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Adverse Selection

Last lecture we discussed a specific model of adverse
selection

Two types for the agent

This gave us a lot of intuition

Indeed, there were many lessons that will turn out to be
general
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The Second Best Contract

Summarizing the second best contract

High type gets effi cient allocation
Every type is indifferent between their contract and that of
the type immediately below
All types but the lowest get positive surplus (informational
rent)
All types but the highest get less than effi cient allocation
Lowest type gets zero surplus
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Adverse Selection

However, it was also rather specific

Today we will solve a more general model

Agent has a type θ ∈ [θ1, θ2] - continuous type space
Distributed according to continuous pdf f with cdf F
Principal and agent will exchange a bundle of goods q for
payment t
Utility of principal

W (q, t)

Utility of agent of type θ

U(q, t, θ) = U(q, θ)− t

We will assume model is parameterized in such a way that
all types are sold to
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Optimality

As in the previous model we can assume that the principal
offers the agent a set of contracts

q(θ), t(θ)

Which is the bundle of goods and price designed for the
agent of type θ
Two types of constraints must hold:
Individual rationality: Each type of agent must prefer their
contract to the outside option (which we normalize to 0)

U(q(θ), t(θ), θ) ≥ 0
Incentive Compatibility: Each agent must prefer their own
contract to any other

U(q(θ), t(θ), θ) ≥ U(q(θ̂), t(θ̂), θ)
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Incentive Compatibility

We will start by analyzing the IC constraints

Define
V (θ, θ̂) = U(q(θ̂), t(θ̂), θ)

Utility of an agent of type θ who announces θ̂

IC constraint says, for all θ ∈ [θ1, θ2]

V (θ, θ) ≥ V (θ, θ̂)
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First and Second Order Conditions

This means that V (θ, θ) must be an optimum of V (θ, θ̂)

We will assume that the mechanism is differentiable

If so, necessary conditions are, for all θ

First order conditions

∂V

∂θ̂

∣∣∣∣
θ̂=θ

(θ, θ̂) = 0

Second order conditions

∂2V

∂θ̂
2

∣∣∣∣
θ̂=θ

(θ, θ̂) ≤ 0
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First Order Condition

∂V

∂θ̂

∣∣∣∣
θ̂=θ

(θ, θ̂) = 0

This implies

∂

∂θ̂

∣∣∣∣
θ̂=θ

(
U(q(θ̂), θ)− t(θ̂)

)
= 0

or

t′(θ̂) =
∂U(q(θ̂), θ)

∂q
q′
(
θ̂
)

For θ̂ = θ



Adverse Selection : The Standard Model

Second Order Condition

∂2V

∂θ̂
2

∣∣∣∣
θ̂=θ

(θ, θ̂) ≤ 0

This implies

∂2

∂θ̂
2

∣∣∣∣
θ̂=θ

[
U(q(θ̂), θ)− t(θ̂)

]
≤ 0

or

t′′(θ̂) ≥ ∂U(q(θ̂), θ)

∂q
q′′(θ̂) +

∂2U(q(θ̂), θ)

∂q2

(
q′(θ̂)

)2
For θ̂ = θ
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Second Order Condition

Notice that the FOC must hold for every θ

So differentiate WRT θ, taking into account that θ̂ must
move 1-1 with θ

t′(θ̂) =
∂U(q(θ̂), θ)

∂q
q′
(
θ̂
)

implies

t′′(θ̂) =
∂U(q(θ̂), θ)

∂q
q′′
(
θ̂
)

+
∂2U(q(θ̂), θ)

∂q2

(
q′(θ̂)

)2
+
∂2U(q(θ̂), θ)

∂q∂θ
q′(θ̂)
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Second Order Condition

Substituting back in to the SOC gives

∂2U(q(θ̂), θ)

∂q∂θ

∣∣∣∣∣
θ=θ̂

q′(θ̂) ≥ 0

This gives us two conditions stemming from the FOC and
SOC of the IC constraints for θ̂ = θ

IC1

t′(θ̂) =
∂U(q(θ̂), θ)

∂q
q′
(
θ̂
)

IC2
∂2U(q(θ̂), θ)

∂q∂θ
q′(θ̂) ≥ 0
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Second Order Condition

Notice that IC2 depends crucially on

∂2U(q(θ̂), θ)

∂q∂θ

Which is a property of the utility function

Life becomes much easier if we assume that this has the
same sign everywhere

e.g. it is strictly positive
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Second Order Condition

This is the Spence/Mirrlees condition

Also known as the single crossing condition

It has economic content:

Means (for example) that

∂U(q, θ)

∂q

is always increasing in type

The marginal utility of an increase in q is always higher for
a higher type

or, in other words, the willingness to pay for an increase in
q is always higher for higher types
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Single Crossing

For θ2 > θ1
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Single Crossing

Why does Spence-Mirrlees imply single crossing?
Equation for the type i indifference curve

t(q, θ) = U(q, θi)−K

Slope is therefore given by

∂U(q, θ)

∂q

Pick the q∗ where the two indifference curves cross
For any q > q∗

t(q, θ2)− t(q, θ1) =

∫ q

q∗

∂U(q, θ2)

∂q
d(q)−

∫ q

q∗

∂U(q, θ1)

∂q
d(q)

+t(q∗, θ2)− t(q∗, θ1)

=

∫ q

q∗

∂U(q, θ2)

∂q
− ∂U(q, θ1)

∂q
d(q) > 0
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Single Crossing

Spence-Mirrlees condition is sometimes called a Sorting
condition

Theorem

q : [θ1, θ2]→ R belongs to a direct truthful mechanism if and
only if it is non-decreasing

Meaning: for any non-decreasing q we can find a t function
that makes it part of a truth telling mechanism
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Single Crossing

Proof

Start with

∂V

∂θ̂
(θ, θ̂) =

∂U(q(θ̂), θ)

∂q
q′
(
θ̂
)
− t′(θ̂)

At the optimum for type θ̂ we know from IC1

t′(θ̂) =
∂U(q(θ̂), θ̂)

∂q
q′
(
θ̂
)

And so

∂V

∂θ̂
(θ, θ̂) =

[
∂U(q(θ̂), θ)

∂q
− ∂U(q(θ̂), θ̂)

∂q

]
q′
(
θ̂
)
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Single Crossing

Stare at

∂V

∂θ̂
(θ, θ̂) =

[
∂U(q(θ̂), θ)

∂q
− ∂U(q(θ̂), θ̂)

∂q

]
q′
(
θ̂
)

And recall that

f(x) = f(x̂) + f ′(x∗)(x− x̂)

for x∗ ∈ (x, x̂)
And so

∂V

∂θ̂
(θ, θ̂) =

[
∂2U(q(θ̂), θ∗)

∂q∂θ

(
θ − θ̂

)]
q′
(
θ̂
)
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Single Crossing

Given the Spence-Mirrlees condition, this will have the

same sign as
(
θ − θ̂

)
as long as q

(
θ̂
)
is non-decreasing

Implies V (θ, θ̂)

is increasing in θ̂ for θ̂ < θ
is decreasing in θ̂ for θ̂ > θ

Global maximizer at θ̂ = θ
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Single Crossing

This is extremely useful

Started off with a huge number of global IC conditions

Turns out we can concentrate on a couple of local
conditions

IC2: implies that q is non-decreasing

IC1: gives us t from

t′(θ̂) =
∂U(q(θ̂), θ)

∂q
q′
(
θ̂
)

Problem boils down to picking non-decreasing function q
(and associated t) that maximizes profit
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Solving the Model

Assume that the principal gets profit of the following type

t− C(q)

And that agents satisfy

∂U

∂θ
(q, θ) > 0

∂2U(q(θ̂), θ)

∂q∂θ
> 0
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Solving the Model

Define
v(θ) = V (θ, θ) = u(q(θ), θ)− t (θ)

As the information rent that agent of type

The derivative of this is

v′(θ) =
∂u(q(θ), θ)

∂q
q′(θ)− t′ (θ) + ∂u(q(θ), θ)

∂θ

=
∂u(q(θ), θ)

∂θ

(note that this is the derivative of u wrt 2nd argument)

By IC 1

By assumption, this is greater than 0

Higher types get higher information rents



Adverse Selection : The Standard Model

Solving the Model

Assume (for now) that IR constraints are the same for all
types

v(θ) ≥ 0

Or, by the above result

v(θ1) = 0

IR of the lowest type is the only one that binds
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Fundamental Theorem of Calculus

Generally we know

f(x) =

∫ x

x1

f ′(y)d(y) + f(x1)

So we can rewrite

v(θ) =

∫ θ

θ1

v′(τ)dτ + v(θ1)

=

∫ θ

θ1

∂u(q(τ), τ)

∂θ
d(τ)

And pin down transfers as

t(θ) = u(q(θ), θ)− v(θ)

= u(q(θ), θ)−
∫ θ

θ1

∂u(q(τ), τ)

∂θ
d(τ)
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The Principal’s Objective

The Principal wants to maximize expected profit∫ θ2

θ1

(t(θ)− C(q(θ)) f(θ)dθ

Substituting in gives∫ θ2

θ1

(
u(q(θ), θ)−

∫ θ

θ1

∂u(q(τ), τ)

∂θ
d(τ)− C(q(θ))

)
f(θ)dθ

Leaving us with a double integral (eek!)
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Integration by Parts

We can make more progress by integrating by parts

G(θ) =

∫ θ

θ1

∂u(q(τ), τ)

∂θ
d(τ)

⇒
∫ θ2

θ1

G(θ)f(θ)d(θ)

= [G(θ)F (θ)]θ2θ1 −
∫ θ2

θ1

G′(θ)F (θ)d(θ)

= G(θ2)−
∫ θ2

θ1

G′(θ)F (θ)d(θ)

=

∫ θ2

θ1

∂u(q(θ), θ)

∂θ
d (θ)−

∫ θ2

θ1

∂u(q(θ), θ)

∂θ
F (θ)d(θ)

=

∫ θ2

θ1

∂u(q(θ), θ)

∂θ
(1− F (θ))d (θ)



Adverse Selection : The Standard Model

Rewriting the Principal’s Problem

And so we can write the Principal’s objective as∫ θ2

θ1

(
u(q(θ), θ)−

∫ θ

θ1

∂u(q(τ), τ)

∂θ
d(τ)− C(q(θ))

)
f(θ)dθ

=

∫ θ2

θ1

H(q(θ), θ)f(θ)dθ

Where

H(q, θ) = u(q, θ)− C(q)− ∂u(q, θ)

∂θ

1

h(θ)

and

h(θ) =
f(θ)

1− F (θ)
is the hazard rate

Prob of being type θ given at least type θ
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Rewriting the Principal’s Problem

H(q, θ) = u(q, θ)− c(q)− ∂u(q, θ)

∂θ

1

h(θ)

This is the virtual surplus

First part is total surplus
Second part is the distortion necessary for the IC constraint
to hold
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Solving the Problem

H(q, θ) = u(q, θ)− C(q)− ∂u(q, θ)

∂θ

1

h(θ)

How do we proceed?

Well, we can start by picking q to maximize H for every θ.

Will this necessarily be the solution?

No, because the second order IC constrains may not hold

i.e. it does not guarantee

q′(θ) ≥ 0

Cross our fingers and assume it works
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First Order Conditions (again!)

Hq(q, θ) = 0

⇒ uq(q, θ)− C ′(q)−
∂2u(q, θ)

∂θ∂q

1

h(θ)

Define q∗(θ) as the solution to this equation

If this function is non-decreasing then we are done!

Perfect separation
Perfect revelation

Can guarantee this with auxiliary assumptions, e.g

u(q, θ) = qθ
C convex
Hazard rate non-decreasing
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Bunching Solutions

If q∗(θ) is decreasing for some portion, it cannot be the
solution
We can divide the optimal function into two types of region
on the type space

q is increasing ⇒ Hq(q, θ) = 0 and q(θ) = q∗ (θ)
q(θ) is constant
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