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1 Lecture 1

1.1 Introduction

We now move onto a discussion of convex sets, and the related subject of convex function. As we

will see in a minute, the basic idea of convex sets is that they contain their own line segments: if I

take any two points in the set, and draw a line between them, then all the points along that line

are in the set. Convex sets are extremely important for a number of purposes. Perhaps from our

point of view, the most useful is their role in optimization (this may ring a few bells - hopefully it

will ring more as we go along)

1.2 Convex Sets

We begin by defining a convex set. As I said in the introduction, the key idea is that if I take any

two points in a convex set and ‘walk’ from one point to another in a straight line, then I will not

leave the set. Of course, I need to formalize this notion.

Definition 1 Let  be a linear space. A subset  ⊂  is convex if

+ (1− ) ∈  ∀   ∈ ,  ∈ (0 1)

We sometimes call  + (1 − ) a ‘line segment’. As you can see, it is effectively a weighted

average of the two points  and . Note that, in order to define the idea of a convex set we need a
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notion of addition and scalar multiplication - the two properties that define a linear space. This is

one of the reasons we spent so long discussing linear spaces at the start of the course.

We can extend the notion of a linear segment to more than two points in a set in the following

way:

Definition 2 A convex combination of a set  is a vector

 = 11 + 22 + + 

where  ∈ N,  ∈  ∀ ,  ∈ R+ ∀  and
P

=1  = 1

Note how close this is to the idea of the span of a set . The crucial difference is that we

demand
P

=1  = 1, and so (in some sense) we can only project inward from a set of points,

rather than outward, as is allowed in the concept of a span. Note that, for convenience, we will use

 = { ∈ R| ≥ 0∀
P

=1  = 1}

The idea of a convex combination allows for an alternative characterization of a convex set

Lemma 1 A set  ⊂ is convex if and only if it contains all convex combinations of 

Proof. The fact that a set that contains all its convex combinations is convex is trivial. We prove

that a convex set contains all its convex combinations we prove by induction on , the number of

vectors used to form the convex combination. The fact that it is true for  = 1 (and 2) is trivial,

so now assume it is true for  and we need to prove that it is true for  + 1. Let

 = 11 + 22 + + +1+1

be a convex combination of elements in . Note that

̄ =
2P+1
=2 

2 + +
+1P+1
=2 

+1
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is a convex combination of  elements in . By induction, ̄ ∈ . But then

 = 11 + 22 + + +1+1

= 11 +

+1X
=2



Ã
2P+1
=2 

2 + +
+1P+1
=2 

+1

!

= 11 +

+1X
=2

̄

= 11 + (1− 1)̄

so, as  is convex,  ∈ 

A useful structure that we are going to come back to time and again is the convex hull of a

set. This is the smallest convex set that contains the set

Definition 3 The convex hull of a set  is defined as

() = ∩{| is convex and  ⊂ }

While it is a useful property, it can be difficult to identify the convex hull of a particular set. A

useful theorem in this regard is that the convex hull is equal to the set of convex combinations of

elements is that set.

Theorem 1 For any set , () = (), where () = {| is a convex combination of  }

Proof. We first show that () is a subset of (). Let  = 11 + 22 +  +  for some

collection {}=1 of vectors in . Let  be any convex set that contains . By lemma 1, we know

that  ∈ . Thus () ⊂ , and so () ⊂ ()

Now we need to show that () is a subset of (). All we need to show is that () is convex.

To see this, take ,  such that

 =

X
=1



 =

X
=1
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where
P

=1  = 1,
P

=1  = 1 and   ∈  ∀ . Then

+ (1− )

= 

X
=1

 + (1− )

X
=1



=

X
=1

 +

X
=1

(1− )

but, this is a convex combination of , as   ∈  ∀  and
X
=1

 +

X
=1

(1− )

= 

X
=1

 + (1− )

X
=1



= + (1− )

= 1

A useful extension of this proved by Caratheodory is that, in R we can generate the convex

hull by taking convex combinations using at most + 1 vectors.

Theorem 2 For any set  ∈ R, () =
nP+1

=1 | ∈ ∀  ∈ +1

o
Proof. We know that (

+1X
=1

| ∈ ∀  ∈ +1

)
⊂ ()

, and so (
+1X
=1

| ∈ ∀  ∈ +1

)
⊂ ()

thus, all we need to show is that () ⊂
nP+1

=1 | ∈ ∀  ∈ +1

o
.

Let  ∈ () = (). Then there exists an 1  ∈  and  ∈  such that

 =

X
=1



We only need to worry about the case where  +1. In this case, the set {1 −   −1 − }
is linearly dependent, so there is some  6= 0 such that

−1X
=1

 ( − ) = 0
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Let  = −
P−1

=1 , then

X
=1

 = 0

X
=1

 = 0

But, as

 =

X
=1



⇒  =

X
=1

 − 

X
=1



=

X
=1

( − ) 

Let ̄ = min
n


|  0

o
:=



and  =  − ̄

Notice that

 − ̄ =  − 


 ≥ 0

as



≤ 



and
X
=1

 =

X
=1

 − ̄ =

X
=1

 = 1

Also,

 =  − 


 = 0

so

 =

X
=1
6=



We can therefore discard one of the vectors in  . Iterating on this procedure we can get

down to + 1 vectors

5


