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1 Lecturel

1.1 Introduction

We now move onto a discussion of convex sets, and the related subject of convex function. As we
will see in a minute, the basic idea of convex sets is that they contain their own line segments: if 1
take any two points in the set, and draw a line between them, then all the points along that line
are in the set. Convex sets are extremely important for a number of purposes. Perhaps from our
point of view, the most useful is their role in optimization (this may ring a few bells - hopefully it

will ring more as we go along)

1.2 Convex Sets

We begin by defining a convex set. As I said in the introduction, the key idea is that if I take any
two points in a convex set and ‘walk’ from one point to another in a straight line, then I will not
leave the set. Of course, I need to formalize this notion.
Definition 1 Let V' be a linear space. A subset S C 'V is convez if

A+ (1-NyeSVaz,yeS, Ae(0,1)

We sometimes call Az + (1 — )y a ‘line segment’. As you can see, it is effectively a weighted

average of the two points x and y. Note that, in order to define the idea of a convex set we need a



notion of addition and scalar multiplication - the two properties that define a linear space. This is

one of the reasons we spent so long discussing linear spaces at the start of the course.

We can extend the notion of a linear segment to more than two points in a set in the following

way:

Definition 2 A conver combination of a set S is a vector

S = A181 + Aasa2 + ... + A\nsn
wheren €N, s;e SVi, s e Ry Viand Y \i=1

Note how close this is to the idea of the span of a set S. The crucial difference is that we
demand ' ; A; = 1, and so (in some sense) we can only project inward from a set of points,
rather than outward, as is allowed in the concept of a span. Note that, for convenience, we will use

The idea of a convex combination allows for an alternative characterization of a convex set

Lemma 1 A set S C M is convez if and only if it contains all convexr combinations of S

Proof. The fact that a set that contains all its convex combinations is convez is trivial. We prove
that a convex set contains all its convexr combinations we prove by induction on k, the number of
vectors used to form the convexr combination. The fact that it is true for k =1 (and 2) is trivial,

so now assume it is true for k and we need to prove that it is true for k+ 1. Let

§ = A181 + A282 + oo + Apt1Sk+1

be a conver combination of elements in S. Note that
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is a convexr combination of k elements in S. By induction, 5§ € S. But then

s = Ais1+ A2s2+ .o+ Apr1Sk+1
k+1
A2 Ab+1

= )\181 + Z >\z (TS2 + ...+ T5k+1
i=2 Zz‘; Ai 2;2 Ai
k+1

= ASs1+ Z ;S
=2

= M\s1+ (1 — /\1)5
so, as S is convexr, s € S. A

A useful structure that we are going to come back to time and again is the convex hull of a

set. This is the smallest convex set that contains the set

Definition 3 The convez hull of a set S is defined as

co(S) = N{C|C is convex and S C C}

While it is a useful property, it can be difficult to identify the convex hull of a particular set. A
useful theorem in this regard is that the convex hull is equal to the set of convex combinations of

elements is that set.

Theorem 1 For any set S, co(S) = K(S), where K(S) ={z|s is a convex combination of S}

Proof. We first show that K(S) is a subset of co(S). Let s = A\1s1 + Aas2 + ... + Apsp, for some
collection {s;};—, of vectors in S. Let C' be any convex set that contains S. By lemma 1, we know

that s € C. Thus K(S) C C, and so K(S) C co(S)

Now we need to show that co(S) is a subset of K(S). All we need to show is that K(S) is convex.

To see this, take x, y such that

m
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i=1
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where Y M a; =1, Y " B; =1 and x;,y; € SV i. Then

pa 4 (1 — p)y
m n
= uy_ awi+(1—p)Y B
i=1 i—1

m n
= > paimi+ Y (1— @By
=1 =1

but, this is a convex combination of S, as x;,y; € SV i and

ZM%‘ + 2(1 — 1),
= =1

= MZOéH-(l—M)ZBi
i=1 i=1
= pt+(1-n

=1

A useful extension of this proved by Caratheodory is that, in R” we can generate the convex
hull by taking convex combinations using at most n + 1 vectors.
Theorem 2 For any set S € R", co(S) = {Z?;Lll Nizilx; € SYi, A € Pn+1}
Proof. We know that

n+1
{Z )\z.’Ez’.’I}Z S SVi, AE Pn+1} C K(S)
i=1

, and so

n+1
{Z)\ﬂ}z’.’ﬂl S SV’i, AE Pn+1} C CO(S)
=1

thus, all we need to show is that co(S) C {Z?jll Nizi|z; € SYi, A € Pn+1}.
Let x € co(S) = K(S). Then there exists an yi,...ym € S and X\ € Py, such that

m
x = Z AiYi
=1

We only need to worry about the case where m > n+1. In this case, the set {y1 — Ym, ---s Yym—1 — Ym }

is linearly dependent, so there is some 3 # 0 such that
m—1
> Bi(yi —ym) =0
i=1
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Let B,, = — "' B;, then

Zﬁi =0
i=1
But, as
ro= > A
i=1
m m
= T = ZN% _tZBiyi
i=1 i=1
= Z (/\Z tﬁz) Yi
i=1
Let t = mln{%]ﬁZ > O} = 2—3 and o; = \; — t53;
i J
Notice that
_ Aj
M-8 = Ai—2LB;>0
B;
NETR
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and
D= N—t8=) N=1
i=1 i=1 i=1
Also,
s
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m
T = g QY
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i)
We can therefore discard one of the vectors in y;,...ym. Iterating on this procedure we can get

down to n + 1 vectors m



