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1 Systems of Linear Equations

Linear Algebra is concerned with the study of systems of linear equations. A system of m linear
equations in n variables has the form

b1 = a11x1 + a12x2 + · · ·+ a1nxn

b2 = a21x1 + a22x2 + · · ·+ a2nxn
...

bm = am1x1 + am2x2 + · · ·+ amnxn

Linear equations are important since non-linear, di�erentiable functions can be approximated by linear
ones (as we have seen). For example, the behavior of a di�erentiable function f : R2 → R around a
point x∗ can be approximated by the tangent plane at x∗. The equation for the tangent plane is one
linear equation in two variables. In Economics, we often encounter systems of equations. Often linear
equations are used since they are tractable and since they can be thought of as approximations for
more complicated underlying relationships between variables.

The system ?? can be written in matrix form:
b1
b2
...
bm


︸ ︷︷ ︸

m×1

=


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


︸ ︷︷ ︸

m×n

·


x1
x2
...
xn


︸ ︷︷ ︸

n×1

,

In short, we can write this system as b = Ax where A is an m× n matrix, b is an m× 1 vector and
x is an n × 1 vector. A system of linear equations , also referred to as linear map, can therefore be
identi�ed with a matrix, and any matrix can be identi�ed with ("turned into") a linear system. In
order to study linear systems, we study matrices and their properties.

2 Matrices

2.1 Basic Matrix Operations and Properties

Consider two n×m matrices:

A =

 a11 . . . a1m
...

. . .
...

an1 . . . anm

 , B =

 b11 . . . b1m
...

. . .
...

bn1 . . . bnm


1
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Then the basic matrix operations are as follows:

1. A+B =

 a11 + b11 . . . a1m + b1m
...

. . .
...

an1 + bn1 . . . anm + bnm



2. λA =

 λa11 . . . λa1m
...

. . .
...

λan1 . . . λanm

 , where λ ∈ R

Notice that the elements in the matrix are numbered aij , where i is the row and j is the column in
which the element aij is found.

In order to multiply matrices CD, the number of columns in the C matrix must be equal to the
number of rows in the D matrix. Say C is an n × m matrix, and D is an m × k matrix. Then
multiplication is de�ned as follows:

E = C︸︷︷︸
n×m

D︸︷︷︸
m×k

=


∑m
q=1 c1,qdq,1 . . .

∑m
q=1 c1,qdq,k

...
. . .

...∑m
q=1 cn,qdq,1 . . .

∑m
q=1 cn,qdq,k


︸ ︷︷ ︸

n×k

There are two notable special cases for multiplication of matrices. The �rst is called the inner product
or dot product, which occurs when two vectors of the same length are multiplied together such that
the result is a scalar:

v · z = v︸︷︷︸
1×n

z′︸︷︷︸
n×1

=
(
v1 . . . vn

) z1
...
zn

 =

n∑
i=1

vizi

The second is called the outer product:

v′︸︷︷︸
n×1

z︸︷︷︸
1×n

=

 z1
...
zn

( v1 . . . vn
)

=

 z1v1 . . . z1vn
...

. . .
...

znv1 . . . znvn


︸ ︷︷ ︸

n×n

.

Note that when we multiplied the matrices C and D together, the resulting ei,jth element of E was
just the inner product of the ith row of C and jth column of D. Also, note that even if two matrices
X and Y are both n× n, then XY 6= Y X, except in special cases.

Just in case you are wondering why matrix multiplication is de�ned the way it is: Consider two linear
maps (that is, two systems of linear equations) f(x) = Ax and g(x) = Bx where A is m× n and B is
n× k. We can de�ne a new linear map h that is the composition of f after g: h(x) = f(g(x)). Then
the matrix that represents the linear system h turns out to be exactly AB, that is

h(x) = f(g(x)) = ABx.

Matrix multiplication is de�ned to correspond to the composition of linear maps.

De�nition. A mapping f of a vector space X into a vector space Y is said to be a linear map-

ping if for any vectors x1, . . . ,xm ∈ X and any scalars c1, . . . , cm,

f(c1x1 + · · ·+ cmxm) = c1f(x1) + · · ·+ cmf(xm).
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2.2 Some Special Matrices

2.2.1 Zero Matrices

A zero matrix is a matrix where each element is 0

0 =

 0 . . . 0
...

. . .
...

0 . . . 0


︸ ︷︷ ︸

n×k

The following properties hold for zero matrices:

1. A+ 0 = A

2. If AB = 0, it is not necessarily the case that A = 0 or B = 0.

2.2.2 Identity Matrices

The identity matrix is a matrix with zeroes everywhere except along the diagonal. Note that the
number of columns must equal the number of rows.

I =

 1 . . . 0
...

. . .
...

0 . . . 1


︸ ︷︷ ︸

n×n

The reason it is called the identity matrix is because AI = IA = A.

2.2.3 Square, Symmetric, and Transpose Matrices

A square matrix is a matrix whose number of rows is the same as its number of columns. For example,
the identity matrix is always square.

If a square matrix has the property that ai,j = aj,i for all its elements, then we call it a symmetric
matrix.

The transpose of a matrix A, denoted A′ is a matrix such that for each element of A′, a′i,j = aj,i. For
example, the transpose of the matrix  1 2 3

4 5 6
7 8 9


is  1 4 7

2 5 8
3 6 9

 .

Note that a matrix A is symmetric if A = A′.

The following properties of the transpose hold:

1. (A′)
′

= A.

2. (A+B)
′

= A′ +B′.

3. (αA)
′

= αA′.
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4. (AB)
′

= B′A′.

5. If the matrix A is n× k, then A′ is k × n.

2.2.4 Diagonal and Triangular Matrices

A square matrix A is diagonal if it is all zeroes except along the diagonal:
a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann


Note that all diagonal matrices are also symmetric.

A square matrix A is upper triangular if all of its entries below the diagonal are zero
a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 0 . . . ann

 ,

and is lower triangular if all its entries above the diagonal are zero
a11 0 . . . 0
a21 a22 . . . 0
...

...
. . .

...
an1 an2 . . . ann

 .

2.2.5 Inverse Matrices

If there exists a matrix B such that BA = AB = I, then we call B the inverse of A, and denote it
A−1. Note that A can only have an inverse if it is a square matrix. However, not every square matrix
has an inverse. The following properties of inverses hold:

1.
(
A−1

)−1
= A

2. (αA)
−1

= 1
αA
−1

3. (AB)
−1

= B−1A−1 if B−1, A−1 exist.

4. (A′)
−1

=
(
A−1

)′
2.2.6 Orthogonal and Idempotent Matrices

A matrix A is orthogonal if A′A = I (which also implies AA′ = I). In other words, a matrix is
orthogonal if it is its own inverse.

A matrix is idempotent if it is both symmetric and AA = A.

Orthogonal and idempotent matrices are especially used in econometrics.
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2.3 The Determinant

For square matrices we can de�ne a number called the determinant of the matrix. The determinant
tells us important characteristics of the matrix that we will dwell on later. Here we will simply present
how it is computed.

The determinant can be de�ned inductively:

1. The determinant of a 1× 1 matrix (a) is a, and is denoted det(a).

2. The determinant of a 2 × 2 matrix

(
a b
c d

)
is ad − bc. Notice that this is the same as

a · det(d) − b · det(c). The �rst term is the (1,1)th entry of A times the determinant of that
submatrix obtained by deleting from A the row and column which contain that entry. The
second term is (1,2)th entry times the determinant of the submatrix obtained by deleting A
from the row and column which contain that entry. The terms alternate in sign, with the �rst
term being added and the second term being subtracted.

3. The determinant of a 3× 3 matrix

 a b c
d e f
g h i

 is aei+ bfg + cdh− ceg − bdi− afh. Notice

that this can be written as a · det
(
e f
h i

)
− b · det

(
d f
g i

)
+ c · det

(
d e
g h

)
.

Can you see the pattern? In order to obtain the determinant, we multiply each element in the top row
with the determinant of the matrix left when we delete the row and column in which the respective
elements reside. The signs of the terms alternate, starting with positive.

In order to write the de�nition of the determinant of an nth order matrix, it is useful to de�ne the
(i, j)th minor of A and the (i, j)th cofactor of A:

• Let A be an n×n matrix. Let Ai,j be the (n− 1)× (n− 1) submatrix obtained by deleting row
i and column j from A. Then the scalar Mij = det(Aij) is called the (i, j)th minor of A.

• The scalar Cij = (−1)i+jMij is called the (i, j)th cofactor of A. The cofactor is merely the
signed minor.

Armed with these two de�nitions, we notice that the determinant for the 2× 2 matrix is

det(A) = aM11 − bM12 = aC11 + bC12,

and the determinant for the 3× 3 matrix is

det(A) = aM11 − bM12 − cM13 = aC11 + bC12 + C13.

Therefore, we can de�ne the determinant for an n× n sqaure matrix as follows:

det

 A︸︷︷︸
n×n

 = a11C11 + a12C12 + · · ·+ a1nC1n.

Notice that the de�nition of the determinant uses elements and cofactors for the top row only. This is
called a cofactor expansion along the �rst row. However, a cofactor expansion along any row or
column will be equal to the determinant. The proof of this asssertion is left as a homework problem
for the 3× 3 case.
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Example: Find the determinant of the upper diagonal matrix 1 0 0
2 3 0
4 5 6


The determinant is:

aC11 + bC12 + C13 = a · det
(
e f
h i

)
− b · det

(
d f
g i

)
+ c · det

(
d e
g h

)
=

= 1 · det
(

3 0
5 6

)
− 0 · det

(
2 0
4 6

)
+ 0 · det

(
2 3
4 5

)
= 1 · 3 · 6 = 18

Now lets expand along the second column instead of the third row:

aC12 + bC22 + C32 = −b · det
(
d f
g i

)
+ e · det

(
a c
g i

)
− h · det

(
a c
d f

)
=

= −0 · det
(

2 0
4 6

)
+ 3 · det

(
1 0
4 6

)
− 5 · det

(
1 0
2 0

)
= 3 · 6 = 18

Important properties of the determinant:

• det(I) = 1 where I is the identity matrix

• det(AB) = det(A) det(B)

• If A is invertible, det(A−1) = 1
det(A)

• det(A′) = det(A)

• A is orthogonal if and only if |detA| = 1

De�nition The following de�nition will be important subsequently: An n × n matrix A is called
singular if detA = 0. It is called non-singular if detA 6= 0.

3 Solving Systems of Linear Equations

Recall the system of equations:

b1 = a11x1 + a12x2 + · · ·+ a1nxn

b2 = a21x1 + a22x2 + · · ·+ a2nxn

...

bm = am1x1 + am2x2 + · · ·+ amnxn

which can be written in matrix form by
b1
b2
...
bm


︸ ︷︷ ︸

m×1

=


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


︸ ︷︷ ︸

m×n

·


x1
x2
...
xn


︸ ︷︷ ︸

n×1

,

or b = Ax. The questions we want to answer are:
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• Given a left hand side vector b, how can we �nd a solution x to b = Ax?

• Given a coe�cient matrix A, what can we say about the number of solutions to b = Ax, for
any b? How can we tell whether a system has one unique solution?

Let's start with the �rst question.

3.1 Elementary Row Operations

There are three types of elementary row operations we can perform on the matrix A and the vector b
without changing the solution set to b = Ax:

1. Interchanging two rows

2. Multiplying each element of a row by the same non-zero scalar.

3. Change a row by adding it to a multiple of another row.

You should convince yourself that these three operations do not change the solution set of the system.

3.2 Using Elementary Row Operations to Solve a System of Equations

A row of a matrix is said to have k leading zeros if the (k + 1)th element of the row is non zero
while the �rst k elements are zero. A matrix is in row echelon form if each row has strictly more
leading zeros that the preceding row. For example, the matrices

A =


4 2
0 7
0 0
0 0

 , B =

 1 0 10
0 8 −3
0 0 6


are in row echelon form while the matrices

A =


1 2 3
0 4 5
0 6 7
0 0 8

 , B =

(
0 1
2 4

)

are not. However, B would be in row echelon form if we performed the elementary matrix operation
of switching the two rows.

In order to get the matrix into row echelon form, we can perform elementary matrix operations on
the rows. For example, consider the matrix

A =

 1 2 3
4 8 6
1 1 1

 .

By taking the third row and subtracting it from the �rst row, we obtain the matrix

A1 =

 0 1 2
4 8 6
1 1 1
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We can also subtract four times the third row from the second row

A2 =

 0 1 2
0 4 2
1 1 1


Now subtract four times the �rst row from the second row to obtain

A3 =

 0 1 2
0 0 −6
1 1 1


Then rearrange to get the matrix in row echelon form

A4 =

 1 1 1
0 1 2
0 0 −6


We can solve a system of equations by writing the matrix

a1 b1 . . . c1 | b1
a2 b2 . . . c2 | b2
...

...
. . .

... |
...

am bm . . . cm | bm

 ,

called the augmented matrix of A, and use elementary row operations.

Example:

Let

A =

 1 2 3
4 8 6
1 1 1


as before. Say that the vector b = (1, 1, 1)′. Then the augmented matrix is 1 2 3 | 1

4 8 6 | 1
1 1 1 | 1


Performing the same matrix operations as before, we have 1 2 3 | 1

4 8 6 | 1
1 1 1 | 1

⇒
 0 1 2 | 0

4 8 6 | 1
1 1 1 | 1


 0 1 2 | 0

0 4 2 | −3
1 1 1 | 1

⇒
 0 1 2 | 0

0 0 −6 | −3
1 1 1 | 1

⇒
 1 1 1 | 1

0 1 2 | 0
0 0 −6 | −3


We continue the row operations until the left hand side of the augmented matrix looks like the identity
matrix:

⇒

 1 1 1 | 1
0 1 2 | 0
0 0 1 | 1

2

⇒
 1 1 1 | 1

0 1 0 | −1
0 0 1 | 1

2


 1 1 0 | 1

2
0 1 0 | −1
0 0 1 | 1

2

⇒
 1 0 0 | 3

2
0 1 0 | −1
0 0 1 | 1

2
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Notice that this implies 3
2
−1
1
2

 =

 1 0 0
0 1 0
0 0 1

 ·
 x1

x2
x3

⇒ x =

(
3

2
,−1,

1

2

)
,

so we have found a solution using elementary row operations.

In summary, if we form the augmented matrix of A, reduce the left hand side of the matrix to its
reduced row echelon form (so that each row contains all zeros, except for the possibility of a one
in a column of all zeros) through elementary row operations, then the remaining vector on the right
hand side will be the solution to the system.

3.3 Using Cramer's Rule to Solve a System of Equations

Cramer's Rule is a theorem that yields the solutions to systems of the form b = Ax where A is a
square matrix and non-singular, i.e. detA 6= 0: Let A be a non-singular matrix. Then the unique
solution x = (x1, . . . , xn) of the n× n system b = Ax is:

xi =
det(Bi)

det(A)
for i = 1, . . . , n,

where Bi is the matrix A with the right hand side b replacing the ith column of A.

Example:

Consider the linear IS-LM model

sY + ar = I0 +G

mY − hr = Ms −M0

where Y is the net national product, r is the interest rate, s is the marginal propensity to save, a is
the marginal e�ciency of capital, I = I0−ar is investment, m is money balances needed per dollar of
transactions, G is government spending, andMs is the money supply. All the parameters are positive.
We can rewrite the system as(

I0 +G
Ms −M0

)
=

(
s a
m −h

)
·
(
Y
r

)
.

By Cramer's rule, we have

Y =

∣∣∣∣ I0 +G a
Ms −M0 −h

∣∣∣∣∣∣∣∣ s a
m −h

∣∣∣∣ =
(I0 +G)h+ a(Ms −M0)

sh+ am

r =

∣∣∣∣ s I0 +G
m Ms −M0

∣∣∣∣∣∣∣∣ s a
m −h

∣∣∣∣ =
(I0 +G)m− s(Ms −M0)

sh+ am

Depending on the size of A, solving a system using Cramer's Rule may be faster than solving it using
elementary row operations. But be aware that Cramer's Rule only works for non-singular square

matrices.
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4 Characterization of the Solutions to a Linear System

The second question about linear system concerns the existence of solutions: How can we tell whether
a system has zero, one or more solutions? In order to tackle this problem, we start by de�ning the
concept of "linear independence".

4.1 Linear Independence

The vectors v1, . . . , vm are linearly dependent if there exist scalars q1, . . . , qm , not all zero, such
that:

m∑
i=1

qivi = 0.

This is equivalent to the statement that one of the vectors can be written as a linear combination of
the other ones.

The vectors v1, . . . , vm are linearly independent if the only scalars q1, . . . , qm such that:

m∑
i=1

qivi = 0

are q1 = · · · = qm = 0. This is equivalent to the statement that none of the vectors can be written as
a linear combination of the other ones.

Example 1: The vectors

 1
0
0

,
 0

1
0

,
 3

2
0

 are linearly dependent since

3

 1
0
0

+ 2

 0
1
0

+ (−1)

 3
2
0

 = 0

Example 2: The vectors

 1
0
0

,
 0

1
0

,
 3

0
2

 are linearly independent since the only scalars

q1, q2, q3 such that

q1

 1
0
0

+ q2

 0
1
0

+ q3

 3
2
0

 = 0

are q1 = q2 = q3 = 0.

We can use this de�nition of linear independence and dependence for columns as well.

The rank of a matrix, rk(A), is the number of linearly independent rows or columns in a matrix.
(Note that the number of linearly independent rows is the same as the number of linearly independent
columns). Therefore rk(A) ≤ min{number of rows of A, number of columns of A}. A matrix is said
to have full rank if rk(A) = min{number of rows of A, number of columns of A}.
When a matrix is in row echelon form, it is easy to check whether all the rows are linearly independent.
For linear independence, we must have that all the rows in the row echelon form are non-zero. If not,
then the matrix will have linearly dependant rows. For example, in the matrix

A =

 1 2 3
4 8 6
1 1 1
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in the example above, all rows are linearly independent because its row echelon form

A4 =

 1 1 1
0 1 2
0 0 −6


contains no zero rows.

4.2 Numbers of Solutions

Let's build some intuition by looking at a system of two variables and two equations. For a given
b = (b1, b2), we can view the two equations y1 = a1x1 + b1x2 and y1 = a2x1 + b2x2 as two lines in
R2. A solution x = (x1, x2) is a point that lies on both of these lines at the same time. Now, two
lines can intersect once, be parallel to each other or be identical to each other. In the �rst case, there
will be one solution (one point of intersection), in the second case there will be no solution (no point
of intersection)and in the third case there will be in�nitely many solutions (in�nitely many points of
intersection). Therefore, a system of two equations and two unknowns can have zero, one or in�nitely
many solution, depending on the vector b and the matrix A. This result generalizes to a linear system
of any size: It can have either zero, one or in�nitely many solutions.

Fortunately we can say a bit more about the possible numbers of solutions when we look at the
dimension of a system and the rank of its coe�cient matrix A. Remember than m is the number of
equations in the system and the number of rows of A and that n is the number of variables in the
system and the number of columns of A.

• If m < n, then

1. for any given b, b = Ax has zero or in�nitely many solutions

2. if rkA = m = rk(A|b), b = Ax has in�nitely many solutions for every b

A system with more unknowns than equation can never have one unique solution. (Example:
Two planes in R3 cannot intersect in only one point. They are either parallel (no solution) or
intersect in a line (in�nitely many solutions)). If we know that A has maximal rank, namely m,
then we know that the system has in�nitely many solutions. (Continuing the example above,
we know then that the planes are not parallel and therefore have to intersect in at least a line.
We also know then that the planes are not all identical, but that does not help us in narrowing
down the number of solutions in this case. )

• If m > n, then

1. for any given b, b = Ax has zero, one or in�nitely many solutions

2. if rkA = n, b = Ax has zero or one solution for every b

A system with more equations than unknowns may have zero, one or in�nitely many solutions.
(Example: Three lines in R2 can either not all intersect in the same point (no solution), two
of them can be identical and intersect with the third one in one point (one solution), or all
three of them can be identical (in�nitely many solutions). If we know that A has maximal rank,
namely n, then we know that the system cannot have in�nitely many solutions. (Continuing the
example above, we know then that the lines are not all identical and therefore cannot intersect
in in�nitely many points. We also know then that the lines are not all parallel, but that does
not narrow down the number of solutions in this case.)

• If m = n, then

1. for any given b, b = Ax has zero, one or in�nitely many solutions
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2. if rkA = m = n, b = Ax has exactly one solution for every b

A system with as many equations as unknowns may have zero, one or in�nitely many solutions.
(Example: Two lines in R2 can be parallel (zero solutions), intersect in one point (one solution),
or be identical (in�nitely many solutions). Same for three planes in R3.) If we know that A
has maximal rank, namely n = m, then we know that the system has exactly one solution.
(Continuing the example above, we know then that the lines are not identical and therefore
cannot intersect in in�nitely many points. We also know then that the lines are not all parallel
and therefore have to intersect in at least one point. Two lines that are neither parallel nor
identical intersect in exactly one point.)

Whether a square matrix has full rank can be checked by looking at the determinant: An n×n square

matrix A has full rank n if and only if detA 6= 0. Therefore the last statement above translates into:
The n × n system b = Ax has exactly one solution for each b if and only if detA 6= 0. This is an
extremely important and useful property of the determinant. So, saying that a square matrix A is
non-singular is the same as saying that rkA = n is the same as saying b = Ax has exactly one solution
for each b. (Note also how this explains why Cramer's Rule fails when detA = 0.)

4.3 Inverse Matrices

Suppose we are given an n × n matrix A. The question whether its inverse exists is connected to
whether a unique solution to b = Ax exists for each choice of b.

To see why, suppose the inverse A−1 exists. Then we can multiply both sides of b = Ax by A−1:

A−1b = A−1Ax = Ix = x

Therefore x = A−1b has to be the unique solution to b = Ax. Conversely, it can also be shown that
if there is a unique solution to b = Ax, then the inverse A−1 has to exist (take b1 = (1, 0, . . . , 0)′,
b2 = (0, 1, . . . , 0)′, etc., and let the solution to bi = Ax be xi. Then A

−1 = (x1,x2, . . .xn).)

Therefore, a square matrix A is invertible if and only if it is non-singular, that is, if and only if
detA 6= 0.

The following statements are all equivalent for a square matrix A:

1. A is non-singular.

2. All the columns and rows in A are linearly independent.

3. A has full rank.

4. Exactly one solution X∗ exists for each vector Y ∗.

5. A is invertible.

6. det(A) 6= 0.

7. The row-echelon form of the matrix is upper triangular.

8. The reduced row echelon form is the identity matrix.

Now that we know how to check whether the inverse matrix exists (i.e. by looking at the determinant),
how do we compute it? Here are two strategies:
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4.3.1 Calculating the Inverse Matrix by Elementary Row Operations

To calculate the inverse matrix, form the augmented matrix
a11 a12 . . . a1n | 1 0 . . . 0
a21 a22 . . . a2n | 0 1 . . . 0
...

...
. . .

... |
...

...
. . .

...
an1 an2 . . . ann | 0 0 . . . 1

 ,

where the left hand side is the matrix A and the right hand side is the identity matrix. Reduce the
left hand side to the reduced row echelon form, and what remains on the right hand side will be the
inverse matrix of A. In other words, by elementary row operations, you can transform the matrix
(A|I) to the matrix (I|A−1).

4.3.2 Calculating the Inverse Matrix by the Adjoint Matrix

The adjoint matrix of a square matrix A is the transposed matrix of cofactors of A, or

adj(A) =


C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn


Notice that the adjoint of a 2× 2 matrix is

(
a22 −a12
−a21 a11

)
.

The inverse of the matrix A can be found by

A−1 =
1

det(A)
· adj(A).

Therefore, the inverse of a 2× 2 matrix is

A−1 =
1

a11a22 − a12a21
·
(

a22 −a12
−a21 a11

)
.
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5 Homework

Do the following:

1. Let A =

(
2 0
3 8

)
and B =

(
7 2
6 3

)
. Find A−B, A+B, AB, and BA.

2. Let v =

(
1
2

)
and u =

(
3
5

)
. Find u · v, u′v and v′u.

3. Prove that the multiplication of any matrix with its transpose yields a symmetric matrix

4. Prove that A only has an inverse if it is a square matrix.

5. Prove the �rst four properties of transpose matrices above.

6. In econometrics, we deal with a matrix called the projections matrix: A = I −X (X ′X)
−1
X ′.

Must A be square? Must X ′X be square? Must X be square?

7. Show that the projection matrix in 6 is idempotent.

8. Calculate the determinants of the following matrices:

(a)

(
2 −1
−1 1

)
(b)

(
−3 4
4 −5

)
(c)

(
−3 4
4 −6

)
(d)

(
2 4
4 8

)

(e)

 1 2 0
2 4 5
0 5 6


(f)

 −1 1 0
1 −1 0
0 0 −2



(g)


1 0 3 0
0 2 0 5
3 0 4 0
0 5 0 6


9. Evaluate the following determinants:

(a)

∣∣∣∣∣∣
1 1 4
8 11 −2
0 4 7

∣∣∣∣∣∣
(b)

∣∣∣∣∣∣∣∣
1 2 0 9
2 3 4 6
1 6 0 −1
0 −5 0 −8

∣∣∣∣∣∣∣∣
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10. Find the inverse of the matrix

 1 0 0
0 0 1
0 1 0


11. Prove that for a 3× 3 matrix, one may �nd the determinant by a cofactor expansion along any

row or column in the matrix.

12. Determine the ranks of the matrices below. How many linearly independent rows are in each?
Which have inverses?

(a)

(
2 −1
−1 1

)
(b)

(
−3 4
4 −5

)
(c)

(
−3 4
4 −6

)
(d)

(
2 4
4 8

)

(e)

 1 2 0
2 4 5
0 5 6


(f)

 −1 1 0
1 −1 0
0 0 −2



(g)


1 0 3 0
0 2 0 5
3 0 4 0
0 5 0 6
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6 Quadratic Forms

Quadratic forms are the next simplest functions after linear ones. Like linear functions they have
a matrix representation, so that studying quadratic forms reduces to studying symmetric matrices.
This is what this section is about.

Consider the function F : R2 → R, where F = a11x
2
1 + a12x1x2 + a22x

2
2. We call this a quadratic

form in R2. Notice that this can be expressed in matrix form as

F (x) =
(
x1 x2

)( a11
1
2a12

1
2a12 a22

)(
x1
x2

)
= x′Ax,

where x = (x1, x2), and A is unique and symmetric.

The quadratic form in Rn is

F (x) =

n∑
i,j=1

aijxixj ,

where x = (x1, . . . , xn), and A is unique and symmetric. This can also be expressed in matrix form:

F (x) =
(
x1 x2 . . . xn

)


a11
1
2a21 . . . 1

2a1n
1
2a12 a22 . . . 1

2a2n
...

...
. . .

...
1
2an1

1
2an2 . . . ann




x1
x2
...
xn

 = x′Ax.

A quadratic form has a critical point at x = 0, where it takes on the value 0. Therefore we can classify
quadratic forms by whether x = 0 is a maximum, minimum or neither. This is what de�niteness is
about.

7 De�niteness

Let A be an n× n symmetric matrix. Then A is:

1. positive de�nite if x′Ax > 0 ∀ x 6= 0 in Rn. That is, x = 0 is a unique global minimum of
the quadratic form given by A.

2. positive semide�nite if x′Ax ≥ 0 ∀ x 6= 0 in Rn. That is, x = 0 is a global minimum, but
not a unique global one, of the quadratic form given by A.

3. negative de�nite if x′Ax < 0 ∀ x 6= 0 in Rn. That is, x = 0 is a unique global maximum of
the quadratic form given by A.

4. negative semide�nite if x′Ax ≤ 0 ∀ x 6= 0 in Rn. That is, x = 0 is a global maximum, but
not a unique global one, of the quadratic form given by A.

5. inde�nite if x′Ax > 0 for some x ∈ Rn, and < 0 for some other x ∈ Rn. That is, x = 0 is
neither a maximum nor a minimum of the quadratic form given by A.

The de�niteness of a matrix plays an important role. For example, for a function f(x) of one variable,
the sign of the second derivative f ′′(x0) at a critical point x0 gives a su�cient condition for determining
whether x0 is a maximum, minimum or neither. This test generalizes to more than one variable using
the de�niteness of the Hessian matrix H (the matrix of the second order derivatives). (More on
this when we get to optimization.) Similarly, a function f(x) in one variable is concave if its second
derivative is ≤ 0. A function of more than one variable is concave if its Hessian matrix is negative
semide�nite.

There is a convenient way to test for the de�niteness of a matrix. Before we can formulate this test
we �rst need to de�ne the concept of principal minors of a matrix.
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7.1 Principal Minors and Leading Principal Minors

7.1.1 Principal Minors

Let A be an n× n matrix. A k × k submatrix of A obtained by deleting any n− k columns and the
same n−k rows from A is called a kth-order principal submatrix of A. The determinant of a k×k
principal submatrix is called a kth order principal minor of A.

Example List all the principal minors of the 3× 3 matrix: a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Answer: There is one third order principal minor of A, det(A). There are three second order principal
minors:

1.

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣, formed by deleting the third row and column of A.

2.

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣, formed by deleting the second row and column of A.

3.

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣, formed by deleting the �rst row and column of A.

There are also three �rst order principal minors: a11, by deleting the last two rows and columns; a22,
by deleting the �rst and last rows and columns; and a33, by deleting the �rst two rows and columns.

7.1.2 Leading Principal Minors

The leading principal minor is the determinant of the leading principal submatrix obtained
by deleting the last n− k rows and columns of an n× n matrix A.

Example List the �rst, second, and third order leading principal minors of the 3× 3 matrix: a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Answer: There are three leading principal minors, one of order 1, one of order 2, and one of order 3:

1. |a11|, formed by deleting the last two rows and columns of A.

2.

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣, formed by deleting the last row and column of A.

3.

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣, formed by deleting the no rows or columns of A.

Why in the world do we care about principal and leading principal minors? We need to calculate
the signs of the leading principal minors in order to determine the de�niteness of a matrix. We need
de�niteness to check second-order conditions for maxima and minima. We also need de�niteness of
the Hessian matrix to check to see whether or not we have a concave function.
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7.2 Testing for De�niteness

We can test for the de�niteness of the matrix in the following fashion:

1. A is positive de�nite i� all of its n leading principal minors are strictly positive.

2. A is negative de�nite i� all of its n leading principal minors alternate in sign, where |A1| < 0,
|A2| > 0, |A3| < 0, etc.

3. If some kth order leading principal minor of A is nonzero but does not �t either of the above
sign patterns, then A is inde�nite.

If the matrix A would meet the criterion for positive or negative de�niteness if we relaxed the strict
inequalities to weak inequalities (i.e. we allow zero to �t into the pattern), then although the matrix
is not positive or negative de�nite, it may be positive or negative semide�nite. In this case, we employ
the following tests:

1. A is positive semide�nite i� every principal minor of A is ≥ 0.

2. A is negative semide�nite i� every principal minor of A of odd order is ≤ 0 and every principal
minor of even order is ≥ 0.

Notice that for determining semide�niteness, we can no longer check just the leading principal minors,
but we must check all principal minors. What a pain!
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8 Homework

1. Express the quadratic form as a matrix product involving a symmetric coe�cient matrix.

(a) Q = 8x1x2 − x21 − 31x22

(b) Q = 3x21 − 2x1x2 + 4x1x3 + 5x22 + 4x23 − 2x2x3

2. List all the principal minors of the 4× 4 matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


3. Prove that:

(a) Every diagonal matrix whose diagonal elements are all positive is positive de�nite.

(b) Every diagonal matrix whose diagonal elements are all negative is negative de�nite.

(c) Every diagonal matrix whose diagonal elements are all positive or zero is positive semidef-
inite.

(d) Every diagonal matrix whose diagonal elements are all negative or zero is negative semidef-
inite.

(e) All other diagonal matrices are inde�nite.

4. Determine the de�niteness of the following matrices:

(a)

(
2 −1
−1 1

)
(b)

(
−3 4
4 −5

)
(c)

(
−3 4
4 −6

)
(d)

(
2 4
4 8

)

(e)

 1 2 0
2 4 5
0 5 6


(f)

 −1 1 0
1 −1 0
0 0 −2



(g)


1 0 3 0
0 2 0 5
3 0 4 0
0 5 0 6
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9 Eigenvalues, Eigenvectors and Diagonalizability

9.1 Eigenvalues

Let A be a square matrix. An eigenvalue is a number λ such that

(A− λI)x = 0, for some x 6= 0

Notice also that this implies that an eigenvalue is a number λ such that Ax = λx.

Note that x = 0 is always a solution to (A− λI)x = 0. The de�nition of an eigenvalue requires that
there is another solution to (A− λI)x = 0, which is di�erent from 0. The system (A− λI)x = 0 has
therefore more than one solution and (A− λI) is a singular matrix. In other words, and eigenvalue
is a number λ which when subtracted from the diagonal elements of the matrix A creates a singular
matrix. Also, a matrix A is non-singular if and only if 0 is not an eigenvalue of A.

Example: Find the eigenvalues of the matrix

A =

 0 1 0
0 0 1
4 −17 8

 .

Assume that λ is an eigenvalue of A. Remember that if the matrix resulting when we subtract λI
from A is singular, then its determinant must be zero. Then λ solves the equation∣∣∣∣∣∣

 0 1 0
0 0 1
4 −17 8

−
 λ 0 0

0 λ 0
0 0 λ

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣
 −λ 1 0

0 −λ 1
4 −17 8− λ

∣∣∣∣∣∣ = 0

−λ3 + 8λ2 − 17λ+ 4 = 0

−(λ− 4)(λ2 − 4λ+ 1) = 0

So one eigenvalue is λ = 4. To solve the quadratic, we use the quadratic formula:

λ = 4±
√

(−4)2 − 4 · 1 · 1
2 · 1

= 2±
√

3

Therefore, the eigenvalues are λ = {2−
√

3, 2 +
√

3, 4}.

9.2 Eigenvectors

De�nition Given an eigenvalue λ, and eigenvector associated with λ is a non-zero vector x such
that (A− λI)x = 0.
Notice that eigenvectors are only de�ned up to a scalar: If (A− λI)x = 0 then also (A− λI) 2x = 0
etc., so all multiples of x are also eigenvectors associated with λ.

Example: Find the eigenvectors of the matrix

A =

 0 0 −2
1 2 1
1 0 3

 .
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We must �rst �nd the eigenvalues of the matrix. The determinant of (A− λI) is

−λ (2− λ) (3− λ) + 2 (2− λ) = −λ
(
6− 5λ+ λ2

)
+ 4− 2λ = −8λ+ 5λ2 − λ3 + 4

Therefore, we must �nd

λ3 − 5λ2 + 8λ− 4 = (λ− 1) (λ− 2) (λ− 2) = 0.

We can see that λ = 1 and λ = 2, where λ = 2 is a repeated root.

Since each eigenvector corresponds to an eigenvalue, let us consider the eigenvalue λ = 1. The matrix
A− λI is then

A− λI =

 −1 0 −2
1 1 1
1 0 2

 .

This implies that the system of equations can be written

x1 = −2x2

x1 = −x2 − x3
x1 = −2x2

when A− λI = 0. Combining the second and third equation, we have

−2x2 = −x2 − x3 ⇒ x2 = x3

Therefore, we have
x1 = −2x2

x2 = x2

x3 = x2

Which implies  x1
x2
x3

 =

 −2
1
1

x2.

Therefore, we can let x2 be anything we want, say, x2 = s. As we increase and decrease s, we trace
out a line in 3-space, the direction of which is the eigenvector of λ = 1. Each point along the line has
det (A− λI) = 0.

As a check, we can see whether (A− λI)x = 0. We then have −1 0 −2
1 1 1
1 0 2

 −2
1
1

 =

 2 + 0− 2
−2 + 1 + 1
−2 + 0 + 2

 =

 0
0
0

 = 0.

We now know one eigenvector is
(
−2 1 1

)′
. We can �nd the others in a similar manner.

Let λ = 2. Then

(A− λI) =

 −2 0 −2
1 0 1
1 0 1

 ,

which implies
x1 = −x3,

x1 = −x3,
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x1 = −x3.

Therefore, we can write the system as x1
x2
x3

 =

 1
???
−1

x1.

Notice that we cannot write x2 as a function of either x1 or x3. Therefore, there is no single eigenvector
which corresponds to λ = 2. However, notice that since the system is independent of x2 when λ = 2,
we can let x1 and x2 be anything we want. Say x1 = s and x2 = t. Then we can write the solution
to the system as  x1

x2
x3

 =

 1
0
−1

 s+

 0
1
0

 t.

Therefore, corresponding eigenvectors are

 1
0
−1

 and

 0
1
0

, and their linear combinations. To

check that this is the case, notice

(A− λI)x =

 −2 0 −2
1 0 1
1 0 1

 1
0
−1

 =

 −2 + 0 + 2
1 + 0− 1
1 + 0− 1

 =

 0
0
0

 = 0

and

(A− λI)x =

 −2 0 −2
1 0 1
1 0 1

 0
1
0

 =

 0 + 0 + 0
0 + 0 + 0
0 + 0 + 0

 =

 0
0
0

 = 0.

Generally, if the matrix is an n × n matrix, we have n eigenvalues (not necessarily real) and n
eigenvectors (up to scalars). This is because there are n roots (not necessarily real) to an nth order
polynomial. Also, if an eigenvalue is repeated k times, then there are k corresponding eigenvectors to
the repeated root.

9.3 Diagonalizability

A square matrix A is called diagonalizable if there exists an invertible matrix P such that P−1AP
is a diagonal matrix. We state without proof the following theorem:

Let A be n×n, and assume A has n linearly independent eigenvectors. De�ne the matrices

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 , P =
(
p1 p2 . . . p3

)
,

where pi is the ith linearly independent eigenvector. Then Λ = P−1AP .

Example: Consider again the matrix

A =

 0 0 −2
1 2 1
1 0 3

 ,
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and remember that the corresponding eigenvalues were λ = {1, 2, 2} and


 −2

1
1

 ,

 1
0
−1

 ,

 0
1
0

.

Therefore, the matrix P can be expressed as

P =

 −2 1 0
1 0 1
1 −1 0


Notice that

P−1 =

 −1 0 −1
−1 0 2
1 1 1

 .

Then we can see that

P−1AP =

 −1 0 −1
1 0 2
1 1 1

 0 0 −2
1 2 1
1 0 3

 −2 1 0
1 0 1
1 −1 0

 =

=

 −1 0 −1
2 0 4
2 2 2

 −2 1 0
1 0 1
1 −1 0

 =

 1 0 0
0 2 0
0 0 2


Example: Consider the matrix

A =

(
1 1
0 1

)
det(A− λI) = (1− λ)2 and so the repeated eigenvalue of this matrix is λ = 1. To �nd the associated
eigenvector , we solve

(A− I)x =

(
0 1
0 0

)
x = 0

We get x =

(
x1
0

)
, which can be written as x =

(
1
0

)
s. Although λ has multiplicity 2, there is

only one linearly independent eigenvector associated with it. We cannot �nd two linearly independent
eigenvectors, and therefore A is not diagonalizable.
Notice however that A is invertible (det(A) = 1). This is an example of a matrix that is invertible
but not diagonalizable.

Real Symmetric Matrices Let A be n× n real symmetric matrix. Then all eigenvalues of A are
real (but not necessarily distinct) and A is diagonalizable. Furthermore, we can �nd a matrix P of
eigenvectors such that P is orthogonal, i.e. P−1 = PT .

Eigenvalues & De�niteness For a diagonalizable matrix A, we can easily read of its de�niteness
from the eigenvalues (compare to homework question 3 in LA II notes):

1. A diagonalizable matrix A is positive (semi)de�nite if all eigenvalues are (weakly) positive.

2. A diagonalizable matrix A is negative (semi)de�nite if all eigenvalues are (weakly) negative.

3. A diagonalizable matrix A is inde�nite if at least one eigenvalue is strictly positive and at least
one eigenvalue is strictly negative.

We will need to diagonalize matrices when solving systems of di�erential equations.
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10 Markov Chains

Assume k states of the world, which we label 1, 2, . . . , k. Let the probability that we move to state j
from state i pij , and call it the transition probability. Then the transition probability matrix

of the Markov chain is the matrix

P =

 p11 . . . p1k
...

. . .
...

pk1 . . . pkk

 .

Notice that the rows are the current state, and the columns are the states into which we can move.
Also notice that the rows of the transition probability matrix must add up to one (otherwise the
system would have positive probability of moving into an unde�ned state).

Example: Say that there are three states of the world: rainy, overcast, and sunny. Let state 1 be
rainy, 2 be overcast, and 3 be sunny. Consider the transition probability matrix

P =

 .8 .1 .1
.3 .2 .5
.2 .6 .2

 .

For example, if it is rainy, the probability it remains rainy is .8. Also, if it is sunny, the probability
that it becomes overcast is .6.

The transition probability matrix tells us the likelihood of the state of the system next period. How-
ever, what if we want to know the likelihood of the state in two periods? Call this probability transition
matrix P2. It can be shown that PP = P2. Similarly, it can be shown that

Pn = Pn.

Example: If it is rainy today, what is the probability that is will be cloudy the day after tomorrow?

P2 =

 .8 .1 .1
.3 .2 .5
.2 .6 .2

 .8 .1 .1
.3 .2 .5
.2 .6 .2

 =

 .69 .16 .15
.40 .37 .23
.38 .26 .36


Therefore, there is a 0.16 chance that if it is rainy today, then it will be cloudy the day after tomorrow.

Implicitly we have been assuming that we know the vector of probabilities today. For example, we
say �assume it is cloudy�. But what if we don't know what the probability will be today? We can
de�ne an initial state of probabilities as x = (p1, p2, . . . , pn). Then the probability that it will be rainy
tomorrow is x0P = x1.
A vector x with 0 ≤ xi ≤ 1 for all i and

∑n
i=1 xi = 1 is called a probability vector.

Example: If there is a 30% chance of rain today, and a 10% chance of sun, what is the probability
that is will be cloudy the day after tomorrow?

x2 = x1P = x0P
2 =

(
.3 .6 .1

) .8 .1 .1
.3 .2 .5
.2 .6 .2

 .8 .1 .1
.3 .2 .5
.2 .6 .2

 =

=
(
.3 .6 .1

) .69 .16 .15
.40 .37 .23
.38 .26 .36

 =
(
.485 .296 .219

)
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Therefore, there is a 0.296 chance that it will be cloudy the day after tomorrow.

A transition matrix P is called regular if Pn has only strictly positive entries for some integer n.
A steady-state vector q of a transition matrix P is a probability vector that satis�es the equation
qP = q. Notice that this corresponds to λ = 1 as an eigenvector of P ′.
If P is a regular transition matrix the following holds true:

• 1 is an eigenvalue of P .

• There is a unique probability vector q which is an eigenvector associated with the eigenvalue 1.

• xPn → q as n→∞

Example: What is the probability it will be cloudy as n→∞?

The matrix P is regular since P has only strictly positive entries. In order to �nd the long-run
probabilities, we must realize that

qP = q⇒ P ′q′ = q′.

Notice that if λ = 1, then we have

qP = λq⇒ P ′q′ = λq′.

Therefore, q′ is the eigenvector of P ′ which corresponds to the eigenvalue of λ = 1. Therefore, it
su�ces to �nd this eigenvalue.

(P ′ − λI)q′ =

 −.2 .3 .2
.1 −.8 .6
.1 .5 −.8

q′ = 0⇒

 −.2 .3 .2 | 0
.1 −.8 .6 | 0
.1 .5 −.8 | 0


 1 0 − 34

13 | 0
0 1 − 14

13 | 0
0 0 0 | 0


q1 =

34

13
q3

q2 =
14

13
q3

q3 = q3.

Therefore, q =
(
34
13 ,

14
13 , 1

)
q3, where q3 can be whatever we want. Since we must have that the sum of

the elements of q be equal to 1, we choose q3 accordingly.

34

13
+

14

13
+

13

13
=

61

13
⇒ q3 =

13

61
⇒ q =

(
34

61
,

14

61
,

13

61

)
.
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11 Homework

1. Find the eigenvalues and the corresponding eigenvectors for the following matrices:

(a)

(
3 0
8 −1

)
(b)

(
10 −9
4 −2

)
(c)

(
0 3
4 0

)
(d)

(
−2 −7
1 2

)
(e)

(
0 0
0 0

)
(f)

(
1 0
0 1

)
2. Determine whether the following matrices are diagonalizable:

(a)

(
2 0
1 2

)
(b)

(
2 −3
1 −1

)

(c)

 3 0 0
0 2 0
0 1 2


(d)

 −1 0 1
−1 3 0
−4 −13 −1



(e)


2 −1 0 1
0 2 1 −1
0 0 3 2
0 0 0 3


3. Diagonalize the following matrices, if possible:

(a)

(
−14 12
−20 17

)
(b)

(
1 0
6 −1

)

(c)

 1 0 0
0 1 1
0 1 1


(d)

 2 0 −2
0 3 0
0 0 3
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4. (midterm exam) You have the following transition probability matrix of a discrete state Markov
chain: 

1
4

1
4 0 1

2
0 1 0 0
1
2 0 1

2 0
1
4

1
4

1
4

1
4


What is the probability that the system is in state 2 at time n + 2 given that it was in state 3
at time n?

5. (Homework problem) Suppose that the weather can be sunny or cloudy and the weather con-
ditions on succesive mornings form a Markov chain with stationary transition probabilities.
Suppose that the transition matrix is as follows(

.7 .3

.6 .4

)
where sunny is state 1 and cloudy is state 2. If it is cloudy on a given day, what is the probability
that it will also be cloudy the next day?

6. (Homework problem) Suppose that three boys 1, 2, and 3 are throwing the ball to one another.
Whenever 1 has the ball, he throws it to 2 with a probability of 0.2. Whenever 2 has the ball,
he will throw it to 1 with probability 0.6. Whenever 3 has the ball, he is equally likely to throw
it to 1 or 2.

(a) Construct the transition probability matrix

(b) If each of the boys is equally likely to have the ball at a certain time n, which boy is most
likely to have the ball at time n+ 2?
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