
2 Lecture 2

2.1 Topological Properties of Convexity

We are now going to move onto discuss the topological properties of convex sets. If you are awake,

your immediate reaction should be ‘with respect to what topology’? So far, we have only discussed

convex sets in the context of a linear space, and we have (in general) defined a topology through

the concept of a metric space. So what are we going to do?

In fact, there are two ways that we can go here. One is that we can restrict ourselves to normed

linear spaces (or even R) and use the topology inherent in such spaces (i.e. the topology generated

by the metric associated with that norm). Another would be to use the algebraic structure of convex

sets to define a new topology. Due to time constrains, we are going to do the former, though you

should be aware of the latter possibility.

The properties that we are going to show may seem a little random, but they will turn out to

be useful when we start separating things later.

Our first result is going to allow us to extend the convexity property to the closure of a set

Lemma 2 Let  be a convex set in some metric space  . Let 1 ∈ () and 2 ∈ (). Then

[1 2) ⊂ ()

Proof. First assume that 2 ∈ . The fact that 1 ∈  ⇒ ∃   0 such that (1 ) ⊂ . Let

 ∈ [1 2), then for some  ∈ (0 1]

 = 1 + (1− )2

Now, say  ∈ ( ). then

 =  + ( − ) =  + 

= 1 + (1− )2 + 

= (1 +
1


) + (1− )2
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but

(1 1 +
1


)

= ||1 − 1 − 1

||

= ||1

||

=
1


||||

and, as  = ( − ), then |||| = ( ) ≤ , so

1 +
1


 ∈ (1 ) ⊂ 

⇒  = (1 +
1


) + (1− )2 ∈ 

by convexity.

Next, assume that 2 ∈ ̄. Then there exists some ̄2 ∈  such that ||̄2 − 2||  
1−

Let

 = 1 −
µ
1− 



¶
(̄2 − 2)

Then

|| − 1|| =
1− 


||̄2 − 2||

≤ 1− 





1− 

= 

⇒  ∈ (1 ) ⊂ 

But

 + (1− )̄2

= 

µ
1 −

µ
1− 



¶
(̄2 − 2)

¶
+(1− )̄2

= 1 + (1− )2 = 

thus  ∈ 
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Two immediate corollaries of this are

Corollary 1 If  is convex in a linear space, then so is 

Corollary 2 If  is convex in a linear space and  6= {}, then

1. () = ()

2.  = (())

Notice that this second is not true for any arbitrary set . For example, let

 = [Q ∩ [0 1]] ∪ [1 2]

then () = (1 2) and (()) = (0 2)

So we know that if a set is convex, then so is its interior. It turns out that its closure will also

be convex

Lemma 3 If  is convex, then so is ̄.

Proof. Let   ∈ ̄ and  ∈ (0 1). We need to show that  =  + (1 − ) ∈ ̄. Let {} and
{} be sequences in ̄ that converge to  and  respectively. We know that

 + (1− ) ∈  ∀ 

by convexity, and that  + (1− ) → . Thus, as the closure is closed,  ∈ ̄.

We will finish off this section by showing that two properties translate from a set to its convex

hull.

Lemma 4 If  is open in some linear space, then so is ()

Proof. Assume that  6= {} (otherwise it is trivial). Then  ⊆ ()⇒  =  ⊆ [()] 6= {}

So the interior of the convex hull is a convex set that contains , thus, as the convex hull in

the intersection of such sets,

() ⊂ (())
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but as (()) ⊂ () trivially, we have () = (()), and so () is open.

Lemma 5 If  ⊂ R is compact, then so is ()

Proof. Let  : R+1 × (R)+1 → R be defined as

( 1  +1) =

+1X
=1



You can check (but it should be obvious) that  is continuous. Now note that

()

=

(
+1X
=1

| ∈ +1 {1 2  +1} ∈ +1

)

by Carathedoery, so

() = (+1
+1)

both of which are compact sets (as +1) is a closed, bounded subset of R+1, and +1 is

the product of compact sets. Thus, () is the the image of a continuous function on a compact

pre-image and so, (as we have proved) is compact itself.

2.2 Orthogonal Projection and Convexity

We are now going to come back to the concept of orthogonal projection we discussed in linear

algebra. There we showed that, for any linear subspace  and point , there was a unique decom-

position  ∈  and ⊥ ∈ ⊥ such that +⊥ = . Moreover, we said that  was the closest point

to  in the subspace . We are now going to use this latter notion to define orthogonal projection

more generally.

Definition 4 Let  ⊂ R and  ∈ R. Then if ∗ ∈  is such that || − ∗|| ≤ || − || ∀  ∈ ,

then ∗ is the orthogonal projection of  onto , and we write ∗ = ()

We are now going to prove a result which is similar to Hilbert’s projection theorem (we are

going to prove it for R, but the result is more general). This will show that, for closed convex sets,

the orthogonal projection exists and is unique. This section is going to rely heavily on the result

we proved in the linear analysis section:
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Lemma 6 For   ∈ R, ||+ ||2 = ||||2 + ||||2 + 2    

Proof. See linear algebra lecture notes

We will begin by showing that, for any convex set, there can be at most one element in the

convex projection.

Lemma 7 If  is convex, then there exists at most one ∗ ∈  such that || − ∗|| ≤ || − || ∀
 ∈ 

Proof. Proof. Say that two vectors, 1 and 2 both satisfy this condition. First note, that for

any two vectors 1, 2,  we already know that

||1 − 2||2 = ||1 − ||2 + ||2 − ||2 − 2  (1 − )(2 − ) 

But also

4||1 + 2

2
− ||2 = ||(1 − ) + (2 − )||

= ||1 − ||2 + ||2 − ||2 + 2  (1 − )(2 − ) 

And so

||1 − 2||2 = 2||1 − ||2 + 2||2 − ||2 − 4||1 + 2

2
− ||2

Let  be the distance between 1 and . as 1+2
2
∈ , we know that ||1+2

2
− || ≥ , and so

||1 − 2||2

≤ 22 + 22 − 42

⇒ ||1 − 2||2 = 0

Thus 1 = 2

So convexity is enough to imply uniqueness of an orthogonal projection. Is it enough to guarantee

existence? Of course not! Consider the convex set (0 1) and the point  = 2. However, in R, it

turns out that closedness is enough to guarantee existence.
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Theorem 3 Let  ⊂ R be convex and closed, and  ∈ R. Then () exists, is unique and

∗ = () iff ∗ ∈  and

  − ∗ − ∗ ≤ 0 ∀  ∈ 

Proof. First we will prove existence. Let  = inf∈ ||−|| and  = 2 and  =  ∩ ̄().
As this is an intersection between two convex sets it is convex. As it is the intersection of two closed

sets is is closed, and as it is also bounded it is compact. It is also non-empty. As () = || − ||
is continuous in R, then by Weierstrass,  = inf∈ () is attained in . let 

∗ = () =

(). Thus we have existence and (by lemma 7) uniqueness

Now we need to prove (first) that if ∗ = (), then   − ∗  − ∗ ≤ 0 ∀  ∈ . To see

this, pick an  ∈  and  ∈ [0 1]. We know that

||∗ − ||2 ≤ || − (+ (1− )∗)||2

= || − ∗ − (− ∗)||2

= || − ∗||2 + 2||(− )∗||2 − 2   − ∗ − ∗ 

⇒   − ∗ − ∗ ≤ 

2
||(− )∗||2

This is true for all , thus taking the limit as  goes to zero we can see

  − ∗ − ∗ ≤ 0

Finally, we need to show that if   − ∗ − ∗ ≤ 0 ∀  ∈ , then ∗ = (). To see this,

note that, for any  ∈ ,

|| − ||2 = ||( − ∗)− (− ∗)||2

= || − ∗||2 + ||− ∗||2 − 2   − ∗ − ∗ 

but, as ||− ∗||2 ≥ 0 and −2   − ∗ − ∗ ≥ 0

|| − || ≥ || − ∗||
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