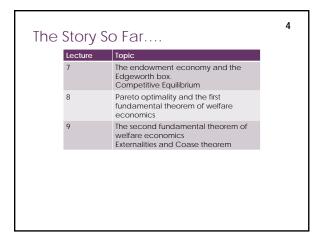
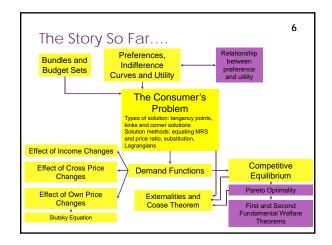
1 Intermediate Microeconomics W3211 Lecture 10: Recap Consumer Problems and Market Equilibrium Columbia University, Spring 2016 Mark Dean: mark.dean@columbia.edu 2

The	Story So	o Far	3
	Lecture	Торіс	
	1	Setting up the consumer problem: bundles, budget sets and preferences	
	2	Preferences, indifference curves and utility	
	3	Types of preference: Monotonicity, convexity, perfect complements, substitutes and Cobb Douglas	
	4	Solving the consumer's problem: corner solutions, kinks and tangents	
	5	Solving the consumer's problem: derivatives and Lagrangians Demand functions and the effect of income	
	6	Demand functions: own-price changes and the Slutsky Equation; cross price changes and income and substitution effects	





8

The Story So Far....

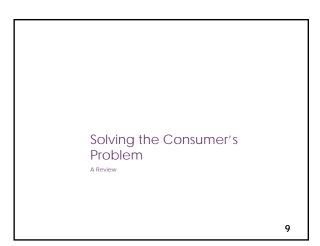
- This may seem like a lot of stuff
- However, a lot of it has to do with setting up, solving and using the consumer's problem

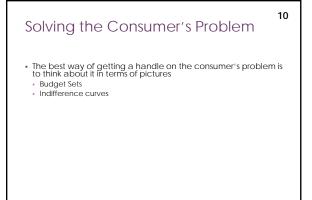
7

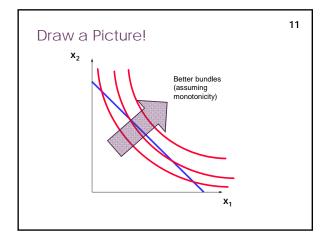
- If you can figure out how to get very comfortable with doing this, then everything else will come very easily
- You should be able to solve them in your sleep
- Another advantage: we are soon going to move on to the problem of the firm
- Guess what: another constrained optimization problem!
- The tools you have learned to solve the consumer's problem will also be useful in solving the firm's problem

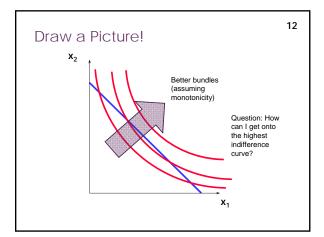
The Plan for Today

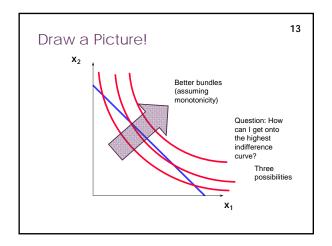
- 1. Think about solving consumer's problem again (nice and slowly)
- 2. Go over the income and substitution effect of price changes, and the Slutsky equation
- 3. Questions (if time)

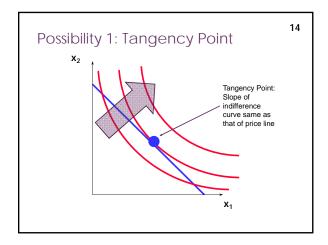


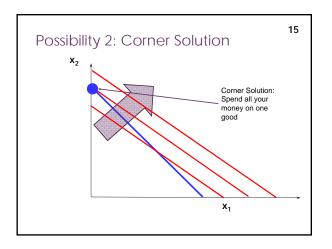


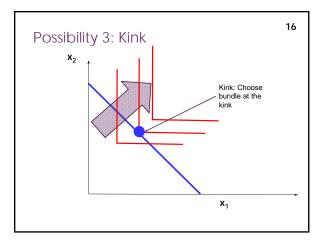


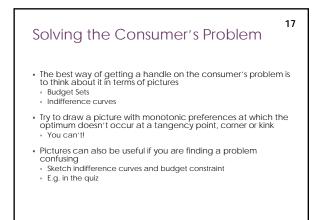


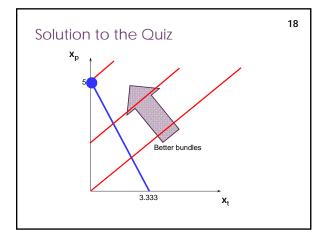












20

Solving the Consumer's Problem

- I'm now going to remind you of the recipe that I gave you for solving the consumer problem
- We are going to apply it to a bunch of preferences that have shown up so far
- If you want, you can learn 'by rote' how to work with these preferences
- I don't think this is the optimal thing for you to do
 I might give you different preferences in the exam!
- Instead, try to use this as a way to get intuition about what the recipe does

The Recipe

- Are preferences monotone?
- If yes, then the optimal solution must lie on the budget line
 If no you may have to worry about solutions away from the line
- 2. Assuming preferences are monotone, there are two possible types of solution
- Corner solutions
 Interior solutions

19

- 3. Calculate the utility at each possible corner solution
 - Find all possible interior solutions
- Points of tangency
 Kinks

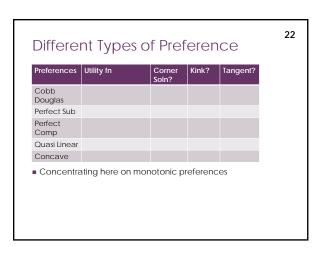
4

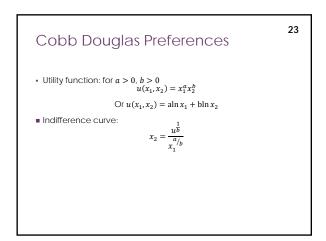
- 5. Calculate utility at each possible interior solution
- 6. Compare utilities at all possible solutions
- 7. Select the best

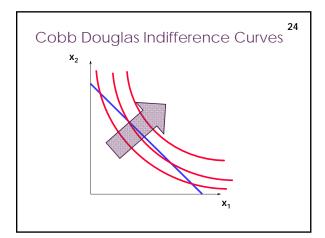
Finding Points of Tangency If you are looking for points of tangency, you have three possibilities: Set MRS equal to the price ratio Lecture 4

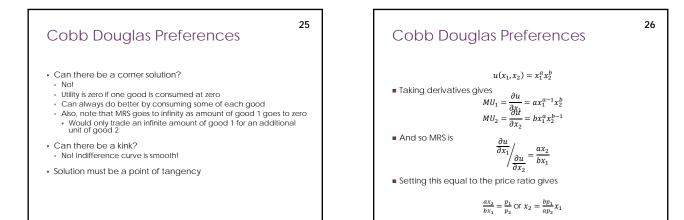
- Substitute using the budget constraint then take derivatives
- Lecture 5
- Use Kuhn Tucker (Lagrangians)

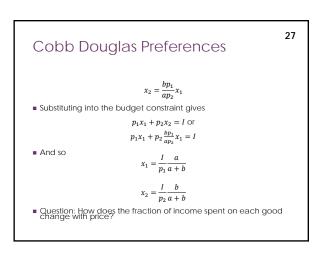
Lecture 5

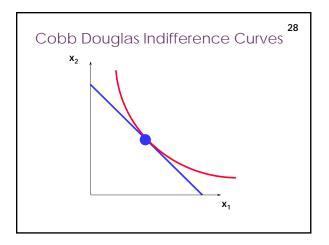


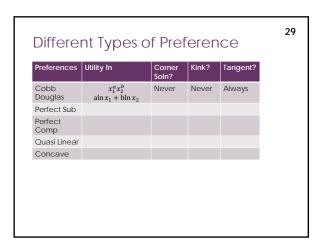


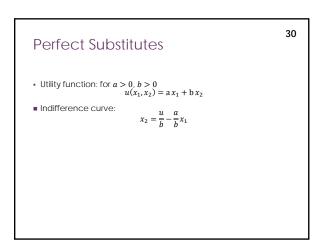


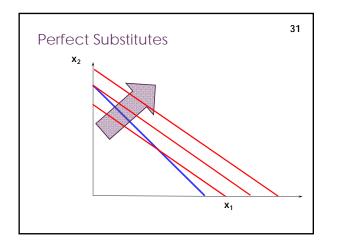


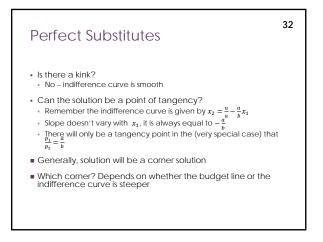


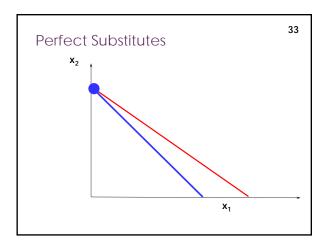


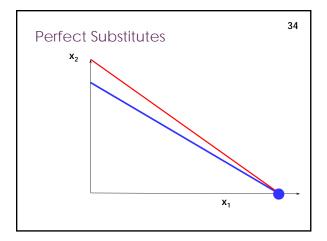


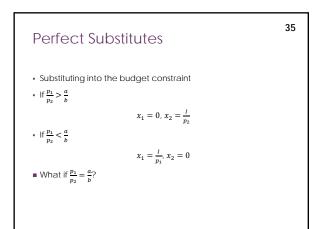


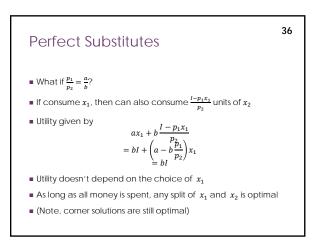


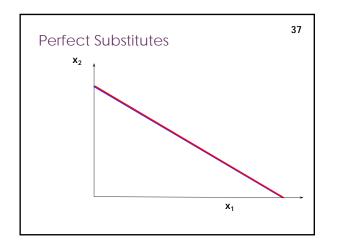




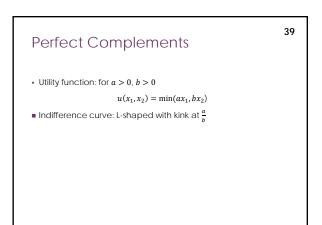


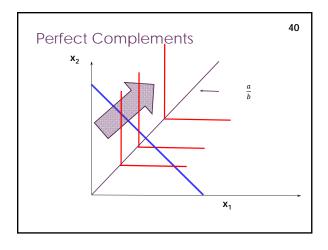






Preferences	Utility fn	Corner Soln?	Kink?	Tangent?	
Cobb Douglas	$x_1^a x_2^b$ or $a \ln x_1 + b \ln x_2$	Never	Never	Always	
Perfect Sub	$a x_1 + b x_2$	Always	Never	Rarely	
Perfect Comp					
Quasi Linear					
Concave					

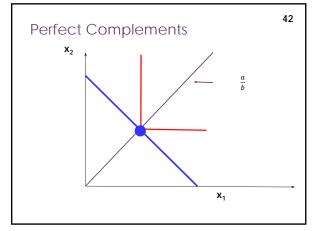


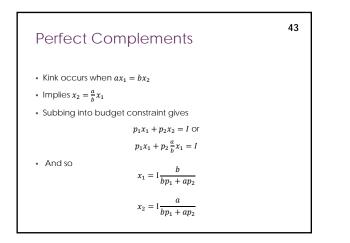


Perfect Complements

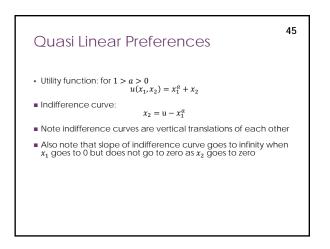
41

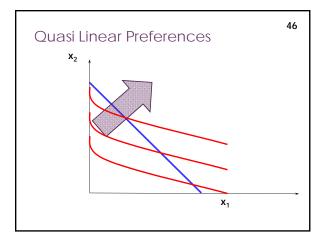
- Can there be a corner solution?
- No!
 Vility is zero if one good is consumed at zero
 Can always do better by consuming some of each good
- Can there be a point of tangency?
- No!
 Slope of indifference curve is zero or infinity
- Solution has to be at the kink

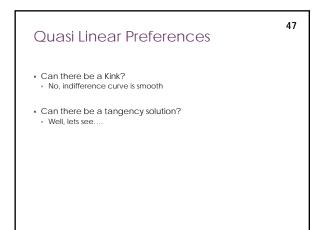


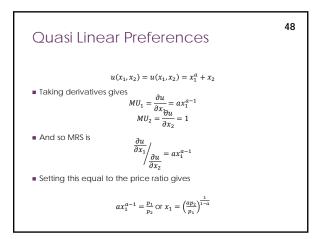


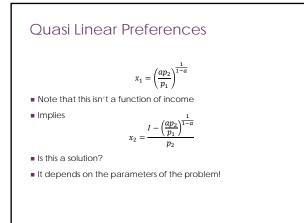
Perfect $\min(ax_1, bx_2)$ Never Always Never Comp
Perfect min(ax1, bx2) Never Always Never
Comp
Quasi Linear
Concave

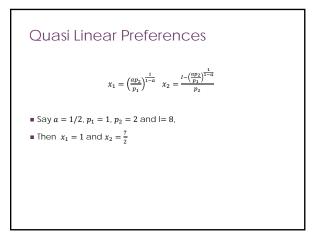


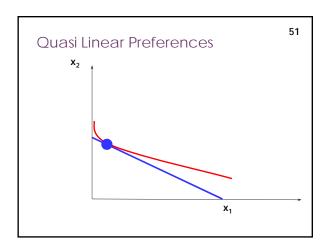


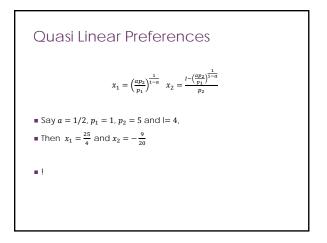


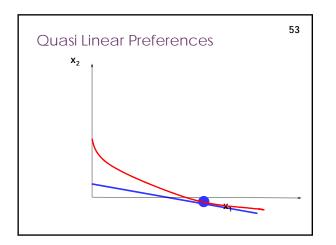


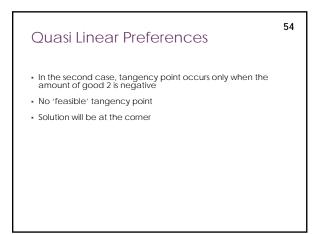


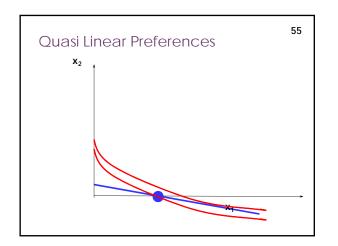




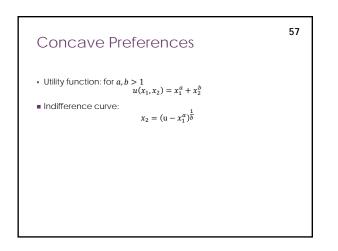


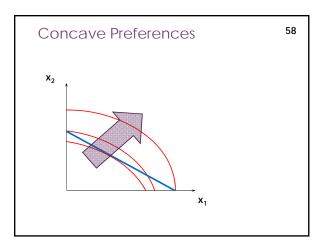


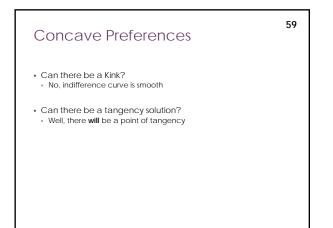


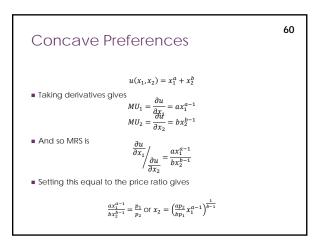


Preferences	Utility fn	Corner Soln?	Kink?	Tangent?	
Cobb Douglas	$\begin{array}{c} x_1^a x_2^b \\ \operatorname{aln} x_1 + \operatorname{bln} x_2 \end{array}$	Never	Never	Always	
Perfect Sub	$a x_1 + b x_2$	Always	Never	Rarely	
Perfect Comp	$\min(ax_1,bx_2)$	Never	Always	Never	
Quasi Linear	$x_1^a + x_2$	Maybe	Never	Maybe	
Concave					





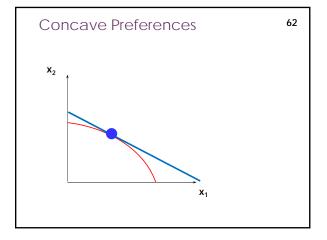




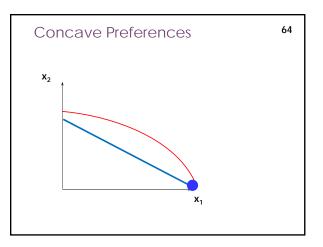
Concave Preferences

- But this will be a local **minimum**
- This can be seen from the indifference curves

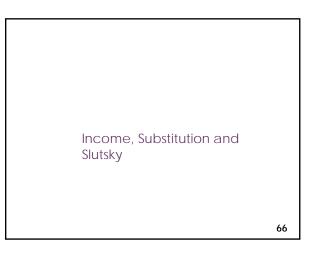
61



63 • But this will be a local **minimum** • This can be seen from the indifference curves • And also from the second order conditions (see lecture 5) • Solution will therefore be a corner solution



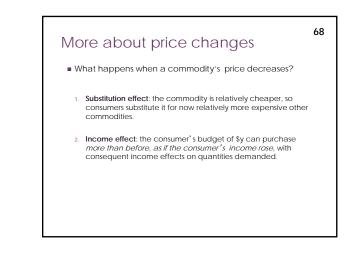
Preferences	Utility fn	Corner Soln?	Kink?	Tangent?
Cobb Douglas	$\begin{array}{c} x_1^a x_2^b \\ \operatorname{aln} x_1 + \operatorname{bln} x_2 \end{array}$	Never	Never	Always
Perfect Sub	$a x_1 + b x_2$	Always	Never	Rarely
Perfect Comp	$\min(ax_1,bx_2)$	Never	Always	Never
Quasi Linear	$x_1^a + x_2$	Maybe	Never	Maybe
Concave	$x_1^a + x_2^b$	Yes	Never	Never

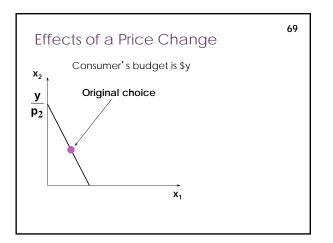


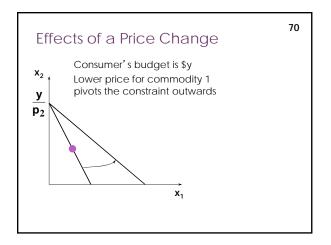
The impact of price changes

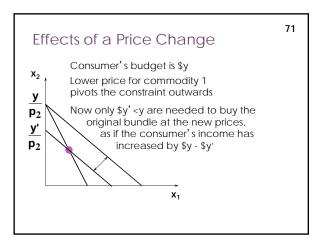
In lecture 6, we showed how a change in prices could be split into an income and substitution effect 67

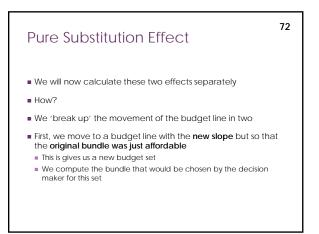
- We then introduced the 'Slutsky equation', which showed how to make this decomposition formal
- Confusingly, the Slutsky equation uses a slightly different definition of the income and substitution effect
- Let's see if we can make this clearer
 First, remind you what the income and substitution effect is
- Then try to describe the Slutsky equation (without the maths)

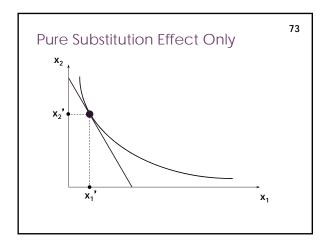


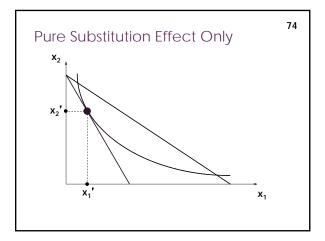


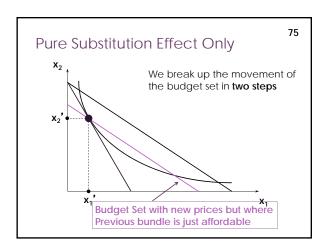


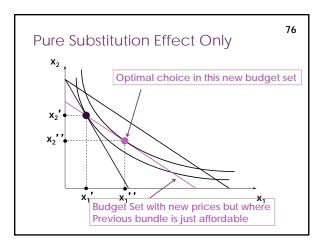


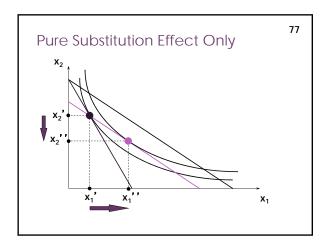


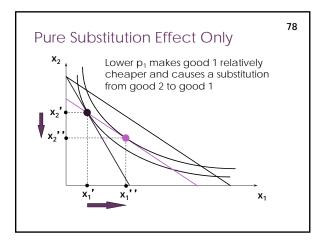


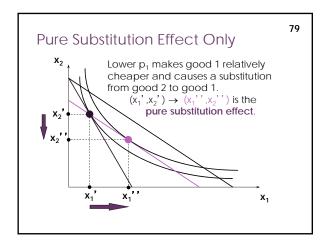


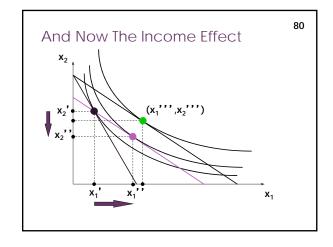


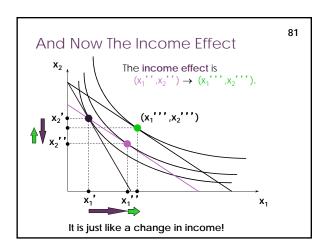


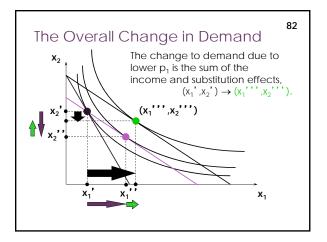












So:

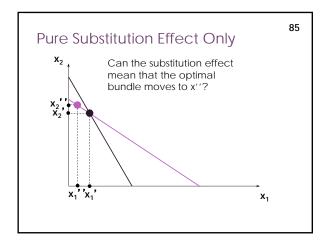
We can separate the change due to a price change into:

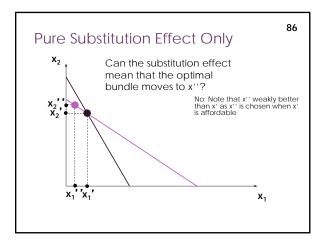
83

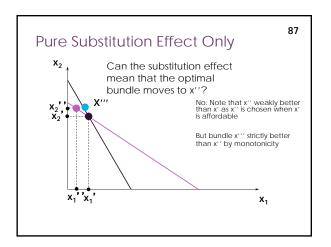
- Substitution effect: effect of changing prices keeping income constant
- $\hfill \hfill i.e.$ keeping the old bundle just affordable at the new prices
- Income effect: effect of the change in income at the new prices

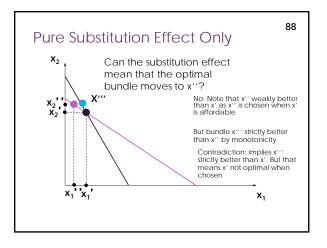
What are the signs of these effects?84

- Are these effects always positive, negative?
- First, how about the substitution effect?
- It must be always positive: lower price lead to more demand in the substitution effect
- Why? See graph









What are the signs of these effects?89

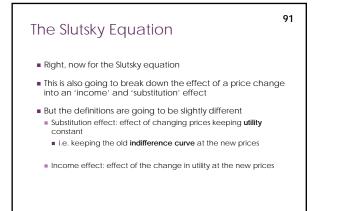
- Are these effects always positive?
- First, how about the substitution effect?
- It must be always positive: lower price leads to more demand in the substitution effect
- Why? See graph

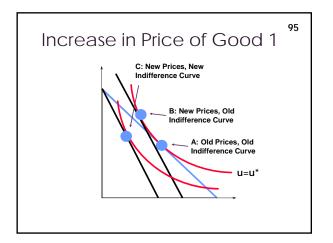
How about the income effect?

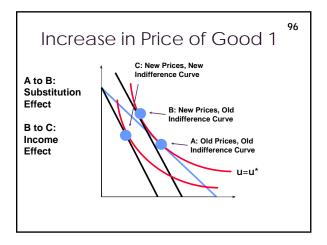
- It's just like a change in income
- Does demand go up or down with income?
- If good is inferior -> negative
- If good is normal -> positive

What are the signs of these effects?90

- So:
- Substitution is always positive and income could be positive or negative (in the case of inferior goods)
- Total effect is always the sum
- Means that: for normal goods, total effect is positive
- For inferior goods: if income effect is stronger than substitution effect, then total effect can be negative







98

The Slutsky Equation

In order to define these effects mathematically, we need to define the consumer's dual problem

97

99

Ordinary and Compensated Demand

- Here is the standard consumer problem
- 1. CHOOSE a consumption bundle
- 2. IN ORDER TO MAXIMIZE preferences
- 3. SUBJECT TO the budget constraint
- This gives rise to demand functions: amount of the good consumed given prices and income $x_i(p, y)$

Ordinary and Compensated Demand • Here is a related problem, sometimes called the 'dual' problem

- 1. CHOOSE a consumption bundle
- 2. IN ORDER TO MINIMIZE expenditure
- 3. SUBJECT TO utility being equal to some u*

