how likely they are to get sick, but insurance companies don't know
 - Or are not allowed to charge different prices based on this probability
- Note that this is an adverse selection problem
 - Patients know their type, insurance company does not
 - Insurance company moves first (offers insurance), then patients decide whether or not to take it

- Let's think of an insurance company which is
 - Kindly
 - Dumb
- So they just offer 'actuarilly fair' insurance contract
 - One single contract
 - Prices so firm breaks even
- Can this firm insure everyone?

- Can this firm insure everyone with this contract?
- No
 - If they insure everyone then the average probability of any one person getting sick is is 50%
 - Cost of the insurance contract is therefore \$50
 - Who will buy such a contract?
 - $\bullet\,$ Only people whose risk of illness is above 50%
 - But for this pool of people the risk of illness is 75%
 - Cost of acuarilly fair contract must rise to \$75
 - Who will buy this contract?
 - $\bullet\,$ Only people whose risk of illness is above 75%
 - And so on

- This is an example of **unravelling** in the insurance market
- For this type of contract there is no equilibrium in which anyone (apart form the worst type) gets insured
- If the insurees have private information then simple, fair contracts don't work
 - Need to do something else
- We can use brute force
 - e.g. individual mandates
- Or design smarter contracts

- Adverse selection is an example of a broader area of study: Mechanism design
 - Adverse selection the principal only deals with one agent at a time
 - Mechanism design problems may involve many agents
- General mechanism design problem
 - $\bullet~N$ agents
 - Each agent has a type $\theta_n \in \Theta_N \ (\Theta = \prod_{n \in N} \Theta_n)$
 - μ : probability distribution over Θ
 - There is a set of possible outcomes Y_n for each agent $(Y = \prod_{n \in N} Y_n)$
 - Principal has an objective function $y: \Theta \to Y$ which determines what oucome they would like given θ
 - Agents have preferences $u(y_i, \theta_i)$

- Principal's problem would be trivial if they observed θ
- But maybe they don't
- A mechanism is a set of possible messages M_i for each agent i, and a set of rules of the game described by g.
- The center commits to implement an allocation g(m), where $m = (m_1, ..., m_n)$, and m_i is the message sent by *i*.
- Each agent *i* has information I_i , which contains θ_i .
- Using I_i , each agent i selects $m_i^* \in M_i$ according to some rule
- Implemented allocation is $g(m_1^*(I_1), ..., m_n^*(I_n))$.

- The center can be a government, a regulator, or a "principal" (seller, employer,...).
- The mechanism can be extremely complex (using bribes for revealing the truth, punishing caught liars,...).
- Questions we might want to ask:
 - Is y implementable? In other words, can we find a mechanism in which $y(\theta) \equiv g(m^*(\theta))$ for all θ ?
 - Most cannot: They are not incentive-compatible.
 - Managing information generates distortions.
 - What is the best choice among different implementable solutions?
 - Maximize principal's objective under incentive-compatible constraints.
 - Find a second-best solution that minimizes economic inefficiencies.

Public Good

- Example: Public Good
- Suppose that the utility of agent i of consuming the public good G is a function of some private information θ_i:
 U_i = U(G, θ_i) t_i.
- If the social planner would know $(\theta_1, ..., \theta_n)$ and c, she would select the G^* that solves the FB problem:

$$G^* \in \arg\max_G \sum_{i=1}^n \{U(G, \theta_i)\} - cG.$$

Public Good

- But what if θ is not known?
- How could we implement this?
- We could ask everyone how much public good everyone wanted and implement the average
 - But then people who want a lot of the public good would have an incentive to exaggerate upwards
- We could ask them their willingness to pay and charge them that
 - But then everyone would have an incentive to exaggerate downwards
- \bullet Need a mechanism that implements y

Types of Implementation

- Types of implementation:
 - Dominant strategy equilibrium: m^* is the best strategy for every agent, regardless of what other agents do: for all I_i and m_{-i} ,

$$m_i^*(I_i) \in \arg \max_{m_i \in M_i} U_i(g(m_i, m_{-i}))$$

Nash equilibrium (only when agents know θ): if all other agents act according to m^{*} so does i: for all θ and i,

$$m_i^*(\theta) \in \arg \max_{m_i \in M_i} U_i(g(m_i, m_{-i}^*(\theta))).$$

• Bayesian equilibrium: every agent *i* has a belief $\mu(I_{-i} | I_i)$ on others' information, conditional on observing his own; For all I_i ,

$$m^*(I_i) \in \arg\max_{m_i} E(U_i(g(m_i, m^*(I_{-i})))|I_i)$$

where the expectation is over the belief μ .

Implementation in Dominant Strategies

- Gold standard is implementation in dominant strategies
- Very demanding, but robust ("detail-free").
 - Requires only rationality
 - Of course this is the only option for a problem when n = 1.
- If a mechanism (M, g) implements a social choice function y in dominant strategies, we can call y strategy-proof, or non-manipulable.
- Requires the mechanism to satisfy Incentive Compatibility (IC) constraint:

 $\forall i, \forall m'_i \in M_i, \forall m_{-i}: \ U(g(m^*_i, m_{-i}), \theta_i) \ge U(g(m'_i, m_{-i}), \theta_i)$

• Where m_i^* is the equilibrium message

Implementation in Dominant Strategies

- The space of possible strategies is huge
- Here is an extremely handy theorem which is going to help us to narrow it down

Definition

A direct revelation mechanism is one in which the message space for each player is their type space. A truthful mechanism is a direct revelation mechanism in which everyone truthfully reports their type Introduction to Adverse Selection

Implementation in Dominant Strategies

Proposition (Revelation Principle)

If a social choice y can be implemented by some mechanism (M,g) in dominant strategies, then there exists a truthful direct revelation mechanism that implements y in dominant strategies.

• So we can focus on asking each agent to report what he knows, and on mechanisms in which each agent reports truthfully.

Implementation in Dominant Strategies

• Proof:

• Take a strategy-proof y. By definition, $\exists (g, M)$ such that each agent has a unique dominant strategy to play some $m^*(\theta_i)$, and for every profile we have

$$y(\theta_1,...,\theta_n) = g(m^*(\theta_1),\ldots,m^*(\theta_n)).$$

Since it is a dominant strategy for i to play m^{*}(θ_i), we have that ∀(m_i, m_{-i})

$$U_i\left(g(m^*(\theta_i), m_{-i})|\theta_i\right) \ge U_i\left(g(m_i, m_{-i})|\theta_i\right)$$

• In particular, $\forall \hat{\theta}_i, \hat{\theta}_{-i}$:

$$U_i\underbrace{\left(g(m^*(\theta_i), m^*(\hat{\theta}_{-i}))|\theta_i\right)}_{y(\theta_i, \hat{\theta}_{-i})} \ge U_i\underbrace{\left(g(m^*(\hat{\theta}_i), m^*(\hat{\theta}_{-i}))|\theta_i\right)}_{y(\hat{\theta}_i, \hat{\theta}_{-i})}$$

• So now construct a direct revelation mechanism such that

$$\hat{g}\left(heta_{1},\ldots, heta_{n}
ight)=y(heta_{1},..., heta_{n})$$

• It follows directly that

$$U_{i}\left(\hat{g}(\theta_{i},\theta_{-i})|\theta_{i}\right)$$

$$= U_{i}\left(y(\theta_{i},\theta_{-i})|\theta_{i}\right)$$

$$= U_{i}\left(g(m^{*}(\theta_{i}),m^{*}(\theta_{-i}))|\theta_{i}\right)$$

$$\geq U_{i}\left(g(m^{*}(\hat{\theta}),m^{*}(\theta_{-i}))|\theta_{i}\right)$$

$$= U_{i}\left(y(\hat{\theta}_{i},\theta_{-i})|\theta_{i}\right)$$

$$= U_{i}\left(\hat{g}(\hat{\theta}_{i},\theta_{-i})|\theta_{i}\right)$$

- Implementation in dominant strategies works really well sometimes. VCG mechanism in the provision of a public good.
- M is the set of possible utility functions, and $g = (G, t_1, ..., t_n).$
 - G is the level of public good
 - t_i is the transfer to person i
- Government wants to choose G to maximize

$$\sum_{i} u_i(G) - cG$$

• Preferences are quasi linear

$$u_i(G) - t_i$$

- VCG mechanism works as follows:
 - Each person reports their type \hat{u}_i
 - 2 Government chooses G to maximize $\sum_i \hat{u}_i(G) cG$
 - Output Charges each person

$$t_i(\hat{u}) = cG(\hat{u}) - \sum_{j \neq i} \hat{u}_j(G(\hat{u})).$$

- Claim: it is optimal to report $\hat{u}_i = u_i$
- Note that payoff for i is

$$u_i(G(\hat{u}_i, \hat{u}_{-i})) - t_i$$

$$= u_i(G(\hat{u}_i, \hat{u}_{-i})) - \left(cG(\hat{u}_i, \hat{u}_{-i}) - \sum_{j \neq i} \hat{u}_j(G(\hat{u}_i, \hat{u}_{-i}))\right)$$

$$= u_i(G(\hat{u}_i, \hat{u}_{-i})) + \sum_{j \neq i} \hat{u}_j(G(\hat{u}_i, \hat{u}_{-i})) - cG(\hat{u}_i, \hat{u}_{-i})$$

• Say that for some $\hat{u}_i \neq u_i$ we had

$$u_i(G(\hat{u}_i, \hat{u}_{-i})) + \sum_{j \neq i} \hat{u}_j(G(\hat{u}_i, \hat{u}_{-i})) - cG(\hat{u}_i, \hat{u}_{-i})$$

> $u_i(G(u_i, \hat{u}_{-i})) + \sum_{j \neq i} \hat{u}_j(G(u_i, \hat{u}_{-i})) - cG(u_i, \hat{u}_{-i})$

• This violates the fact that $G(u_i, \hat{u}_{-i})$ was chosen in order to maximize the latter expression

• A simple example

- Type of each player is the utility from the bridge:
 - $u_i(1)$
 - Assumue this is drawn from some distribution F
 - Normalize $u_i(0) = 0$
- Utility of a player who is charged t_i is

$$u_i(G) - t_i$$

- VGC mechanism in this case
 - Each player announces $u'_i(1)$
 - If $u'_1(1) + u'_2(1) \ge 1$ then bridge is built
 - Taxes are

$$t_1 = c - u'_2(1)$$

 $t_2 = c - u'_1(1)$

- If the bridge gets build,
- If $u_1'(1) + u_2'(1) < 1$ bridge is not built, zero taxes

- Claim: truthtelling is the optimal strategy
- Focus on player 1, treat $u'_2(1)$ as fixed
- Assume player 1 announces $u_1(1)$
- Two cases
 - $u_2'(1) + u_1(1) < 1$
 - $u'_2(1) + u_1(1) > 1$

- \bullet Case 1:
 - $u_2'(1) + u_1(1) < 1$
 - Bridge does not get built under truthtelling
 - Player 1 gets a utility of 0
- Can they do better by lying?
 - The only way to get the bridge built is by announcing $u_1'(1) > 1 u_2'(1)$
 - This would provide payoff

$$u_1(1) - t_1$$

= $u_1(1) - (1 - u'_2(1))$
= $u_1(1) + u'_2(1) - 1 < 0$

- Case 2:
 - $u'_2(1) + u_1(1) > 1$
 - Bridge does gets built under truthtelling
 - Player 1 gets a utility of

$$u_1(1) - t_1$$

= $u_1(1) - (1 - u'_2(1))$
= $u_1(1) + u'_2(1) - 1 > 0$

- Can they do better by lying?
 - Notice that changing their announcement does not change their tax rate assuming bridge gets built
 - So the only thing player 1 can do to change their payoff is to announce a utility

$$u_1(1) < 1 - u_2'(1)$$

- Bridge won't get built
- Utility of 0